Algorithmic Intelligence Lab
. ___|

Bayesian Deep Learning

EE807: Recent Advances in Deep Learning

Lecture 8

Slide made by

Sungsoo Ahn and Kimin Lee
KAIST EE

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* What is Bayesian inference?
* What is Bayesian neural network?

2. Variational Inference for Bayesian Neural Networks
e Using Gaussian distribution

* Using multiplicative normalizing flows

3. Non-variational Inference for Bayesian Neural Networks

e Laplace Approximation
e Markov Chain Monte Carlo

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* What is Bayesian inference?

Algorithmic Intelligence Lab

The Big Picture

Statistical inference

Bayesian inference

(focusing on statistics of parameters)

Non-Bayesian inference

(focusing on statistics of data)

(Quiz) But first... what is a statistical inference? (Hint: there are 2 keywords)

Algorithmic Intelligence Lab 4

What is a Statistical Inference?

“Using data analysis to deduce properties of underlying probability distribution.”

-Upton, G., Cook, I|. (2008) Oxford Diction @M of Statistics, OUP.

images & labels for classification parametric model with independence assumption

D = {(Xn, yn) ,,]7\;1 {yn}ivzl‘{xn}qjyzl ~ 1:[Po(Yn|Xn)

the “property”

Algorithmic Intelligence Lab 5

What is Bayesian Inference?

* Modeling uncertainty/degree of belief of parameters as probability given data.

p(@ ‘D) — posterior probability
T2

parameter

(uncertainty of parameters given data)

* Remarks:
* Bayesian inference is NOT about treating parameter as random variable.

* Instead, probability represents degree of belief or uncertainty on that value.

e Such interpretation of probability is called Bayesian probability.

Algorithmic Intelligence Lab

What is Bayesian Inference?

* Modeling uncertainty/degree of belief of parameters as probability given data.
e Bayes’ rule is essential for description of posterior:

p(6,D) p(DI9)p(6)
PR =D — »D)
e XX p D ‘ (9

TT

likelihood prior probability

(How likely is the data given parameter value?) (Initial belief on the parameter values)

Why do we care about the posterior?

Algorithmic Intelligence Lab

7

Why Posterior?

* Bayesian prediction for classification problem:
* What is test label, given test image, training image and training label?

. . Aﬂtric modeling (e.g.. neural network)
p(y s x<>ﬁ>/ﬁ>>/ :
Bayes’ rul p(Y|X) =/p(3/\?€,0)p(0)
p(y(test), y(train) ‘X(test), X(train)) ’
- p(y(train) ‘X(train)) . fo.r(Yn.l
f@»g(xn Yn,2
/ p<3)(test)7 y(train) |X(test)’ X(train)’ (9)]?(9)
— ; p(y(train) |X(train))

independence assumption

_ / (YD D), P)p(PEAm XD, 9)p(0) | ity 13, 6) = [T ol
0 n=1

p(y(train) |X(train))

\
_ /p(y(test) |‘)(v(test)7 e)p(gpc'(train), y(train)) (01X,) :p(y\?(,@)p(ﬁ\?()
o ’ p(V|X)
_p(Y|1X, 0)p(6)
— EGpr'X(train),y(train)) [p(y(teSt) |X(teSt), 9)] Bayes’ rule p(V|X)

‘ prediction requires Next, using neural network for Bayesian prediction
sampling from posterior 3

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* What is Bayesian inference?

* What is Bayesian neural network?

Algorithmic Intelligence Lab

Bayesian Neural Network

* Bayesian neural network is a neural network with prior on its weights.
e Bayesian inference cannot be applied without priors.

» Two choices to make (i.e., choosing our models):
1. Log-likelihood is expressed by neural networks:

N

log p(V| X, 0) = Zlogp UnlXn,0) = > Y Yn.clog fo.o(xn)

n=1 cElabels

10

Bayesian Neural Network

* Bayesian neural network is a neural network with prior on its weights.
e Bayesian inference cannot be applied without priors.

» Two choices to make (i.e., choosing our models):
1. Log-likelihood is expressed by neural networks:

N
log p(V| X, 0) = Zlogp UnXn,0) = > > ynclog fo.o(xn)

n=1 c€labels

2. Log-prioris decided by our belief on the behavior of parameters:

2
log p(#) = log N (0|0, 1) Zlog/\/ 010,1) = ZH——I—C

2
k=1 k=1

(we believe the parameters to be normally distributed when data is unseen.)

