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Problem: Detecting abnormal samples from DNNs

Test sample
DNNs

Confidence	
score

Adversarial	
samples

Out-of-distribution	
samples

• Detecting test samples drawn sufficiently far away from the training distri-
bution statistically or adversarially.

How to define a confidence score?
• Utilizing the posterior distribution [Daniel et al., 2016, Liang et al., 2018,

Lee et al., 2018]: Maximum value or entropy of posterior distribution.
• Utilizing the features from DNNs [Feinman et al., 2017, Ma et al., 2018]:

kernel density and local intrinsic dimensionality.
High-level idea: Measure the probability density of test sample on feature
spaces of DNNs utilizing the concept of "generative" classifier.

Abnormal 
sample

• Applications: Detecting abnormal samples and class incremental learning.

Main idea: Generative classifiers from Softmax
Softmax classifier and generative classifier with GDA assumption.
• Suppose that a pre-trained Softmax neural classifier is given:

P (y = c|x) = exp
(
w>c f (x) + bc

)
∑

c′ exp
(
w>c′f (x) + bc′

) , where f is penultimate layer.

• Gaussian discriminant analysis (GDA) with a tied covariance matrix:

P (x|y = c) = N (x|µc,Σ) , P (y = c) = βc/
∑

c′

βc′ ,

• It is well-known that posterior distribution of GDA corresponds to Softmax.

Idea: Obtaining generative classifier using pre-trained Softmax neural classifier.

• Estimating the parameters of it via empirical means and covariance:

µ̂c =
1

Nc

∑

i:yi=c

f(xi), Σ̂ =
1

N

∑

c

∑

i:yi=c

(f(xi)− µ̂c) (f(xi)− µ̂c)
>
,

(a) Visualization by t-SNE
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Figure 1: For all experiments in (a), (b) and (c), we commonly use the ResNet with 34 layers. (a)
Visualization of final features from ResNet trained on CIFAR-10 by t-SNE, where the colors of points
indicate the classes of the corresponding objects. (b) Classification test set accuracy of ResNet on
CIFAR-10, CIFAR-100 and SVHN datasets. (c) Receiver operating characteristic (ROC) curves: the
x-axis and y-axis represent the false positive rate (FPR) and true positive rate (TPR), respectively.

conditional distribution follows the multivariate Gaussian distribution. Specifically, we define the90

C number of Gaussian distributions with a tied covariance Σ: P (f(x)|y = c) = N (f(x)|µc,Σ) ,91

where µc is the mean of multivariate Gaussian distribution of class c. Here, our approach is based92

on a theoretical connection between GDA and the softmax classifier: the posterior distribution93

defined by the generative classifier under GDA with tied covariance assumption is equivalent to94

the softmax classifier (see the supplementary material for more details). Therefore, the features of95

DNNs pre-trained for the softmax classifier f(x) might also follow the class-conditional Gaussian96

distribution.97

To estimate the parameters of the generative classifier from the pre-trained softmax neural classifier,98

we compute the empirical class mean and covariance of training samples {(x1, y1), . . . , (xN , yN )}:99

µ̂c =
1

Nc

∑

i:yi=c

f(xi), Σ̂ =
1

N

∑

c

∑

i:yi=c

(f(xi)− µ̂c) (f(xi)− µ̂c)> , (1)

where Nc is the number of training samples with label c. This is equivalent to fitting conditional100

Gaussian distributions with a tied covariance to training samples under the maximum likelihood101

estimator.102

Mahalanobis distance-based confidence score. Using the above post-processed class-conditional103

Gaussian distributions, we define the confidence scoreM(x) using the Mahalanobis distance between104

test sample x and the closest class-conditional Gaussian distribution, i.e.,105

M(x) = max
c
− (f(x)− µ̂c)> Σ̂−1 (f(x)− µ̂c) . (2)

Note that this metric corresponds to measuring the log of the probability densities of the test sample.106

Here, we remark that abnormal samples can be characterized better in the representation space of107

DNNs, rather than the “label-overfitted” output space of softmax-based posterior distribution used in108

the prior works [14, 22] for detecting them. It is because a confidence measure obtained from the109

posterior distribution can show high confidence even for abnormal samples that lie far away from110

the softmax decision boundary. Feinman et al. [7] and Ma et al. [23] process the DNN features for111

detecting adversarial samples in a sense, but do not utilize the Mahalanobis distance-based metric,112

i.e., they only utilize the Euclidean distance in their scores. In this paper, we show that Mahalanobis113

distance is significantly more effective than the Euclidean distance in various tasks.114

Experimental supports for generative classifiers. To evaluate our hypothesis that trained features115

of DNNs support the assumption of GDA, we measure the classification accuracy as follows:116

