
Faster Greedy MAP Inference
for Determinantal Point Processes

Insu Han1, Prabhanjan Kambadur2, KyoungSoo Park1, Jinwoo Shin 1

1Korea Advanced Institute of Science and Technology (KAIST)
2Bloomberg LP

ICML 2017, Sydney
Aug 8th, 2017

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 1 / 21

Outline: Faster Greedy DPP MAP Inference

1 Background and Goal
Determinantal Point Processes
MAP Inference

2 First Ideas: Taylor Expansion
Näıve Implementations
First-order Taylor Expansion for Log-determinant
Complexity and Error Bound

3 Second Ideas: Further Speedup
Stochastic Batch Sampling
Log-determinant Approximation for Comparison

4 Experimental Results
Synthetic Dataset
Real Dataset

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 2 / 21

Outline: Faster Greedy DPP MAP Inference

1 Background and Goal
Determinantal Point Processes
MAP Inference

2 First Ideas: Taylor Expansion
Näıve Implementations
First-order Taylor Expansion for Log-determinant
Complexity and Error Bound

3 Second Ideas: Further Speedup
Stochastic Batch Sampling
Log-determinant Approximation for Comparison

4 Experimental Results
Synthetic Dataset
Real Dataset

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 3 / 21

Determinantal Point Processes

Formal definition

A point process of given finite ground set Y = {1, . . . , d}.
Given a positive definite kernel matrix L ∈ Rd×d (called L-ensemble),
probability on 2d subsets of Y is defined as

Pr (X) ∝ det (LX) for X ⊆ Y,

where LX is a submatrix of L indexed by items of X.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 4 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

Determinantal Point Processes

DPPs capture both diversity and quality.

They play an important role in many machine learning tasks including

Text/video summarization,

Informative image search,

Change-point detection in time-series data.

Most probabilistic inference tasks are tractable.

Inferences including normalization, marginalization, conditioning and
sampling can be done in O(d3) time.

Maximum a posteriori (MAP) inference is known as NP-hard
problem [Ko et al., 1995].

Can we find an approximation of DPP MAP inference in O(d3) time?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 5 / 21

DPP MAP Inference

MAP Inference:
argmax
X⊆Y

detLX

To solve this, we have to investigate all subsets.

Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

� The exact calculation of the marginal gain needs O(d3)
operations for each i. In overall, it has O(d5) time complexity.

Our main contribution is to propose faster greedy algorithms requiring
O(d3) operations.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 6 / 21

DPP MAP Inference

MAP Inference:
argmax
X⊆Y

detLX

To solve this, we have to investigate all subsets.

Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

� The exact calculation of the marginal gain needs O(d3)
operations for each i. In overall, it has O(d5) time complexity.

Our main contribution is to propose faster greedy algorithms requiring
O(d3) operations.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 6 / 21

DPP MAP Inference

MAP Inference:
argmax
X⊆Y

detLX

To solve this, we have to investigate all subsets.

Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

� The exact calculation of the marginal gain needs O(d3)
operations for each i. In overall, it has O(d5) time complexity.

Our main contribution is to propose faster greedy algorithms requiring
O(d3) operations.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 6 / 21

DPP MAP Inference

MAP Inference:
argmax
X⊆Y

detLX

To solve this, we have to investigate all subsets.

Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

� The exact calculation of the marginal gain needs O(d3)
operations for each i. In overall, it has O(d5) time complexity.

Our main contribution is to propose faster greedy algorithms requiring
O(d3) operations.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 6 / 21

DPP MAP Inference

MAP Inference:
argmax
X⊆Y

detLX

To solve this, we have to investigate all subsets.

Since log det is submodular, greedy algorithms for approximating
MAP inference of DPP have been of typical choice.

� The exact calculation of the marginal gain needs O(d3)
operations for each i. In overall, it has O(d5) time complexity.

