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Introduction: Predictive uncertainty of deep neural networks (DNNs)

e Supervised learning (e.g., regression and classification)
* Objective: finding an unknown target distribution, i.e., P(Y|X)

Input space @—P— @ Output space

* Recent advances in deep learning have dramatically improved accuracy on

several supervised learning tasks Guitar
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Introduction: Predictive uncertainty of deep neural networks (DNNs)

e Uncertainty of predictive distribution is important in DNN’s applications

* What is predictive uncertainty?

* As a example, consider classification task
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* |t represents a confidence about prediction!
* For example, it can be measured as follows:
* Entropy of predictive distribution [Lakshminarayanan’ 17]

> —P(y[x)log P(y|x)
Yy
* Maximum value of predictive distribution [Hendrycks’ 17]

max P(y|x)
y

[Lakshminarayanan’ 17] Lakshminarayanan, B., Pritzel, A. and Blundell, C., Simple and scalable predictive uncertainty estimation using deep ensembles. In NIPS, 2017.
[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.



Introduction: Predictive uncertainty of deep neural networks (DNNs)

* Predictive uncertainty is related to many machine learning problems:

Out of distribution

example
+.007 x
O .
z sign(VzJ (0, 2, y)) i
Disc;riminative “panda” “nematode” . ‘ d
decision boundary 57.7% confidence 8.2% confidence
Novelty detection Adversarial detection Ensemble learning

[Hendrycks’ 17] [Song’ 18] [Lee’ 17]

* Predictive uncertainty is also indispensable when deploying DNNs in
real-world systems [Dario’ 16]

Autonomous drive Secure authentication system

[Dario’ 16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mane'. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.
[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.

[Guo’ 17] Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017. On Calibration of Modern Neural Networks. In ICML 2017.

[Goodfellow’ 14] Goodfellow, I.J., Shlens, J. and Szegedy, C., 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

[Srivastava’ 14] Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. JMLR. 2014.



Introduction: Predictive uncertainty of deep neural networks (DNNs)

 However, DNNs do not capture their predictive uncertainty
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* E.g., DNNs trained to classify MNIST images often produce high confident
probability 91% even for random noise [Henderycks’ 17]

* Challenge arises in improving the quality of the predictive uncertainty!

* Main topic of this presentation

* How to train confident neural networks?

* Training confidence-calibrated classifiers for detecting out-of-distribution
samples [Lee’ 183]

* Applications
e Confident multiple choice learning [Lee’ 17]
* Hierarchical novelty detection [Lee’ 18b]
[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.
[Lee’ 183a] Lee, K., Lee, H., Lee, K. and Shin, J. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. In ICLR 2018.

[Lee’ 17] Lee, K., Hwang, C., Park, K. and Shin, J. Confident Multiple Choice Learning. In ICML, 2017.
[Lee’ 18b] Lee, K., Lee, Min. K, Zhang, Y. Shin. J, Lee, H. Hierarchical Novelty Detection for Visual Object Recognition, In CVPR, 2018.
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How to Train Confident Neural Networks?

* Related problem
* Detecting out-of-distribution [Hendrycks’ 17, Liang’ 18]

* Detect whether a test sample is from in-distribution (i.e., training distribution
by classifier) or out-of-distribution

Out of distribution
example

Discriminative
decision boundary

[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.
[Liang’ 18] Liang, S., Li, Y. and Srikant, R. Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018.



How to Train Confident Neural Networks?

* Related problem
* Detecting out-of-distribution [Hendrycks’ 17, Liang’ 18]

* Detect whether a test sample is from in-distribution (i.e., training distribution
by classifier) or out-of-distribution

* E.g., image classification
* Assume a classifier trains handwritten digits (denoted as in-distribution)

* Detecting out-of-distribution

* Performance of detector reflects confidence of predictive distribution!

[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.
[Liang’ 18] Liang, S., Li, Y. and Srikant, R. Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018.



Related Work

* Threshold-based Detector [Guo’ 17, Hendrycks’17, Liang’ 18]
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Else: out-of-distribution

[Classifier]
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[Guo’ 17] Guo, C,, Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017. On Calibration of Modern Neural Networks. In ICML 2017.
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Related Work

* Threshold-based Detector [Guo’ 17, Hendrycks’17, Liang’ 18]

=

O
O
O
O

=

0000

If score > €: In-distribution

Else: out-of-distribution

[Input]

* How to define the score?

