
Algorithmic	 Intelligence	Lab

Algorithmic	Intelligence	Lab

RNN	Architectures

EE807:	Recent	Advances	in	Deep	Learning
Lecture	6

Slide	made	by	

Hyungwon	Choi	and	Jongheon Jeong
KAIST	EE



Algorithmic	 Intelligence	Lab

• Process	a	sequence	of	vectors	by	applying		
recurrence	formula at	every	time	step :

Recap:	RNN	basics

2

New	state Old	state Input	
vector	at	
time	step	t	

Function	parameterized	by	

*reference:	http://cs231n.stanford.edu/2017/



Algorithmic	 Intelligence	Lab

• Simple	RNN	
• The	state	consists	of	a	single	“hidden”	vector	
• Vanilla	RNN	(or	sometimes	called	Elman	RNN)

Recap:	Vanilla	RNN

3*reference:	http://cs231n.stanford.edu/2017/



Algorithmic	 Intelligence	Lab

• For	vanilla	RNN,	it	is	difficult to	capture	long-term	dependency	
• Vanishing	gradient	problem	in	vanilla	RNN

• The	gradient	vanishes	over	time	
• Which	relates	to	optimization	difficulties in	CNN

Why	do	we	develop	RNN	architectures?	

4*source:	https://mediatum.ub.tum.de/doc/673554/file.pdf



Algorithmic	 Intelligence	Lab

• Many	real-world	temporal	data	is	intrinsically	long-term	
• Natural	language
• Speech
• Video	

• In	order	to	solve	much	complicated	real-world	problemswe	need	a	better	RNN	
architecture	to	capture	long-term	dependency	in	the	data

Why	do	we	develop	RNN	architectures?	

5



Algorithmic	 Intelligence	Lab

1. RNN	Architectures	and	Comparisons
• LSTM	(Long	Short-Term	Memory)	and	their	variants	

• GRU	(Gated	Recurrent	Unit)
• Stacked	LSTM
• Grid	LSTM
• Bi-directional	LSTM

2. Breakthroughs	of	RNNs	in	Machine	Translation	
• Sequence	 to	Sequence	Learning	with	Neural	Networks
• Neural	Machine	Translation	with	Attention
• Google’s	 Neural	Machine	Translation	(GNMT)

3. Overcoming	the	heavy	computations	of	RNNs
• Convolutional	Sequence	 to	Sequence	Learning
• Exploring	Sparsity	in	Recurrent	Neural	Networks

Table	of	Contents

6



Algorithmic	 Intelligence	Lab

1. RNN	Architectures	and	Comparisons
• LSTM	(Long	Short-Term	Memory)	and	their	variants	

• GRU	(Gated	Recurrent	Unit)
• Stacked	LSTM
• Grid	LSTM
• Bi-directional	LSTM

2. Breakthroughs	of	RNNs	in	Machine	Translation	
• Sequence	 to	Sequence	Learning	with	Neural	Networks
• NMT	with	Attention	Mechanism
• Google’s	 Neural	Machine	Translation	(GNMT)

3. Overcoming	the	heavy	computations of	RNNs
• Convolutional	Sequence	 to	Sequence	Learning
• Exploring	Sparsity	in	RNNs	

Table	of	Contents

7



Algorithmic	 Intelligence	Lab

• Long	Short-Term	Memory	(LSTM)
• A	special	type	of	RNN	unit	

• i.e.,	LSTM	networks	=	RNN	composed	of	LSTM	units
• Originally	proposed	by	[Hochreiter and	Schmidhuber,	 1997]

• Explicitly	designed	 RNN	to	
• Capture	long-term	dependency
• More	robust	to	vanishing	gradient	problem	

• Composed	of	a	cell,	an	input	gate,	an	output	gate,	and	a	forget	gate	
(will	be	covered	in	detail	soon)

RNN	Architectures:	LSTM	

8*source:	https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png



Algorithmic	 Intelligence	Lab

• A	very	old	model,	but	why	so	popular?	
• Popularized	by	series	of	following	 works

[Graves	et	al,	2013][Sutskever et	al.,	2014],	...

