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Novelty/Out-of-distribution Detection

Deep neural networks (DNNs) generalize well under the “seen” test distribution
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Novelty/Out-of-distribution Detection

Is it possible to figure out whether a given sample is out-of-distribution (OOD)?
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Practically, such an ability is indispensable for security-concerned systems
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Novelty/Out-of-distribution Detection

Is it possible to figure out whether a given sample is out-of-distribution (OOD)?
1. How to learn a better representation f(-) more suitable for OOD detection?

2. How to define a detection score s(-) that maximally utilizes f(-)?

s(@) > s(@)
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Novelty/Out-of-distribution Detection

Case 1: f(-) = a pre-trained classifier from a labeled dataset D = {(x;, ;) }

2. How to define a detection score s(-) that maximally utilizes f(-)?

- Example 1 (the “Baseline” detector): Max-confidence based score [Hendrycks et al., 2017]

/ If s(x) > &: In-distribution

Else: out-of-distribution

Inpu X f(x)

Hendrycks & Gimpel. A Baseline for Detecting Misclassified and Out-of-distribution Examples in Neural Networks. ICLR 2017.



Novelty/Out-of-distribution Detection

Case 1: f(-) = a pre-trained classifier from a labeled dataset D = {(x;,v:)}

2. How to define a detection score s(-) that maximally utilizes f(-)?

« Example 2: Mahalanobis-based confidence score [Lee et al., 2018]

« Define a generative classifier P(x|y) from intermediate features

O exp (W fy (x) + be)
2 0 Y SoewIntory
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Lee, Lee, Lee & Shin. A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NeurlPS 2018.



Novelty/Out-of-distribution Detection

Case 1: f(-) = a pre-trained classifier from a labeled dataset D = {(x;,y;)}

2. How to define a detection score s(-) that maximally utilizes f(-)?

« Example 2: Mahalanobis-based confidence score [Lee et al., 2018]
« Define a generative classifier P(x|y) from intermediate features

s(x) := max — (f(x) =) B (F(x) — Ae)

C

P(y|x): Discriminative, confidence-based P(x|y) : Generative, Mahalanobis-based

9 =0oUuT $ = OUT

‘*

Lee, Lee, Lee & Shin. A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NeurlPS 2018.




Novelty/Out-of-distribution Detection

Case 1: f(-) = a pre-trained classifier from a labeled dataset D = {(x;, ;) }

2. How to define a detection score s(-) that maximally utilizes f(-)?

« Example 2: Mahalanobis-based confidence score [Lee et al., 2018]
(+) Near-perfect detection performances for “easy”-O0Ds, e.g., CIFAR-10 vs. LSUN
(—) Still challenging on “harder’-OQODs: e.g., CIFAR-10 vs. CIFAR-100 / One-class CIFAR-10

In-dist 00D TNR at TPR 95% AUROC Detection Acc.
(model) Baseline / ODIN / Mahalanobis / Ours

iSUN 44.6/73.2/97.8/99.3 91.0/94.0/99.5/99.8 85.0/86.5/96.7/98.1
LSUN (R) 49.8/82.1/98.8/99.6 91.0/94.1/99.7/99.9 85.3/86.7/97.7/98.6
CIFAR-10 LSUN (C) 48.6/62.0/81.3/89.8 91.9/91.2/96.7/97.8 86.3/82.4/90.5/92.6
(ResNet) TinylmgNet (R) 41.0/67.9/97.1/98.7 91.0/94.0/99.5/99.7 85.1/86.5/96.3/97.8
) TinyImgNet (C) 46.4/68.7/92.0/96.7 91.4/93.1/98.6/99.2 85.4/85.2/93.9/96.1
SVHN 50.5/70.3/87.8/97.6 89.9/96.7/99.1/99.5 85.1/91.1/95.8/96.7
CIFAR-100 33.3/42.0/41.6/32.9 86.4/85.8/88.2/79.0 804/78.6/81.2/71.7

Results from [Sastry et al., 2020]

Lee, Lee, Lee & Shin. A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NeurlPS 2018.
Sastry and Oore. Detecting Out-of-Distribution Examples with Gram Matrices, ICML 2020.




