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What is Reinforcement Learning (RL)?

e Reinforcement learning is a sequential decision making problem

* Agent I —
* Receives an observation of the current state Y Y NN
. observation /4 1A action
* Selects an action —— 1"\ |Agent | )
0 N\ e~ ¢ A
* Receives a reward from the environment ' WL M) '
==
\e—p
L
* Environment reward | R,

* Receives an action from the agent
* Give areward to the agent
* Change the environment state

Goal: Find an optimal strategy maximizing
total future reward

Algorithmic Intelligence Lab * source : UCL Course on RL (http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 4



Example: Atari Game

e Reinforcement learning is a sequential decision making problem

* Agent (Player)
* Receives RGB screen

e Control joystick
* Receives scores

* Environment (Machine)
* Receives the joystick input
* Give scores to the player

* Change the environment state
(e.g., memory, screen, ...)

Goal: Find an optimal strategy maximizing score

Algorithmic Intelligence Lab 5



What is Reinforcement Learning (RL)?

* Reinforcement learning vs. Other machine learning tasks
* No supervisor to follow, only a scalar reward signal
* Feedback can be delayed makes difficult to learn
* Agent’s behavior affects the subsequent data

* If defining a reward function is difficult, one can learn from demonstrations

How to define reward?

* Imitation Learning: copying expert’s behavior
* Inverse RL: inferring rewards from expert’s behavior
* But, this lecture only covers the case when the reward oracle/function is available

Algorithmic Intelligence Lab * source : UC Berkeley Course on DeepRL (http://rail.eecs.berkeley.edu/deepricourse/) 6



Markov Decision Process (MDP)

* RL can be formulated by Markov Decision Process (S, A, P, R, )
* S :aset of states
A : a set of actions
‘P . a conditional state transition probability, i.e.,
P(st,a, St41) = Pr(sia1]se, ar) = Pr(sey1]|se, at, S¢—1,a¢—-1, ..., 81,01)
R : areward function, i.e., 7+ = R(s¢, az)
v € [0, 1] : a discount factor

* The agent chooses an action according to 7(a|s)
S3 ~SPr(-|ss, as)

T2

v

Environment Agent

SN @~ n(ls)

* Goal: find optimal policy 7(als) maximizing total future reward E [>°, v/~ 1r]
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Value Functions

* Value functions of a state s under a policy !

* State-value function: Ur(s) = o [ Doy fyt_lrt\sl = ]
« Action-value function: ¢r(s,a) = Eg,, . [Zt Y Yrels1 =s,a1 = a]
taken \\1(11 Uﬁ(s)
probability 7 (al 1,
(11 (12 ”.3

 Advantage function: A.(s,a) = g(s,a) — v.(s)

* v, indicates which state is good / ¢x, Ax indicate which action is good under 7

Optimal value functions: v.(s) = max, v:(s), ¢«(s,a) = max, ¢:(s,a)

* The optimal policy can be derived from them: 7.(s) = arg max, g.(s, a)

Algorithmic Intelligence Lab * source : Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction, 2"d edition, 2018 §



Types of RL Algorithms for Learning a Good Policy

* Model-based vs. model-free algorithms
* Model-based/free: the transition probability P is known/unknown

* On-policy vs. off-policy algorithms
* On-policy needs to generate new samples when policy is changed
» Off-policy is able to (re)use samples which is generated from other policies

* Value-based vs. policy-based algorithms
* Value-based learns value functions, and then derive policy
* Policy-based optimizes policy directly from the objective, i.e., E [Zfil fyt_lrt]
* Some methods, e.g., Actor Critic, use both value and policy functions

off-policy < » on-policy

More efficient Less efficient
(fewer samples) (more samples)

model-based model-based off-policy actor-critic  on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Note: sample efficiency # training time
* source : UC Berkeley Course on DeepRL (http://rail.eecs.berkeley.edu/deepricourse/) 9
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Q-Learning with Function Approximation

Q-learning algorithm [Watkins, 1989] repeats 1-3 until convergence

1. Choose an action a from the current state s using the e-greedy policy
« c-greedy choose a random action with probability €, otherwise a = arg max, q(s, a)

2. Observe a reward r, a new state s’

3. Update q(s,a) < q(s,a) + « [r + 7y max q(s’,a’) — q(s, a)] Incremental

update

* Intuition: Q-learning updates the g-value incrementally
to satisfy the Bellman equation for the optimal action-value function:

Q*(Sy CL) — ES’NPr(-|s,a) {7“ T ma/JX qx (Sla CL,)}

* For high-dimensional state and/or action spaces, parameterize ¢(s,a) =~ q(s,a;0)

* The update rule for 0 :

0 < 0+ a|r+ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

called by Temporal Difference (TD) errors

Algorithmic Intelligence Lab 11



Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

Solution: DQN (Mnih et al., 2015)

Y4
,” «: 1. Experience replay buffer:
I \ .
Tnew Told ' Rl - use previous samples
‘ Told ‘\ N - smoothing data distribution
U4 Sa . .
) - remove sequential correlation
1. Data distribution
+ high-correlated sequential data
2. Slowly updated target network §—
2. Correlations between ¢(s, a; 0) - -use r + ymax, q(s’,a’;07)

and 7 + ymax, q(s’,a’;0) - reducing correlations from target

Algorithmic Intelligence Lab 12



Deep Q-Network (DQN)

* Q-learning is known to be unstable or even to diverge when using nonlinear
function approximators such as neural networks

* Because even small updates to ¢ may significantly change ...

/B Solution: DQN [Mnih et al., 2015]
)
Training Deep Q-Network [Minh et al., 2015]  fer:
7 11— 21 les
L= II-{"(s,a,r,s’)NU(D) (T + mafxq(s y 0 ) o Q(S, a, 9)) tribution
replay buffer a target network correlation
1 Add every observation (s, a,, s’) to replay buffer D
- Update deep Q-network 0 < 0 — aVyL
- Update target network 6~ < 6 at every C steps
. _ irk 60—
2. Correlations between ¢(s, a; 0) EE=p -use r + ymax, q(s’,a’;07)

and 7 + ymax, q(s’,a’;0) - reducing correlations from target
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Deep Q-Network for Atari Games

* [Minh et al., 2015] uses same architecture/hyper-parameters for all Atari games
= Robustness of DQN

Video Pinball |
Boxing
Breakout :
Star Gunner _| SSE—-—
Robotank _| Soa i .
Y Atlantis | @S ——
* Training curve Crazy Glmbor I
Gopher | do%
Demon Attack _| i ——
Name This Game _| Ziam——
o 2,200 Krull | g,
B 2000 Assault | e ——
@9 1,800 Road Runner _| Sz —
o Kangarco _|2za N ————
o 1600 James Bond 7| SR —
s 14001 Tennis | NSRS
1,200 Pong _| iz A
g 1,000 Space Invaders : 2%
,6 800 Beam Rider _| F1Si—
Tutankham | i2%
g 600 Kung-Fu Master | RIS
& 400 Freeway _| 102%
200 Time Pilot | 0%
< 0 - Enduro | S5
0 20 40 60 80 100 120 140 160 180 200 Fishing Derby _| Sl —
. Up and Down _| Szl
Training epochs Ice Hockey | sl
Q'bert | T At human-level or above
10 H.ER.O. | et
8 9 . lAszterix iIL = Below human-level
A ttle Zone | Gl —
o 8 Wizard of Wor | 7l ——
> 7 Chopper Command _| Gl —
© 6 Centipede _| E2iE—
> Bank Heist _| S7ill-
g 5 River Raid _| Sl
=2 Zaxxon _| Sl
k3] 4 Amidar _| 488~
c 3 Alien |
oo 2 Venture | $8—
<>( 1 Seaquest | Ji-25%
Double Dunk | fe===ummm
0 A —— Bowling | J-14%
0 20 40 60 80 100 120 140 160 180 200 Ms. Pac-Man:l-ﬂ'A
Training epochs Asteroids | ||:7%
Frostbite 6%
\ - Best linear learner
[ J DQN Brea kout Vldeo Montezuma's Revenge ||o%

)
[ T T I TieT 1
0 100 200 300 400 500 600 1,000 4,500%

Algorithmic Intelligence Lab * source : Minh et al., Human-level Control through Deep Reinforcement Learning, Nature 2015 14


https://youtu.be/TmPfTpjtdgg

Advanced Deep Q-learning (1) Double Q-learning

* Q-learning is known to overestimate action values
0+ 0+a ['r +ymaxq(s’,a’;0) — q(s, a; 9)} Voq(s,a;0)

because the max step max q(-, -) is used to update the same function q(-, -)
* In practice, overestimation errors will differ for actions = poor policy

Double Q-learning [van Hasselt, 2010] separates selection and evaluation:

0, < 01 + {fr + g (s, arg max q(s',a’;01);02)|— q(s, a; 91)} Vo, q(s,a;67)