ŷ(x) = argmin
c

(f(x)− µ̂c)> Σ̂−1 (f(x)− µ̂c) . (3)

We remark that this corresponds to predicting a class label using the posterior distribution from117

generative classifier with the uniform class prior. Interestingly, we found that the softmax accuracy118

(red bar) is also achieved by the Mahalanobis distance-based classifier (blue bar), while conventional119

knowledge is that a generative classifier trained from scratch typically performs much worse than a120

discriminative classifier such as softmax. For visual interpretation, Figure 1(a) presents embeddings121

of final features from CIFAR-10 test samples constructed by t-SNE [24], where the colors of points122

indicate the classes of the corresponding objects. One can observe that all ten classes are clearly123

3

• Inference: ŷ(x) = argminc (f(x)− µ̂c)
>

Σ̂−1 (f(x)− µ̂c) .

Contribution 1: New confidence score for detection
New confidence score: Mahalanobis distance between test sample and the
closest class-conditional Gaussian distribution.

M(x) = max
c
− (f(x)− µ̂c)

>
Σ̂−1 (f(x)− µ̂c) .

• Measuring the log of the probability densities of the test sample.
Calibration techniques: Input pre-processing and feature ensemble.

• Input pre-processing: adding a small controlled noise to a test sample.
• Feature ensemble: utilizing the low-level features in DNNs.
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Figure 2: AUROC (%) of threshold-based detector using the confidence score in (2) computed
at different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection
performance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.

Algorithm 2 Updating Mahalanobis distance-based classifier for class incremental learning.
Input: set of samples from a new class {xi : ∀i = 1 . . . NC+1}, mean and covariance of observed
classes {µ̂c : ∀c = 1 . . . C}, Σ̂
Output: mean and covariance of all classes {µ̂c : ∀c = 1 . . . C + 1}, Σ̂
Compute the new class mean: µ̂C+1 ← 1

NC+1

∑
i xi

Compute the covariance of the new class: Σ̂C+1 ← 1
NC+1

∑
i(xi − µ̂C+1)(xi − µ̂C+1)

>

Update the shared covariance: Σ̂← C
C+1Σ̂ + 1

C+1Σ̂C+1

2.3 Incremental learning using Mahalanobis distance-based score163

As a natural extension, we also show that the proposed Mahalanobis distance-based score can be164

utilized in class incremental learning tasks, where samples from new classes are added progressively165

to the pre-trained classifier. In a class incremental learning task, a classifier pre-trained on base166

classes is progressively updated whenever a new class with enough samples occurs [31]. The task is167

challenging since one has to deal with catastrophic forgetting [25] with a limited memory. Recent168

works have studied complicated training methods which involves a generative model or data sampling.169

However, unlike the assumption of the recent works that there are no or only a few base classes [31],170

we assume that the classifier is well pre-trained with a certain amount of base classes, which is often171

more realistic. In the case, we expect that not only the classifier can detect OOD samples well, but172

also might be good for discriminating new classes, as the representation learned with the base classes173

can also characterize new ones. That is, if we have enough base classes and corresponding samples,174

our simple score in (2) might eliminate the usage of complicated training methods. Hence, we present175

a Mahalanobis classifier as like (3), which tries to accommodate a new class by simply computing176

and updating the class mean and covariance, as described in Algorithm 2.177

3 Experimental results178

In this section, we demonstrate the effectiveness of the proposed method using deep convolutional179

neural networks such as DenseNet [15] and ResNet [13] on various vision datasets: CIFAR [16],180

SVHN [30], ImageNet [5] and LSUN [34]. Due to the space limitation, we provide the more detailed181

experimental setups and results in the supplementary material.182

3.1 Detecting out-of-distribution samples183

Setup. For the problem of detecting out-of-distribution (OOD) samples, we train DenseNet with 100184

layers and ResNet with 34 layers for classifying CIFAR-10, CIFAR-100 and SVHN datasets. The185

dataset used in training is the in-distribution (positive) dataset and the others are considered as OOD186

(negative). We only use test datasets for evaluation. In addition, the TinyImageNet (i.e., subset of187

ImageNet dataset) and LSUN datasets are also tested as OOD.188

For evaluation, we use a threshold-based detector which measures some confidence score of the test189

sample, and then classifies the test sample as in-distribution if the confidence score is above some190

threshold. We measure the following metrics: the true negative rate (TNR) at 95% true positive191

rate (TPR), the area under the receiver operating characteristic curve (AUROC), the area under the192

precision-recall curve (AUPR), and the detection accuracy. We compare the baseline method [14],193
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Algorithm description:

