Deep Reinforcement Learning

EE807: Recent Advances in Deep Learning
Lecture 7

Slide made by

Hankook Lee, Sangwoo Mo and Kimin Lee
KAIST EE

1. What is Reinforcement Learning?

2. Value-based Methods

- Q-learning
- Deep Q-network
- Double Q-learning, Prioritized Replay, Dueling Architecture

3. Policy Gradient Methods

- REINFORCE
- Trust region policy optimization
- Proximal policy optimization algorithms

1. What is Reinforcement Learning?

2. Value-based Methods

- Q-learning
- Deep Q-network
- Double Q-learning, Prioritized Replay, Dueling Architecture

3. Policy Gradient Methods

- REINFORCE
- Trust region policy optimization
- Proximal policy optimization algorithms

Reinforcement learning is a sequential decision making problem

Agent

- Receives an observation of the current state
- Selects an action
- Receives a reward from the environment

Environment

- Receives an action from the agent
- Give a reward to the agent
- Change the environment state

Goal: Find an optimal strategy maximizing total future reward

Example: Atari Game

Reinforcement learning is a sequential decision making problem

Agent (Player)

- Receives RGB screen
- Control joystick
- Receives scores

Environment (Machine)

- Receives the joystick input
- Give scores to the player
- Change the environment state (e.g., memory, screen, ...)

Goal: Find an optimal strategy maximizing score

What is Reinforcement Learning (RL)?

- Reinforcement learning vs. Other machine learning tasks
 - No supervisor to follow, only a scalar reward signal
 - Feedback can be delayed
 - Agent's behavior affects the subsequent data

makes difficult to learn

If defining a reward function is difficult, one can learn from demonstrations

How to define reward?

- **Imitation Learning**: copying expert's behavior
- **Inverse RL**: inferring rewards from expert's behavior
- But, this lecture only covers the case when the reward oracle/function is available

Markov Decision Process (MDP)

- RL can be formulated by Markov Decision Process $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$
 - S: a set of states
 - \mathcal{A} : a set of actions
 - \mathcal{P} : a conditional state transition probability, i.e., $\mathcal{P}(s_t, a_t, s_{t+1}) = \Pr(s_{t+1}|s_t, a_t) = \Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots, s_1, a_1)$
 - \mathcal{R} : a reward function, i.e., $r_t = \mathcal{R}(s_t, a_t)$
 - $\gamma \in [0,1]$: a discount factor
- The agent chooses an action according to $\pi(a|s)$

• Goal: find optimal policy $\pi(a|s)$ maximizing total future reward $\mathbb{E}\left[\sum_{t=1}^{\infty}\gamma^{t-1}r_{t}\right]$

Value Functions

- Value functions of a state s under a policy π :
 - State-value function: $v_{\pi}(s) = \mathbb{E}_{a_1,...\sim\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | s_1 = s \right]$
 - Action-value function: $q_{\pi}(s,a) = \mathbb{E}_{a_2,\ldots \sim \pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s, a_1 = a\right]$

- Advantage function: $A_{\pi}(s,a) = q_{\pi}(s,a) v_{\pi}(s)$
- v_{π} indicates which state is good / q_{π}, A_{π} indicate which action is good under π
- Optimal value functions: $v_*(s) = \max_{\pi} v_{\pi}(s), \ q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- The optimal policy can be derived from them: $\pi_*(s) = \arg \max_a q_*(s, a)$

Types of RL Algorithms for Learning a Good Policy

- Model-based vs. model-free algorithms
 - Model-based/free: the transition probability ${\cal P}$ is known/unknown
- On-policy vs. off-policy algorithms
 - On-policy needs to generate new samples when policy is changed
 - Off-policy is able to (re)use samples which is generated from other policies
- Value-based vs. policy-based algorithms
 - Value-based learns value functions, and then derive policy
 - Policy-based optimizes policy directly from the objective, i.e., $\mathbb{E}\left[\sum_{t=1}^{\infty}\gamma^{t-1}r_{t}\right]$
 - Some methods, e.g., Actor Critic, use both value and policy functions

Note: sample efficiency ≠ training time

Table of Contents

1. What is Reinforcement Learning?

2. Value-based Methods

- Q-learning
- Deep Q-network
- Double Q-learning, Prioritized Replay, Dueling Architecture