• Work	very	well	in	variety	of	problems	
• Speech	recognition	
• Machine	translation	
• …

RNN	Architectures:	LSTM	

9

Next,	comparison	with	Vanilla	RNN
*source:	https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM_cell.png



Algorithmic	 Intelligence	Lab

• Vanilla	RNN	(unrolled)

RNN	Architectures:	Vanilla	RNN	

10*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

• Repeating	modules	in	Vanilla	RNN contains	a	single	layer	

RNN	Architectures:	Vanilla	RNN	

11*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

• Repeating	modules	in	LSTM

RNN	Architectures:	LSTM	

12*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Layer Pointwise	
operation

Vector	
Transfer	

concatenate Copy



Algorithmic	 Intelligence	Lab

• The	core	idea	behind	LSTM
• Able	to	control	how	much	information	to	preserve from	previous	state
• The	horizontal	 line	running	 through	 the	top	of	the	diagram		
(i.e.,	the	cell	state or	memory)
• Only	linear interactions from	the	output	 of	each	“gates”	(prevent	vanishing	gradient)
• Control	how	much	to	remove	or	add	information	to	the	cell	state	

RNN	Architectures:	LSTM	

13*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell	state	

Gates	:	Way	to	optionally	 let	
information	through	

Next,	LSTM	step-by-step	computation



Algorithmic	 Intelligence	Lab

Step	1	:	Decide	what informationwe’re	going	to	throw	away from	the	cell	state	
• A	sigmoid	 layer	called	“Forget	gate”
• Looks	at																		and	outputs	a	number	between	0	and	1	for	each	cell	state		

• If	1:	completely	keep,	 if	0:	completely	remove

• e.g.,	language	model	trying	 to	predict	the	next	word	based	on	all	previous	ones	
• The	cell	state	might	include	the	gender	of	the	present	subject
• so	that	the	correct	pronouns	 can	be	used	
• When	we	see	a	new	subject,	we	want	to	forget	the	gender	of	the	old	subject	

RNN	Architectures:	LSTM	

14*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

Step	2	:	Decide	what informationwe’re	going	to	store in	the	cell state and update
• First,	a	sigmoid	 layer	called	the	“Input	gate”									decides	which	values	to	update	
• Next, a	tanh layer	creates	a	vector	of	new	candidate	values	

RNN	Architectures:	LSTM	

15*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

Step	2	:	Decide	what informationwe’re	going	to	store in	the	cell	state and update
• First,	a	sigmoid	 layer	called	the	“Input	gate”									decides	which	values	to	update	
• Next, a	tanh layer	creates	a	vector	of	new	candidate	values	

• Then,	update	the	old	cell	state													into	the	new	cell	state		
• Multiply	the	old	state	by	
• Add																	,	new	candidate	values	scaled	by	how	much	to	update	

RNN	Architectures:	LSTM	

16*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

Step	3	:	Decide	whatwe’re	going	to	output
• A	sigmoid	 layer	called	“Output	gate”
• First	go	through	 							which	decides	what	parts	of	the	cell	state	to	output
• Then,	put	 the	cell	state									through	 tanh (push	 the	values	to	be	between	-1	and	1)	
and	multiply	 it	by		

RNN	Architectures:	LSTM	

17*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

• Overall	LSTM	operations	

RNN	Architectures:	LSTM	

18

Standard	LSTM

*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next,	Variants	of	LSTM



Algorithmic	 Intelligence	Lab

• Gated	Recurrent	Unit	(GRU)	[Cho	et.al,	2014]
• Combines	 the	forget	and	input	gates	into	a	single	“update	gate”	