Novelty/Out-of-distribution Detection

Supervised representations can discriminate easy-OODs,
but may not be enough for hard-OODs




Novelty/Out-of-distribution Detection

Case 2: f(-) = a generative model from an unlabeled dataset D = {x;}

1. How to learn a better representation f(-) more suitable for OOD detection?

|deally, a good likelihood model p(X) should also represent a good s(-)

@ : In-distribution

@ : Out-of-distribution (not in data) p( ‘ ) > p( . )

Data distribution Generative model p(X)
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Novelty/Out-of-distribution Detection

Case 2: f(-) = a generative model from an unlabeled dataset D = {x;}

1. How to learn a better representation f(-) more suitable for OOD detection?

|deally, a good likelihood model p(X) should also represent a good s(-)

« Unfortunately, this is not the case at least for the current models

1. They tend to be easily biased, e.g., to background statistics [Ren et al., 2019]
2. Scaling up for a better likelihood model is usually much more challenging

W imageNet-TRAIN

20 2 ' ' ' ' ' 0.0005 4 : :
BN FashionMNIST-TRAIN EEE CIFAR10-TRAIN EER CelebA-TRAIN os . M ImageNet-TEST
FashionMNIST-TEST s CIFAR10-TEST ) 0004 = N CelebA-TEST CFAR10-TEST
- 00004 BN SVHN-TEST CIFAR100-TEST
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....... 77 mEM SVHN-TEST

‘‘‘‘‘‘‘
0005

e ( 1' -2500 -2000 -1500 -:nﬂcc —5'00 0 12000 10000 8000 6000 i 7:HLLl‘ogimg("x)imw TRNNL TR S vlog p(X) o o
log p(X) log p(X) .
(c) Train on CelebA, Test on SVHN (d) Train on ImageNet,
(a) Train on FashionMNIST, Test on MNIST (b) Train on CIFAR-10, Test on SVHN Test on CIFAR-10 / CIFAR-100/ SVHN

Nalisnick et al. Do Deep Generative Models Know What They Don’t Know. ICLR 2019.
Ren et al. Likelihood Ratios for Out-of-Distribution Detection. NeurlPS 2019.
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Novelty/Out-of-distribution Detection

At least for now, generative models also suffers from OODs

12



Self-supervised Representation Learning (SSL)

« Learning unsupervised representation with self-supervision

« Example 1: Solving Jigsaw puzzles [Noroozi et al., 20106]

Noroozi et al. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016.

13



Self-supervised Representation Learning (SSL)

« Learning unsupervised representation with self-supervision

- Example 2: Predicting rotation angles (RotNet) [Gidaris et al., 2016]

m Objectives:
7, ConvNet Maximize prob.
> g( X, ‘\‘=()' > ﬂ/ i > model F(.) - F“( X")
Rotate 0 degrees Predict 0 degrees rotation (y=0)

Rotated image: X"

> ConvNet > Maximize prob.

>§lhl ﬁ : model F(.) F'(x")

» glX,y=1)

Rotate 90 degrees Predict 90 degrees rotation (y=1)
Rotated image: X'
2 ! ConvNet Maximize prob.
A B =2 ~ 2 )
> glX,y=2) > /@ » model F(.) > F°(X7)
Image X Rotate 180 degrees m ) Predict 180 degrees rotation (y=2)
Rotated image: X~
@g ConvNet Maximize prob.
(X, y= 3 T >
> (L,(/‘ ) 3) > > model F() P.\(X\’
Rotate 270 degrees Predict 270 degrees rotation (y=3)

Rotated image: X

Gidaris et al. Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018.



Self-supervised Representation Learning (SSL)

Hendrycks et al. (2019): RotNet improves novelty detection

1
Lss(w;0) = > Lcg(one_hot(r), Prot_nead(r | Ry(x));6)
| r€{0°,90°,180°,270°}

« f(-)is trained to predict the rotation angle {0°, 90°, 180°, 270°} applied to the input

- s(-) is defined to detect samples those failed to predict the applied rotations

* Intuition: Predicting rotations are harder to be transferred to OODs

Predict: 90°

Predict: 0°? (X)

Unseen distribution sample

Hendrycks, Mazeika, Kadavath and Song. Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. NeurlPS 2019. 15



Self-supervised Representation Learning (SSL)