Algorithm 1 Computing the Mahalanobis distance-based confidence score.
Input: Test sample x, weights of logistic regression detector ↵`, noise " and parameters of Gaus-
sian distributions {bµ`,c, b⌃` : 8`, c}
Initialize score vectors: M(x) = [M` : 8`]
for each layer ` 2 1, . . . , L do

Find the closest class: bc = arg minc (f`(x)� bµ`,c)
> b⌃�1

` (f`(x)� bµ`,c)

Add small noise to test sample: bx = x� "sign
⇣
5x (f`(x)� bµ`,bc)

> b⌃�1
` (f`(x)� bµ`,bc)

⌘

Computing confidence score: M` = max
c
� (f`(bx)� bµ`,c)

> b⌃�1
` (f`(bx)� bµ`,c)

end for
return Confidence score for test sample

P
` ↵`M`
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Figure 2: AUROC (%) of threshold-based detector using the confidence score in (2) computed at
different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection perfor-
mance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.

We remark that this corresponds to predicting a class label using the posterior distribution from gen-
erative classifier with the uniform class prior. Interestingly, we found that the softmax accuracy (red
bar) is also achieved by the Mahalanobis distance-based classifier (blue bar), while conventional
knowledge is that a generative classifier trained from scratch typically performs much worse than a
discriminative classifier such as softmax. For visual interpretation, Figure 1(a) presents embeddings
of final features from CIFAR-10 test samples constructed by t-SNE [23], where the colors of points
indicate the classes of the corresponding objects. One can observe that all ten classes are clearly
separated in the embedding space, which supports our intuition. In addition, we also show that
Mahalanobis distance-based metric can be very useful in detecting out-of-distribution samples. For
evaluation, we obtain the receiver operating characteristic (ROC) curve using a simple threshold-
based detector by computing the confidence score M(x) on a test sample x and decide it as positive
(i.e., in-distribution) if M(x) is above some threshold. The Euclidean distance, which only utilizes
the empirical class means, is considered for comparison. We train ResNet on CIFAR-10, and Tiny-
ImageNet dataset [5] is used for an out-of-distribution. As shown in Figure 1(c), the Mahalanobis
distance-based metric (blue bar) performs better than Euclidean one (green bar) and the maximum
value of the softmax distribution (red bar).

2.2 Calibration techniques

Input pre-processing. To make in- and out-of-distribution samples more separable, we consider
adding a small controlled noise to a test sample. Specifically, for each test sample x, we calculate
the pre-processed sample bx by adding the small perturbations as follows:

bx = x + "sign (5xM(x)) = x� "sign
⇣
5x (f(x)� bµbc)

> b⌃�1 (f(x)� bµbc)
⌘

, (4)

where " is a magnitude of noise and bc is the index of the closest class. Next, we measure the confi-
dence score using the pre-processed sample. We remark that the noise is generated to increase the
proposed confidence score (2) unlike adversarial attacks [10]. In our experiments, such perturba-
tion can have stronger effect on separating the in- and out-of-distribution samples. We remark that
similar input pre-processing was studied in [21], where the perturbations are added to increase the
softmax score of the predicted label. However, our method is different in that the noise is generated
to increase the proposed metric.

4

• We set the weights by training logistic regression detector on validation
samples

Contribution 2: Extension to incremental learning
Class incremental learning tasks: samples from new classes are added pro-
gressively to the pre-trained classifier.

Idea: Utilizing Mahalanobis distance-based score in class incremental learning.
Algorithm description:

Algorithm 2 Updating Mahalanobis distance-based classifier for class-incremental learning.
Input: set of samples from a new class {xi : 8i = 1 . . . NC+1}, mean and covariance of observed
classes {bµc : 8c = 1 . . . C}, b⌃
Compute the new class mean: bµC+1  1

NC+1

P
i f(xi)

Compute the covariance of the new class: b⌃C+1  1
NC+1

P
i(f(xi)� bµC+1)(f(xi)� bµC+1)

