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Problem: Detecting Out-of-Distribution

[Input] [Classifier with DNNs]

If score > 𝜖: In-distribution

Else: out-of-distribution

Confidence 
score

• Detect whether a test sample is from in-distribution Pin (i.e., training distri-
bution) or out-of-distribution Pout.

Related work:
• Threshold-based detector [Hendrycks et al., 2016] defined a confidence

score as the maximum value of prediction and classifies it as in-distribution
if the confidence score is above some threshold.

• ODIN [Liang et al., 2018] further improved the performance using temper-
ature scaling and input pre-processing.

Overconfidence issue: Deep neural networks (DNNs) are typically overconfi-
dent in their predictions [Lakshminarayanan et al., 2017]:

Contribution 1: Training Confidence-calibrated Classifier
Training method for detecting out-of-distribution.
• Confidence loss: additionally minimizing the KL divergence.

EPin(x̂,ŷ)

[
− logPθ (y = ŷ|x̂)

]
︸ ︷︷ ︸

High confidence

+EPout(x)

[
KL (U (y) ‖ Pθ (y|x))

]
︸ ︷︷ ︸

Zero confidence

Experimental results on simple CNNs (2 Conv + 3 FC): some explicit out-of-
distribution samples (denoted by "seen") are given in training time.
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(b) Confidence loss
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(c) ROC curve

Figure 1: (a)/(b) The x-axis and y-axis represent the maximum prediction value and the
fraction of images receiving the corresponding score, respectively. (c) Receiver operating
characteristic (ROC) curve plots true positive rate (TPR) against false negative rate (FPR).
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Figure 2: We generate out-of-distribution samples from (a) entire space, and show (b) corre-
sponding decision boundary of classifier. We also generate the out-of-distribution samples
(c) close to in-distribution, and show (d) corresponding decision boundary of classifier.

on out-of-distribution samples to be closer to the uniform one, i.e., zero confidence, while that
for samples from in-distribution still follows the label-dependent probability. In other words, the
proposed loss is designed for assigning higher maximum prediction values, i.e., maxy Pθ (y|x), to
in-distribution samples than out-of-distribution ones. Here, a caveat is that adding the KL divergence
term might degrade the classification performance. However, we found that it is not the case due
to the high expressive power of deep neural networks, while in- and out-of-distributions become
more separable with respect to the maximum prediction value by optimizing the confidence loss
(see Section 3.1 for supporting experimental results).

We remark that minimizing a similar KL loss was studied recently for different purposes (Lee et al.,
2017; Pereyra et al., 2017). Training samples for minimizing the KL divergence term is explicitly
given in their settings while we might not. Ideally, one has to sample all (almost infinite) types of out-
of-distribution to minimize the KL term in (1), or require some prior information on testing out-of-
distribution for efficient sampling. However, this is often infeasible and fragile. To address the issue,
we suggest to sample out-of-distribution close to in-distribution, which could be more effective in
improving the detection performance, without any assumption on testing out-of-distribution.

In order to explain our intuition in details, we consider a binary classification task on a simple ex-
ample, where each class data is drawn from a Gaussian distribution and entire data space is bounded
by 2D box [−50, 50]2 for visualization. We apply the confidence loss to simple fully-connected
neural networks (2 hidden layers and 500 hidden units for each layer) using different types of out-
of-distribution training samples. First, as shown in Figure 2(a), we construct an out-of-distribution
training dataset of 100 (green) points using rejection sampling on the entire data space [−50, 50]2.
Figure 2(b) shows the decision boundary of classifier optimizing the confidence loss on the corre-
sponding dataset. One can observe that a classifier still shows overconfident predictions (red and
blue regions) near the labeled in-distribution region. On the other hand, if we construct a training
out-of-distribution dataset of 100 points from [−20, 20]2, i.e., closer to target, in-distribution space
(see Figure 2(c)), a classifier produces confident predictions only on the labeled region and zero
confidence on the remaining in the entire data space [−50, 50]2 as shown in Figure 2(d). If one
increases the number of training out-of-distribution samples which are generated from the entire
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• In case of confidence loss (Figure 1(b)), there exists a better separation
between in- and out-of- distributions.

• Optimizing the cross entropy has a higher FPR than other ones doing the
confidence loss to have a same TPR.