• Controls	the	ratio	of	information	to	keep between	previous	state	and	new	state	
• Reset	gate controls	how	much	information	 to	forget	
• Merges	the	cell	state								and	hidden	state	
• (+) Resulting	in	simpler model (less	weights) than	standard	LSTM

RNN	Architectures:	GRU	

19

Gated	Recurrent	Unit

*reference:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Algorithmic	 Intelligence	Lab

• Standard	LSTM	

• With	simplified	diagram	
• :	cell	state (or	memory)
• :	hidden	state	(or	output)
• Dashed	line	indicates	identity	transformation

RNN	Architectures:	Stacked	LSTM	

20*source:	https://arxiv.org/pdf/1507.01526.pdf



Algorithmic	 Intelligence	Lab

• Stacked	LSTM	[Graves	et	al,	2013]
• Adds	capacity	by	simply	 stacking	LSTM	layers	on	 top	of	each	other	
• Output	of	1st layer	LSTM	goes	into	2nd layer	LSTM	as	an	input
• But	no	vertical	interactions	

RNN	Architectures:	Stacked	LSTM	

21*source:	https://arxiv.org/pdf/1507.01526.pdf

1st layer	LSTM

2nd layer	LSTM



Algorithmic	 Intelligence	Lab

• Grid	LSTM	[Kalchbrenner et	al.,	2016]
• Extended	version	of	stacked	LSTM	
• LSTM	units	have	memory connections	along	depth dimension as	well	as	temporal	
dimension

RNN	Architectures:	Grid	LSTM	

22

2D	Grid	LSTM

*source:	https://github.com/coreylynch/grid-lstm

Performance	on	wikipedia dataset
(lower	the	better)	



Algorithmic	 Intelligence	Lab

• What	is	the	limitation	of	all	previous	models?	
• They	learn	representations	only	 from	previous time	steps
• Useful	to	learn	future time	steps	in	order	to

• Better	understand	the	context
• Eliminate	ambiguity

• Example	
• “He	said,	Teddy bears	are	on	sale”	
• “He	said,	Teddy Roosevelt	was	a	great	President”	
• In	above	two	sentences,	only	seeing	previous	words	is	not	enough	 to	understand	
the	sentence	

• Solution	
• Also	look	ahead	è Bidirectional	RNNs

RNN	Architectures:	Limitation

23*reference:	https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15



Algorithmic	 Intelligence	Lab

• We	can	also	extend	RNNs	into	bi-directional	models	
• The	repeating	blocks							could	be	any	types	of	RNNS (Vanilla	RNN,	LSTM,	or	GRU)
• The	only	difference	is	that	there	are	additional	paths	from	future	time	steps	

RNN	Architectures:	Bidirectional	RNNs	

24

Next,	Comparison	of	Variants
*reference:	https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15



Algorithmic	 Intelligence	Lab

• Which	architecture	is	the	best?	
• There	is	no	clear	winner;	it	depends	largely	on	the	task
• More	empirical	exploration	of	RNNs	can	be	found	here	[Jozefowicz et	al.,	2015]

RNN	Architectures:	Comparisons

25

Model Advantages Disadvantages

LSTM

- Capable	 of	modeling	 long-term sequential	
dependencies	 better	than	simple	RNN
-More	robust	to	vanishing	gradients	than		
simple	RNN

- Increases computational	complexity
- Higher	memory	requirement than	RNN	due	to	
multiple	memory	cells

Stacked	LSTM -Models	 long-term	sequential	dependencies	
due	to	deeper architecture

- Higher	memory	requirement	and
computationalcomplexity than	LSTM	due	to	
stack	of	LSTM	cells

Bidirectional	LSTM - Predicts	both	in	the	future	and	past	context	
of	the	input	sequence	better	than	LSTM - Increases	computational	complexity than	LSTM

GRU
- Capable	 of	modeling	 long-term sequential	
dependencies	
- Less	memory	requirements	 than	LSTM

- Higher computational	complexity	and memory	
requirements than	RNN	due	to	multiple	hidden	
state	vectors	