» Baseline detector [Hendrycks’17]

[Classifier]

* Confidence score = maximum value of predictive distribution: m?jiX P(y|x)

* Temperature scaling [Guo’ 17]

» Confidence score = maximum value of scaled predictive distribution

pi(x;T) =

exp (fi(x)/T)

>y exp (f;(@)/T)

Output of neural networks

[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.

[Guo’ 17] Guo, C,, Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017. On Calibration of Modern Neural Networks. In ICML 2017.
[Liang’ 18] Liang, S., Li, Y. and Srikant, R., 2017. Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018.
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Related Work

* Threshold-based Detector [Guo’ 17, Hendrycks’17, Liang’ 18]

In-distribution

= (Qut-distribution

* Limitations
e Performance of prior works highly depends on how to train the classifiers

[Henderycks’ 17] Hendrycks, D. and Gimpel, K., A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017.
[Guo’ 17] Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017. On Calibration of Modern Neural Networks. In ICML 2017.
[Liang’ 18] Liang, S., Li, Y. and Srikant, R., 2017. Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018.
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[Yingzhen’ 17] Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural networks with alpha-divergences. In International Conference on
Machine Learning (ICML), 2017.

L] L ]
0 u r co nt rl b u t I o n s [Balaji’ 17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep

ensembles. In Advances in neural information processing systems (NIPS), 2017.

* One can consider
* Bayesian neural networks [Yingzhen’ 17] * Ensemble of classifiers [Balaji’ 17]
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* Training or inferring those models are computationally expensive
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e One can consider

* Bayesian neural networks [Yingzhen’ 17] * Ensemble of classifiers [Balaji’ 17]
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* Training or inferring those models are computationally expensive

e Qur contribution

Confidence loss for GAN for generating out-of- Joint training method of

training more plausible

simple DNNs distribution samples classifier and GAN

* Experimental results
* Our method drastically improves the detection performance

* E.g., VGGNet trained by our method improves TPR compared to the baseline:
14.0%2>39.1% and 46.3% > 98.9% on CIFAR-10 and SVHN
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Contribution 1: Confident Loss

* Confident loss
* Minimize the KL divergence on data from out-of-distribution

min Ep, (s | — 108 Py (y = §1%) | + 8 B [ KLU () | P (ylx)) |

Data from in-dist Data from out-of-dist

* |nterpretation

* Assigning higher maximum prediction values to in-distribution samples than o
ut-of-distribution ones

Py(y|x) = P(y|x) Py(y|x) — U(y)
s Data distribution A Uniform distribution
® 00 O
Y > Y
[In-distribution data] |Out-of-distribution data]

U

“Zero confidence”
15



Contribution 1: Confident Loss

* Confident loss
* Minimize the KL divergence on data from out-of-distribution

min Ep, x| ~ 108 Po (y = 51%) | + 8 En,.0 | KLU W) || P (y])) |

Data from in-dist Data from out-of-dist

* |nterpretation

* Assigning higher maximum prediction values to in-distribution samples than o
ut-of-distribution ones

» Effects of confidence loss
* Fraction of the maximum prediction value from simple CNNs (2 Conv + 3 FC)

SVHN CIFAR-10 TinylmageNet LSUN
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Contribution 1: Confident Loss

* Confident loss
* Minimize the KL divergence on data from out-of-distribution

min Ep, (s | — 108 Py (y = §1%) | + 8 B [ KLU () | P (ylx)) |

Data from in-dist Data from out-of-dist

* |nterpretation

* Assigning higher maximum prediction values to in-distribution samples than o
ut-of-distribution ones

e Effects of confidence loss

* Fraction of the maximum prediction value from simple CNNs (2 Conv + 3 FC)
* In-distribution: SVHN

1.0
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: @ CIFAR-10 (out / unseen)
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0.7-]| © LSUN (out / unseen)

’ @ TinyimageNet (out / unseen)