>

Update the shared covariance: b⌃ C
C+1

b⌃ + 1
C+1

b⌃C+1

return Mean and covariance of all classes {bµc : 8c = 1 . . . C + 1}, b⌃

Feature ensemble. To further improve the performance, we consider measuring and combining the
confidence scores from not only the final features but also the other low-level features in DNNs.
Formally, given training data, we extract the `-th hidden features of DNNs, denoted by f`(x), and
compute their empirical class means and tied covariances, i.e., bµ`,c and b⌃`. Then, for each test
sample x, we measure the confidence score from the `-th layer using the formula in (2). One can
expect that this simple but natural scheme can bring an extra gain in obtaining a better calibrated
score by extracting more input-specific information from the low-level features. We measure the
area under ROC (AUROC) curves of the threshold-based detector using the confidence score in
(2) computed at different basic blocks of DenseNet [14] trained on CIFAR-10 dataset, where the
overall trends on ResNet are similar. Figure 2 shows the performance on various OOD samples such
as SVHN [28], LSUN [32], TinyImageNet and adversarial samples generated by DeepFool [26],
where the dimensions of the intermediate features are reduced using average pooling (see Section
3 for more details). As shown in Figure 2, the confidence scores computed at low-level features
often provide better calibrated ones compared to final features (e.g., LSUN, TinyImageNet and
DeepFool). To further improve the performance, we design a feature ensemble method as described
in Algorithm 1. We first extract the confidence scores from all layers, and then integrate them by
weighted averaging:

P
` ↵`M`(x), where M`(·) and ↵` is the confidence score at the `-th layer

and its weight, respectively. In our experiments, following similar strategies in [22], we choose
the weight of each layer ↵` by training a logistic regression detector using validation samples. We
remark that such weighted averaging of confidence scores can prevent the degradation on the overall
performance even in the case when the confidence scores from some layers are not effective: the
trained weights (using validation) would be nearly zero for those ineffective layers.

2.3 Class-incremental learning using Mahalanobis distance-based score

As a natural extension, we also show that the Mahalanobis distance-based confidence score can be
utilized in class-incremental learning tasks [29]: a classifier pre-trained on base classes is progres-
sively updated whenever a new class with corresponding samples occurs. This task is known to be
challenging since one has to deal with catastrophic forgetting [24] with a limited memory. To this
end, recent works have been toward developing new training methods which involve a generative
model or data sampling, but adopting such training methods might incur expensive back-and-forth
costs. Based on the proposed confidence score, we develop a simple classification method without
the usage of complicated training methods. To do this, we first assume that the classifier is well
pre-trained with a certain amount of base classes, where the assumption is quite reasonable in many
practical scenarios.1 In this case, one can expect that not only the classifier can detect OOD samples
well, but also might be good for discriminating new classes, as the representation learned with the
base classes can characterize new ones. Motivated by this, we present a Mahalanobis distance-based
classifier based on (3), which tries to accommodate a new class by simply computing and updating
the class mean and covariance, as described in Algorithm 2. The class-incremental adaptation of our
confidence score shows its potential to be applied to a wide range of new applications in the future.

1For example, state-of-the-art CNNs trained on large-scale image dataset are off-the-shelf [12, 14], so they
are a starting point in many computer vision tasks [9, 18, 25].

5

• Handling new class by simply computing the class mean of new class and
updating the covariance.

Experimental result: detection and incremental learning
Experiments on detecting out-of-distribution (OOD) samples:

Method Feature
ensemble

Input
pre-processing

TNR
at TPR 95% AUROC Detection

accuracy
AUPR

in
AUPR

out

Baseline [13] - - 32.47 89.88 85.06 85.40 93.96

ODIN [21] - - 86.55 96.65 91.08 92.54 98.52

Mahalanobis
(ours)

- - 54.51 93.92 89.13 91.56 95.95
- X 92.26 98.30 93.72 96.01 99.28
X - 91.45 98.37 93.55 96.43 99.35
X X 96.42 99.14 95.75 98.26 99.60

Table 1: Contribution of each proposed method on distinguishing in- and out-of-distribution test
set data. We measure the detection performance using ResNet trained on CIFAR-10, when SVHN
dataset is used as OOD. All values are percentages and the best results are indicated in bold.

3 Experimental results

In this section, we demonstrate the effectiveness of the proposed method using deep convolutional
neural networks such as DenseNet [14] and ResNet [12] on various vision datasets: CIFAR [15],
SVHN [28], ImageNet [5] and LSUN [32]. Due to the space limitation, we provide the more detailed
experimental setups and results in the supplementary material. Our code is available at https:
//github.com/pokaxpoka/deep_Mahalanobis_detector.

3.1 Detecting out-of-distribution samples

Setup. For the problem of detecting out-of-distribution (OOD) samples, we train DenseNet with 100
layers and ResNet with 34 layers for classifying CIFAR-10, CIFAR-100 and SVHN datasets. The
dataset used in training is the in-distribution (positive) dataset and the others are considered as OOD
(negative). We only use test datasets for evaluation. In addition, the TinyImageNet (i.e., subset of
ImageNet dataset) and LSUN datasets are also tested as OOD. For evaluation, we use a threshold-
based detector which measures some confidence score of the test sample, and then classifies the
test sample as in-distribution if the confidence score is above some threshold. We measure the
following metrics: the true negative rate (TNR) at 95% true positive rate (TPR), the area under the
receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPR),
and the detection accuracy. For comparison, we consider the baseline method [13], which defines
a confidence score as a maximum value of the posterior distribution, and the state-of-the-art ODIN
[21], which defines the confidence score as a maximum value of the processed posterior distribution.