Algorithmic Intelligence Lab

11

Bayesian Neural Network

* Then log-posterior is expressed as follows:

N
log p(8]X,Y) =) log p(yn |xn,) + log p(6) — log p(V|X)

o4 1 1+

log-likelihood log-prior normalization factor

* Maximum Likelihood Estimation (MLE) recovers cross-entropy loss.

N
0 — I n 97 n
MLE = argmax » _ log p(ynl0, %)

n=1

N
—argmin= Y Y ynclog folx,)

n=1 c€labels

Algorithmic Intelligence Lab 12

Bayesian Neural Network

* Then log-posterior is expressed as follows:

N
log p(8]X,Y) = > log p(yn|xn,) + log p(6) — log p(V|X)

n=1 1

const. over parameter

* Maximum-a-Posteriori (MAP) recovers cross-entropy with L2-regularization.

N
Oniap = argmax Y logp(ya|f, %) +logp(0)
n=1
N 92
— argm@in— S: S: Yn,c log f@(xn) -+ E

n=1 c€labels

Algorithmic Intelligence Lab 13

MAP versus Bayesian Inference

* Maximume-a-posteriori only considers a single point estimate:

e Alternative parameter with similar score could exist.

arg max p(y|0uap, x) = 1

p(9|X(train) ’ y(train))
arg max p(yl6’,x) = 2
Yy

0

e Bayesian inference allows to model ‘uncertainty’ over parameters:

p(9|X(train) : y(train))
]E@Np(glx(train) ’ytrain) [p(y|9, X)]

Algorithmic Intelligence Lab

14

Advantages of Bayesian Neural Network

e Bayesian NN is about modeling uncertainty in parameters.

* By modeling uncertainty, Bayesian NN provides:

* Better prediction accuracy under same model.
e Better uncertainty estimation for predictive distribution.

Given prediction of NN, how ‘uncertain’ are we on the expected performance?

Algorithmic Intelligence Lab * source: Gal et al., http://mig.eng.cam.ac.uk/yarin/blog_2248 html 15

Difficulties of Bayesian Neural Network

* Bayesian NN lacks scalability, i.e., cannot be applied to large NNs in general:
* Monte Carlo sampling is necessary for making predictions:

p(y(test) |X(train), y(train), X(test))

(EGNP<9|X(train)7y(train)) [p(y(test) ‘0, X(train))]

S
~ % Zp(y(teSt)|9(S)7 X(test)), 9(s) ~ p(Q‘X(train)’ y(train))

s=1

* Furthermore, even sampling from the posterior is intractable.

p(y|X,9)p(9) p(y’.)(,(g)p(e)

p(y\X) B oD Y| X, 0)p(0)intractablefintegration

* Instead, approximate posterior distribution can be used:

p<9|X,y) —

Q(H) ~ p<9|X(train)7y(train)), 9(5) -~ q(e)

* This is called approximate Bayesian inference, or approximate Bayesian prediction.

Algorithmic Intelligence Lab

16

Difficulties of Bayesian Neural Network

* Approximate inference problem:

p(y(test) ‘X(train)7 3}(‘5168&1’1)7 X(test))
= EQNP(QIX(train) ,Y(train)) [p(y(test) ‘9, X(train))]

S

1 | |

~ § Zp(y(test)‘Q(S)’ X(test)), 216 Nq(e) ~ p(9|X(tra1n)’ y(traln))
s=1

4

* Main obstacle: how to get the approximate posterior?

1. Variational inference (VI):
casting the inference / approximation as an optimization problem.

2. Laplace approximation:
pointwise estimation assisted with posterior curvature.

3. Markov chain Monte Carlo:
running Markov chains for Monte Carlo estimate of the posterior.

Algorithmic Intelligence Lab 17

Table of Contents

1. Introduction
* What is Bayesian inference?
* What is Bayesian neural network?

2. Variational Inference for Bayesian Neural Networks

e Using Gaussian distribution

Algorithmic Intelligence Lab

18

Variational Inference for Bayesian Neural Network

* Variational inference approximates posterior of Bayesian neural network by opt
imization:

q¢" =argmin D|(¢q(0),p(0|X,Y)
qeQ

|

* Choosing posterior from certain family, with closest similarity to exact posterior:

p(0|X,)

Algorithmic Intelligence Lab 19

Variational Inference for Bayesian Neural Network

* Variational inference approximates posterior of Bayesian neural network by opt
imization:

¢" =arg min Dk | ¢(9),p(0|X,Y)

qE Ql«:'lic; \

KL divergence
fully factorized Gaussian

* Next, we will study how to approximate the posterior by fully factorized Gaussi
an (FFG) [Blundel et al., 2015]:

* Optimization with respect to Kullback-Leibler (KL) divergence.

