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• Supervised	learning	(e.g.,	regression	and	classification)
• Objective:		finding	an	unknown	target	distribution,	i.e.,	P(Y|X)

• Recent	advances	in	deep	learning	have	dramatically	improved	accuracy	on	
several	supervised	learning	tasks

Introduction:	Predictive	uncertainty	of	deep	neural	networks	(DNNs)
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• Uncertainty	of	predictive	distribution	is	important	in	DNN’s	applications
• What	is	predictive	uncertainty?

• As	a	example,	consider	classification	task

• It	represents	a	confidence	about	prediction!
• For	example,	it	can	be	measured	as	follows:

• Entropy	of	predictive	distribution	[Lakshminarayanan’	17]

• Maximum	value	of	predictive	distribution	[Hendrycks’	17]	

Introduction:	Predictive	uncertainty	of	deep	neural	networks	(DNNs)
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• Predictive	uncertainty	is	related	to	many	machine	learning	problems:

• Predictive	uncertainty	is	also	indispensable	when	deploying	DNNs	in	
real-world	systems	[Dario’	16]

Introduction:	Predictive	uncertainty	of	deep	neural	networks	(DNNs)
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• However,	DNNs	do	not	capture	their	predictive	uncertainty

• E.g.,	DNNs	trained	to	classify	MNIST	images	often	produce	high	confident	
probability	91%	even	for	random	noise	[Henderycks’	17]

• Challenge	arises	in	improving	the	quality	of	the	predictive	uncertainty!

• Main	topic	of	this	presentation
• How	to	train	confident	neural	networks?

• Training	confidence-calibrated	classifiers	for	detecting	out-of-distribution	
samples	[Lee’	18a]

• Applications	
• Confident	multiple	choice	learning [Lee’	17]
• Hierarchical	novelty	detection	[Lee’	18b]

Introduction:	Predictive	uncertainty	of	deep	neural	networks	(DNNs)
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• Related	problem
• Detecting	out-of-distribution	[Hendrycks’	17,	Liang’	18]

• Detect	whether	a	test	sample	is	from	in-distribution	(i.e.,	training	distribution	
by	classifier)	or	out-of-distribution

How	to	Train	Confident	Neural	Networks?
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• Related	problem
• Detecting	out-of-distribution	[Hendrycks’	17,	Liang’	18]

• Detect	whether	a	test	sample	is	from	in-distribution	(i.e.,	training	distribution	
by	classifier)	or	out-of-distribution

• E.g.,	image	classification
• Assume	a	classifier	trains	handwritten	digits	(denoted	as	in-distribution)
• Detecting	out-of-distribution

• Performance	of	detector	reflects	confidence	of	predictive	distribution!

How	to	Train	Confident	Neural	Networks?
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• Threshold-based	Detector	[Guo’	17,	Hendrycks’17,	Liang’	18]

Related	Work
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• Threshold-based	Detector	[Guo’	17,	Hendrycks’17,	Liang’	18]

• How	to	define	the	score?
• Baseline	detector	[Hendrycks’17]

• Confidence	score	=	maximum	value	of	predictive	distribution:

• Temperature	scaling	[Guo’	17]

• Confidence	score	=	maximum	value	of	scaled	predictive	distribution

Related	Work
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• Threshold-based	Detector	[Guo’	17,	Hendrycks’17,	Liang’	18]

• How	to	define	the	score?
• Baseline	detector	[Hendrycks’17]

• Confidence	score	=	maximum	value	of	predictive	distribution:

• Temperature	scaling	[Guo’	17]

• Confidence	score	=	maximum	value	of	scaled	predictive	distribution

• Limitations
• Performance	of	prior	works	highly	depends	on	how	to	train	the	classifiers	

Related	Work
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• One	can	consider	
• Bayesian	neural	networks	[Yingzhen’	17]

• Training	or	inferring	those	models	are	computationally	expensive

Our	Contributions
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• Ensemble	of	classifiers	[Balaji’	17]
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• One	can	consider	
• Bayesian	neural	networks	[Yingzhen’	17]

• Training	or	inferring	those	models	are	computationally	expensive

• Our	contribution

• Experimental	results
• Our	method	drastically	improves	the	detection	performance	
• E.g.,	VGGNet trained	by	our	method	improves	TPR	compared	to	the	baseline:	
14.0%à39.1%	and	46.3%	à 98.9%	on	CIFAR-10	and	SVHN

Our	Contributions
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• Confident	loss
• Minimize	the	KL	divergence	on	data	from	out-of-distribution

• Interpretation
• Assigning	higher	maximum	prediction	values	to	in-distribution	samples	than	o
ut-of-distribution	ones

Contribution	1:	Confident	Loss
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• Confident	loss
• Minimize	the	KL	divergence	on	data	from	out-of-distribution

• Interpretation
• Assigning	higher	maximum	prediction	values	to	in-distribution	samples	than	o
ut-of-distribution	ones

• Effects	of	confidence	loss
• Fraction	of	the	maximum	prediction	value	from	simple	CNNs	(2	Conv +	3	FC)