3. Policy Gradient Methods

- REINFORCE
- Trust region policy optimization
- Proximal policy optimization algorithms

Q-Learning with Function Approximation

Q-learning algorithm [Watkins, 1989] repeats 1-3 until convergence

- 1. Choose an action a from the current state s using the ε -greedy policy
 - arepsilon-greedy choose a random action with probability arepsilon, otherwise $a=rg\max_a q(s,a)$
- 2. Observe a reward r, a new state s'

3. Update
$$q(s,a) \leftarrow q(s,a) + \alpha \left[r + \gamma \max_{a'} q(s',a') - q(s,a) \right]$$
 Incremental update

 Intuition: Q-learning updates the q-value incrementally to satisfy the Bellman equation for the optimal action-value function:

$$q_*(s, a) = \mathbb{E}_{s' \sim \Pr(\cdot | s, a)} \left[r + \gamma \max_{a'} q_*(s', a') \right]$$

- For high-dimensional state and/or action spaces, parameterize $q(s,a) \approx q(s,a;\theta)$
- The update rule for heta :

$$\theta \leftarrow \theta + \alpha \left[r + \gamma \max_{a'} q(s', a'; \theta) - q(s, a; \theta) \right] \nabla_{\theta} q(s, a; \theta)$$

called by Temporal Difference (TD) errors

Deep Q-Network (DQN)

- Q-learning is known to be unstable or even to diverge when using nonlinear function approximators such as neural networks
- Because even small updates to q may significantly change ...

- 1. Data distribution
 - + high-correlated sequential data
- 2. Correlations between $q(s, a; \theta)$ and $r + \gamma \max_{a'} q(s', a'; \theta)$

Solution: DQN (Mnih et al., 2015)

- 1. Experience replay buffer:
 - use previous samples
 - smoothing data distribution
 - remove sequential correlation

2. Slowly updated target network
$$heta^-$$

- use $r + \gamma \max_{a'} q(s', a'; \theta^-)$
- reducing correlations from target

Algorithmic Intelligence Lab

Deep Q-Network (DQN)

- Q-learning is known to be unstable or even to diverge when using nonlinear function approximators such as neural networks
- Because even small updates to q may significantly change ...

[Minh et al., 2015] uses same architecture/hyper-parameters for all Atari games

⇒ Robustness of DQN

Training curve

DQN Breakout video

Advanced Deep Q-learning (1) Double Q-learning

Q-learning is known to overestimate action values

$$\theta \leftarrow \theta + \alpha \left[r + \gamma \max_{a'} q(s', a'; \theta) - q(s, a; \theta) \right] \nabla_{\theta} q(s, a; \theta)$$

because the max step $\max q(\cdot,\cdot)$ is used to update the same function $q(\cdot,\cdot)$

In practice, overestimation errors will differ for actions ⇒ poor policy

Double Q-learning [van Hasselt, 2010] separates **selection** and **evaluation**:

$$\theta_1 \leftarrow \theta_1 + \alpha \left[r + \gamma q(s', \arg \max_{a'} q(s', a'; \theta_1); \theta_2) \right] - q(s, a; \theta_1) \right] \nabla_{\theta_1} q(s, a; \theta_1)$$

• **Double DQN** [van Hasselt et al., 2015] uses $\theta_1 = \theta$ and $\theta_2 = \theta^-$ (target network)

Advanced Deep Q-learnir

Video Pinball Atlantis

Demon Attack Breakout Assault

> Robotank Gopher Boxing

Star Gunner Road Runner Krull Crazy Climber

> Kangaroo Asterix

Enduro Kung-Fu Master Wizard of Wor

> Time Pilot Bank Heist

Beam Rider

Battle Zone Ice Hockey

Tutankham

Berzerk

Chopper Command

Skiing

H.E.R.O.