Grid LSTM -Models	multidimensional sequences	with	
increased	grid	size

- Higher	memory	requirement	and
computational	complexity than	LSTM	due	to	
multiple	 recurrent	connections	

*source:	https://arxiv.org/pdf/1801.01078.pdf



Algorithmic	 Intelligence	Lab

1. RNN	Architectures	and	Comparisons
• LSTM	(Long	Short-Term	Memory)	and	their	variants	

• GRU	(Gated	Recurrent	Unit)
• Stacked	LSTM
• Grid	LSTM
• Bi-directional	LSTM

2. Breakthroughs	of	RNNs	in	Machine	Translation	
• Sequence	 to	Sequence	Learning	with	Neural	Networks
• Neural	Machine	Translation	with	Attention
• Google’s	 Neural	Machine	Translation	(GNMT)

3. Overcoming	the	heavy	computations of	RNNs
• Convolutional	Sequence	 to	Sequence	Learning
• Exploring	Sparsity	in	RNNs	

Table	of	Contents

26



Algorithmic	 Intelligence	Lab

• What	is	machine	translation?	
• Task	of	automatically	converting source	text	in	one	language	to	another language
• No	single	answer	due	to	ambiguity/flexibility	 of	human	language	 (challenging)

• Classical	machine	translation	methods	
• Rule-based	machine	translation	(RBMT)
• Statistical	machine	translation	(SMT;	use	of	statistical	model)

• Neural	Machine	Translation	(NMT)
• Use	of neural	network	models	to	learn	a	statistical	model for	machine	translation	

Machine	Translation	

27



Algorithmic	 Intelligence	Lab

• Difficulties	in	Neural	Machine	Translation	
• Intrinsic	difficulties	of	MT	(ambiguity	 of	language)
• Variable	length	of	input	and	output	 sequence	(difficult	 to	learn	a	single	model)

• The	core	idea	of	sequence-to-sequencemodel	[Sutskever et	al.,	2014]
• Encoder-Decoder architecture		(input	à vector	à output)	
• Use	one	RNN	network	(Encoder)	 to	read	input	sequence at	a	time	to	obtain	large	
fixed-length vector	representation	

• Use	another	RNN	(Decoder)	 to	extract	the	output	 sequence	from	that	vector	

Breakthroughs	in	NMT:	Sequence-to-Sequence	Learning

28

Input	sequence	“ABC”	and	output	 sequence	“WXYZ”



Algorithmic	 Intelligence	Lab

• Encoder	
• Reads	the	input	 sentence,	a	sequence	of	vectors																																		into	a	vector		
• Use	RNNs	such	that																																			and																																									,	where					and						
are	some	non-linear	 functions	

• LSTMs	as						and																																													(in	the	original	seq2seq	model)

• Decoder	
• Trained	to	predict	the	next	word								given	the	context	vector					and	the	previously	
predicted	words	

• Defines	a	probability	over	the	translation					by	decomposing	 the	joint	probability	 into	
the	ordered	conditionals:	

where				
• The	conditional	probability	 is	modeled	as

where					is	a	nonlinear,	 potentially	multi-layered	function	 that	outputs	 the	probability	
of							and							is	the	hidden	 state	of	the	RNN

Breakthroughs	in	NMT:	Sequence-to-Sequence	Learning

29



Algorithmic	 Intelligence	Lab

• Example	of	the	seq2seq	model	
• For	English	à French	task
• With	2-layer	LSTM	for	encoder	and	encoder	

Breakthroughs	in	NMT:	Sequence-to-Sequence	Learning

30*source:	https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f



Algorithmic	 Intelligence	Lab

• Results	on	WMT’14	English	to	French	dataset	
• Measure	:	BLEU(Bilingual	Evaluation	Understudy)	 score	

• Widely	used	quantitative	measure	for	MT	task
• On	par	with	the	state-of-the-art	SMT	system	(without	any	neural	network)	
• Achieved	better	results	than	the	previous	baselines	