Contribution	1:	Confident	Loss
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• Confident	loss
• Minimize	the	KL	divergence	on	data	from	out-of-distribution

• Interpretation
• Assigning	higher	maximum	prediction	values	to	in-distribution	samples	than	o
ut-of-distribution	ones

• Effects	of	confidence	loss
• Fraction	of	the	maximum	prediction	value	from	simple	CNNs	(2	Conv +	3	FC)
• In-distribution:	SVHN

Contribution	1:	Confident	Loss
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• Confident	loss
• Minimize	the	KL	divergence	on	data	from	out-of-distribution

• Interpretation
• Assigning	higher	maximum	prediction	values	to	in-distribution	samples	than	o
ut-of-distribution	ones

• Effects	of	confidence	loss
• Fraction	of	the	maximum	prediction	value	from	simple	CNNs	(2	Conv +	3	FC)
• KL	divergence	term	is	optimized	using	CIFAR-10	training	data

Contribution	1:	Confident	Loss
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• Main	issues	of	confidence	loss
• How	to	optimize	the	KL	divergence	loss?

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples

19
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• Main	issues	of	confidence	loss
• How	to	optimize	the	KL	divergence	loss?

• The	number	of	out-of-distribution	samples	might	be	almost	infinite	to	cover	
the	entire	space

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples
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• Main	issues	of	confidence	loss
• How	to	optimize	the	KL	divergence	loss?

• The	number	of	out-of-distribution	samples	might	be	almost	infinite	to	cover	
the	entire	space

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples
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• Main	issues	of	confidence	loss
• How	to	optimize	the	KL	divergence	loss?

• The	number	of	out-of-distribution	samples	might	be	almost	infinite	to	cover	
the	entire	space

• Our	intuition
• Samples	close	to	in-distribution	could	be	more	effective	in	improving	the	
detection	performance	

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples
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• Main	issues	of	confidence	loss
• How	to	optimize	the	KL	divergence	loss?

• The	number	of	out-of-distribution	samples	might	be	almost	infinite	to	cover	
the	entire	space

• Our	intuition
• Samples	close	to	in-distribution	could	be	more	effective	in	improving	the	
detection	performance	
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• New	GAN	objective

• Term	(a)	forces	the	generator	to	generate	low-density	samples
• (approximately)	minimizing	the	log	negative	likelihood	of	in-distribution

• Term	(b)	corresponds	to	the	original	GAN	loss	
• Generating	out-of-distribution	samples	close	to	in-distribution

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples
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• New	GAN	objective

• Term	(a)	forces	the	generator	to	generate	low-density	samples
• (approximately)	minimizing	the	log	negative	likelihood	of	in-distribution
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• Generating	out-of-distribution	samples	close	to	in-distribution
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• New	GAN	objective

• Term	(a)	forces	the	generator	to	generate	low-density	samples
• (approximately)	minimizing	the	log	negative	likelihood	of	in-distribution

• Term	(b)	corresponds	to	the	original	GAN	loss	
• Generating	out-of-distribution	samples	close	to	in-distribution

• Experimental	results	on	toy	example	and	MNIST

Contribution	2.	GAN	for	Generating	Out-of-Distribution	Samples
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• We	suggest	training	the	proposed	GAN	using	a	confident	classifier
• Converse	is	also	possible

Contribution	3.	Joint	Confidence	Loss
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• We	suggest	training	the	proposed	GAN	using	a	confident	classifier
• Converse	is	also	possible

• We	propose	a	joint	confidence	loss

• Classifier’s	confidence	loss:	(c)	+	(d)
• GAN	loss:	(d)	+	(e)

Contribution	3.	Joint	Confidence	Loss
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• We	suggest	training	the	proposed	GAN	using	a	confident	classifier
• Converse	is	also	possible

• We	propose	a	joint	confidence	loss

• Classifier’s	confidence	loss:	(c)	+	(d)
• GAN	loss:	(d)	+	(e)

• Alternating	algorithm	for	optimizing	the	joint	confidence	loss

Contribution	3.	Joint	Confidence	Loss
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• Model:	VGGNet [Christian’	15]	with	13	layers	
• In-distribution:	CIFAR-10	or	SVHN

• Out-of-distribution:	(resized)	TinyImageNet and	LSUN

Experimental	Results:	dataset	&	model

33
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CIFAR-10	[Krizhevsky’	09] SVHN	[Netzer’	11]

• 32×32 RGB
• 200	classes
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• 32×32 RGB
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• TP	=	true	positive
• FN	=	false	negative
• TN	=	true	negative
• FP	=	false	positive
• [Metrics]
• FPR	at	95%	TPR

• FPR	=	FP/(FP	+	TN),	TPR	=	TP/(TP	+	FN)

• AUROC	(Area	Under	the	Receiver	Operating	Characteristic	curve)
• ROC	curve	=	relationship	between	TPR	and	FPR

• Detection	Error
• Minimum	misclassification	probability	over	all	thresholds

• AUPR	(Area	under	the	Precision-Recall	curve)
• PR	curve	=	relationship	between	precision=TP/(TP+FP)	and	recall=TP/(TP+FN)