Our main contribution is to propose faster greedy algorithms requiring
O(d3) operations.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 6 / 21

Outline: Faster Greedy DPP MAP Inference

1 Background and Goal
Determinantal Point Processes
MAP Inference

2 First Ideas: Taylor Expansion
Näıve Implementations
First-order Taylor Expansion for Log-determinant
Complexity and Error Bound

3 Second Ideas: Further Speedup
Stochastic Batch Sampling
Log-determinant Approximation for Comparison

4 Experimental Results
Synthetic Dataset
Real Dataset

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 7 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX = log
(
Li,i − Li,XL−1X LX,i

)
.

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX = log
(
Li,i − Li,XL−1X LX,i

)
.

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX = log
(
Li,i − Li,XL−1X LX,i

)
.

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

Näıve Implementations

Computational bottleneck of greedy algorithm: for i ∈ Y \X,

log detLX∪{i} − log detLX = log
(
Li,i − Li,XL−1X LX,i

)
.

1 One can apply log-determinant approximation [Han et al., 2015].

� log detLX∪{i} and log detLX can be estimated in O(d2) time.

2 Alternatively, it can be computed by solving a linear system.

� One can use conjugate gradient method (CG) of O(d2) time.

Both implementations have O(d4) total time complexity since one has
to perform both greedy searches and greedy updates O(d) times.

How can we estimate the marginal gains much faster?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 8 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.
To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.

To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.
To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.

To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

� One can use CG of O(d2) complexity.

� Vector inner-product requires O(d) operations for each i, thus
O(d2) time in total.

Thus, each greedy update can be done in O(d2) time.

How can we make the approximation much tighter ?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.

To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

� One can use CG of O(d2) complexity.
� Vector inner-product requires O(d) operations for each i, thus
O(d2) time in total.

Thus, each greedy update can be done in O(d2) time.

How can we make the approximation much tighter ?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.

To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

� One can use CG of O(d2) complexity.
� Vector inner-product requires O(d) operations for each i, thus
O(d2) time in total.

Thus, each greedy update can be done in O(d2) time.

How can we make the approximation much tighter ?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

1. First-order Taylor Expansion for Log-determinant

Suppose LX is the average of LX∪{i} for i ∈ Y \X. Then,

log detLX∪{i} − log detLX ≈
〈
L
−1
X , LX∪{i} − LX

〉
.

LX∪{i} and LX differ only single column and row.

To compute the right-hand side (i.e., matrix inner-product), it is

enough to compute single column of L
−1
X and vector inner-product.

� One can use CG of O(d2) complexity.
� Vector inner-product requires O(d) operations for each i, thus
O(d2) time in total.

Thus, each greedy update can be done in O(d2) time.

How can we make the approximation much tighter ?

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 9 / 21

First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation

We partition Y \X into p > 1 distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)
X ‖F ,

where i is in the partition j ∈ {1, . . . , p} and L
(j)
X is the average of

LX∪{i}’s in the partition j.

Greedy
Our algorithm

ac
cu

ra
cy

 (b
as

ed
 o

n
G

re
ed

y)

0.992

0.994

0.996

0.998

1.000

number of partitions p
20 40 60 80 100

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 10 / 21

First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation

We partition Y \X into p > 1 distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)
X ‖F ,

where i is in the partition j ∈ {1, . . . , p} and L
(j)
X is the average of

LX∪{i}’s in the partition j.

Greedy
Our algorithm

ac
cu

ra
cy

 (b
as

ed
 o

n
G

re
ed

y)

0.992

0.994

0.996

0.998

1.000

number of partitions p
20 40 60 80 100

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 10 / 21

First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation

We partition Y \X into p > 1 distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)
X ‖F ,

where i is in the partition j ∈ {1, . . . , p} and L
(j)
X is the average of

LX∪{i}’s in the partition j.

To compute the marginal gains, we calculate the extra term (∗):
log detLX∪{i} − log detLX

≈
〈
(L

(j)

X)−1, LX∪{i} − L
(j)

X

〉
︸ ︷︷ ︸

can be computed by CG

+
(
log detL

(j)

X − log detLX

)
︸ ︷︷ ︸

(∗)

.

