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Determinantal Point Processes

Formal definition
@ A point process of given finite ground set Y = {1,...,d}.

o Given a positive definite kernel matrix L € R%*? (called L-ensemble),
probability on 2% subsets of ) is defined as

Pr(X) ocdet (Lx) for X C ),

where Lx is a submatrix of L indexed by items of X.

i

L=
s
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Determinantal Point Processes

DPPs capture both diversity and quality. J
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Determinantal Point Processes

DPPs capture both diversity and quality. J

They play an important role in many machine learning tasks including
e Text/video summarization,
@ Informative image search,

@ Change-point detection in time-series data.

Most probabilistic inference tasks are tractable. J

@ Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d?) time.

@ Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

e Can we find an approximation of DPP MAP inference in O(d?) time?
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DPP MAP Inference

MAP Inference:

argmax det Lx
XQy
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MAP Inference:
argmax det Lx

XQy
@ To solve this, we have to investigate all subsets.
@ Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

X<« 0
while such i* exists do
i* + argmaxlogdet L x(;; — logdet Ly

ieY\X
X+ XU
end
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DPP MAP Inference

MAP Inference:
argmax det Lx

XQy
@ To solve this, we have to investigate all subsets.
@ Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

X<« 0
while such i* exists do
i* + argmaxlogdet L x(;; — logdet Ly

ieY\X
X+ XU
end

» The exact calculation of the marginal gain needs O(d?)
operations for each 4. In overall, it has O(d®) time complexity.

@ Our main contribution is to propose faster greedy algorithms requiring

O(d?) operations.
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Naive Implementations

Computational bottleneck of greedy algorithm: fori € Y\ X,

logdet Lx ;) — logdet Lx
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Naive Implementations

Computational bottleneck of greedy algorithm: fori € Y\ X,

log det LXU{i} — log det Lx = log (Liﬂ' — Li,XL;(lLXJ) .

© One can apply log-determinant approximation [Han et al., 2015].
= logdet Ly(; and logdet Lx can be estimated in O(d?) time.

@ Alternatively, it can be computed by solving a linear system.

= One can use conjugate gradient method (CG) of O(d?) time.

o Both implementations have O(d*) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

@ How can we estimate the marginal gains much faster?
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First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose L is the average of Lxygy fori € Y\ X. Then,

log det Lx;y — log det Ly =~ <Z;(11LXU{1‘} - fx> .

Lx
Lx

X Lx

. — 1
Ix=—— Lo
{i} X = Vx| > Lxug

Lxugy PEV\X
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First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose Lx is the average of Lyxygy forie \ X. Then,

logdet Ly —logdet Ly =~ <E)_(17LXU{1'} - ZX> .

e Lxygy and Lx differ only single column and row.
e To compute the right-hand side (i.e., matrix inner-product), it is
: ——1 :
enough to compute single column of Ly and vector inner-product.

m One can use CG of O(d?) complexity.
m Vector inner-product requires O(d) operations for each i, thus
O(d?) time in total.

@ Thus, each greedy update can be done in O(d?) time.

@ How can we make the approximation much tighter ?
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First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation
We partition V' \ X into p > 1 distinct subsets so that

ILxu — Ixlle > [ Lxog — L2k,

where i is in the partition j € {1,...,p} and ZS? is the average of
Lxugy's in the partition j.
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First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation
We partition Y \ X into p > 1 distinct subsets so that

ILxugy — Ixlle > | Lxu — 9 e

where i is in the partition j € {1,...,p} and f%) is the average of
Lxygsy's in the partition j.

@ To compute the marginal gains, we calculate the extra term (x):

logdet L x ;) — logdet Lx
2 <(Zg))_l, Lxugiy — Z§)> + (logdetfg) — log det LX> .

can be computed by CG ()

@ (%) can also be computed by CG under Schur complement.
@ Thus, for each greedy update, we need to run CG of O(d?)
complexity 2p times, where we choose p = O(1).
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Complexity and Error Bound

Complexity
The overall complexity becomes O(d?®) because
e Each greedy update can be done in O(d?) time.

@ The total number of greedy updates is at most d.
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Complexity and Error Bound

Complexity

The overall complexity becomes O(d?) because
e Each greedy update can be done in O(d?) time.
@ The total number of greedy updates is at most d.

| A\

Theorem
Suppose the smallest eigenvalue of L is larger than 1. Then, it holds that

logdet Lx > (1 —1/e) max logdet Ly — 2|X]|e,

2Cy,|z)=|X|
where
det Lxygiy < +6)\ +0)
€= max |log————— — (LX ) s Lxugy —Lx )|
B | 1)
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o Log-determinant Approximation for Comparison
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Second ldeas: Further Speedup

To further speedup, we add k-batch subset (instead of single element)
X« XUl for|l|=k>1,

so that the number of greedy updates can be reduced at most k times.

A
Greedy update
X + X Ui}
Greedy search
< > ; = arg max logdet L U {i
4 > i=arg max log {i}
X=0
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To further speedup, we add k-batch subset (instead of single element)
X« XUl for|l|=k>1,

so that the number of greedy updates can be reduced at most k times.

Greedy update k-batch strategy

X+ XUl
Greedy search

>  i= argiglya\ﬁ logdet LU {i}

U

&
<

»
>

A

)

A

»
>

b
I
=
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Second ldeas: Further Speedup

To further speedup, we add k-batch subset (instead of single element)
X« XUl for|l|=k>1,

so that the number of greedy updates can be reduced at most k times.

1. Stochastic Batch Sampling

@ For the optimal k-batch, we have to investigate = (Z) subsets.