For our method, we extract the confidence scores from every end of dense (or residual) block of
DenseNet (or ResNet). The size of feature maps on each convolutional layers is reduced by average
pooling for computational efficiency: F ⇥H ⇥W ! F ⇥ 1, where F is the number of channels
and H ⇥W is the spatial dimension. As shown in Algorithm 1, the output of the logistic regres-
sion detector is used as the final confidence score in our case. All hyperparameters are tuned on a
separate validation set, which consists of 1,000 images from each in- and out-of-distribution pair.
Similar to Ma et al. [22], the weights of logistic regression detector are trained using nested cross
validation within the validation set, where the class label is assigned positive for in-distribution sam-
ples and assigned negative for OOD samples. Since one might not have OOD validation datasets in
practice, we also consider tuning the hyperparameters using in-distribution (positive) samples and
corresponding adversarial (negative) samples generated by FGSM [10].

Contribution by each technique and comparison with ODIN. Table 1 validates the contributions
of our suggested techniques under the comparison with the baseline method and ODIN. We measure
the detection performance using ResNet trained on CIFAR-10, when SVHN dataset is used as OOD.
We incrementally apply our techniques to see the stepwise improvement by each component. One
can note that our method significantly outperforms the baseline method without feature ensembles
and input pre-processing. This implies that our method can characterize the OOD samples very
effectively compared to the posterior distribution. By utilizing the feature ensemble and input pre-
processing, the detection performance are further improved compared to that of ODIN. The left-hand
column of Table 2 reports the detection performance with ODIN for all in- and out-of-distribution

6

In-dist
(model) OOD

Validation on OOD samples Validation on adversarial samples
TNR at TPR 95% AUROC Detection acc. TNR at TPR 95% AUROC Detection acc.

Baseline [13] / ODIN [21] / Mahalanobis (ours) Baseline [13] / ODIN [21] / Mahalanobis (ours)

CIFAR-10
(DenseNet)

SVHN 40.2 / 86.2 / 90.8 89.9 / 95.5 / 98.1 83.2 / 91.4 / 93.9 40.2 / 70.5 / 89.6 89.9 / 92.8 / 97.6 83.2 / 86.5 / 92.6
TinyImageNet 58.9 / 92.4 / 95.0 94.1 / 98.5 / 98.8 88.5 / 93.9 / 95.0 58.9 / 87.1 / 94.9 94.1 / 97.2 / 98.8 88.5 / 92.1 / 95.0

LSUN 66.6 / 96.2 / 97.2 95.4 / 99.2 / 99.3 90.3 / 95.7 / 96.3 66.6 / 92.9 / 97.2 95.4 / 98.5 / 99.2 90.3 / 94.3 / 96.2

CIFAR-100
(DenseNet)

SVHN 26.7 / 70.6 / 82.5 82.7 / 93.8 / 97.2 75.6 / 86.6 / 91.5 26.7 / 39.8 / 62.2 82.7 / 88.2 / 91.8 75.6 / 80.7 / 84.6
TinyImageNet 17.6 / 42.6 / 86.6 71.7 / 85.2 / 97.4 65.7 / 77.0 / 92.2 17.6 / 43.2 / 87.2 71.7 / 85.3 / 97.0 65.7 / 77.2 / 91.8

LSUN 16.7 / 41.2 / 91.4 70.8 / 85.5 / 98.0 64.9 / 77.1 / 93.9 16.7 / 42.1 / 91.4 70.8 / 85.7 / 97.9 64.9 / 77.3 / 93.8

SVHN
(DenseNet)

CIFAR-10 69.3 / 71.7 / 96.8 91.9 / 91.4 / 98.9 86.6 / 85.8 / 95.9 69.3 / 69.3 / 97.5 91.9 / 91.9 / 98.8 86.6 / 86.6 / 96.3
TinyImageNet 79.8 / 84.1 / 99.9 94.8 / 95.1 / 99.9 90.2 / 90.4 / 98.9 79.8 / 79.8 / 99.9 94.8 / 94.8 / 99.8 90.2 / 90.2 / 98.9

LSUN 77.1 / 81.1 / 100 94.1 / 94.5 / 99.9 89.1 / 89.2 / 99.3 77.1 / 77.1 / 100 94.1 / 94.1 / 99.9 89.1 / 89.1 / 99.2

CIFAR-10
(ResNet)