Hendrycks et al. (2019): RotNet improves novelty detection

1
Lss(w;0) = > Lcg(one_hot(r), Prot_nead(r | Ry(x));6)
| r€{0°,90°,180°,270°}

* The proposed s(-) for RotNet largely advances AUROC on challenging one-class CIFAR-10

w/ an external
OOQD training data

OC-SVM DeepSVDD Geometric RotNet DIM IIC Supervised (OE) Ours

~— Airplane 65.6 61.7 76.2 719 72.6 68.4 87.6 77.5
Automobile  40.9 65.9 84.8 945 523 89.4 93.9 96.9

Bird 65.3 50.8 77.1 78.4 60.5 49.8 78.6 87.3

Cat 50.1 59.1 132 70.0 539 65.3 79.9 80.9

CIFAR-10 Deer 75.2 60.9 82.8 772  66.7 60.5 81.7 92.7
Dog 51.2 65.7 84.8 86.6 51.0 59.1 85.6 90.2

classes Frog 71.8 67.7 82.0 81.6 62.7 49.3 93.3 90.9
Horse 51.2 67.3 88.7 93.7 592 74.8 87.9 96.5

Ship 67.9 75.9 89.5 90.7 52.8 81.8 92.6 95.2

_ Truck 48.5 73.1 83.4 88.8 47.6 75.7 92.1 93.3

Mean 58.8 64.8 82.3 83.3 579 6.4 87.3 90.1

Hendrycks, Mazeika, Kadavath and Song. Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. NeurlPS 2019.



Self-supervised Representation Learning (SSL)

Would this intuition still hold to more advanced SSL frameworks?
= We examine a novelty detection from contrastive learning

17



Contrastive Representation Learning

« Learning representation that encodes the similarity between data points

Generative / Predictive Contrastive
Data Data Data xp Classification
To T Data z; (similar or not)
Loss measured in the output space Loss measured in the representation space
Examples: Colorization, Auto-Encoders Examples: TCN, CPC, Deep-InfoMax

* source: https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html



Contrastive Representation Learning

» Learning representation that encodes the similarity between data points

Generative / Predictive

Data

Data
o 4 r

I

Loss measured in the output space
Examples: Colorization, Auto-Encoders

Contrastive

Data zg Classification

(similar or not)

Data =,

Loss measured in the representation space
Examples: TCN, CPC, Deep-InfoMax

« A human prior defines positive & negative pairs w.r.t. a similarity score

score(f(z), f(z™)) > score(f(z), f(z7))

* source: https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
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Contrastive Representation Learning

» Learning representation that encodes the similarity between data points

« We focus on SImCLR, one of representatives of modern CL [Chen et al., 2020]:

« Attract (positive) the same instances with different data augmentations

* Repel (negative) all the other different instances

: anchor
M : attract
M : repel

Random crop Other instances

Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020. 21



Contrastive Representation Learning

Learn representations by forcing those of augmented samples from
the same instance “similar” and different instances “different”.

Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020.

22



Contrastive Representation Learning

« SIMCLR have largely closed the accuracy gap between un-/supervised learning

% Supervised . %SimCLR (4x)

= - _.._.--*Si'm'C'LR (2x)
%) eCPCv2-L
©
S 7O #simCLR wome  dMoCo (4
S oPIRL-C2X b -
— 65 2 eMoCo (2x)
a ‘Cpcvz PIRL-ens.
'9 olie eBigBiGAN
g 60 ‘MoCo
o) LA
S
= eRotation

23 e|nstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

[1] Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020.
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Summary: Contrasting Shifted Instances (CSl)

« We utilize the power of contrastive learning for OOD detection

« We further improve OOD detection by using shifted instances

P-4

Original

: anchor
M : attract
M : repel

Random crop Other instances

24



Contrasting Shifted Instances (CSl): Representation

« We train the representation via contrastive learning with shifted instances:

O O
“ ‘ Shifting transformation “ ‘
@ "0 SC) © ~0
0® o . O
o ©

(a) Original | (b) Cutout (c) Sobel (d) Noise (e) Blur (f) Perm (g) Rotate

Shifted instances = OOD-like augmented samples
(SImMCLR uses color jitter, random crop, horizontal flip, grayscale)

25



Contrasting Shifted Instances (CSl): Representation

We force representations of “soft or IN-like” augmented samples (from
the same instance) “similar’and “hard or OOD-like” ones “different”.