Contribution 2: GAN for Out-of-Distribution
Issue: the number of out-of-distribution training samples might be almost infinite
to cover the entire space.
Intuition: out-of-distribution samples close to in-distribution are more effective
in improving the detection performance.
Experiments on binary classification task:
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Figure 1: (a)/(b) The x-axis and y-axis represent the maximum prediction value and the
fraction of images receiving the corresponding score, respectively. (c) Receiver operating
characteristic (ROC) curve plots true positive rate (TPR) against false negative rate (FPR).
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Figure 2: (a)/(b) Classifier becomes overconfident when out samples are from entire space.
(c)/(d) It shows confidence-calibrated predictions if out samples are close to in-distribution.

on out-of-distribution samples to be closer to the uniform one, i.e., zero confidence, while that
for samples from in-distribution still follows the label-dependent probability. In other words, the
proposed loss is designed for assigning higher maximum prediction values, i.e., maxy Pθ (y|x), to
in-distribution samples than out-of-distribution ones. Here, a caveat is that adding the KL divergence
term might degrade the classification performance. However, we found that it is not the case due
to the high expressive power of deep neural networks, while in- and out-of-distributions become
more separable with respect to the maximum prediction value by optimizing the confidence loss
(see Section 3.1 for supporting experimental results).

We remark that minimizing a similar KL loss was studied recently for different purposes (Lee et al.,
2017; Pereyra et al., 2017). Training samples for minimizing the KL divergence term is explicitly
given in their settings while we might not. Ideally, one has to sample all (almost infinite) types of out-
of-distribution to minimize the KL term in (1), or require some prior information on testing out-of-
distribution for efficient sampling. However, this is often infeasible and fragile. To address the issue,
we suggest to sample out-of-distribution close to in-distribution, which could be more effective in
improving the detection performance, without any assumption on testing out-of-distribution.

In order to explain our intuition in details, we consider a binary classification task on a simple ex-
ample, where each class data is drawn from a Gaussian distribution and entire data space is bounded
by 2D box [−50, 50]2 for visualization. We apply the confidence loss to simple fully-connected
neural networks (2 hidden layers and 500 hidden units for each layer) using different types of out-
of-distribution training samples. First, as shown in Figure 2(a), we construct an out-of-distribution
training dataset of 100 (green) points using rejection sampling on the entire data space [−50, 50]2.
Figure 2(b) shows the decision boundary of classifier optimizing the confidence loss on the corre-
sponding dataset. One can observe that a classifier still shows overconfident predictions (red and
blue regions) near the labeled in-distribution region. On the other hand, if we construct a training
out-of-distribution dataset of 100 points from [−20, 20]2, i.e., closer to target, in-distribution space
(see Figure 2(c)), a classifier produces confident predictions only on the labeled region and zero
confidence on the remaining in the entire data space [−50, 50]2 as shown in Figure 2(d). If one
increases the number of training out-of-distribution samples which are generated from the entire
space, i.e., [−50, 50]2, Figure 2(b) is expected to be similar to Figure 2(d). In other words, one need
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• Training out-of-distribution samples nearby in-distribution could be more
effective in improving detection performances.

New generative adversarial network (GAN): generating most effective sam-
ples from out-of-distribution.

min
G

max
D

EPG(x)

[
KL (U (y) ‖ Pθ (y|x))

]
︸ ︷︷ ︸
(a) Forcing G to produce low-density samples

+EPin(x)

[
logD (x)

]
+ EPG(x)

[
log (1−D (x))

]
.

︸ ︷︷ ︸
(b) Original GAN loss for generating samples close to in-distribution

Comparison of original GAN and proposed GAN:
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Generated samples

(a) Samples from the orig-
inal GAN

Generated samples

(b) Samples from the pro-
posed GAN

(c) Images from
the original GAN

(d) Images from
the proposed GAN

Figure 3: In-distribution samples in (a)/(b) and (c)/(d) are drawn from a mixture of two Gaus-
sian distributions and MNIST dataset, respectively.

space, i.e., [−50, 50]2, Figure 2(b) is expected to be similar to Figure 2(d). In other words, one need
more samples in order to train a confident classifier if samples are generated from the entire space.
However, this might be impossible and not efficient since the number of out-of-distribution training
samples might be almost infinite to cover its entire, huge actual data space. This implies that training
out-of-distribution samples nearby the in-distribution region could be more effective in improving
the detection performance. Our underlying intuition is that the effect of boundary of in-distribution
region might propagate to the entire out-of-distribution space. Our experimental results in Section
3.1 also support this: realistic images are more useful as training out-of-distribution than synthetic
datasets (e.g., Gaussian noise) for improving the detection performance when we consider an image
classification task. This motivates us to develop a new generative adversarial network (GAN) for
generating such effective out-of-distribution samples.