SVHN 32.5 / 86.6 / 96.4 89.9 / 96.7 / 99.1 85.1 / 91.1 / 95.8 32.5 / 40.3 / 75.8 89.9 / 86.5 / 95.5 85.1 / 77.8 / 89.1
TinyImageNet 44.7 / 72.5 / 97.1 91.0 / 94.0 / 99.5 85.1 / 86.5 / 96.3 44.7 / 69.6 / 95.5 91.0 / 93.9 / 99.0 85.1 / 86.0 / 95.4

LSUN 45.4 / 73.8 / 98.9 91.0 / 94.1 / 99.7 85.3 / 86.7 / 97.7 45.4 / 70.0 / 98.1 91.0 / 93.7 / 99.5 85.3 / 85.8 / 97.2

CIFAR-100
(ResNet)

SVHN 20.3 / 62.7 / 91.9 79.5 / 93.9 / 98.4 73.2 / 88.0 / 93.7 20.3 / 12.2 / 41.9 79.5 / 72.0 / 84.4 73.2 / 67.7 / 76.5
TinyImageNet 20.4 / 49.2 / 90.9 77.2 / 87.6 / 98.2 70.8 / 80.1 / 93.3 20.4 / 33.5 / 70.3 77.2 / 83.6 / 87.9 70.8 / 75.9 / 84.6

LSUN 18.8 / 45.6 / 90.9 75.8 / 85.6 / 98.2 69.9 / 78.3 / 93.5 18.8 / 31.6 / 56.6 75.8 / 81.9 / 82.3 69.9 / 74.6 / 79.7

SVHN
(ResNet)

CIFAR-10 78.3 / 79.8 / 98.4 92.9 / 92.1 / 99.3 90.0 / 89.4 / 96.9 78.3 / 79.8 / 94.1 92.9 / 92.1 / 97.6 90.0 / 89.4 / 94.6
TinyImageNet 79.0 / 82.1 / 99.9 93.5 / 92.0 / 99.9 90.4 / 89.4 / 99.1 79.0 / 80.5 / 99.2 93.5 / 92.9 / 99.3 90.4 / 90.1 / 98.8

LSUN 74.3 / 77.3 / 99.9 91.6 / 89.4 / 99.9 89.0 / 87.2 / 99.5 74.3 / 76.3 / 99.9 91.6 / 90.7 / 99.9 89.0 / 88.2 / 99.5

Table 2: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. All values are percentages and the best results are indicated in bold.
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Figure 3: Comparison of AUROC (%) under extreme scenarios: (a) small number of training data,
where the x-axis represents the number of training data. (b) Random label is assigned to training
data, where the x-axis represents the percentage of training data with random label.

dataset pairs. Our method outperforms the baseline and ODIN for all tested cases. In particular,
our method improves the TNR, i.e., the fraction of detected LSUN samples, compared to ODIN:
41.2%! 91.4% using DenseNet, when 95% of CIFAR-100 samples are correctly detected.

Comparison of robustness. In order to evaluate the robustness of our method, we measure the
detection performance when all hyperparameters are tuned only using in-distribution and adversarial
samples generated by FGSM [10]. As shown in the right-hand column of Table 2, ODIN is working
poorly compared to the baseline method in some cases (e.g., DenseNet trained on SVHN), while our
method still outperforms the baseline and ODIN consistently. We remark that our method validated
without OOD but adversarial samples even outperforms ODIN validated with OOD. We also verify
the robustness of our method under various training setups. Since our method utilizes empirical
class mean and covariance of training samples, there is a caveat such that it can be affected by the
properties of training data. In order to verify the robustness, we measure the detection performance
when we train ResNet by varying the number of training data and assigning random label to training
data on CIFAR-10 dataset. As shown in Figure 3, our method (blue bar) maintains high detection
performances even for small number of training data or noisy one, while baseline (red bar) and ODIN
(yellow bar) do not. Finally, we remark that our method using softmax neural classifier trained by
standard cross entropy loss typically outperforms the ODIN using softmax neural classifier trained
by confidence loss [20] which involves jointly training a generator and a classifier to calibrate the
posterior distribution even though training such model is computationally more expensive (see the
supplementary material for more details).

3.2 Detecting adversarial samples

Setup. For the problem of detecting adversarial samples, we train DenseNet and ResNet for classi-
fying CIFAR-10, CIFAR-100 and SVHN datasets, and the corresponding test dataset is used as the
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Figure 3: Comparison of AUROC (%) under extreme scenarios: (a) small number of training data,
where the x-axis represents the number of training data. (b) Random label is assigned to training
data, where the x-axis represents the percentage of training data with random label.

dataset pairs. Our method outperforms the baseline and ODIN for all tested cases. In particular,
our method improves the TNR, i.e., the fraction of detected LSUN samples, compared to ODIN:
41.2%! 91.4% using DenseNet, when 95% of CIFAR-100 samples are correctly detected.