S 0.6

B 05

C 04
0.3
0.2

3 sl

0.15 0.35 0.55 0.75 0.95
Maximum in softmax scores

(a) Cross entropy loss
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Contribution 1: Confident Loss

 Confident loss

* Minimize the KL divergence on data from out-of-distribution

0

min EPin(ﬁ,:l/J) { — log Py (y = ?/J\|§)} + 5 Epout(x) {KL (Z/{ (y) H Py (ylx)) }7

Data from in-dist

* |nterpretation

Data from out-of-dist

* Assigning higher maximum prediction values to in-distribution samples than o
ut-of-distribution ones

» Effects of confidence loss
* Fraction of the maximum prediction value from simple CNNs (2 Conv + 3 FC)

* KL divergence term is optimized using CIFAR-10 training data
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss
* How to optimize the KL divergence loss?

min Ep, ()| — 108 Py (y = §1%) | + B B0 [ KLU () | P (ylx)) |

Data from out-of-dist

19



Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss

* How to optimize the KL divergence loss?

* The number of out-of-distribution samples might be almost infinite to cover
the entire space

min Ep, ()| — 108 Py (y = §1%) | + B B0 [ KLU () | P (ylx)) |

Data from out-of-dist




Contribution 2. GAN for Generat

ing Out-of-Distribution Samples

* Main issues of confidence loss

* How to optimize the KL divergence loss?
* The number of out-of-distribution samples might be almost infinite to cover

the entire space

min Ep,zg) [ —log Py (y = ?ﬁ)}

+ 8 Epo0 |[ KLU @) || P (y1) |,

Data from out-of-dist

G
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss

* How to optimize the KL divergence loss?

* The number of out-of-distribution samples might be almost infinite to cover
the entire space

e Qur intuition

* Samples close to in-distribution could be more effective in improving the
detection performance
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss
* How to optimize the KL divergence loss?

* The number of out-of-distribution samples might be almost infinite to cover
the entire space

e Qur intuition

* Samples close to in-distribution could be more effective in improving the
detection performance
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Figure 2: Illustrating the behavior of classifier under different datasets. We generate the out-of-
distribution samples from (a) 2D box [—50, 50]2, and show (b) the corresponding decision boundary

of classifier. We also generate the out-of-distribution samples from (c) 2D box [—20, 20]?, and show
(d) the corresponding decision boundary of classifier.
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss
* How to optimize the KL divergence loss?

* The number of out-of-distribution samples might be almost infinite to cover
the entire space

e Qur intuition

* Samples close to in-distribution could be more effective in improving the
detection performance
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Figure 2: Illustrating the behavior of classifier under different datasets. We generate the out-of-
distribution samples from (a) 2D box [—50, 50]2, and show (b) the corresponding decision boundary
of classifier. We also generate the out-of-distribution samples from (c) 2D box [—20, 20]?, and show
(d) the corresponding decision boundary of classifier.
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* Main issues of confidence loss
* How to optimize the KL divergence loss?

* The number of out-of-distribution samples might be almost infinite to cover
the entire space

e Qur intuition

* Samples close to in-distribution could be more effective in improving the
detection performance
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Figure 2: Illustrating the behavior of classifier under different datasets. We generate the out-of-
distribution samples from (a) 2D box [—50, 50]2, and show (b) the corresponding decision boundary
of classifier. We also generate the out-of-distribution samples from (c) 2D box [—20, 20]?, and show
(d) the corresponding decision boundary of classifier.
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* New GAN objective

min max
G D

+ EEPin(x) [IOgD (X)] + ]EPG(X) [log (1 —D (X)) la

(b)

* Term (b) corresponds to the original GAN loss
* Generating out-of-distribution samples close to in-distribution



Contribution 2. GAN for Generating Out-of-Distribution Samples

* New GAN objective
mGin max 5£EPG(X) KLU (y) || Pe (y|X))l

~

(a)
+Ep, 0 [log D (x) | +Ep,x) [log (1 — D (x)) ],

7

(b)

* Term (a) forces the generator to generate low-density samples

* (approximately) minimizing the log negative likelihood of in-distribution
* Term (b) corresponds to the original GAN loss