(∗) can also be computed by CG under Schur complement.

Thus, for each greedy update, we need to run CG of O(d2)
complexity 2p times, where we choose p = O(1).

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 10 / 21

First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation

We partition Y \X into p > 1 distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)
X ‖F ,

where i is in the partition j ∈ {1, . . . , p} and L
(j)
X is the average of

LX∪{i}’s in the partition j.

To compute the marginal gains, we calculate the extra term (∗):
log detLX∪{i} − log detLX

≈
〈
(L

(j)

X)−1, LX∪{i} − L
(j)

X

〉
︸ ︷︷ ︸

can be computed by CG

+
(
log detL

(j)

X − log detLX

)
︸ ︷︷ ︸

(∗)

.

(∗) can also be computed by CG under Schur complement.

Thus, for each greedy update, we need to run CG of O(d2)
complexity 2p times, where we choose p = O(1).

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 10 / 21

First Ideas: Taylor Expansion

2. Partitioning for Tighter Approximation

We partition Y \X into p > 1 distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)
X ‖F ,

where i is in the partition j ∈ {1, . . . , p} and L
(j)
X is the average of

LX∪{i}’s in the partition j.

To compute the marginal gains, we calculate the extra term (∗):
log detLX∪{i} − log detLX

≈
〈
(L

(j)

X)−1, LX∪{i} − L
(j)

X

〉
︸ ︷︷ ︸

can be computed by CG

+
(
log detL

(j)

X − log detLX

)
︸ ︷︷ ︸

(∗)

.

(∗) can also be computed by CG under Schur complement.

Thus, for each greedy update, we need to run CG of O(d2)
complexity 2p times, where we choose p = O(1).

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 10 / 21

Complexity and Error Bound

Complexity

The overall complexity becomes O(d3) because

Each greedy update can be done in O(d2) time.

The total number of greedy updates is at most d.

Theorem
Suppose the smallest eigenvalue of L is larger than 1. Then, it holds that

log detLX ≥ (1− 1/e) max
Z⊆Y,|Z|=|X|

log detLZ − 2|X|ε,

where

ε = max
X⊆Y,i∈Y\X

j∈[p]

∣∣∣∣∣log detLX∪{i}

detL
(j)

X

−
〈(

L
(j)

X

)−1
, LX∪{i} − L

(j)

X

〉∣∣∣∣∣ .

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 11 / 21

Complexity and Error Bound

Complexity

The overall complexity becomes O(d3) because

Each greedy update can be done in O(d2) time.

The total number of greedy updates is at most d.

Theorem
Suppose the smallest eigenvalue of L is larger than 1. Then, it holds that

log detLX ≥ (1− 1/e) max
Z⊆Y,|Z|=|X|

log detLZ − 2|X|ε,

where

ε = max
X⊆Y,i∈Y\X

j∈[p]

∣∣∣∣∣log detLX∪{i}

detL
(j)

X

−
〈(

L
(j)

X

)−1
, LX∪{i} − L

(j)

X

〉∣∣∣∣∣ .

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 11 / 21

Outline: Faster Greedy DPP MAP Inference

1 Background and Goal
Determinantal Point Processes
MAP Inference

2 First Ideas: Taylor Expansion
Näıve Implementations
First-order Taylor Expansion for Log-determinant
Complexity and Error Bound

3 Second Ideas: Further Speedup
Stochastic Batch Sampling
Log-determinant Approximation for Comparison

4 Experimental Results
Synthetic Dataset
Real Dataset

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 12 / 21

Second Ideas: Further Speedup

To further speedup, we add k-batch subset (instead of single element)

X ← X ∪ I for |I| = k > 1,

so that the number of greedy updates can be reduced at most k times.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 13 / 21

Second Ideas: Further Speedup

To further speedup, we add k-batch subset (instead of single element)

X ← X ∪ I for |I| = k > 1,

so that the number of greedy updates can be reduced at most k times.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 13 / 21

Second Ideas: Further Speedup

To further speedup, we add k-batch subset (instead of single element)

X ← X ∪ I for |I| = k > 1,

so that the number of greedy updates can be reduced at most k times.