2.2 ADVERSARIAL GENERATOR FOR OUT-OF-DISTRIBUTION

In this section, we introduce a new training method for learning a generator of out-of-distribution
inspired by generative adversarial network (GAN) (Goodfellow et al., 2014). We will first assume
that the classifier for in-distribution is fixed, and also describe the joint learning framework in the
next section.

The GAN framework consists of two main components: discriminator D and generator G. The
generator maps a latent variable z from a prior distribution Ppri (z) to generated outputs G (z), and
discriminator D : X → [0, 1] represents a probability that sample x is from a target distribution.
Suppose that we want to recover the in-distribution Pin(x) using the generator G. Then, one can
optimize the following min-max objective for forcing PG ≈ Pin:

min
G

max
D

EPin(x)

[
logD (x)

]
+ EPpri(z)

[
log (1−D (G (z)))

]
. (2)

However, unlike the original GAN, we want to make the generator recover an effective out-of-
distribution Pout instead of Pin. To this end, we propose the following new GAN loss:

min
G

max
D

β EPG(x)

[
KL (U (y) ‖ Pθ (y|x))

]
︸ ︷︷ ︸

(a)

+ EPin(x)

[
logD (x)

]
+ EPG(x)

[
log (1−D (x))

]
︸ ︷︷ ︸

(b)

, (3)

where θ is the model parameter of a classifier trained on in-distribution. The above objective can be
interpreted as follows: the first term (a) corresponds to a replacement of the out-of-distribution Pout
in (1)’s KL loss with the generator distribution PG. One can note that this forces the generator to
generate low-density samples since it can be interpreted as minimizing the log negative likelihood
of in-distribution using the classifier, i.e., Pin(x) ≈ exp (KL (U (y) ‖ Pθ (y|x))) . We remark that
this approximation is also closely related to the inception score (?) which is popularly used as
a quantitative measure of visual fidelity of the samples. The second term (b) corresponds to the
original GAN loss since we would like to have out-of-distribution samples close to in-distribution,
as mentioned in Section 2.1. Suppose that the model parameter of classifier θ is set appropriately
such that the classifier produces the uniform distribution for out of distribution samples. Then, the
KL divergence term (a) in (3) is approximately 0 no matter what out-of-distribution samples are
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• For our method, we use a pre-trained classifier.
• The proposed GAN can produce the samples nearby the low-density

boundary of the in-distribution space.

Contribution 3: Joint Training Method
Jointly optimizing confidence-calibrated classifier and GAN as follows:

EPin(x̂,ŷ)

[
− logPθ (y = ŷ|x̂)

]
︸ ︷︷ ︸

(c) Standard classification loss

+βEPG(x)

[
KL (U (y) ‖ Pθ (y|x))

]
︸ ︷︷ ︸

(d) KL divergence term for confident prediction

+EPin(x̂)

[
logD (x̂)

]
+ EPG(x)

[
log (1−D (x))

]
.

︸ ︷︷ ︸
(e) Original GAN loss

• Confidence loss: (c) + (d) / Proposed GAN loss: (d) + (e)

Experiments: Effects of Joint Confidence Loss
Detection performance of threshold-based detector using VGGNet:
• True negative rate (TNR) at 95% true positive rate (TPR).
• Area under receiver operating characteristic curve (AUROC): TPR vs FPR.
• Detection accuracy: best classification accuracy over all thresholds.
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Generated samples

(a)

Generated samples
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Figure 3: The generated samples from original GAN (a)/(c) and proposed GAN (b)/(d). In (a)/(b),
the grey area is the 2D histogram of training in-distribution samples drawn from a mixture of two
Gaussian distributions and red points indicate generated samples by GANs.
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Figure 4: Performances of the baseline detector under various training losses.

