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Recap: RNN basics

* Process a sequence of vectors by applying
recurrence formula at every time step :

h;
@xh
— . Onn
h; = f(ht—laxta@) fo
New state Old state Input
vector at
time step t

Function parameterized by @
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Recap: Vanilla RNN

* Simple RNN
* The state consists of a single “hidden” vector h;
* Vanilla RNN (or sometimes called ElIman RNN)

h; = f(ht—la Xt @)

|

ht = tanh(@hhht_l -+ @xhxt)

Yt — @hyht
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Why do we develop RNN architectures?

* ForvanillaRNN,itis difficult to capture long-term dependency

* Vanishinggradient probleminvanilla RNN
* The gradient vanishes over time
* Which relates to optimization difficulties in CNN
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Why do we develop RNN architectures?

* Manyreal-world temporal dataisintrinsically long-term
* Natural language
* Speech
* Video

* In orderto solve much complicated real-world problems we need a better RNN
architecture to capture long-term dependency in the data
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RNN Architectures: LSTM

* Long Short-Term Memory (LSTM)
* A special type of RNN unit
* i.e.,LSTM networks = RNN composed of LSTM units
* Originally proposed by [Hochreiter and Schmidhuber, 1997]
e Explicitly designed RNN to
e Capture long-term dependency
* More robust to vanishing gradient problem

* Composed of a cell, an input gate, an output gate, and a forget gate
(will be covered in detail soon)
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RNN Architectures: LSTM

* Avery old model, but why so popular?

* Popularized by series of following works
[Graves et al, 2013][Sutskever etal., 2014], ...

* Work very well in variety of problems

* Speech recognition
* Machine translation
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Next, comparison with Vanilla RNN
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RNN Architectures: Vanilla RNN

* VanillaRNN (unrolled)

@
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RNN Architectures: Vanilla RNN

* Repeatingmodulesin VanillaRNN contains a single layer

-
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RNN Architectures: LSTM

* Repeatingmodulesin LSTM 4 I
o — 1 L
Layer Pointwise Vector concatenate Copy
operation Transfer
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RNN Architectures: LSTM

* The coreideabehind LSTM
* Able to control how much information to preserve from previous state

* The horizontal line running through the top of the diagram
(i.e., the cell state or memory)
* Only linear interactions from the output of each “gates” (prevent vanishing gradient)
e Control how much to remove or add information to the cell state

\
N

o
Cion [ _ ‘ f
® ® , L
Cell state
s Gates : Way to optionally let
\ / information through

Next, LSTM step-by-step computation
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RNN Architectures: LSTM

Step 1: Decide what information we’re going to throw away from the cell state
* A sigmoid layer called “Forget gate” f;

e Looks at h;_1,x: and outputs a number between 0 and 1 for each cell state C;_4
* If 1: completely keep, if 0: completely remove

* e.g., language model trying to predict the next word based on all previous ones
* The cell state mightinclude the gender of the present subject
* so that the correct pronouns can be used

* When we see a new subject, we want to forget the gender of the old subject

fe =o0(Wy - [hi—1, 1] + bf)
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RNN Architectures: LSTM

Step 2 : Decide what information we’re going to storein the cell state and update
* First, a sigmoid layer called the “Inputgate” i; decides which values to update
* Next, a tanh layer creates a vector of new candidate values C}

it = O'(Wz . [ht_1,$t] -+ bz)

7 ~
%% Cy = tanh(We - [he—1, 2] + be)
hi_ 1 o | | tanh
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RNN Architectures: LSTM

Step 2 : Decide what information we’re going to storein the cell state and update
* First, a sigmoid layer called the “Inputgate” i; decides which values to update
* Next, a tanh layer creates a vector of new candidate values C}

* Then, update the old cell state C';_; into the new cell state C}
« Multiply the old state by f;
* Add 7; * C;, new candidate values scaled by how much to update

Cr C it = o(Wi - [hi—1, 2] + ;)

ftT Ztl_’ ~t ét = tanh(WC * [ht—]_) xt] _|_ bC)

Ct:ft*ct—1+it*ét
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RNN Architectures: LSTM

Step 3 : Decide what we're going to output
* A sigmoid layer called “Output gate” o,
e First go through o0:; which decides what parts of the cell state to output

* Then, put the cell state C}; through tanh (push the values to be between -1 and 1)
and multiply it by o4

ht A
Ot — U(Wo ) [ht—la mt] + bo)
Ctanh>
ot S ht = Ot * tanh(Ct)
hi 2 by
Tt
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RNN Architectures: LSTM

e Overall LSTM operations

ht A
Ct_1/ \ Ct
S @) >
J —%
t] U . Ot
C; 8
A :

fi =0(Wy - |hi—1, 2] + by)

i = o(W; - [hi_1,x¢] + b;)

Cy = tanh(We - [hy—1, 2] + be)
Cy = fi* Cyo1 + iy % Cy

or =Wy - |ht_1,x¢] + bo)

hy = o¢ *x tanh(C})