• Simple	but	very	powerful	in	MT	task

Breakthroughs	in	NMT:	Sequence-to-Sequence	Learning

31*source:	http://papers.nips.cc/paper/5346-sequence-to-sequence-learning

Next,	Seq2seq	with	attention



Algorithmic	 Intelligence	Lab

• NMT	by	Joint	Learning	to	Align	and	Translate	[Bahdanau et	al.,	2015]

• Problem	of	original	encoder-decoder	(or	seq2seq)	model
• Need	to	compress all	the	necessary	information	of	a	source	sentence	into	a	
fixed-length	vector

• Very	difficult to	cope	with	long	sentences,	especially	when	the	test	sequence	is	
longer	 than	the	sentences	in	the	training	corpus	

• Extension	of	encoder-decoder	model	+	attentionmechanism	
• Encode	input	 sentence	into	a	sequence	of	vectors	
• And	chooses	a	subset	of	these	vectors	adaptivelywhile	decoding	 the	translation	
• Frees	the	neural	network	model	 from	having	to	squash	all	the	information	 into	a	
single	fixed-length	vector	

Breakthroughs	in	NMT:	Joint	Learning	to	Align	and	Translate	

32



Algorithmic	 Intelligence	Lab

• Define	each	conditional	probability	as:

where						is	an	RNN	hidden	state	for	time					computed	by		

• Distinct	context	vector							for	each	target	word	
• The	context	vector						is	computed	as	weighted	sum	of	

• The	weight									of	each							is	computed	by	

where																																is	an	alignment	model	which	
scores	how	well	the	inputs around	position				and	the	
outputposition				match.	

Breakthroughs	in	NMT:	Joint	Learning	to	Align	and	Translate	

33

Illustration	of	the	model



Algorithmic	 Intelligence	Lab

• Graphical	illustration	of	seq2seq	with	attention
• e.g.,	Chinese	to	English	

Breakthroughs	in	NMT:	Joint	Learning	to	Align	and	Translate	

34*source:	https://google.github.io/seq2seq/



Algorithmic	 Intelligence	Lab

• Results	
• RNNsearch (proposed)	 is	better	than	RNNenc (vanilla	seq2seq)	
• RNNsearch-50:	model	trained	with	sentences	of	length	up	to	50	words

Breakthroughs	in	NMT:	Joint	Learning	to	Align	and	Translate	

35Sample	alignment	results
Next,	Google’s	NMT



Algorithmic	 Intelligence	Lab

• Google’s	NMT	[Wu	et	al.,	2016]
• Improves	over	previous	NMT	systems	on	accuracy and	speed
• 8-layer	LSTMS	for	encoder/decoder	with	attention	
• Achieve	model	parallelism by	assigning	each	LSTM	layer	into	different	GPUs
• Add	 residual	connections	in	standard	LSTM	
• …	and	lots	of	domain-specific	details	to	apply	it	to	production	model

Google’s	Neural	Machine	Translation	(GNMT)

36



Algorithmic	 Intelligence	Lab

• Adding	residuals	connections in	stacked	LSTM	
• In	practice,	LSTM	has	also	problem	of	vanishing	gradientwhen	stacking	more	layers
• Empirically,	4-layer	works	okay,	6-layer	has	problem,	8-layer	does	not	work	at	all
• Apply	 residual	connections	with	8-layer	stacked	LSTM	worked	best	

Google’s	Neural	Machine	Translation	(GNMT)

37

Standard	stacked	LSTM Stacked	LSTM	with	residual	connections	



Algorithmic	 Intelligence	Lab

• Results
• State-of-the-art	results	on	various	MT	datasets	
• Also	comparable	with	Human	expert	

Google’s	Neural	Machine	Translation	(GNMT)