Seaquest

Frostbite

Bowling Centipede

Alien

Amidar Ms. Pacman

Venture

Gravitar Private Eye

Solaris

Pitfall Asteroids

Freeway Pong

Zaxxon Fishing Derby

Tennis Q*Bert **Surround**River Raid

Defender**Phoenix**

Up and Down

Space Invaders James Bond

Name This Game

Double Dunk

Value estimations of

Double DQN learns A

es

Improve scores over almost games

Advanced Deep Q-learning (2) Prioritized Replay

- DQN samples transitions (s, a, r, s') uniformly from experience replay buffer
- Problem: Unimportant data (e.g., small TD error) might be used with same probability as important ones ⇒ sample inefficiency
- Solution [Schaul et al., 2016]: Prioritize data and sample them based on the priority

Q1) How to prioritize? $\theta \leftarrow \theta + \alpha \left[r + \gamma \max_{a'} q(s', a'; \theta) - q(s, a; \theta) \right] \nabla_{\theta} q(s, a; \theta)$ \Rightarrow Use TD error δ measure how much update is required

Q2) How to sample?

- Greedy: sample transitions of maximum TD errors some transitions are never selected
- Stochastically sample with probability $P(i) = p_i^{\alpha} / \sum_k p_k^{\alpha}$
 - Proportional: $p_i = |\delta_i| + \epsilon$
 - Rank-based: $p_i = 1/\text{rank}(i)$

sampling probability of ith data

Advanced Deep Q-learning (2) Prioritized Replay

- Prioritized replay P(D) introduces bias
 - Because original Q-learning with/without replay buffer uses uniform distribution:

$$\mathbb{E}_{(s,a,r,s')\sim U(D)}[\delta^2] \neq \mathbb{E}_{(s,a,r,s')\sim P(D)}[\delta^2]$$
 where $\delta = r + \gamma \max_{a'} q(s',a';\theta^-) - q(s,a;\theta)$

- To correct this bias, use **importance-sampling** weights $w_i = \left(\frac{1}{N} \frac{1}{P(i)}\right)^{\beta}$
 - In practice, increase β linearly from β_0 to 1

DQN with prioritization [Schaul et al., 2016]

- 1. Update parameters using $abla_ heta \mathcal{L}$ where $\mathcal{L} = \mathbb{E}_{(s,a,r,s') \sim P(D)}[w\delta^2]$
- 2. Update priorities for sampled transitions $p_i \leftarrow |\delta_i|$
- Prioritized replay buffer can be combined with Double Q-learning

Learning speed compared to uniform sampling

Comparison scores with Double DQN on Atari games

Advanced Deep Q-learning (3) Dueling Architecture

Intuition from an example: driving car

- In many states, it is unnecessary to estimate the value of each action choice
 - State-value function pays attention to the road
- In some states, left/right actions should be taken to avoid collision
 - Advantage function pays attention to the front of car when action selection is crucial

• Recall advantage function: $A_{\pi}(s,a) = q_{\pi}(s,a) - v_{\pi}(s)$

Idea [Wang et al., 2016] Decouple action-value q to state-value v and advantage A $q(s, a; \theta, \phi_v, \phi_A) = v(s; \theta, \phi_v) + A(s, a; \theta, \phi_A)$

learn which state is valuable without effect of action

Advanced Deep Q-learning (3) Dueling Architecture

- In q = v + A, v can be arbitrary given an action-value q
- Q) How to force v to be the (unique, correct) state-value?
- A) Make the maximum of the advantage be zero

$$q(s, a; \theta, \phi_v, \phi_A) = v(s; \theta, \phi_v) + (A(s, a; \theta, \phi_A) - \max_{a'} A(s, a'; \theta, \phi_A))$$

- Then, $q(s, a^*; \theta, \phi_v, \phi_A) = v(s; \theta, \phi_v)$
 - this can be derived from $\pi(s) = rg \max_a q(s,a)$
- In practice, use average instead of maximum for learning stability:

$$q(s, a; \theta, \phi_v, \phi_A) = v(s; \theta, \phi_v) + \left(A(s, a; \theta, \phi_A) - \frac{1}{m} \sum_{a'} A(s, a'; \theta, \phi_A)\right)$$

 Dueling architecture [Wang et al., 2016]

^{*} source: Wang et al., Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016 22

This dueling architecture also improves DQN performance

vs Double DQN + Prioritized replay

Table of Contents

1. What is Reinforcement Learning?

2. Value-based Methods

- Q-learning
- Deep Q-network
- Double Q-learning, Prioritized Replay, Dueling Architecture

3. Policy Gradient Methods

- REINFORCE
- Trust region policy optimization
- Proximal policy optimization algorithms