* Utilizing the reparameterization trick for efficient optimization of posterior approxi
mations.

Algorithmic Intelligence Lab

Bayesian Neural Network with Gaussian Priors

* We consider fully factorized Gaussians as prior:

L

p(0) = Hp(W(E)) elements of
/=1 iweight matrix

* Remark: exact posterior is non-gaussian:

p(0|X,) o< p(V[X, 0)p

A Gaussian
non-Gaussian

Algorithmic Intelligence Lab

21

Approximate Posterior and Variational Objective

* We also consider fully factorized Gaussians as approximate posterior :

w®: 1O O

1y Iy 0Ty

()
—
g/\
S
~
|
=

* We want to find parameters minimizing KL divergence to the exact posterior:

(/5 = {,LL(E) O'(e)}i,j,g ¢ — argm(gnDKL(Q¢<9)7p(9|X7y))

1] " 1)
How to use gradient descent for optimization?

Algorithmic Intelligence Lab 22

The Reparameterization Trick

* Gradients for the KL divergence:

Ve DkL(q(0),p(0|X,)))
= VgEo~q,0)log p(V|X,0)] + V4 Dxr(qs(0), p(0))

2. Expected log-likelihood 1. KL-divergence to prior

1. KL-divergence to prior (fixed form):

0 2F fiy
Ve DKL (Q¢(= Vg Z log o, 20_(6),3
1,7,% 1,9

2. Naive estimation of expected log-likelihood:

S
1 S S
VoEonq, (o) log p(V|X,0)] ~ Vo > logpY|X,0)), %) ~ g4(0)
s=1

A zero gradient?

Algorithmic Intelligence Lab 23

The Reparameterization Trick

* Re-parameterizing random variables:

Wij = Mij + 0ij€ij

q(wig) = N(wiy; psj, 0i;) <l eij ~ N(g5;0,1)

e~ N(g;0,1) o€ p+ o€

Algorithmic Intelligence Lab

The Reparameterization Trick

* Re-parameterizing random variables:

Wij = Mij + 0ij€ij

i) = Nwisieg.o5) g 00
* Re-parameterized expected log-likelihood:

V¢E9Nq¢(9) [10g p(y|X7 9)]

1 S
~ Vg > logp(V|X,0)), 61 ~ g4(6)
s=1

S
1
= Vo 2 logpVIX, fo(e™)), e~ N(eiy0,1)

s=1
A differentiable!

Algorithmic Intelligence Lab

25

Algorithm Description

Backpropagation for non-Bayesian neural network:

* For each step, perform gradient descent:
1. Sample mini-batch /’F,)N/

2. Compute expected likelihood:
L(X,Y) < logp(V|X,0)
3. Back-propagate gradients.

4. Do gradient descent:

wgf) — wz(f) +)\Vw(g)ﬁ(.)?,)N/)

26

Algorithm Description

Backpropagation for non-Bayesian neural network:

* For each step, perform gradient descent:
1. Sample mini-batch)?,)N}

2. Compute expected likelihood:

LX) « logp(Y|X,0)
3. Back-propagate gradients.

4. Do gradient descent:

wyy w4 AV 0 LX)

Algorithmic Intelligence Lab

determin

computation graph

~

y

istic node

gradient of loss

27

Algorithm Description

Backpropagation for Bayesian neural network: stochastic computation graph

~

* For each step, perform gradient descent: y
1. Sample mini-batch X',) and noise ¢ .

2. Compute weights: stochastic node gradient of loss
(€) (€) (€) .(£)
Wi Py 050 E

3. Compute KL divergence (usually §¢ — 1()):

1 ~ ~
L(X,Y,e) =<) logp(Y|X,0) + D (s(6), p(6))
s=1

4. Back-propagate gradients.

5. Do gradient descent:
,uz(-f) — ,uz(-f) +)\Vﬂ(g)E(XN,JN/,E)
O'g) %O'g) —I—)\Vagg)ﬁ(.jc'v,j;,g) He

Algorithmic Intelligence Lab 28

Experimental Results

* Regression task for toy data:

12~
easured uncertainty

08-

0.4-

0o black: training sample

red: median predictions
0.4~ 0.4- / . inter-quantile range

1 L ! ! 1 ' 1 |
00 04 08 1.2 0.0 04 08 1.2

Bayesian neural network standard neural network

Algorithmic Intelligence Lab 29

Experimental Results

* MNIST classification using fully connected neural network:

Units/Layer
Weights

Method -
rror
SGD, no regularisation Simasé ctai. 2003 800 | 1.3m| 1.6%
SGD, d[OpOllt (Hinton e 2., 2012 =~ 1.3%
SGD, dropconnect (was « ol 2013) 800 | 1.3m| 1.2%°
- SGD | 400 | S00k| 1.83%

800 | 1.3m| 1.84%
1200| 2.4m| 1.88%
SGD, dropout 400 | 500k| 1.51%
800 | 1.3m| 1.33%
1200| 2.4m| 1.36%

simple eXt?nSion from Gaussian Bayes by Backprop, Gaussian 17400 | 500k| 1.82%
using multiple noise source 800 | 1.3m| 1.99%

| 1200| 2.4m| 2.04%

Bayes by Backprop, Scale mixture | 400 | 500k| 1.36%
800 | 1.3m| 1.34%

1200 2.4m| 1.32%

Can we train more flexible (expressive) distribution for weights?

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* What is Bayesian inference?
* What is Bayesian neural network?

2. Variational Inference for Bayesian Neural Networks
e Using Gaussian distribution

* Using multiplicative normalizing flows

Algorithmic Intelligence Lab

31

Multiplicative Normalizing Flow for Expressive Power

* Fully factorized Gaussian has limited expressive power, e.g., can only adjust to a
single mode of the posterior.

large
divergenda

p(0|X,))

* Multiplicative normalizing flow (MNF) [Louizos et al., 2017] can be used to repl
ace FFG for more expressive power:

q¢" =arg min Dk | q(0),p(0|X,))
q€EONMNE

Algorithmic Intelligence Lab

32

Normalizing Flows

Normalizing flows [Rezende et al., 2015] family of flexible and tractable
distribution made by sequence of invertible transformations

1. Sample initial distribution: zg ~ qQ(Z())

2. Warp the distribution through [invertible transformations

Zg = fKo--
3. Fi

-0 fa0 f1(2o)

Final variable Z i is expressed as follows

K
1 1 log det | 2/
0g gk (zr) = log qo(zo) —) logdet | =
8zk
k=1
,::13::1::\ X
o~ -~ - - T \ - // // -~
- s ~
.q(2)—ll()(l(‘(— N3 ////
(): . - - ’
. - — -
— - s I ~~ - B -~
— B— | T i
t=0
Algorithmic Intelligence Lab

t=T

* source: Mohamed et al., https://www.shakirm.comyslides/DeepGenModelsTutorial.pdf 33

Examples of Normalizing Flow

e Parameterizing invertible transformations:

ZK:fKO"'OfQOfl(ZO)

* Naive (invertible) linear transformation:

z; = fi(zi—1) = Aizi—1

* Planar flows [Rezende et al., 2015] with non-linearity: fl

WSame dimension as%;—1

fi(zio) = zi—1 + Wh(V, z;_1 + b;)

Aear activation function

* More advanced flows like inverse autoregressive flow [Kingma et al., 2016] exist.

Z(

Algorithmic Intelligence Lab 34

Multiplicative Normalizing Flows for Weight Generation

Using normalizing flow for weights, e.g,, Wi = fx o---0 f1(Wjy) ?

* However, weights are too high-dimensional for modeling...

100 x 100 fully connected layer 10000 weight parameters 10000 x K function parameters

* Generation of NN weights from “multiplicative noise” [Louizos et al., 2017]:

1. Noise is sampled from normalizing flow:

Xout 6 RDout

:fKO"’OfQOfl(ZO) ZONQO(ZO) A

2. Generate weights by multiplication:

Dzn Dout W

q(W|z) = Hlnlf\f;uw, i)
i=1 j

Only requires D;,, X K function parameters A
Xin € RDin

Algorithmic Intelligence Lab 35

Optimization by Stochastic Computational Graph

* For training, minimizing KL-divergence to the posterior.
* Again, weight is optimized from building stochastic computation graph.

gradient of loss

Algorithmic Intelligence Lab

36

Optimization by Stochastic Computational Graph

* For training, minimizing KL-divergence to the posterior.
* Again, weight is optimized from building stochastic computation graph.

