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Problem: Detecting Out-of-Distribution
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e Detect whether a test sample is from in-distribution P, (i.e., training distri-
bution) or out-of-distribution P, .

Related work:

e Threshold-based detector [Hendrycks et al., 2016] defined a confidence
score as the maximum value of prediction and classifies it as in-distribution
iIf the confidence score is above some threshold.

e ODIN [Liang et al., 2018] further improved the performance using temper-
ature scaling and input pre-processing.

Overconfidence issue: Deep neural networks (DNNs) are typically overconfi-
dent in their predictions [Lakshminarayanan et al., 2017]:
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Contribution 1: Training Confidence-calibrated Classifier

Training method for detecting out-of-distribution.
e Confidence loss: additionally minimizing the KL divergence.
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Experimental results on simple CNNs (2 Conv + 3 FC): some explicit out-of-
distribution samples (denoted by "seen") are given in training time.
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Figure 1: (a)/(b) The x-axis and y-axis represent the maximum prediction value and the
fraction of images receiving the corresponding score, respectively. (c) Receiver operating
characteristic (ROC) curve plots true positive rate (TPR) against false negative rate (FPR).

e In case of confidence loss (Figure 1(b)), there exists a better separation
between in- and out-of- distributions.

e Optimizing the cross entropy has a higher FPR than other ones doing the
confidence loss to have a same TPR.
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Contribution 2;: GAN for Out-of-Distribution

Issue: the number of out-of-distribution training samples might be almost infinite
to cover the entire space.

Intuition: out-of-distribution samples close to in-distribution are more effective
in improving the detection performance.

Experiments on binary classification task:
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Figure 2: (a)/(b) Classifier becomes overconfident when out samples are from entire space.
(c)/(d) It shows confidence-calibrated predictions if out samples are close to in-distribution.

e Training out-of-distribution samples nearby in-distribution could be more
effective in improving detection performances.

New generative adversarial network (GAN): generating most effective sam-
ples from out-of-distribution.
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(a) Forcing GG to produce low-density samples
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(b) Original GAN loss for generating samples close to in-distribution
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Comparison of original GAN and proposed GAN:
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Figure 3: In-distribution samples in (a)/(b) and (c)/(d) are drawn from a mixture of two Gaus-
sian distributions and MNIST dataset, respectively.

e For our method, we use a pre-trained classifier.

e The proposed GAN can produce the samples nearby the low-density
boundary of the in-distribution space.

Contribution 3: Joint Training Method

Jointly optimizing confidence-calibrated classifier and GAN as follows:
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(c) Standard classification loss (d) KL divergence term for confident prediction
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(e) Original GAN loss

e Confidence loss: (c) + (d) / Proposed GAN loss: (d) + (e)

Experiments: Effects of Joint Confidence Loss

Detection performance of threshold-based detector using VGGNet:
e T[rue negative rate (TNR) at 95% true positive rate (TPR).

e Area under receiver operating characteristic curve (AUROC): TPR vs FPR.

e Detection accuracy: best classification accuracy over all thresholds.
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(b) In-distribution: CIFAR-10
Figure 4: Performances of the baseline detector under various training losses.

e Our method outperforms all baseline methods in all cases.
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(b) In-distribution: CIFAR-10
Figure 5: Performances of the baseline detector and ODIN detector [Liang et al. 2018].

e Our method can be utilized with ODIN [Liang et al., 2018].
Visual interpretations of trained models:
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Figure 6: Guided gradient maps of predicted class with respect to the input image.