38

GNMT	with	different	configurations



Algorithmic	 Intelligence	Lab

• Further	improved	in	[Johnson	et	al.,	2016]
• Extensions	to	make	this	model	to	be	Multilingual	NMT	system	by	adding	
artificial	token to	indicate	the	required	target	language
• e.g.,	the	token	“<2es>”	indicates	that	the	target	sentence	is	in	Spanish	
• Can	do	multilingual	NMT using	a	single	modelw/o	increasing	the	parameters	

Google’s	Multilingual	Neural	Machine	Translation	(Multilingual	GNMT)	

39



Algorithmic	 Intelligence	Lab

1. RNN	Architectures	and	Comparisons
• LSTM	(Long	Short-Term	Memory)	and	their	variants	

• GRU	(Gated	Recurrent	Unit)
• Stacked	LSTM
• Grid	LSTM
• Bi-directional	LSTM

2. Breakthroughs	of	RNNs	in	Machine	Translation	
• Sequence	 to	Sequence	Learning	with	Neural	Networks
• Neural	Machine	Translation	with	Attention
• Google’s	 Neural	Machine	Translation	(GNMT)

3. Overcoming	the	heavy	computations of	RNNs
• Convolutional	Sequence	 to	Sequence	Learning
• Exploring	Sparsity	in	RNNs	

Table	of	Contents

40



Algorithmic	 Intelligence	Lab

• The	most	fundamental	problem	of	RNNs
• Require	heavy	computations	(slow)	
• Especially	when	we	stack	multiple	 layers	
• GNMT	solved	this	by	model	parallelism	

• How	to	alleviate	this	issue	in	terms	of	architectures?	
• CNN	encoder
• CNN	encoder	+	decoder
• Optimizing	RNNs	(pruning	 approach)

Problem	in	RNNs

41



Algorithmic	 Intelligence	Lab

• A	convolutional	encoder	model	for	Neural	Machine	Translation	[Gehring et	al.,	2016]
• CNN	encoder	+	RNN	decoder	
• Replace	the	RNN	encoder	with	stack	of	1-D	convolutions	 with	nonlinearities	

• Two	different	CNNs	for	attention	score	computation	and	conditional	input	aggregation
• More	parallelizable	than	using	RNN

Solution	1-1.	CNN	encoder	

42



Algorithmic	 Intelligence	Lab

• Convolutional	sequence	to	sequence	learning	[Gehring et	al.,	2017]
• CNNs	for	both	encoder	and	encoder	

Solution	1-2.	CNN	encoder	+	decoder

43

Performance	

Generation	speed	



Algorithmic	 Intelligence	Lab

• Exploring	Sparsity	in	Recurrent	Neural	Networks	[Narang et	al.,	2017]
• Pruning	RNNs	to	improve	 inference	time with	marginal	performance	drop	

• Simple	heuristics	to	calculate	the	threshold	
• And	apply	that	threshold	to	every	binary	mask	corresponds	to	each	weight	

• Reduces	the	size	of	the	model	by	90%
• Significant	 inference	time	speed-up	using	sparse	matrix	multiply	around	 							to	

Solution	2.	Optimizing	RNNs

44GEMM	(General	Matrix-Matrix	Multiply)	 times	comparison	



Algorithmic	 Intelligence	Lab

• RNN	architectures	have	developed	in	a	way	that
• Can	better	model	 long-term	dependency
• Robust to	vanishing	gradient	problems	
• While	having	less	memory	or	computational	costs

• Breakthroughs	in	machine	translation	
• Seq2seq	model	with	attention	
• GNMT	and	extension	to	multilingual	NMT

• Alleviating	the	problem	of	RNNs’	heavy	computations
• Convolutional	 sequence	 to	sequence	learning	
• Pruning	 approach	

• There	are	various	applications	combining	RNNs	with	other	networks
• Image	caption	generation,	visual	question	answering(VQA),	 etc.
• Will	be	covered	in	later	lectures