1(2) params 2(2) params p? o2

.“

2

gradient of loss

1(1) params 2(1) params p oM

Algorithmic Intelligence Lab

37

Experimental Results

* Predictive uncertainty estimation for rotation of MNIST

—t ~— — — - L e - 4 — ~—
z. 2.
3 3
- e '
Q Q + ‘*
é . é ' + w
3 — S - +
) - ' i - : :: * .
.l — o am N - e IOFT mm
CEEEEEET CEEEEELLL T
(a) LeNet with weight decay (b) LeNet with multiplicative formalizing flows

* Each color corresponds to a different class.
* Each bar denotes the assigned probability by the NN.

Algorithmic Intelligence Lab * source : Louizos et al., Multiplicative Normalizing Flows for Variational Bayesian Neural Networks, ICML2017 39

Experimental Results

* Predictive uncertainty estimation for unobserved dataset:
1. Train model on CIFAR-10 using only 5 out of 10 classes.

test errors for each training methods using LeNet-5 architecture

Dataset L2 | Dropout | D.Ensem. | FFG | FFLU | MNFG
CIFARS | 24 16 21 22 | 23 16

proposed algorithm

2. Compute entropy (H(y) = —Zp(y) logp(y)) for rest of 5 (unobserved) classes.
Yy

E:ﬁgfﬂﬁ?y ‘ small entropy & uncertainty

Vol
~> e

prediction
probability

high entropy & uncertainty

labels

Algorithmic Intelligence Lab * source : Louizos et al., Multiplicative Normalizing Flows for Variational Bayesian Neural Networks, IOML2017 39

Experimental Results

* Predictive uncertainty estimation for unobserved dataset:
1. Train model on CIFAR-10 using only 5 out of 10 classes.

test errors for each training methods using LeNet-5 architecture

Dataset L2 | Dropout | D.Ensem. | FFG | FFLU | MNFG
CIFARS | 24 16 21 22 | 23 16

proposed algorithm

2. Compute entropy (H(y) = —Zp(y) logp(y)) for rest of 5 (unobserved) classes.
Yy

Empincal COF of entropy m notiNaST

10

on

cumulative
distribution

entropy

Algorithmic Intelligence Lab * source : Louizos et al., Multiplicative Normalizing Flows for Variational Bayesian Neural Networks, ICML2017

Table of Contents

1. Introduction
* What is Bayesian inference?

* Why use Bayesian neural networks?

2. Variational Inference for Bayesian Neural Networks
e Using Gaussian distribution

* Using multiplicative normalizing flow

3. Non-variational Inference for Bayesian Neural Networks

* Laplace approximation
e Markov Chain Monte Carlo

Algorithmic Intelligence Lab

41

Other Types of Inferences

 So far, variational inference (VI) for approximating the posterior:

qeQ

(0)~p(012.Y) wmy g~ argmiy D(4(0). (01X,)

* In this section, we describe two alternatives for VI:

Laplace
Approximation

more scalable (faster), less accurate approximatio

Variational
Inference

Less scalable (slower), asymptotically exact

Markov chain
Monte Carlo

Algorithmic Intelligence Lab 42

Laplace Approximation for Posterior

* Laplace approximation [MacKay, 1992]: pointwise estimation assisted with pos
terior curvature.

1
logp(0|D) ~ log p(Oniapr|D) — 5(9 — Oviap) ! H(O — Opiap)

where f7 is the Hessian (second order derivative) of log-posterior.

* Equivalent to placing a Gaussian distribution with MAP estimation as mean.

1. Solve the MAP estimation of neural network.

2. Compute the Hessian of the posterior distribution.

92 3. Form the corresponding second-order approximation

p(0|D)

However, Hessian requires O(D2) (too high-cost) computation for § & RD.

Algorithmic Intelligence Lab 43

Laplace Approximation for Posterior

* Hessian is too high-cost to compute, so diagonal [Lecun et al., 1990] and Krone
cker product [Ritter et al., 2017] are used approximate the Hessian.

* Diagonal approximation for the Hessian:

easily computable
H = Hlog—likelihood + Hprior 9
~ —diag([g7,- -, 9D]) + Hoprior 9i = Ep~p(plo) [ag. logp(D|6’)]

Diagonal of negative Fisher information matrix F = gg .