Policy Gradient Methods

Value-based methods (e.g., Q-learning) optimize policies indirectly:

Find
$$q(s, a; \theta) \approx q_*(s, a) \Rightarrow \pi(s; \theta) = \arg \max_a q(s, a; \theta)$$

• Policy gradient methods (e.g., REINFORCE, Actor-Critic) optimize policies directly via maximizing total reward $\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t\right]$:

$$rg \max_{ heta} \mathbb{E}_{a_t \sim \pi(\cdot | s_t; heta)} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right]$$
 where $heta$ is the policy parameters

- Approximated value functions might be used with these methods to resolve optimization issues such as high variance
- Policy gradient theorem: If $J(\theta)$ is the above objective, then

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi(a|s;\theta) q_{\pi_{\theta}}(s,a) \right]$$

- Simply, higher action-value $q_{\pi_{\theta}}(s,a)$ increases action probability $\pi(a|s;\theta)$
- Action evaluation & selection should be performed by same policy, i.e., on-policy

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

- 1. Sample an episode $\{s_1, a_1, r_1, \dots, s_T, a_T, r_T\} \sim \pi_{\theta}$
- 2. Compute $\Delta \theta \leftarrow \sum_{t=1}^{T} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{s=t}^{T} \gamma^{s-t} r_s\right)$
- 3. Update $\theta \leftarrow \theta + \alpha \Delta \theta$

Unbiased estimator of $q_{\pi_{\theta}}(s_t, a_t)$

- Issue: REINFORCE has high variance when estimating gradients
- Solution: Use any baseline function b(s) not depending on actions

$$\mathbb{E}_{\pi_{\theta}} \left[\nabla \log \pi(a|s;\theta) b(s) \right] = \sum_{s} \mu(s) \sum_{a} \pi(a|s;\theta) \frac{\nabla \pi(a|s;\theta)}{\pi(a|s;\theta)} b(s)$$
$$= \sum_{s} \mu(s) b(s) \nabla \sum_{a} \pi(a|s;\theta)$$
$$= \sum_{s} \mu(s) b(s) \nabla 1 = 0$$

REINFORCE [Willams, 1992] uses Monte-Carlo estimates of the policy gradient

- 1. Sample an episode $\{s_1,a_1,r_1,\ldots,s_T,a_T,r_T\}\sim \pi_{ heta}$
- 2. Compute $\Delta \theta \leftarrow \sum_{t=1}^{T} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{s=t}^{T} \gamma^{s-t} r_s\right)$
- 3. Update $\theta \leftarrow \theta + \alpha \Delta \theta$

Unbiased estimator of $q_{\pi_{\theta}}(s_t, a_t)$

- Issue: REINFORCE has high variance when estimating gradients
- Solution: Use any baseline function b(s) not depending on actions
 - $\mathbb{E}_{\pi_{\theta}} \left[\nabla \log \pi(a|s;\theta) b(s) \right] = 0$
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla \log \pi(a|s;\theta) (q_{\pi_{\theta}}(s,a) b(s)) \right]$

This can reduce the variance

- Which b(s) should be used?
 - One natural choice is $b(s)=v_{\pi_{\theta}}(s)$ since $\mathbb{E}_{a\sim\pi(\cdot|s;\theta)}\left[q_{\pi_{\theta}}(s,a)-v_{\pi_{\theta}}(s)\right]=0$
 - In practice, use $b(s)=v(s;w)\approx v_{\pi_{\theta}}(s)$ with parameters w and learn the function using TD errors such as Q-learning [Sutton et al., 2000]

Trust Region Policy Optimization (TRPO)

Issues in "vanilla" policy gradient methods such as REINFORCE

- Hard to choose step-size α
 - small changes in parameter space can cause poor policy
- Only one gradient step per each sample
 - Sample inefficiency

Solution: formulate an optimization problem on generated data from old policy

- That allows small changes in policy space
- That guarantees improvement of policy performance

Trust Region Policy Optimization [Schulman et al., 2015]: for each iteration, solve

Trust Region Policy Optimization (TRPO)