* Generating out-of-distribution samples close to in-distribution

P, (x) = exp (KLU (y) || P (y|x)))
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Contribution 2. GAN for Generating Out-of-Distribution Samples

Classifier trained on in-distribution

\ 4

Py ()] Poo(x) = exp (KL @) || Po (515)))

* New GAN objective 7
minmax 5 Epg(x) KLU (y) |

~

(a)
+Ep, 0 [log D (x) | +Ep,x) [log (1 — D (x)) ],

7

(b)

* Term (a) forces the generator to generate low-density samples

* (approximately) minimizing the log negative likelihood of in-distribution
* Term (b) corresponds to the original GAN loss

* Generating out-of-distribution samples close to in-distribution
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Contribution 2. GAN for Generating Out-of-Distribution Samples

* New GAN objective
minmax S Ep; (x) (KLU y) || Po(ylx)]

g

~

(a)
+ EEPin(x) [IOgD (X)] + EPG(X) [lOg (1 —D (X)) }7

7

(b)

* Term (a) forces the generator to generate low-density samples

* (approximately) minimizing the log negative likelihood of in-distribution
* Term (b) corresponds to the original GAN loss

* Generating out-of-distribution samples close to in-distribution

* Experimental results on toy example and MNIST
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Figure 3: The generated samples from original GAN (a)/(c) and proposed GAN (b)/(d).



Contribution 3. Joint Confidence Loss

* We suggest training the proposed GAN using a confident classifier
* Converse is also possible



Contribution 3. Joint Confidence Loss

* We suggest training the proposed GAN using a confident classifier

* Converse is also possible

* We propose a joint confidence loss

G D 0

min max min EEPin(i,@‘) | — log Py (y = 3|x) l—l—ﬁEEPG(X) (KLU (y) || P (y[x))l

(©

j_EPin(f) [logD (ﬁ)} + EPc;(x) [log (1 — D (X)) ] .

(@)

7

(©

* Classifier’s confidence loss: (c) + (d)

* GAN loss: (d) + (e)
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Contribution 3. Joint Confidence Loss

* We suggest training the proposed GAN using a confident classifier

* Converse is also possible

* We propose a joint confidence loss

G D 0

minmaxmin  Ep, g [ —log Pp (y = §I%) | +6Epq 0 [KL U (y) || Ps (ylx))]

j_EPin(f) [logD (ﬁ)} + EPg(x) [log (1 — D (X)) ] .

(© (@

7

(©

* Classifier’s confidence loss: (c) + (d)

* GAN loss: (d) + (e)

 Alternating algorithm for optimizing the joint confidence loss

Classifier
Vo KLU y) || Py (y|G(z)))

U

GAN

Classifier

< > Ve KLU Y) || Ps(y|G(2)))

GAN

Step 1. update GAN

Step 2. update classifier

32



Experimental Results: dataset & model

 Model: VGGNet [Christian’ 15] with 13 layers
* In-distribution: CIFAR-10 or SVHN

CIFAR-10 [Krizhevsky’ 09] SVHN [Netzer’ 11]

woare  SEBREST B . 3732 RGB
automobile EEE
bird T mal WES * 10classes
e EE@I 50.000 s

: ., , training set
ol BN ) 5

deer “\ b

w  FEsE®E « 10,000 test set
e Qut-of-distribution: (resized) TinylmageNet and LSUN

« 32X32 RGB

Ml » 10 classes

* 73,257 training set
* 26,032 test set

TinylmageNet LSUN

 32X32 RGB  32X32 RGB

* 10 classes
* 10,000 test set

;, e 200 classes
s e 10,000 test set

moped
tick fireboat bumper car
starfish drilling platform golfcart

[Krizhevsky’ 09] Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[Netzer’ 11] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B. and Ng, A.Y. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning

and Unsupervised Feature Learning, 2011.