* This approximation reduce the complexity by O(D?) = O(D) -

* Remark: Fisher information matrix is average of g7 with respect to e

. . . . log-likelihood
xpectation over log-likelihood, i.e., &

0*

Fij = 9ij9; = _ED~p(D|0) 90-00. log p(D|0)
100

Algorithmic Intelligence Lab

Markov Chain Monte Carlo for Posterior

* Markov chain Monte Carlo (MCMC): running Markov chains for direct sampling
of the exact posterior 6 ~ p(0|D) .

* Stochastic Langevin gradient dynamics [Welling et al., 2011] can be used to sa
mple from the log posterior of the neural network:

1. Initialize the parameter with 6 < 0,

2. At each steps of Markov chain, do a noisy gradient update:

0+ 60— n(% log p(6|D) + e)

3. Afterrepeating T steps, sample 0 from the posterior is obtained.

Algorithmic Intelligence Lab * source : Ma et al., A Complete Recipe for Stochastic Gradient MCMC, NIPS 2015 45

Conclusion

* Bayesian methods provide a probabilistic perspective for the uncertainty of NN.
* It provides better prediction and estimate of uncertainty.

* Efficient approximation of posterior is important for good performance.

Additional Interesting Materials

* Deterministic NN regularizers can be re-interpreted as Bayesian inference.

* Dropout: Gal et al., Dropout as a Bayesian Approximation: Representing Model Unc
ertainty in Deep Learning, ICML 2016

 Batch Normalization: Teye et al., Bayesian Uncertainty Estimation for Batch Normali
zed Deep Networks, ICML 2018

* Bayesian framework introduce new perspective for existing tasks.
« Compression: Louizos et al., Bayesian Compression for Deep Learning, NIPS 2017
* Continual learning: Nguyen et al., Variational Continual Learning, ICLR 2018

Algorithmic Intelligence Lab

46

References

[Blundel, 2015] Weight Uncertainty in Neural Networks, ICML 2015

link: Qoo /andv.ore/abe/lo02.02428

[Louizos, 2017] Multiplicative Normalizing Flows for Variational Bayesian Neural Networks, ICML 2017
link: Ditpel//arxiv.0l2/a05/1703,0100]

[Ritter et al., 2017] A Scalable Laplace Approximation for Neural Networks, ICLR 2017

link: attos//openreview.net/odf2id=skdvdoxAZ

[Welling et al., 2011] Baye5|an Learmng via Stochastlc Gradient Langevm Dynamics, ICML 2011

[Gal et al., 2016] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 201
6

link: hilos//and.0re/aba /120002147
[Teye et aI 2018] Bayesian Uncertainty Estimation for Batch Normalized Deep Networks, ICML 2018
link: i

[Louizos et al., 2017] Bayesian Compression for Deep Learning, NIPS 2017
link: DitRS //arxiv.ore/as /170203000

[Nguyen et al., 2018] Variational Continual Learning, ICLR 2018

link: h;m;i“grxivlgrgﬁ9“1719‘1992;3
[Kleijn et al., 2012] The Bernstein-Von-Mises Theorem under Misspecification, EJS 2012

link: DR proiectieucld.ore/ouclid . 0is 1222102332

[Kingma et al., 2015] Variational Dropout and Local Reparameterization Trick, NIPS 2015

link: h;;gg:“grxiv.grg‘ggﬂ1§Q§.92§§7

Algorithmic Intelligence Lab

Appendix: Model Misspecification

* Bayesian inference makes assumptions about likelihood model.

p(D|0)p(0)
p(D)

p(0|D) =

* What happens when model is mis-specified?

* Empirically saying, Bayesian model still output good results.
* Theoretically, posterior distribution still converge to maximum likelihood:

p(OD) = 6(Oure —60) = D] = oo

OmLE = arg maxlog p(D|0)

Maximum likelihood estimation still makes sense (takes best choice available):

Algorithmic Intelligence Lab *source: Kleijn et al., The Bernstein-Von-Mises Theorem under Misspecification, EJS 2012 49

Appendix: Hessian of Log-Likelihood and Fisher Information Matrix

* Fisher information matrix is average of Hiog-likelihood with respect to expectati
on over log-likelihood, i.e.,

82
Ep~pio) [89 26, logp(D|6’)]

0 a6, p(D|9>
~ 5P IO | g, p(DIf)

& 2-p(DI0) 5-(DIY)
- ””p“"”[p(Dl6) p(D|o)]

— —9i9;

Reduce to zero

Algorithmic Intelligence Lab

49