Derive TRPO

- Let $\eta(\pi) = \mathbb{E}_{\pi}[v_{\pi}(s_1)] = \mathbb{E}_{\pi}[\sum_{t=1}^{\infty} \gamma^{t-1} r_t]$ be the performance of a policy
- This performance can be written as

$$\begin{split} \eta(\pi) &= \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \right] \\ &= \eta(\pi_{\text{old}}) + \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} - v_{\pi_{\text{old}}}(s_{1}) \right] \\ &= \eta(\pi_{\text{old}}) + \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} (\overline{r_{t} + \gamma v_{\pi_{\text{old}}}(s_{t+1})} - v_{\pi_{\text{old}}}(s_{t})) \right] \\ &= \eta(\pi_{\text{old}}) + \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} A_{\pi_{\text{old}}}(s_{t}, a_{t}) \right] \\ &= \eta(\pi_{\text{old}}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s) A_{\pi_{\text{old}}}(s, a) \\ \text{where } \rho_{\pi}(s) = \sum_{t=1}^{\infty} \gamma^{t-1} \Pr(s_{t} = s|\pi) \end{split}$$

Algorithmic Intelligence Lab

Derive TRPO

- Let $\eta(\pi) = \mathbb{E}_{\pi}[v_{\pi}(s_1)] = \mathbb{E}_{\pi}[\sum_{t=1}^{\infty} \gamma^{t-1} r_t]$ be the performance of a policy
- This performance can be written as

$$\eta(\pi) = \eta(\pi_{\text{old}}) + \mathbb{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} A_{\pi_{\text{old}}}(s_t, a_t) \right]$$
$$= \eta(\pi_{\text{old}}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s) A_{\pi_{\text{old}}}(s, a)$$

- Define $\mathcal{L}_{\pi_{\mathrm{old}}}(\pi) = \eta(\pi_{\mathrm{old}}) + \sum_{s} \rho_{\pi_{\mathrm{old}}}(s) \sum_{a} \pi(a|s) A_{\pi_{\mathrm{old}}}(s,a)$
- $\mathcal{L}_{\pi_{\theta_{\mathrm{old}}}}(\cdot)$ is a local approximation of $\eta(\cdot)$ at $\theta = \theta_{\mathrm{old}}$:

$$\mathcal{L}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta_{\text{old}}}) = \eta(\pi_{\theta_{\text{old}}})$$

$$\nabla_{\theta} \mathcal{L}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta})\big|_{\theta = \theta_{\text{old}}} = \nabla_{\theta} \eta(\pi_{\theta})\big|_{\theta = \theta_{\text{old}}}$$

• For fixed θ_{old} , we can omit $\eta(\pi_{\theta_{\mathrm{old}}})$: $\mathcal{L}_{\pi_{\theta_{\mathrm{old}}}}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta_{\mathrm{old}}}}\left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\mathrm{old}}}(a|s)}A_{\pi_{\theta_{\mathrm{old}}}}(s,a)\right]$

Algorithmic Intelligence Lab

Trust Region Policy Optimization (TRPO)

Theorem [Schulman et al., 2015]

- $\eta(\pi_{\theta}) \ge \mathcal{L}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta}) CD_{\text{KL}}^{\text{max}}(\pi_{\theta_{\text{old}}}, \pi_{\theta})$
- C is some constant and $D_{\mathrm{KL}}^{\mathrm{max}}(\pi_{\theta_{\mathrm{old}}}, \pi_{\theta}) = \max_{s} D_{\mathrm{KL}}(\pi_{\theta_{\mathrm{old}}}(\cdot|s)||\pi_{\theta}(\cdot|s))$
- Policy iteration **guarantees non-decreasing performance**:

$$\theta_{\text{new}} \leftarrow \arg \max_{\theta} \mathcal{L}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta}) - CD_{\text{KL}}^{\text{max}}(\pi_{\theta_{\text{old}}}, \pi_{\theta})$$

- In practice,
 - Theoretical guaranteed C updates very small steps in policy
 - Use a constraint instead of the penalty
 - Use average instead of maximum

maximize
$$\mathcal{L}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta_{\text{old}}}}\left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)}A_{\pi_{\theta_{\text{old}}}}(s,a)\right]$$
 subject to $\mathbb{E}_{\pi_{\theta_{\text{old}}}}\left[D_{\text{KL}}(\pi_{\theta_{\text{old}}}(\cdot|s)||\pi_{\theta}(\cdot|s))\right] \leq \delta$