IYLdAl Ivu Y et N s s N R it D I

(SlmCLR uses CO|OI’JItteI’ random crop horlzontal ﬂlp grayscale)

26



Contrasting Shifted Instances (CSl): Representation

« We train the representation via contrastive learning with shifted instances:

« We found contrastive representation [Chen et al., 2020] is already good at OOD detection

: anchor
M : attract
M : repel

Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020. 27



Contrasting Shifted Instances (CSl): Representation

« We train the representation via contrastive learning with shifted instances:
« We found contrastive representation [Chen et al., 2020] is already good at OOD detection

« CSl further improves by pushing the shifted samples in addition to the different samples

: anchor
M : attract
M : repel

Shifted instance

Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020. 28



Contrasting Shifted Instances (CSl): Representation

« We train the representation via contrastive learning with shifted instances:
« We found contrastive representation [Chen et al., 2020] is already good at OOD detection
« CSl further improves by pushing the shifted samples in addition to the different samples
- Additionally classify the shifting transformation

. anchor

M : attract
M : repel

Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020. 29



Contrasting Shifted Instances (CSl): Detection Score

« Detection score for contrastively learned representation:

* Further improving the detection score by utilizing the shifting transformation:

30



Contrasting Shifted Instances (CSl): Detection Score

« Detection score for contrastively learned representation:
* The cosine similarity to the nearest training sample

* The norm of the representation
Seon (T {Tm }) 1= max sim(z(znm), 2(x))- || 2(2) || .

' » score: cosine similarity * norm

* Further improving the detection score by utilizing the shifting transformation:

31



Contrasting Shifted Instances (CSl): Detection Score

« Detection score for contrastively learned representation:
The cosine similarity to the nearest training sample

The norm of the representation
Seon (T {Tm }) 1= max sim(z(znm), 2(x))- || 2(2) || .

' » score: cosine similarity * norm

* Further improving the detection score by utilizing the shifting transformation:

* Scon—s1(X, {x,,}): ensemble the score s..,(x; {x,,}) over all shifting transformation

* Sqs—s1(x): confidence of the shifting transformation classifier

Sest (T {Tm }) = Scon-s1(;{Tm }) + Scis-s1(T)

32



Contrasting Shifted Instances (CSl): OOD-ness

* OOD-ness: How to choose the shifting transformation?

« The transformation that generates the most OOD-like yet semantically meaningful samples
* We choose the transformation with the high OOD-ness (AUROC on vanilla SImCLR)

Original sample Low OOD-ness High OOD-ness:
Most OOD-like
transformation

Cutout Sobel Noise Blur Perm Rotate
OOD-ness 79.5 69.2 74.4 76.0 83.8 85.2

33



Contrasting Shifted Instances (CSl): Extension

* We also extend CSI for training confidence-calibrated classifier [Lee et al., 2018]:

« Accurate on predicting label y when input x is in-distribution

» Confidence sg,(x) == max,, p(y|x) of the classifier is well-calibrated

@ : in-distribution correct sample O in-distribution in-correct sample @ : OOD sample

Ssup (@) > Ssup(O) Ssup (@) > Ssup (W)

Lee et al. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. ICLR 2018.
Khosla et al. Supervised contrastive learning. NeurlPS 2020. 34



Contrasting Shifted Instances (CSl): Extension

* We also extend CSI for training confidence-calibrated classifier [Lee et al., 2018]:

« Accurate on predicting label y when input x is in-distribution

» Confidence sg,(x) == max,, p(y|x) of the classifier is well-calibrated

@ : in-distribution correct sample O in-distribution in-correct sample @ : OOD sample

Ssup (@) > Ssup(O) Ssup (@) > Ssup (W)

« We adapt the idea of CSI to the supervised contrastive learning (SupCLR):

« SupCLR [Khosla et al., 2020] contrasts samples in class-wise, instead of in instance-wise

« Similar to CSI, sup-CSl consider shifted instance as a different class’s sample

Lee et al. Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples. ICLR 2018.
Khosla et al. Supervised contrastive learning. NeurlPS 2020. 35



Experiments: Unlabeled one-class OOD

« CSI achieves the state-of-the-art performance in all tested scenarios:

* For unlabeled one-class OOD detection, outperforms prior methods under all classes