1. Stochastic Batch Sampling

For the optimal k-batch, we have to investigate ≈
(
d
k

)
subsets.

This is expensive. We randomly sample k-batches and add the best of
them to the current set.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 13 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

For k-batch strategy, one can compute the extra term (∗), i.e.,

log detL
(j)
X − log detLX ,

by running CG k times.

Alternatively, one can estimate all log detL
(j)
X ’s by running a

log-determinant approximation scheme (LDAS) [Han et al., 2015].

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 14 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

For k-batch strategy, one can compute the extra term (∗), i.e.,

log detL
(j)
X − log detLX ,

by running CG k times.

Alternatively, one can estimate all log detL
(j)
X ’s by running a

log-determinant approximation scheme (LDAS) [Han et al., 2015].

method complexity
number
of calls

objective

CG O(d2) k log detL
(j)

X − log detLX

LDAS O(d2) 1 log detL
(j)

X

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 14 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

LDAS approximates log detL
(j)
X using independent random vectors.

We suggest to run LDAS using the same random vectors for

estimating all log detL
(j)
X ’s.

Running LDAS’s under sharing random vectors is better for

comparing log detL
(j)
X , i.e., marginal gains.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 15 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

LDAS approximates log detL
(j)
X using independent random vectors.

We suggest to run LDAS using the same random vectors for

estimating all log detL
(j)
X ’s.

Running LDAS’s under sharing random vectors is better for

comparing log detL
(j)
X , i.e., marginal gains.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 15 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

LDAS approximates log detL
(j)
X using independent random vectors.

We suggest to run LDAS using the same random vectors for

estimating all log detL
(j)
X ’s.

Running LDAS’s under sharing random vectors is better for

comparing log detL
(j)
X , i.e., marginal gains.

true
sharing
independent−1.5

−1.0

−0.5

0

partition index
5 10 15 20

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 15 / 21

Second Ideas: Further Speedup

2. Log-determinant Approximation Scheme (LDAS) for Comparison

We provide the variance of LDAS under sharing random vectors as

Var
[
LDAS

(
L
(j)

X

)
− LDAS

(
L
(j′)

X

)]
= O

(
‖L(j)

X − L
(j′)

X ‖2F
)
.

On the other hand, the variance under independent random vectors is

Var
[
LDAS

(
L
(j)

X

)
− LDAS

(
L
(j′)

X

)]
= O

(
‖L(j)

X ‖2F + ‖L(j′)

X ‖2F
)
.

In our case, ‖L(j)

X ‖2F + ‖L(j′)

X ‖2F is much larger than ‖L(j)

X − L
(j′)

X ‖2F .

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 16 / 21

Outline: Faster Greedy DPP MAP Inference

1 Background and Goal
Determinantal Point Processes
MAP Inference

2 First Ideas: Taylor Expansion
Näıve Implementations
First-order Taylor Expansion for Log-determinant
Complexity and Error Bound

3 Second Ideas: Further Speedup
Stochastic Batch Sampling
Log-determinant Approximation for Comparison

4 Experimental Results
Synthetic Dataset
Real Dataset

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 17 / 21

Experimental Results

Setting

Accuracy is measured by log-probability ratio of a respective algorithm
to the standard (but, accelerated) greedy algorithm [Minoux, 1978].

Two versions of our algorithms: 1-batch and 10-batch with 50 batch
samples.

We compare our algorithms with other approximations.

algorithm complexity remarks

[Minoux, 1978] O(d5)
accelerated version

of a näıve greedy algorithm

[Buchbinder et al., 2015] O(d4)
symmetric

greedy algorithm

[Gillenwater et al., 2012] O(d4)
multilinear

softmax extension

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 18 / 21

Experimental Results

Synthetic Dataset

Accuracy is measured by log-probability ratio of a respective algorithm
to the standard (but, accelerated) greedy algorithm [Minoux, 1978].