[Christian’ 15] Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015 33



Experimental Results - Metric

* TP =true positive

o) O If score > €:
* FN = false negative 0O = O In-distribution |
* TN = true negative 8 8 )
Else: out-of-
* FP = false positive [Classifier] distribution

* [Metrics]

* FPR at 95% TPR
* FPR = FP/(FP + TN), TPR = TP/(TP + FN)

 AUROC (Area Under the Receiver Operating Characteristic curve)
* ROC curve = relationship between TPR and FPR

* Detection Error
* Minimum misclassification probability over all thresholds

m(sin{H(g(x;a)7é1\z:1)H(z:1)+H(g(x;a)#O\z:O)H(z:O)}

* AUPR (Area under the Precision-Recall curve)
* PR curve = relationship between precision=TP/(TP+FP) and recall=TP/(TP+FN)

34



Experimental Results

* Measure the detection performance of threshold-based detectors

* Confidence loss with some explicit out-of-distribution dataset

TPR on in-distribution {SVHN)

Classification TNR AUROC Detection AUPR AUPR
In-dist Out-of-dist accuracy at TPR 95% ’ accuracy in out
Cross entropy loss / Confidence loss
CIFAR-10 (seen) 4747999 626/99.9 78.6/999 71.6/999 91.2/99.4
SVHN 'l‘inyln‘mchcl (unseen) 3¢5 /94,23 49.()/ 100.0 64.6/100.0 79.6/100.0 72.7/100.0 91.6/99.4
LSUN (unseen) 46.3/100.0 61.8/100.0 78.2/100.0 71.1/100.0 90.8/99.4
Gaussian (unseen) 56.1/100.0 72.0/100.0 83.4/100.0 77.2/100.0 92.8/99.4
SVHN (seen) 13.7/99.8 46.6/999 66.6/99.8 61.4/99.9 73.5/99.8
- TinylmageNet (unseen) 13.6 /9.9 39.6/31.8 62.6/58.6 58.3/553 71.0/66.1
CIFAR-I0 ) SUN (unseeny  SO-147/8056 4140/105  407/348  632/602  58.7/564 715/68.0
Gaussian (unseen) 2.8/3.3 10.2/14.1 50.0/750.0 48.1/49.4 39.9/47.0

Table 1: Performance of the baseline detector (Hendrycks & Gimpel, 2016) using VGGNet. All val-
ues are percentages and boldface values indicate relative the better results. For each in-distribution,
we minimize the KL divergence term in (1) using training samples from an out-of-distribution
dataset denoted by “seen”, where other “unseen’ out-of-distributions were only used for testing.

Classifier trained by our method drastically improves the detection
performance across all out-of-distributions

1.0

08

06[\\ | Realistic images such as TinylmageNet (aqua line) and
— s ity s | > LSUN(green line) are more useful than synthetic datasets

04 ~ Confidence loss (Gaussian)
Confidence loss (LSUN)

Confence oss (Trylmagener) (orange line) for improving the detection perfor-mance

== Confidence loss (CIFAR-10)
0 05 1.0
FPR on out-of-distribution (CIFAR-10)

(¢) ROC curve

0.2
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Experimental Results

e Joint confidence loss

. Cross entropy loss

. Confidence loss (samples from original GAN)

. Joint confidence loss

(@ confidence loss (CIFAR-10)

Qut-of-distribution: CIFAR-10

Out-of-distribution: TinyimageNet

Out-of-distribution: LSUN

100 100 100+

90 90 90 4

80 - 80+ 80 -

70 70 70

60 - 60 - 60 -

50 - 504 50 -

40 T T . 40 T T 40 T T

TNR AUROC Detection TNR AUROC Detection TNR AUROC Detection
at TPR 95% accuracy at TPR 95% accuracy at TPR 95% accuracy
(a) In-distribution: SVHN
. Cross entropy loss . Confidence loss (samples from original GAN) . Joint confidence loss . Confidence loss (SVHN)
B = . . ., . .
100 Out-of-distribution: SVHN 100 Out-of-distribution: TinyimageNet 100 Out-of-distribution: LSUN

90 90- 90

80+ 804 80+

70 70+ 70

60+ 60 60+

50 50- 50

40+ 404 404

30- 30- 30-

20- 204 20 -

10- 104 10-

* Confidence loss with the original GAN (orange bar) is often useful for

TNR
TPR 95%

AUROC

Detection
accuracy

TNR AUROC Detection
at TPR 95% accuracy

(b) In-distribution: CIFAR-10

improving the detection performance

» Joint confidence loss (bluebar) still outperforms all baseline it in all cases

TNR AUROC Detection
at TPR 95% accuracy
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Experimental Results

e Comparison with ODIN [Liang’ 18]

O O If score > €:

O '®) In-distribution |
o= o] [

O O Else: out-of- |

distribution

J

[Classifier] ﬂ

Si(z;T) = exp (fi(x)/T) +

, & = x — esign(—Vy log Sy (x; T)),
SN exp (f(x)/T) !