• TRPO agent video

Training curves (TRPO: vine & single path)

Issues in TRPO

- To solve the optimization problem, quadratic approximation for the constraint is required
- In some cases, such approach is not possible

Adaptive KL Penalty Coefficient [Schulman et al., 2017]

$$\arg \max_{\theta} \mathbb{E}_{\pi_{\theta_{\text{old}}}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)} A(s, a) \right] - \beta \mathbb{E}_{\pi_{\theta_{\text{old}}}} \left[\text{KL} \left(\pi_{\theta_{\text{old}}}(\cdot|s) || \pi_{\theta}(\cdot|s) \right) \right]$$

- KL divergence is small/large \Rightarrow decrease/increase β , respectively.
- For each iteration, do SGD on the above objective multiple times
- This needs only first-order derivatives
- Still, this has limitations:
 - Hard to use multi-output architectures (e.g., policy & value functions) due to the KL divergence term
 - Empirically poor performance when using deep CNNs / RNNs

Clipped Surrogate Objective [Schulman et al., 2017]

$$\mathcal{L}_{\pi_{\theta_{\text{old}}}}^{\text{CLIP}}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta_{\text{old}}}}\left[\min(r(\theta)A, \text{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon)A)\right]$$
where $r(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)}$

- The objective suppresses changes in policy without KL divergence
- This figure simply shows how $\mathcal{L}^{\mathrm{CLIP}}$ works

This objective can be used with multi-output architectures

On MuJoCo Environments, PPO (clip) outperforms other policy gradient methods

PPO agent video

Summary

- Reinforcement learning is another field of machine learning
 - RL agents learn the best strategy using only scalar rewards, no supervision
 - There are many various algorithms: Q-learning, actor-critic,
 - Sometimes the reward signal is not given
- RL with deep learning, or DeepRL
 - Has many issues about optimization, sample efficiency, stability
 - To overcome, many methods (e.g., distributed, off-policy) are proposed
 - Achieves super-human performance on many tasks
- RL can be applied to a lot of tasks:
 - Games (Chess, Go, Starcraft, ...)
 - Combinatorial optimization (NP problems such as TSP)
 - Robotics
 - AutoML: finding best hyper-parameters / architectures
 - •

References

[Watkins, 1989] Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge, 1989

link: http://www.cs.rhul.ac.uk/~chrisw/new-thesis.pdf

[Watkins, 1992] Q-learning, Machine Learning, 1992

link: https://link.springer.com/article/10.1007/BF00992698

[Willams, 1992] Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement Learning, Machine Learning, 1992

link: https://link.springer.com/article/10.1007/BF00992696

[Sutton et al., 2000] Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms with value function approximation, NIPS 2000

link: https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf

[Minh et al., 2015] Human-level Control through Deep Reinforcement Learning, Nature 2015

link: https://www.nature.com/articles/nature14236

[van Hasselt et al., 2016] Deep Reinforcement Learning with Double Q-learning, AAAI 2016

link: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847

[van Hasselt, 2010] Double Q-learning, NIPS 2010

link: https://papers.nips.cc/paper/3964-double-q-learning

[Schaul et al., 2016] Prioritized Experience Replay, ICLR 2016

link: https://arxiv.org/abs/1511.05952

[Wang et al., 2016] Dueling Network Architectures for Deep Reinforcement Learning, ICML 2016

link: http://proceedings.mlr.press/v48/wangf16.pdf

References

[Schulman et al., 2015] Trust Region Policy Optimization, ICML 2015

link: http://proceedings.mlr.press/v37/schulman15.pdf

[Schulman et al., 2017] Proximal Policy Optimization Algorithms, 2017

link: https://arxiv.org/abs/1707.06347

Books

Sutton and Barto, Reinforcement Learning: An Introduction, 2nd edition, 2018

link: http://incompleteideas.net/book/the-book-2nd.html

Lectures

UCL Course on Reinforcement Learning

link: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

UC Berkeley Course on Deep Reinforcement Learning

link: http://rail.eecs.berkeley.edu/deeprlcourse/

Deep RL Bootcamp Lectures

link: https://youtu.be/xvRrgxcpaHY