Summary

45



Algorithmic	 Intelligence	Lab

[Hochreiter and	Schmidhuber,	 1997]	"Long	short-term	memory." Neural	computation 9.8	(1997):	1735-1780.
link:	http://www.bioinf.jku.at/publications/older/2604.pdf

[Graves	et	al.,	2005]	"Framewise phoneme	 classification	with	bidirectional	 LSTM	and	other	neural	network	
architectures."Neural	Networks 18.5-6	(2005):	602-610.
Link:	ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf

[Graves	et	al,	2013]	"Speech	recognition	with	deep	recurrent	neural	networks." Acoustics,	speech	and	signal	
processing	(icassp),	 2013	ieee international	conference	on.	IEEE,	2013.
Link:	https://www.cs.toronto.edu/~graves/icassp_2013.pdf

[Cho	 et	al.,	2014]	"Learning	phrase	representations	using	RNN	encoder-decoder	 for	statistical	machine	
translation." arXiv preprint	arXiv:1406.1078 (2014).
Link:	https://arxiv.org/pdf/1406.1078v3.pdf

[Sutskever et	al.,	2014]	"Sequence	to	sequence	 learning	with	neural	networks." NIPS 2014.
link	:	http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin

[Sutskever et	al.,	2014]	"Sequence	to	sequence	 learning	with	neural	networks.“	NIPS	2014.

[Bahdanau et	al.,	2015]	“"Neural	machine	translation	by	jointly	learning	to	align	and	translate.“,	ICLR	2015
Link:	https://arxiv.org/pdf/1409.0473.pdf

[Jozefowicz et	al.,	2015]	"An	empirical	exploration	of	recurrent	network	architectures." ICML 2015.
Link:	http://proceedings.mlr.press/v37/jozefowicz15.pdf

[Bahdanau et	al.,	2015]	Dzmitry,	Kyunghyun Cho,	and	Yoshua Bengio.	"Neural	machine	translation	by	jointly	 learning	
to	align	and	translate." ICLR	2015
link	:	https://arxiv.org/pdf/1409.0473.pdf

References

46



Algorithmic	 Intelligence	Lab

[Kalchbrenner et	al.,	2016]	"Grid	long	short-term	memory." ICLR	2016
Link:	https://arxiv.org/pdf/1507.01526.pdf

[Gehring et	al.,	2016]	"A	convolutional	 encoder	model	for	neural	machine	translation." arXiv preprint	
arXiv:1611.02344 (2016).
Link:	https://arxiv.org/pdf/1611.02344.pdf

[Wu	et	al.,	2016]	"Google's	neural	machine	translation	system:	Bridging	the	gap	between	human	and	machine	
translation." arXiv preprint	arXiv:1609.08144 (2016).
link:	https://arxiv.org/pdf/1609.08144.pdf

[Johnson	 et	al.,	2016]	"Google's	multilingual	 neural	machine	translation	system:	enabling	zero-shot	
translation." arXiv preprint	arXiv:1611.04558 (2016).
Link:	https://arxiv.org/pdf/1611.04558.pdf

[Gehring et	al.,	2017]	"Convolutional	 sequence	 to	sequence	 learning." arXiv preprint	arXiv:1705.03122 (2017).
Link:	https://arxiv.org/pdf/1705.03122.pdf

[Narang et	al.,	2017]	"Exploring	sparsity	in	recurrent	neural	networks.“,	ICLR	2017
Link:	https://arxiv.org/pdf/1704.05119.pdf

[Fei-Fei and	Karpathy,	2017]	“CS231n: Convolutional	 Neural	Networks	for	Visual	Recognition”,	2017.	(Stanford	
University)
link	:	http://cs231n.stanford.edu/2017/

[Salehinejad et	al.,	2017]	"Recent	Advances	in	Recurrent	Neural	Networks." arXiv preprint	arXiv:1801.01078 (2017).
Link:	https://arxiv.org/pdf/1801.01078.pdf

References

47


