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Determinantal Point Processes (DPPs)
Given a ground set Y = {1, . . . , d} and positive definite matrix L ∈ Rd×d,

Pr(X) ∝ det(LX) for X ⊆ Y,

where LX is a submatrix of L indexed by items of X.

• DPPs are probabilistic models capturing both diversity and item quality of
subsets.

• Most inference tasks (including normalization, marginalization, condition-
ing and sampling) can be done in O(d3).

• However, MAP inference is known as NP-hard problem, that is,

arg max
X⊆Y

detLX .

• The MAP inference of DPP has been used for many machine learning
applications, e.g., text/video summarization, change-point detection, and
informative image search.

Our Contribution: Faster MAP Inference of DPP
Since log det is a submodular function, greedy algorithms for approximating MAP
of DPP have been of typical choice.

• A naïve greedy algorithm requires O(d5) operations.

algorithm complexity remarks

[Minoux, 1978] O(d5)
accelerated version

of a naïve greedy algorithm

[Buchbinder et al., 2015] O(d4)
symmetric

greedy algorithm

[Gillenwater et al., 2012] O(d4)
multilinear

softmax extension

We propose faster greedy algorithms requiring O(d3) operations.

First Ideas: Talyor Expansion
Greedy algorithms require computing the following marginal gains:

log detLX∪{i} − log detLX

For their efficient computations, our key ideas are:

1. First-order Taylor expansion for Log-determinant

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

• LX is the average of LX∪{i} for i ∈ Y \X.
• LX∪{i} and LX differ only single column and row.

• Single column of L
−1
X is computed by a linear solver,

e.g., conjugate gradient descent.

2. Partitioning

• For much tighter approximation, we divide Y \X into
p partitions so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)

X ‖F ,

where i is in the partition j ∈ {1, . . . , p}.
• To compute the marginal gains, we need to calculate extra term (∗):

log detLX∪{i} − log detLX

≈
〈
(L

(j)

X )−1, LX∪{i} − L
(j)

X

〉
︸ ︷︷ ︸

can compute by a linear solver

+
(
log detL

(j)

X − log detLX

)
︸ ︷︷ ︸

(∗)

.

• (∗) is also computable by a linear solver under Schur complement.

The overall complexity becomes O(d3) because we choose p = O(1) and
• In each greedy step, a linear solver can be used to compute both Taylor

approximation and (∗), thus O(p× d2) operations are required.
• The total number of greedy steps is at most d.

Second Ideas: Batch Strategy
We consider adding k-batch subset (instead of single element)

X ← X ∪ I for some |I| = k > 1

so that the number of greedy steps can be reduced at most k times.

1. Sampling random batches

• For the optimal k-batch, one has to investigate ≈
(
d
k

)
subsets.

• This is expensive. Instead, we randomly sample batches and add the
best of them to the current set.

2. Log-determinant approximation under sharing randomness

• For k-batch strategy, one can compute the extra term (∗),
i.e., log detL

(j)

X − log detLX , by running a linear solver k times.

• Alternatively, we suggest estimating all log-determinants log detL
(j)

X
by running a log-determinant approximation scheme (LDAS)
[Han et al., 2015], but only once.

method complexity
number
of calls

objective

linear solver O(d2) k log detL
(j)
X − log detLX

LDAS O(d2) 1 log detL
(j)
X

• LDAS approximates log detL
(j)

X using independent random vectors.
We suggest to run LDAS using the same random vectors for estimat-

ing all log detL
(j)

X .
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Observe that running LDAS’s under sharing random vectors is better

for comparing log detL
(j)

X , i.e., marginal gains.
• We provide the following error bound of LDAS under sharing random

vectors, where A = L
(j)

X and B = L
(j′)

X .

Theorem (Han, Prabhanjan, Park and Shin, 2017). Suppose A,B
are positive definite matrices whose eigenvalues are in [δ, 1− δ] for δ >
0. Let ΓA,ΓB be the estimations of log detA, log detB by LDAS
using the same m random vectors for both. Then, it holds that

Var [ΓA − ΓB ] ≤ 32M2ρ2 (ρ+ 1)2

m (ρ− 1)6 (1− 2δ)2
‖A−B‖2F

where M = 5 log (2/δ) and ρ = 1 + 2√
2/δ−1−1

.

On the other hand, the variance of LDAS under independent random
vectors depends on ‖A‖2F + ‖B‖2F which is significantly larger than
‖A−B‖2F in our case.

Experiments
Synthetic dataset
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• Accuracy is measured by log-probability ratio of a respective algorithm to
the standard (but accelerated) greedy algorithm [Minoux, 1978].

• Two versions of our algorithms: 1-batch and 10-batch with 50 batch sam-
ples.

• 1-batch achieves 0.03% and 10-batch achieves 0.3% loss on accuracy.
• 10-batch runs up-to 18 times faster than [Minoux, 1978].

Real dataset: Text and video summarizations
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• The number of selected items in video summarization is small. In this case,
1-batch shows better performance than 10-batch.

• For both text and video summarization task, our algorithms run 8 ∼ 10 times
faster than [Minoux, 1978] for large instances.

• Our video summaries often have higher F-score than [Minoux, 1978].
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