* Double DQN [van Hasselt et al., 2015] uses §; = 0 and 6, = 0~ (target network)

Algorithmic Intelligence Lab 15



Video Pinball

Atlantis | — ]

Demon Attack (| r———————
Breakout | —

Assanlt  E———eeeeeeee

Double Dunk =
Robotank

Advanced Deep Q-learnir

* Value estimations of

Star Gunner | ———— |
Road Runner | —— ]

Crazy Climber mm— ]
Kangaroo mm ]
Asterix [
sxDefendersx [__]
s+ Phoenixsx
Up and Down E=J
8 Space Invaders
James Bond E———]
Enduro
Kung-Fu Master B=__]
6 Wizard of Wor B
Name This Game B=——_
Time Pilot
Bank Heist B
’ 4 Beam Rider ===
Freeway
Pong
0 Zaxxon b____]
Fishing Derby
Tennis | —"1

Alien

DO
o

—
ot

—_
o

Value estimates

0 50 100 150 200

Zaxxon

QN estimate

ouble DQN estimate

ouble DQN true value
DQN true value

100 150 200
steps (in millions)

Ay

 Double DQN learns A

Y Tutankham &

Improve scores over almost games

—
(=}
(=}

—
(=}

Frostbite

#xSkiingsx ]

Bowling

Centipede

Alien 8

#xYars Revengesx

Amidar

V Ms. Pacman
sk Pitfallsx

Asteroids
Montezuma’s Revenge

Venture B

Gravitar

Private Eye
#xSolarissx

Value estimates
(log scale)

0 50

4000

urung

3000
BN Double DQN (tuned)

[ Double DQN
N DON

2000

Score

1000

0 50 =
Traini

Algorithmic Intelligence Lap Normalized score

DQN

tble DQN

150 200

Double DQN

200

2arning with Double Q-learning, AAAI 2016
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Advanced Deep Q-learning (2) Prioritized Replay

« DQN samples transitions (s, a, 7, s ) uniformly from experience replay buffer

* Problem: Unimportant data (e.g., small TD error) might be used with same
probability as important ones = sample inefficiency

e Solution [Schaul et al., 2016]: Prioritize data and sample them based on the
priority

Q1) How to prioritize? 0 0+ a|r+ymaxq(s,a’;0) —q(s,a;0)| Voq(s, a; 0)

A

= Use TD error §

measure how much update is required

Q2) How to sample?

* Greedy: sample-transitions-of-maximunT TDerTors some transitions are never selected
* Stochastically sample with probability P(z) = p*/ >, p%

* Proportional: p; = |0;| + € I_

e Rank-based: Pi = 1/rank(7;) sampling probability of ith data

Algorithmic Intelligence Lab
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Advanced Deep Q-learning (2) Prioritized Replay

* Prioritized replay P(D) introduces bias
* Because original Q-learning with/without replay buffer uses uniform distribution:

E(sa,r,s)~0(0)67] # Bs,a,r,51)~P(D)[07]
where § = r + ymax, q(s’,a’;07) — q(s, a;0)
- . . : 11 \P
* To correct this bias, use importance-sampling weights w; = (W P(i))
* In practice, increase (3 linearly from 3y to 1

DQN with prioritization [Schaul et al., 2016]
1. Update parameters using VoL where £ = E(S,a,r,s/)NP(D) [w52]

2. Update priorities for sampled transitions p; < |

* Prioritized replay buffer can be combined with Double Q-learning

18



Advanced Deep Q-learning (2) Prioritized Replay

* Learning speed compared to uniform sampling

8000

Battlezone

40000
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B : 1 1 1
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Algorithmic Intelligence Lab * source : Schaul et al., Prioritized Experience Replay, ICLR 2016 19



Advanced Deep Q-learning (2) Prioritized Replay

Comparison scores with Double DQN on Atari games

200%
Bl rank-based
Emm proportional
5 Improve scores over almost games
:
3
o
¢
o
3 100%
o
(]
N
©
£
5
=
|
€
@
8
: Lual ok
§ 0% 1._--._-- —_——— l.- _l__-_-II- --‘LII.
0o » 2o % N o5 ol s B3 seez o2 LS B ey X XE0xxs Ly
g i B LA s i FE R L Rk R
E siEgad TEg<) 2038 oz FIVCULNTEOZ fgaggityetizgie
E - » o ° n—ggg&ﬁ @2 - o : N & o 8o$
S o @ g E g d o S5w® 5 a E O « 3 ° g
c E € ” F] ] £ ¥ N a o 0 [c]
e g & X 3 g S s 2 = -
c T ¥ g e K] o
8 o & 2
o v = —
S f§oF g S
= 5 R
-100%
I 3 DQN Double DQN (tuned)
£ 0w : ; :
ss o baseline rank-based | baseline rank-based proportional
E E .
> 8 Median 48% 106% 111% 113% 128%