Comparison of robustness. In order to evaluate the robustness of our method, we measure the
detection performance when all hyperparameters are tuned only using in-distribution and adversarial
samples generated by FGSM [10]. As shown in the right-hand column of Table 2, ODIN is working
poorly compared to the baseline method in some cases (e.g., DenseNet trained on SVHN), while our
method still outperforms the baseline and ODIN consistently. We remark that our method validated
without OOD but adversarial samples even outperforms ODIN validated with OOD. We also verify
the robustness of our method under various training setups. Since our method utilizes empirical
class mean and covariance of training samples, there is a caveat such that it can be affected by the
properties of training data. In order to verify the robustness, we measure the detection performance
when we train ResNet by varying the number of training data and assigning random label to training
data on CIFAR-10 dataset. As shown in Figure 3, our method (blue bar) maintains high detection
performances even for small number of training data or noisy one, while baseline (red bar) and ODIN
(yellow bar) do not. Finally, we remark that our method using softmax neural classifier trained by
standard cross entropy loss typically outperforms the ODIN using softmax neural classifier trained
by confidence loss [20] which involves jointly training a generator and a classifier to calibrate the
posterior distribution even though training such model is computationally more expensive (see the
supplementary material for more details).

3.2 Detecting adversarial samples

Setup. For the problem of detecting adversarial samples, we train DenseNet and ResNet for classi-
fying CIFAR-10, CIFAR-100 and SVHN datasets, and the corresponding test dataset is used as the
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Experimental results on detecting adversarial attacks:

Model Dataset
(model) Score Detection of known attack Detection of unknown attack

FGSM BIM DeepFool CW FGSM (seen) BIM DeepFool CW

DenseNet

CIFAR-10
KD+PU [7] 85.96 96.80 68.05 58.72 85.96 3.10 68.34 53.21

LID [22] 98.20 99.74 85.14 80.05 98.20 94.55 70.86 71.50
Mahalanobis (ours) 99.94 99.78 83.41 87.31 99.94 99.51 83.42 87.95

CIFAR-100
KD+PU [7] 90.13 89.69 68.29 57.51 90.13 66.86 65.30 58.08

LID [22] 99.35 98.17 70.17 73.37 99.35 68.62 69.68 72.36
Mahalanobis (ours) 99.86 99.17 77.57 87.05 99.86 98.27 75.63 86.20

SVHN
KD+PU [7] 86.95 82.06 89.51 85.68 86.95 83.28 84.38 82.94

LID [22] 99.35 94.87 91.79 94.70 99.35 92.21 80.14 85.09
Mahalanobis (ours) 99.85 99.28 95.10 97.03 99.85 99.12 93.47 96.95

ResNet

CIFAR-10
KD+PU [7] 81.21 82.28 81.07 55.93 83.51 16.16 76.80 56.30

LID [22] 99.69 96.28 88.51 82.23 99.69 95.38 71.86 77.53
Mahalanobis (ours) 99.94 99.57 91.57 95.84 99.94 98.91 78.06 93.90

CIFAR-100
KD+PU [7] 89.90 83.67 80.22 77.37 89.90 68.85 57.78 73.72

LID [22] 98.73 96.89 71.95 78.67 98.73 55.82 63.15 75.03
Mahalanobis (ours) 99.77 96.90 85.26 91.77 99.77 96.38 81.95 90.96

SVHN
KD+PU [7] 82.67 66.19 89.71 76.57 82.67 43.21 84.30 67.85

LID [22] 97.86 90.74 92.40 88.24 97.86 84.88 67.28 76.58
Mahalanobis (ours) 99.62 97.15 95.73 92.15 99.62 95.39 72.20 86.73

Table 3: Comparison of AUROC (%) under various validation setups. For evaluation on unknown
attack, FGSM samples denoted by “seen” are used for validation. For our method, we use both
feature ensemble and input pre-processing. The best results are indicated in bold.

positive samples to measure the performance. We use adversarial images as the negative samples
generated by the following attack methods: FGSM [10], BIM [16], DeepFool [26] and CW [3],
where the detailed explanations can be found in the supplementary material. For comparison, we
use a logistic regression detector based on combinations of kernel density (KD) [7] and predictive
uncertainty (PU), i.e., maximum value of posterior distribution. We also compare the state-of-the-
art local intrinsic dimensionality (LID) scores [22]. Following the similar strategies in [7, 22], we
randomly choose 10% of original test samples for training the logistic regression detectors and the
remaining test samples are used for evaluation. Using nested cross-validation within the training set,
all hyper-parameters are tuned.