(a) One-class CIFAR-10

Method Network | Plane Car Bird Cat Deer Dog Frog Horse  Ship Truck |Mean
OC-SVM* [64] - 65.6 40.9 65.3 50.1 792 51.2 71.8 51.2 67.9 48.5 58.8
DeepSVDD* [60] LeNet 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8
AnoGAN* [63] DCGAN 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8
OCGAN* [55] OCGAN |75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 554 65.7
Geom™ [17] WRN-16-8 | 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 933 91.3 86.0
Rot* [27] WRN-16-4 | 71.9 94.5 78.4 70.0 77.2 86.6 81.6 93.7 90.7 88.8 83.3
Rot+Trans* [27] WRN-16-4 | 77.5 96.9 87.3 80.9 92.7 90.2 90.9 96.5 95.2 93.3 90.1
GOAD* [2] WRN-10-4 | 77.2 96.7 83.3 77.7 87.8 87.8 90.0 96.1 93.8 92.0 88.2
Rot [27] ResNet-18 | 78.3+0.2 94.3+03 86.2+0.4 80.84+0.6 89.4+05 89.0+04 88.9+04 95.1+02 92.3+03 89.7+03 | 88.4
Rot+Trans [27] ResNet-18 | 80.4+03 96.4+02 85.9+03 81.1+05 91.3+03 89.6+03 89.9+03 95.9+0.1 95.0+0.1 92.6+02 | 89.8
GOAD [2] ResNet-18 | 75.5+03 94.1+03 81.8+05 72.0+03 83.7+09 84.4+03 82.9+08 93.9+03 92.9+03 89.5+02 | 85.1
CSI (ours) ResNet-18 | 89.9+0.1 99.1+0.0 93.1+02 86.4+02 93.9+0.1 93.2+02 95.1+0.1 98.7+0.0 97.9+00 95.5+0.1 | 94.3
(b) One-class CIFAR-100 (super-class) (c) One-class ImageNet-30
Method Network AUROC Method Network AUROC
OC-SVM™ [64] - 63.1 Rot™ [27] ResNet-18 65.3
Geom™ [17] WRN-16-8 78.7 Rot+Trans™ [27] ResNet-18 119
Rot [27] ResNet-18 d Tl Rot+Attn™ [27] ResNet-18 81.6
Rot+Trans [27]  ResNet-18 79.8 Rot+Trans+Attn™ [27] ResNet-18 84.8
GOAD [2] ResNet-18 74.5 Rot+Trans+Attn+Resize™ [27] ResNet-18 85.7

CSI (ours) ResNet-18 89.6 CSI (ours) ResNet-18 91.6




Experiments: Unlabeled multi-class OOD

« CSI achieves the state-of-the-art performance in all tested scenarios:

* For unlabeled multi-class OOD detection, outperforms prior methods under all OOD datasets

(a) Unlabeled CIFAR-10

CIFAR10 —
Method Network SVHN LSUN ImageNet LSUN (FIX) ImageNet (FIX) CIFAR-100 Interp.
Likelihood* PixelCNN++ 8.3 - 64.2 - - 52.6 52.6
Likelihood* Glow 8.3 - 66.3 - - 58.2 58.2
Likelihood* EBM 63.0 - - - - - 70.0
Likelihood Ratio* [55] PixelCNN++ 91.2 - - - - - -
Input Complexity™ [61] PixelCNN++ 92.9 - 58.9 - - 53.5 -
Input Complexity™ [61] Glow 95.0 - 71.6 - - 4340 -
Rot [25] ResNet-18  97.6+02 89.2+07 90.5+03 77.7+03 83.2+0.1 79.0+0.1 64.0+03
Rot+Trans [25] ResNet-18 97.8402 92.8+09 94.2+07 81.6+04 86.7+0.1 82.3+0.2 68.1+038
GOAD |[2] ResNet-18  96.3+02 89.3+15 91.8+12 78.8+03 83.3+0.1 77.2403 59.4+1.1
CSI (ours) ResNet-18 99.8+00 97.5+03 97.6+03 90.3+03 93.3+0.1 89.2+0.1 79.3+02
(b) Unlabeled ImageNet-30
ImageNet-30 —
Method Network CUB-200  Dogs Pets Flowers Food-101 Places-365 Caltech-256  DTD
Rot [25] ResNet-18  76.5+07 77.2+05 70.0+05 87.2+02 72.7+15 52.6+1.4 70.9+0.1 89.9+05
Rot+Trans [25] ResNet-18 74.5+05 77.8+1.1 70.0+08 86.3+03 71.6+1.4 53.1+1.7 70.0+0.2 89.4+0.6
GOAD |[2] ResNet-18 71.5+14 743+16 655+13 82.8+14 68.7+0.7 51.0+1.1 67.4+0.3 87.5+08
CSI (ours) ResNet-18  90.5+01 97.1+01 85.2+02 94.7+04 89.2+03 78.3+0.3 87.1+0.1 96.9-+0.1
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Experiments: Labeled multi-class OOD