Mean

> baseline

> human
# games

122%

15

49

355%
41
25
49

418%

30

57

551%
42
33
57

454%
38
33
57
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Advanced Deep Q-learning (3) Dueling Architecture

VALUE ADVANTAGE

Intuition from an example: driving car

* |n many states, it is unnecessary to estimate
the value of each action choice

* State-value function pays attention to the road

ADVANTAGE

* |n some states, left/right actions should be taken
to avoid collision

* Advantage function pays attention to the front of car
when action selection is crucial

* Recall advantage function: A (s,a) = ¢ (s,a) — v (s)

Idea [Wang et al., 2016] Decouple action-value g to state-value v and advantage A
q(8,a;0, by, da) = v(s;0,0,) + A(s,a;0,da)

L learn which state is valuable without effect of action

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 21



Advanced Deep Q-learning (3) Dueling Architecture

* Ing =v+ A, v can be arbitrary given an action-value ¢

Q) How to force v to be the (unique, correct) state-value?

A) Make the maximum of the advantage be zero

q(s,0;0, 0y, 04) = v(s;0,¢,) + (A(s,a;0,¢4) — maxy A(s,a’;0,04))
 Then, q(s,a*; 60, ¢y, da) = v(s;0,0y)

this can be derived from 7(s) = arg max, q(s, a)

* In practice, use average instead of maximum for learning stability:

q(s,a;0,¢u,04) = v(s;0, ) + (A(s,a;0,¢4) — % S Als,a’30,04))

(5;0,00)
* Dueling architecture 4

[Wang et al., 2016] ﬁ>fi7lf ) (5,0;0,0,,04)

-/ A(s,a;0,p4)

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 22




Advanced Deep Q-learning (3) Dueling Architecture

e This dueling architecture also improves DQN performance

vs Double DQN vs Double DQN + Prioritized replay

Atlantis 296.67% Asterix 1097.02%
Tennis 180.00% Space Invaders 1, 457.93%
Space Invaders I 164.11% Phoenix I, 281.56%
Up and Down I 07 .90% Gopher I 22 3.03%
Phoenix 94.33% Wizard Of Wor . 178.13%
Enduro I 56.35% Up and Down I 113.47%
Chopper Command I 52.20% Yars' Revenge I 113.16%
eaquest . 80.51% Star Gunner I 98.69%
Yars' Revengge I 7 3.63% Berzerk I 53.91%
Frostbite I 70.02% Frostbite I 70.29%
Time Pilot I 69.73% Video Pinball I 69.92%
Asterix I 63.17% Chopper Command I 58.87%
Road Runner I 57.57% Assault - 51.07%
Bank Heist I 57.19% Bank Heist - 43.11%
Krull I 55.85% River Raid I 38.56%
Ms. Pac-Man I 53.76% Defender . 35.33%
Star Gunner I 48.92% Name This Game . 33.09%
Surround I 14.24% Zaxxon . 32.74%
Double Dunk I 42.75% Centipede . 32.48%
River Raid . 39.79% Beam Rider . 29.94%
Venture B 33.60% Amidar . 24.98%
. Amidar B 31.40% Kung-Fu Master W 22.36%
Fishing Derby . 28.82% gl‘utankham B 21.38%
Q*Bert M 27.68% Crazy Climber M 16.16%
Zaxxon . 27.45% Q*Bert W 15.56%
Ice Hockey . 26.45% Battle Zone W 11.46%
Crazy Climber B 24.68% Atlantis W11.16%
entipede B 21.68% Enduro W 10.20%
Defender . 21.18% Krull 07.95%
Name This Game Il 16.28% Road Runner 07.89%
Battle Zone Il 15.65% Pitfall! 15.33%
Kung-Fu Master Bl 15.56% Boxing 13.46%
Kangaroo Bl 14.39% Demon Attack 11.44%
Alien M 10.34% Fishing Derby 11.37%
Berzerk W 9.86% Pong 10.73%
Boxing W 8.52% Private Eye 0.01%
Gopher N 6.02% Montezuma's Revenge 0.00%
. Gravitar N 5.54% Tennis 0.00%
Wizard Of Wor N 5.24% Venture -0.51%
Demon Attack 1 4.78% Bowling |-0.87%
Asteroids 0 451% Freewa 1-2.08%
H.E.R.O. 1231% Breakou 1-2.12%
Skiin 1 1.29% Asteroids ]1-3.13%
Pitfalll 0.45% Alien 1-3.81%
Robotank 0.32% H.E.R.O. 1-6.72%
Pon 0.24% Gravitar 0-9.77%
Montezuma's Revenge 0.00% Ice Hockey M -13.60%
Private Eye -0.04% Time Pilot - 29.21%
Bowling | -1.89% Solaris . -37.65%
Tutankham 1-3.38% Surround I -40.74%
James Bond 1 -3.42% Ms. Pac-Man . -48.03%
Solaris W -7.37% Robotank I -58.11%
Beam Rider M -9.71% Seaquest I 60.56%
Assault B -14.93% Skiin. I -77.99%
Breakout I -17.56% Double Dunk S -83.56%
Video Pinball I -68.31% James Bond | -84.70%
Freeway IS -100.00% Kangaroo IS -89.22%