. 1 ifmax; p(x;T)
g(x;0,T,¢) = {o if max; p(&; T)

V IA

0,
0.




Experimental Results

e Comparison with ODIN [Liang’ 18]

| . Cross entropy loss + baseline . Cross entropy loss + ODIN . Joint confidence loss + baseline

. Joint confidence loss + ODIN

Out-of-distribution: CIFAR-10 Out-of-distribution: TinylmageNet Out-of-distribution: LSUN

TNR AUROC Detection TNR AUROC Detection TNR AUROC Detection
at TPR 95% accuracy at TPR 95% accuracy at TPR 95% accuracy
(a) In-distribution: SVHN
Out-of-distribution: SVHN Out-of-distribution: TinylmageNet 100 Out-of-distribution: LSUN

100 100

0
TNR AUROC Detection TNR AUROC Detection TNR AUROC Detection
TPR 95% accuracy at TPR 95% accuracy at TPR 95% accuracy

(b) In-distribution: CIFAR-10

Figure 7: Performances of the baseline detector (Hendrycks & Gimpel, 2016) and ODIN detector
(Liang et al., 2017) under various training losses.
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Experimental Results

* Interpretability of trained classifier

SVHN (in)

%

CIFAR-10 (out)

CIFAR-10 (in)

/ -
.
-
SVHN (out)

H'
LSUN (out)
H || TR
: Vil ol
TinylmageNet (out) ¢cc entropy ig;;i?::i;ﬁs Jointclc:)r;fsidence Co?giltFi:::fol;)ss TinylmageNet (out) e entropy C(S;r:(:j::?r?:f Joint clc;nsfsidence Conf(ig\j:;e) loss
original GAN) original GAN)
(a) In-distribution: SVHN (b) In-distribution: CIFAR-10

Figure 5: Guided gradient (sensitivity) maps of the top-1 predicted class with respect to the input
image under various training losses.

» Classifier trained by cross entropy loss shows sharp gradient maps for both
samples from in- and out-of-distributions

* Classifiers trained by the confidence losses do only on samples from in-
distribution.
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Outline

* Introduction
* Predictive uncertainty of deep neural networks
 Summary of contributions

e How to train confident neural networks

* Training Confidence-Calibrated Classifiers for Detecting Out-of-Distribution
Samples [Lee’ 18a]

* Applications
* Hierarchical novelty detection [Lee’ 18b]

e Conclusion
e Future work

[Lee’ 18a] Leeg, K., Lee, H., Lee, K. and Shin, J. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. |

n ICLR, 2018.

[Lee’ 17] Lee, K., Hwang, C., Park, K. and Shin, J. Confident Multiple Choice Learning. In ICML, 2017.

[Lee’ 18b] Lee, K., Lee, Min. K, Zhang, Y. Shin. J, Lee, H. Hierarchical Novelty Detection for Visual Object Recognition, In CVPR, 2018. 40



Hierarchical Novelty Detection

* Novelty detection

Test image:

True label:

Prior works:

Siamese cat

Angola cat

Dachshund

Pika

Siamese cat

novel

novel

novel

Persian cat

Siamese cat

Pomeranian ][ Welsh corgi }

Figure 1. An illustration of our hierarchical novelty detection task
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Hierarchical Novelty Detection

e Objective

Test image:

True label:

Prior works:

Siamese cat

Angola cat

Dachshund

Pika

Siamese cat

novel

novel

novel

Ours: Siamese cat novel cat novel dog novel animal
[ animal ]
{ cat ] [ dog ]
Persian cat Siamese cat Pomeranian ] [ Welsh corgi }

Figure 1. An illustration of our hierarchical novelty detection task
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Hierarchical Novelty Detection

e Objective
* 1. Find the closest known (super-)category in taxonomy

2. Find fine-grained classification for novel categories (i.e., out-of-
distribution samples)

Test image:

True label: Siamese cat Angola cat Dachshund Pika
Prior works: Siamese cat novel novel novel
Ours: Siamese cat novel cat novel dog novel animal
[ animal ]
[ cat ]
/ \
Persian cat Siamese cat

Figure 1. An illustration of our hierarchical novelty detection task
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Two Main Approaches

e Top-down method (TD)
* p(child) = 3, P(child | super) p(super)

Top-down >

* Inference
argmax Pr(y'|z,s;0s) if confident,
g=q
N(s) otherwise,
Novel class

* Definition of confidence: D1 (U(y|s) || Pr(y|x,s;0s)) > As,
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Two Main Approaches

e Top-down method (TD)
* p(child) = 3, P(child | super) p(super)

) O

* Inference
argmax Pr(y'|z,s;0s) if confident,
g=4 v
N(s) otherwise,
Novel class

* Definition of confidence: D1 (U(y|s) || Pr(y|x,s;0s)) > As,
e Objective

min - Ep (4 y(5) [~ log Pr(ylz, 5;0,)]

=+ EPT(JZ,y|O(S)) [DKL (U(y‘8> || PT(y‘ZC, S5 98))] ’

Pr(x,y|O(s)) denotes the data distribution of all exclusive classes from s



Experimental Results on ImageNet Dataset

* ImageNet dataset
* 22K classes

* Taxonomy

* 396 super classes of 1K known
leaf classes

* Rest of 21K classes can be used
as novel class

* Example

mole elephant rabbit [wha]c)‘/

r/"%
killer humpback - blue _— S
whale whale dolphin whale (yanme)

j//
cat cat

fox

TR

%

dalmatian chihuahua [shcd}:)hgcrcg pe:;;ltan sna(r:r;lese tiger leopard
german .
shepherd collie

[Deng’ 12] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade offs in large scale visual recognition. In
CVPR , pages 3450-3457. IEEE, 2012.



Experimental Results on ImageNet Dataset

* ImageNet dataset * Hierarchical novelty detection
e 29K classes performance
+ Taxonomy * Baseline: DARTS [Deng’ 12]
0.25 1 ‘ --------- DARTS Proposed method

* 396 super classes of 1K known

leaf classes ]

0.20

* Rest of 21K classes can be used g ]

as novel class go "

< (0.154

e Example .
)

/ 2 0.10
Z

‘ -

mole elephant rabbit [whalc)‘/ |
— 4

. L 0.05-

= >
ey S dolphin L (caninc) feline

whale whale whale
7
fox wolf g donl?:[ic ?:5 bobcat pe
\E * One can note that our methods
%‘d — . have higher novel class
dalmatian chihuahua shepher e S tiger leopard
() [ = i accuracy than DARTS to have a

J N\ same known class accuracy in

german

shepherd collic m O St regi O n S

; L e e
0 01 02 03 04 05 06 07 08

—8)

Known class accuracy

[Deng’ 12] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade offs in large scale visual recognition. In
CVPR , pages 3450-3457. IEEE, 2012.
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Conclusion

* We propose a new method for training confident deep neural networks

* It produce the uniform distribution when the input is not from target
distribution

* We show that it can be applied to many machine learning problems:
* Detecting out-of-distribution problem [Lee’ 18a]
* Ensemble learning using deep neural networks [Lee’ 17]
* Hierarchical novelty detection [Lee’ 18b]

* We believe that our new approach brings a refreshing angle for
developing confident deep networks in many related applications:

* Network calibration

* Adversarial example detection
e Bayesian probabilistic models
e Semi-supervised learning

[Lee’ 18a] Leeg, K., Lee, H., Lee, K. and Shin, J. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. |

n ICLR, 2018.

[Lee’ 17] Lee, K., Hwang, C., Park, K. and Shin, J. Confident Multiple Choice Learning. In ICML, 2017.

[Lee’ 18b] Lee, K., Lee, Min. K, Zhang, Y. Shin. J, Lee, H. Hierarchical Novelty Detection for Visual Object Recognition, In CVPR, 2018. 48