Comparison with LID and generalization analysis. The left-hand column of Table 3 reports the
AUROC score of a logistic regression detectors for all normal and adversarial pairs. One can note
that the proposed method outperforms all tested methods in most cases. In particular, ours improves
the AUROC of LID from 82.2% to 95.8% when we detect CW samples using ResNet trained on
the CIFAR-10 dataset. Similar to [22], we also evaluate whether the proposed method is tuned on
a simple attack can be generalized to detect other more complex attacks. To this end, we measure
the detection performance when we train the logistic regression detector using samples generated by
FGSM. As shown in the right-hand column of Table 3, our method trained on FGSM can accurately
detect much more complex attacks such as BIM, DeepFool and CW. Even though LID can also
generalize well, our method still outperforms it in most cases. A natural question that arises is
whether the LID can be useful in detecting OOD samples. We indeed compare the performance of
our method with that of LID in the supplementary material, where our method still outperforms LID
in all tested case.

3.3 Class-incremental learning

Setup. For the task of class-incremental learning, we train ResNet with 34 layers for classifying
CIFAR-100 and downsampled ImageNet [4]. As described in Section 2.3, we assume that a classifier
is pre-trained on a certain amount of base classes and new classes with corresponding datasets are
incrementally provided one by one. Specifically, we test two different scenarios: in the first scenario,
half of CIFAR-100 classes are bases classes and the rest are new classes. In the second scenario,
all classes in CIFAR-100 are considered to be base classes and 100 of ImageNet classes are new
classes. All scenarios are tested five times and then averaged. Class splits are randomly generated
for each trial. For comparison, we consider a softmax classifier, which is fine-tuned whenever new
class data come in, and a Euclidean classifier [25], which tries to accommodate a new class by only
computing the class mean. For the softmax classifier, we only update the softmax layer to achieve
near-zero cost training [25], and follow the memory management in Rebuffi & Kolesnikov [29]: a
small number of samples from old classes are kept in the limited memory, where the size of the
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Experimental results on class incremental learning:
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Figure 4: Experimental results of class-incremental learning on CIFAR-100 and ImageNet datasets.
In each experiment, we report (left) AUC with respect to the number of learned classes and, (right)
the base-new class accuracy curve after the last new classes is added.

memory is matched with that for keeping the parameters for Mahalanobis distance-based classifier.
Namely, the number of old exemplars kept for training the softmax classifier is chosen as the sum of
the number of learned classes and the dimension (512 in our experiments) of the hidden features. For
evaluation, similar to [18], we first draw base-new class accuracy curve by adjusting an additional
bias to the new class scores, and measure the area under curve (AUC) since averaging base and new
class accuracy may cause an imbalanced measure of the performance between base and new classes.

Comparison with other classifiers. Figure 4 compares the incremental learning performance of
methods in terms of AUC in the two scenarios mentioned above. In each sub-figure, AUC with re-
spect to the number of learned classes (left) and the base-new class accuracy curve after the last new
classes is added (right) are drawn. Our proposed Mahalanobis distance-based classifier outperforms
the other methods by a significant margin, as the number of new classes increases, although there
is a crossing in the right figure of Figure 4(b) in small regimes (due to the catastrophic forgetting
issue). In particular, the AUC of our proposed method is 40.0% (22.1%), which is better than 32.7%
(15.6%) of the softmax classifier and 32.9% (17.1%) of the Euclidean distance classifier after all
new classes are added in the first (second) experiment. We also report the experimental results in
the supplementary material for the case when classes of CIFAR-100 are base classes and those of
CIFAR-10 are new classes, where the overall trend is similar. The experimental results additionally
demonstrate the superiority of our confidence score, compared to other plausible ones.

4 Conclusion

In this paper, we propose a simple yet effective method for detecting abnormal test samples including
both out-of-distribution and adversarial ones. In essence, our main idea is inducing a generative
classifier under LDA assumption, and defining new confidence score based on it. With calibration
techniques such as input pre-processing and feature ensemble, our method performs very strongly
across multiple tasks: detecting out-of-distribution samples, detecting adversarial attacks and class-
incremental learning. We also found that our proposed method is more robust in the choice of its
hyperparameters as well as against extreme scenarios, e.g., when the training dataset has some noisy,
random labels or a small number of data samples. We believe that our approach have a potential to
apply to many other related machine learning tasks, e.g., active learning [8], ensemble learning [19]
and few-shot learning [31].
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