Algorithmic Intelligence Lab * source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 23
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Policy Gradient Methods

* Value-based methods (e.g., Q-learning) optimize policies indirectly:

Find ¢(s,a;0) =~ q.«(s,a) = 7(s;0)=argmax,q(s,a;0)

* Policy gradient methods (e.g., REINFORCE, Actor-Critic) optimize policies
directly via maximizing total rewardE |[>",°, 7'~ 1r]:

o
arg mgx EatNW(.|St;9) g ”yt_lfrt where @ is the policy parameters
t=1

e Approximated value functions might be used with these methods to resolve
optimization issues such as high variance

* Policy gradient theorem: If J(#) is the above objective, then
Vo (0) = Ex, [Vologm(als; 0)gr, (s, )

* Simply, higher action-value ¢, (s, a) increases action probability 7w (als; 0)
e Action evaluation & selection should be performed by same policy, i.e., on-policy

25



Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {s1,a1,71,...,ST,ar,r7} ~ Ty
2. Compute Af +— Zle Vo logm(at|se; ) (ZST:t 7"”‘%@)
3. Update 0 <+ 0 + aA0 Unbiased estimator of ¢x, (¢, at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

E,, [Viogm(a|s; )b Z,u Zw als; 6) VWaTlsei) b(s)
:Z,us SVZT( als; d)
= 3" ls)b(s)V1 =

Algorithmic Intelligence Lab



Policy Gradient Methods: REINFORCE

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

1. Sample an episode {si,a1,71,...,ST,ar,TT} ~ Tg

2. Compute Af +— Zle Vo logm(at|se; ) (ZST:t vs_tfr‘s>

3. Update 6 <+ 6 + aAO

Unbiased estimator of qr, (s¢,at)

* Issue: REINFORCE has high variance when estimating gradients

* Solution: Use any baseline function b(s) not depending on actions

o« E., [Vlogm(als;0)b(s)] =0
¢ VoJ(0) =E,, [Viogmn(als;0)

» Which b(s) should be used?

(Q’ﬂ'e (87 CL) T b(S))

This can reduce the variance

* One natural choice is b(s) = v, (s) since Eqor(.|s:0) [qrp (5, a) — Vry(5)] =0
* In practice, use b(s) = v(s;w) = v, (s) with parameters w and learn the function
using TD errors such as Q-learning [Sutton et al., 2000]

Algorithmic Intelligence Lab
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Trust Region Policy Optimization (TRPO)

Issues in “vanilla” policy gradient methods such as REINFORCE

e Hard to choose step-size «
* small changes in parameter space can cause poor policy

* Only one gradient step per each sample
e Sample inefficiency

Solution: formulate an optimization problem on generated data from old policy
* That allows small changes in policy space

* That guarantees improvement of policy performance

Trust Region Policy Optimization [Schulman et al., 2015]: for each iteration, solve

mo(als) 1 Ar(s,a) = qr(s,a) — vs(s) is also
Eﬂe‘)ld O 14 (CL‘S) Aﬂ-eold (S’ a) approximated by neural networks

subject to Er,  [DKL(To,4(-[5)|mo(-[5))] < 9

maximize
)

28



Trust Region Policy Optimization (TRPO)

Derive TRPO
e Let N(m) = Exfvr(s1)] = Ex[> 1oy 7" 74| be the performance of a policy