3.2 EFFECTS OF ADVERSARIAL GENERATOR AND JOINT CONFIDENCE LOSS

In this section, we verify the effect of the proposed GAN in Section 2.2 and evaluate the detection
performance of the joint confidence loss in (4). To verify that the proposed GAN can produce the
samples nearby the low-density boundary of the in-distribution space, we first compare the gener-
ated samples by original GAN and proposed GAN on a simple example where the target distribution
is a mixture of two Gaussian distributions. For both the generator and discriminator, we use fully-
connected neural networks with 2 hidden layers. For our method, we use a pre-trained classifier
which minimizes the cross entropy on target distribution samples and the KL divergence on out-of-
distribution samples generated by rejection sampling on a bounded 2D box. As shown in Figure
3(a), the samples of original GAN cover the high-density area of the target distribution while those
of proposed GAN does its boundary one (see Figure 3(b)). We also compare the generated samples
of original and proposed GANs on MNIST dataset (LeCun et al., 1998), which consists of hand-
written digits. For this experiment, we use deep convolutional GANs (DCGANs) (Radford et al.,
2015). In this case, we use a pre-trained classifier which minimizes the cross entropy on MNIST
training samples and the KL divergence on synthetic Gaussian noises. As shown in Figure 3(c)
and 3(d), samples of original GAN looks more like digits than those of proposed GAN. Somewhat
interestingly, the proposed GAN still generates some new digit-like images.
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• Our method outperforms all baseline methods in all cases.
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Figure 5: Performances of the baseline detector and ODIN detector [Liang et al. 2018].
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Figure 6: Guided gradient maps of predicted class with respect to the input image.

We indeed evaluate the performance of our joint confidence loss in (4) utilizing the proposed GAN.
To this end, we use VGGNets (as classifiers) and DCGANs (as GANs). We also test a variant of con-
fidence loss which optimizes the KL divergence term on samples from a pre-trained original GAN
(implicitly) modeling the in-distribution. One can expect that samples from the original GAN can be
also useful for improving the detection performance since it may have bad generalization properties
(Arora et al., 2017) and generate a few samples on the low-density boundary as like the proposed
GAN. Figure 4 shows the performance of the baseline detector for each in- and out-of-distribution
pair. First, observe that the joint confidence loss (blue bar) outperforms the confidence loss with
some explicit out-of-distribution datasets (green bar). This is quite remarkable since the former
is trained only using in-distribution datasets, while the latter utilizes additional out-of-distribution
datasets. We also remark that our methods significantly outperform the baseline cross entropy loss
(red bar) in all cases without harming its original classification performances (see Table 2 in Ap-
pendix C). Interestingly, the confidence loss with the original GAN (orange bar) is often (but not
always) useful for improving the detection performance, whereas that with the proposed GAN (blue
bar) still outperforms it in all cases.

Finally, we also provide visual interpretations of models using the guided gradient maps (Sprin-
genberg et al., 2014). Here, the gradient can be interpreted as an importance value of each pixel
which influences on the classification decision. As shown in Figure 6, the model trained by the
cross entropy loss shows sharp gradient maps for both samples from in- and out-of-distributions,
whereas models trained by the confidence losses do only on samples from in-distribution. For the
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• Our method can be utilized with ODIN [Liang et al., 2018].
Visual interpretations of trained models:
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We indeed evaluate the performance of our joint confidence loss in (4) utilizing the proposed GAN.
To this end, we use VGGNets (as classifiers) and DCGANs (as GANs). We also test a variant of con-
fidence loss which optimizes the KL divergence term on samples from a pre-trained original GAN
(implicitly) modeling the in-distribution. One can expect that samples from the original GAN can be
also useful for improving the detection performance since it may have bad generalization properties
(Arora et al., 2017) and generate a few samples on the low-density boundary as like the proposed
GAN. Figure 4 shows the performance of the baseline detector for each in- and out-of-distribution
pair. First, observe that the joint confidence loss (blue bar) outperforms the confidence loss with
some explicit out-of-distribution datasets (green bar). This is quite remarkable since the former
is trained only using in-distribution datasets, while the latter utilizes additional out-of-distribution
datasets. We also remark that our methods significantly outperform the baseline cross entropy loss
(red bar) in all cases without harming its original classification performances (see Table 2 in Ap-
pendix C). Interestingly, the confidence loss with the original GAN (orange bar) is often (but not
always) useful for improving the detection performance, whereas that with the proposed GAN (blue
bar) still outperforms it in all cases.

Finally, we also provide visual interpretations of models using the guided gradient maps (Sprin-
genberg et al., 2014). Here, the gradient can be interpreted as an importance value of each pixel
which influences on the classification decision. As shown in Figure 6, the model trained by the
cross entropy loss shows sharp gradient maps for both samples from in- and out-of-distributions,
whereas models trained by the confidence losses do only on samples from in-distribution. For the
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