@ This is expensive. We randomly sample k-batches and add the best of
them to the current set.
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Second ldeas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

o For k-batch strategy, one can compute the extra term (%), i.e.,
log det f%) —logdet Lx,

by running CG k times.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 14 /21



Second ldeas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

o For k-batch strategy, one can compute the extra term (%), i.e.,
log det f%) —logdet Lx,

by running CG k times.
o Alternatively, one can estimate all log detfg)’s by running a
log-determinant approximation scheme (LDAS) [Han et al., 2015].

. number _—
method | complexity of calls objective
G | o@ | k& |logdetT{ —logdet Ly
oas | o@) | 1| log det T
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Second ldeas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

o LDAS approximates log det ZE? using independent random vectors.

ﬂog-determinant Approximation Scheme (LDAS) [Han et al., 201“

Input : positive definite matrixA
¢;j « coefficients of polynomial approximation of log x with degree n
for i =1 to m do

| v; + random vector uniformly distributed in {—1,+1}% |

7T
T« chv;rAjvi
=0
end

m

1
\Return P ; Ty j
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Second ldeas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

o LDAS approximates log det f%) using independent random vectors.

o We suggest to run LDAS using the same random vectors for

estimating all log det fg)'s.

@ Running LDAS’s under sharing random vectors is better for
comparing logdetfg?), i.e., marginal gains.

~
o}
S \f
= = true v
-o- sharing
-1.54 v -¥- independent

— — .
10 15 20
partition index

o
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Second ldeas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

We provide the variance of LDAS under sharing random vectors as

Var [LDAS < (J)) LDAS ( (J ))] (HL(]) (J )”F)

@ On the other hand, the variance under independent random vectors is

Var [LDAS ( (“) — LDAS (zggﬁ)} -0 (||Z(§)||% + ||f§?')||%) :

o Inour case, [L5[2 + |Z% |2 is much larger than [|Z% — T} |2,
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Qutline: Faster Greedy DPP MAP Inference

@ Experimental Results
@ Synthetic Dataset
@ Real Dataset
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Experimental Results

Setting

@ Accuracy is measured by log-probability ratio of a respective algorithm
to the standard (but, accelerated) greedy algorithm [Minoux, 1978].

@ Two versions of our algorithms: 1-batch and 10-batch with 50 batch
samples.

@ We compare our algorithms with other approximations.

algorithm | complexity | remarks
. 5 accelerated version
[Minoux, 1978] ‘ O(d”) of a naive greedy algorithm

symmetric

; 4
[Buchbinder et al., 2015] ‘ o(d*) ‘ greedy algorithm

multilinear

; 4
[Gillenwater et al., 2012] ‘ o(d*) ‘ softmax extension
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Experimental Results

Synthetic Dataset
@ Accuracy is measured by log-probability ratio of a respective algorithm
to the standard (but, accelerated) greedy algorithm [Minoux, 1978].

@ Two versions of our algorithms: 1-batch and 10-batch with 50 batch
samples.

@ 1-batch achieves 0.03% and 10-batch achieves 0.3% loss on accuracy.
@ 10-batch runs up-to 18 times faster than [Minoux, 1978].

y
= — T e % 20

3 1.00 E 10,3: Sllllrl:eonwater el]al ,2012] 1 | 2‘3 L
é r/v/v/,_'ar < "I 1ngt3:nder etal., 2015] | % 15
= =] 1 ¥ 3 v

go_gsi g —L'!JQ,bélgh,,A, g /
9 ] K,\——u\s-kk—lr = 5 = 10
Co000 Y + ’rhsn-’”";;st;rgaaﬂ ¢ L £

5 - Y. I T . D S S D B e D]
£ 1/ Bl dal, wis) 5 2 5] e [Minoux, 1978] |
s E 14 1-batch 3 ® 3 i 1-¥ Algorithm 2 i
> 1 1% 10-batch 3 g Y o TETTTE J
90.85 +———F==F=g==r= G 0 == = i &

5,00 10,000 5,000 10,000 20,000 40,000
matrix dimension matrix dimension matrix dimension
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Experimental Results

Real Dataset: Text/Video Summarization

o For both text and video summarizations, the proposed algorithms run
8 ~ 10 times faster for large instances.

@ Our video summaries often have higher F-score than the standard
greedy algorithm.

-
o

I-.- [Minoux, 1978] |- [Minoux, 1978] !

& 5
~ ~
2 2
w 8l 10batch o {la thateh (For o)
5 510
I} 1]
i 64 = Algorithm 1
= = / (F-score: 0.78)
] 1]
24 A e User 3 summary
Qo ( o
3 3 é 4
% 2 y ¢ g A User 5 summary
% d T * o 0 T

1000 2000 3000 4008 200 400 600 800

matrix dimension matrix dimension
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Conclusion

@ We develop fast DPP MAP inference using first-order Taylor
expansion of log-determinant and partitioning for tighter
approximation.

@ For further speedup, we use a k-batch strategy with stochastic
sampling and a log-determinant approximation scheme under sharing
random vectors among their runs.

© Our proposed algorithm runs up-to 18 times faster than the standard
(accelerated) greedy algorithm for matrix dimension d = 40, 000,
where the speedup increases as d grows up.
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Conclusion

@ We develop fast DPP MAP inference using first-order Taylor
expansion of log-determinant and partitioning for tighter
approximation.

@ For further speedup, we use a k-batch strategy with stochastic
sampling and a log-determinant approximation scheme under sharing
random vectors among their runs.

© Our proposed algorithm runs up-to 18 times faster than the standard
(accelerated) greedy algorithm for matrix dimension d = 40, 000,
where the speedup increases as d grows up.

Thank you for your attention !
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