Experimental	Results	- Metric
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• Measure	the	detection	performance	of	threshold-based	detectors
• Confidence	loss	with	some	explicit	out-of-distribution	dataset

• Classifier	trained	by	our	method	drastically	improves	the	detection	
performance	across	all	out-of-distributions

Experimental	Results
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Realistic	images	such	as	TinyImageNet	(aqua	line)	and	
LSUN(green	line)	are	more	useful	than	synthetic	datasets	
(orange	line)	for	improving	the	detection	perfor-mance
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• Joint	confidence	loss

• Confidence	loss	with	the	original	GAN	(orange	bar)	is	often	useful	for	
improving	the	detection	performance

• Joint	confidence	loss	(bluebar)	still	outperforms	all	baseline	it	in	all	cases

Experimental	Results
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• Comparison	with	ODIN	[Liang’	18]

Experimental	Results
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• Comparison	with	ODIN	[Liang’	18]

Experimental	Results
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• Interpretability	of	trained	classifier

• Classifier	trained	by	cross	entropy	loss	shows	sharp	gradient	maps	for	both	
samples	from	in- and	out-of-distributions

• Classifiers	trained	by	the	confidence	losses	do	only	on	samples	from	in-
distribution.

Experimental	Results

39



Algorithmic	Intelligence	Lab

Outline

• Introduction
• Predictive	uncertainty	of	deep	neural	networks
• Summary	of	contributions

• How	to	train	confident	neural	networks
• Training	Confidence-Calibrated	Classifiers	for	Detecting	Out-of-Distribution	
Samples	[Lee’	18a]

• Applications
• Hierarchical	novelty	detection	[Lee’	18b]

• Conclusion
• Future	work

40

[Lee’	18a]	Lee,	K.,	Lee,	H.,	Lee,	K.	and	Shin,	J.	Training	Confidence-calibrated	Classifiers	for	Detecting	Out-of-Distribution	Samples. I
n	ICLR,	2018.
[Lee’	17]	Lee,	K.,	Hwang,	C.,	Park,	K.	and	Shin,	J.	Confident	Multiple	Choice	Learning. In	ICML,	2017.
[Lee’	18b]	Lee,	K.,	Lee,	Min.	K,	Zhang,	Y.	Shin.	J,	Lee,	H.	Hierarchical	Novelty	Detection	for	Visual	Object	Recognition,	In	CVPR,	2018.



Algorithmic	Intelligence	Lab

• Novelty	detection
• 1.	Find	the	closest	known	(super-)category	in	taxonomy
• 2.	Find	fine-grained	classification	for	novel	categories	(i.e.,	out-of-
distribution	samples)

Hierarchical	Novelty	Detection

41

Figure	1.	An	illustration	of	our	hierarchical	novelty	detection	task
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• Objective
• 1.	Find	the	closest	known	(super-)category	in	taxonomy
• 2.	Find	fine-grained	classification	for	novel	categories	(i.e.,	out-of-
distribution	samples)

Hierarchical	Novelty	Detection
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Figure	1.	An	illustration	of	our	hierarchical	novelty	detection	task
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Figure	1.	An	illustration	of	our	hierarchical	novelty	detection	task
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• Top-down	method	(TD)
• p(child)	=	∑super p(child	|	super)	p(super)

• Inference

• Definition	of	confidence:	

Two	Main	Approaches

44

Novel	class
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• Top-down	method	(TD)
• p(child)	=	∑super p(child	|	super)	p(super)

• Inference

• Definition	of	confidence:	
• Objective	

Two	Main	Approaches
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• ImageNet	dataset
• 22K	classes
• Taxonomy

• 396	super	classes	of	1K	known	
leaf	classes

• Rest	of	21K	classes	can	be	used	
as	novel	class

• Example	

Experimental	Results	on	ImageNet	Dataset
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[Deng’ 12] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade offs in large scale visual recognition. In 
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CVPR , pages 3450–3457. IEEE, 2012.

• Hierarchical	novelty	detection	
performance

• Baseline:	DARTS	[Deng’	12]

• One	can	note	that	our	methods	
have	higher	novel	class	
accuracy	than	DARTS	to	have	a	
same	known	class	accuracy	in	
most	regions
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• We	propose	a	new	method	for	training	confident deep	neural	networks
• It	produce	the	uniform	distribution	when	the	input	is	not	from	target	
distribution	

• We	show	that	it	can	be	applied	to	many	machine	learning	problems:
• Detecting	out-of-distribution	problem	[Lee’	18a]	
• Ensemble	learning	using	deep	neural	networks	[Lee’	17]	
• Hierarchical	novelty	detection	[Lee’	18b]	

• We	believe	that	our	new	approach	brings	a	refreshing	angle	for	
developing	confident	deep	networks	in	many	related	applications:

• Network	calibration
• Adversarial	example	detection
• Bayesian	probabilistic	models
• Semi-supervised	learning

Conclusion
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