Two versions of our algorithms: 1-batch and 10-batch with 50 batch
samples.

1-batch achieves 0.03% and 10-batch achieves 0.3% loss on accuracy.

10-batch runs up-to 18 times faster than [Minoux, 1978].

[Gillenwater et at., 2012]
[Minoux, 1978]
[Buchbinder et al., 2015]
1-batch
10-batch

lo
g

pr
ob

. r
at

io
 (v

s.
 [M

in
ou

x]
)

0.85

0.90

0.95

1.00

matrix dimension
5,000 10,000

[Gillenwater et al., 2012]
[Minoux, 1978]
[Buchbinder et al., 2015]
1-batch
10-batch

sp
ee

du
p

(v
s.

 [M
in

ou
x,

 1
97

8]
)

0

5

10

matrix dimension
5,000 10,000

[Minoux, 1978]
Algorithm 2

sp
ee

du
p

(v
s.

 [M
in

ou
x,

 1
97

8]
)

5

10

15

20

matrix dimension
20,000 40,000

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 18 / 21

Experimental Results

Real Dataset: Text/Video Summarization

For both text and video summarizations, the proposed algorithms run
8 ∼ 10 times faster for large instances.

Our video summaries often have higher F-score than the standard
greedy algorithm.

[Minoux, 1978]
10-batch

sp
ee

du
p

(v
s.

 [M
in

ou
x,

 1
97

8]
)

2

4

6

8

10

matrix dimension
1000 2000 3000 4000

[Minoux, 1978]
1-batch

sp
ee

du
p

(v
s.

 [M
in

ou
x,

 1
97

8]
)

0

5

10

matrix dimension
200 400 600 800

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 19 / 21

Conclusion

1 We develop fast DPP MAP inference using first-order Taylor
expansion of log-determinant and partitioning for tighter
approximation.

2 For further speedup, we use a k-batch strategy with stochastic
sampling and a log-determinant approximation scheme under sharing
random vectors among their runs.

3 Our proposed algorithm runs up-to 18 times faster than the standard
(accelerated) greedy algorithm for matrix dimension d = 40, 000,
where the speedup increases as d grows up.

Thank you for your attention !

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 20 / 21

Conclusion

1 We develop fast DPP MAP inference using first-order Taylor
expansion of log-determinant and partitioning for tighter
approximation.

2 For further speedup, we use a k-batch strategy with stochastic
sampling and a log-determinant approximation scheme under sharing
random vectors among their runs.

3 Our proposed algorithm runs up-to 18 times faster than the standard
(accelerated) greedy algorithm for matrix dimension d = 40, 000,
where the speedup increases as d grows up.

Thank you for your attention !
Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 20 / 21

References I

Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. (2015).

A tight linear time (1/2)-approximation for unconstrained submodular maximization.
SIAM Journal on Computing, 44(5):1384–1402.

Gillenwater, J., Kulesza, A., and Taskar, B. (2012).

Near-optimal map inference for determinantal point processes.
In Advances in Neural Information Processing Systems, pages 2735–2743.

Han, I., Malioutov, D., and Shin, J. (2015).

Large-scale log-determinant computation through stochastic chebyshev expansions.
In ICML, pages 908–917.

Ko, C.-W., Lee, J., and Queyranne, M. (1995).

An exact algorithm for maximum entropy sampling.
Operations Research, 43(4):684–691.

Minoux, M. (1978).

Accelerated greedy algorithms for maximizing submodular set functions.
In Optimization Techniques, pages 234–243. Springer.

Insu Han et al. Faster DPP MAP inference ICML 2017, Sydney 21 / 21

	Background and Goal
	Determinantal Point Processes
	MAP Inference

	First Ideas: Taylor Expansion
	Naïve Implementations
	First-order Taylor Expansion for Log-determinant
	Complexity and Error Bound

	Second Ideas: Further Speedup
	Stochastic Batch Sampling
	Log-determinant Approximation for Comparison

	Experimental Results
	Synthetic Dataset
	Real Dataset