* This performance can be written as
t=1

— 77(7701(1) + Ex Z’Yt_lrt — Uroia <31>]
| t=1

n(m) = Ex

0 qﬂ-old (87 a)
— U(WOId) + Er Z /Yt_l(rt + YVro1q (St+1) — Unoia (St))]
| =1

— 77(7Told) + Ew Z fyt_lAwold (St7 at)]

| =1

=1)(mo1a) + ) px(5) Y m(als)Ar,ia(s, a)

where pr(s) = Zfil Wt_l Pr(s; = s|m)

Algorithmic Intelligence Lab 29



Trust Region Policy Optimization (TRPO)

Derive TRPO
e Let N(m) = Exfvr(s1)] = Ex[> 1oy 7" 74| be the performance of a policy

This performance can be written as

Z ’Vt_lAWom (5t7 a’t)]

t=1

— 77<7T01d> + pr ZW CL‘ 7T ld )

|

Define L, ,(m) = n(mo1a) + Z Prowa (8 ZW a|s)Ar,., (s, a)

77(7T) — 77(77-01d) + E,

* Ly, (-)isalocal approximation of 7)(-) at 6 = 6,1q:

o

‘Cﬂeold (7T901d) — 77(7T901d)

vQ’Cw%ld (7-‘-0)|9:901d = Von(mo ‘9 Oo1a

* For fixed 6,14, we can omit (7o, ): Lr, (7o) = Er, [%Aﬂeold (Sya)}

Algorithmic Intelligence Lab 30



Trust Region Policy Optimization (TRPO)

Theorem [Schulman et al., 2015]
i 77(7‘-9) > ‘Cﬂe ( ) CDmaX( old77T9>

« C'is some constant and DR (me, ., To) = maxs Dk, (7o, (-|)||me(+]s))

* Policy iteration guarantees non-decreasing performance:
Onew < argmaxg Lo, (m9) — C DR (mo,145 T0)

* |n practice,

* Theoretical guaranteed (' updates
very small steps in policy

* Use a constraint instead of the penalty
* Use average instead of maximum

mo(als)
T0o1a <a|3)
subject to  Er, [Dxr(mo., (+[s)|[ma(-[s))] <6

maxgmize Lry (mg) =Er, 9., (8, )
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TRPO Experiments

e TRPO agent video

* Training curves (TRPO: vine & single path)
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https://youtu.be/KJ15iGGJFvQ

Proximal Policy Optimization Algorithms

Issues in TRPO

* To solve the optimization problem, quadratic approximation for the constraint
is required

* In some cases, such approach is not possible

Adaptive KL Penalty Coefficient [Schulman et al., 2017]

argmaxy Er, | 72485 A(s, 0)| = BEx,, [KL (0,5, (15)][7o(|5))]

7T901d (CL|S

« KL divergence is small/large = decrease/increase 3, respectively.
* For each iteration, do SGD on the above objective multiple times
* This needs only first-order derivatives

* Still, this has limitations:

* Hard to use multi-output architectures (e.g., policy & value functions)
due to the KL divergence term

* Empirically poor performance when using deep CNNs / RNNs
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Proximal Policy Optimization Algorithms

Clipped Surrogate Objective [Schulman et al., 2017]
Loy (mg) = B, [min(r(0) A, clip(r(d),1 — ¢,1 + ¢)A)]

o514

o (als)

where 7(0) = i)

* The objective suppresses changes in policy without KL divergence
* This figure simply shows how £CLIP works

l— no updates

starting point 7

L [ CLIP A>0

0 l—(l

t+—t r
0 1 1+e¢ LCLIP

* This objective can be used with multi-output architectures
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Proximal Policy Optimization Algorithms

* On MuloCo Environments, PPO (clip) outperforms other policy gradient
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https://blog.openai.com/openai-baselines-ppo/

Summary

* Reinforcement learning is another field of machine learning
* RL agents learn the best strategy using only scalar rewards, no supervision
 There are many various algorithms: Q-learning, actor-critic,
* Sometimes the reward signal is not given

* RL with deep learning, or DeepRL
* Has many issues about optimization, sample efficiency, stability
* To overcome, many methods (e.g., distributed, off-policy) are proposed
* Achieves super-human performance on many tasks

e RL can be applied to a lot of tasks:
* Games (Chess, Go, Starcraft, ...)
 Combinatorial optimization (NP problems such as TSP)
* Robotics

AutoML: finding best hyper-parameters / architectures
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