« CSI achieves the state-of-the-art performance in all tested scenarios:

* For labeled multi-class OOD detection, outperforms prior methods under all OOD datasets

(a) Labeled CIFAR-10

CIFARI0 —
Train method Testacc. ECE SVHN LSUN ImageNet LSUN (FIX) ImageNet (FIX) CIFAR100 Interp.
Cross Entropy 93.0+02 6.44+02 88.64+09 90.7+05 88.3+06 87.5+03 87.4+03 85.84+03  75.4+07
SupCLR [30] 93.8+01 5.56+0.1 97.3+01 92.8405 91.4+12 91.6+15 90.5+05 88.6+02  75.7+0.1
CSI (ours) 94.8+0.1 4.40+0.1 96.5+02 96.3+05 96.2+04 92.1+05 92.4+00 90.5+0.1  78.5+02
CSI-ens (ours) 96.1+o01 3.50+0.1 97.9+01 97.7+04 97.6+03 93.5+04 94.0+0.1 92.2+01 80.1+03
(b) Labeled ImageNet-30
ImageNet-30 —
Train method  Testacc. ECE CUB-200 Dogs Pets Flowers Food-101 Places-365 Caltech-256 DTD
Cross Entropy 94.3 5.08 88.0 96.7 95.0 89.7 79.8 90.5 90.6 90.1
SupCLR [30] 96.9 512 86.3 956 94.2 92.2 81.2 89.7 90.2 92.1
CSI (ours) 97.0 2,61 93.4 97.7 96.9 96.0 87.0 92.5 91.9 93.7
CSlI-ens (ours) 97.8 2.19 94.6 983 974 96.2 88.9 94.0 93.2 97.4




Experiments: Ablation study

« We verified the effectiveness of shifting transformation selection scheme

 Higher OOD-ness valued transformation leads to higher detection performance

(a) Original  (b) Cutout (c) Sobel (d) Noise (e) Blur (f) Perm (g) Rotate

Cutout Sobel Noise Blur Perm Rotate

OOD-ness 79.5 69.2 744 760 83.8 S92

I Higher OOD-ness — Higher performance
\

Base| Cutout Sobel Noise Blur Perm Rotate

+Align 84.3 85.0 855 88.0 73.1 16:9
+Shift 88.5 88.3 89.3 892 90.7 94.3

87.9
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Experiments: Ablation study

« We verified the effectiveness of shifting transformation selection scheme
* Higher OOD-ness valued transformation leads to higher detection performance

* Our method works on rotation-invariant datasets i.e., rotation is not shifting transformation

L al aUI:

% el AR (a) OOD-ness (b) AUROC
e et ;

'... ... ... S Rot. Noise Base CSI(R) CSI(N)
":.::.::.‘ Fout 50.6 757 703 659  80.1
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Experiments: Ablation study

« We verified the effectiveness of shifting transformation selection scheme
 Higher OOD-ness valued transformation leads to higher detection performance

* Our method works on rotation-invariant datasets i.e., rotation is not shifting transformation

(a) OOD-ness (b) AUROC
Rot. Noise Base CSI(R) CSI(N)
50.6 75.7 70.3 65.9 80.1

« Each of the proposed components is complementary for AUROC

(a) Training objective (b) Detection score
SIMCLR Con. Cls. AUROC Con. Cls. Ensem. AUROC
[fSimCLR (2) \/ - - 87.9 Scon (6) \/ - - 91.3
Lecon-s1 (3) v v - 91.6 Scon-81 (7) v - v 93.3
»Ccls-SI (4) = = \/ 88.6 Scls-SI (8) = \/ \/ 93.8
£051 (5) \/ \/ \/ 94.3 Scs1 (9) \/ \/ \/ 94.3




Conclusion

* We propose Contrasting Shifted Instances (CSI) for OOD detection
« We extend the power of contrastive learning for OOD detection

« We further improve the OOD detection by utilizing shifting transformations

« CSI shows outstanding performance under various OOD detection scenarios

« We believe CSI would guide various future directions in OOD detection & self-
supervised learning as an important baseline
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