Standard LSTM
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RNN Architectures: GRU

e Gated Recurrent Unit (GRU) [cho et.al, 2014]

* Combines the forget and input gates into a single “update gate” <t

e Controls the ratio of information to keep between previous state and new state
* Reset gate r; controls how much information to forget
* Merges the cell state C; and hidden state h;

* (+) Resulting in simpler model (less weights) than standard LSTM

hy
her [ \|\ hy “t = U(Wz ' [ht—laxt])
(X) (1) >
b S $ re = o(Wy- [hy1,24))
T¢ % ~t ~

7 [ tanﬁ hy = tanh(W - [ry * hy_1, x¢])
Pl b | !
xt\ / ht:(l—zt)*ht_1—|—zt*ht

Gated Recurrent Unit

*reference: http://colah github.io/posts/2015-08-Understanding-LSTMs/ 19



RNN Architectures: Stacked LSTM

e Standard LSTM

ht A
Coor [ N\ C:
—0 ‘
=
t Ut . O
LTS
he—y | L LGV LR L KA

* With simplified diagram
* (' :cell state (or memory)
* h :hidden state (or output)

* Dashed line indicates identity transformation
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fe = oW - [he—1, 4] + bp)

i = o(Wi - [hi_1, x¢] + b;)

Cy = tanh(W¢ - [he—1, z¢] + be)
Cy = fi * Cyq1 + iy x Ct

or = a(Wy - [he_1, x¢] + bo)

hy = o x tanh(C})

Ci—1

hi—1

Tt
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RNN Architectures: Stacked LSTM

e Stacked LSTM [Graves et al, 2013]
e Adds capacity by simply stacking LSTM layers on top of each other
* Qutput of 1stlayer LSTM goes into 2" layer LSTM as an input
e But no vertical interactions

2nd |ayer LSTM

15t layer LSTM

Algorithmic Intelligence Lab *source: https://arxiv.org/pdf/1507.01526.pdf 21



RNN Architectures: Grid LSTM

* Grid LSTM [Kalchbrenner et al., 2016]
* Extended version of stacked LSTM

e LSTM units have memory connections along depth dimension as well as temporal
dimension

- Stacked

LSTM, 3
1.4 layers
- Stacked
” LSTM 6
§ 1.3 layers
S ~—— Grid LSTM,
E 3 layers
'(;; 1.2 - Grid LSTM,
6 layers
1.1
1
10000 30000 50000 70000 90000
Epoch
| BPC | Parameters | Alphabet Size | Test data
Stacked LSTM (Graves, 2013) 1.67 27T 205 last 4MB
MRNN (Sutskever et al., 2011) | 1.60 4.9M 86 last 10MB
GFRNN (Chung et al., 2015) 1.58 20M 205 last SMB
Tied 2-LSTM 1.47 16.8M 205 last SMB
2D Grid LSTM Performance on wikipedia dataset

(lower the better)

Algorithmic Intelligence Lab *source: https://github.com/coreylynch/grid-Istm 22



RNN Architectures: Limitation

 Whatis the limitation of all previous models?
* They learn representations only from previous time steps

* Useful to learn future time steps in order to
* Better understand the context
* Eliminate ambiguity

 Example
* “He said, Teddy bears are on sale”
* “He said, Teddy Roosevelt was a great President”

* |n above two sentences, only seeing previous words is not enough to understand
the sentence

e Solution
* Also look ahead =¥ Bidirectional RNNs

Algorithmic Intelligence Lab *reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-Istm-gru-73927ec9df15 23



RNN Architectures: Bidirectional RNNs

 We canalso extend RNNsinto bi-directional models
* The repeating blocks A could be any types of RNNS (Vanilla RNN, LSTM, or GRU)
* The only difference is that there are additional paths from future time steps

¥ e 9
(1@
S T{®

® ® - ®

Next, Comparison of Variants

Algorithmic Intelligence Lab *reference: https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-Istm-gru-73927ec9df15 24



RNN Architectures: Comparisons

 Which architectureis the best?
* There is no clear winner; it depends largely on the task

* More empirical exploration of RNNs can be found here [Jozefowicz etal., 2015]

Model Advantages Disadvantages
- Capable of modeling long-term sequential . .
dependencies betterthan simple RNN - Increases computational complexity

LSTM P P - Higher memory requirement than RNN due to

- More robust to vanishing gradients than
simple RNN

multiple memory cells

Stacked LSTM

- Models long-term sequential dependencies
due to deeper architecture

- Higher memory requirement and
computational complexity than LSTM due to
stack of LSTM cells

Bidirectional LSTM

- Predicts both in the future and past context
of the input sequence betterthan LSTM

- Increases computational complexity than LSTM

- Capable of modeling long-term sequential

- Higher computational complexity and memory

GRU dependencies requirements than RNN due to multiple hidden
- Less memory requirements than LSTM state vectors
s . . - Higher memory requirement and
. - Model Itid I th . )
Grid LSTM oaels muttidimensional sequences wi computational complexity than LSTM due to

increased grid size

multiple recurrent connections

*source: https://arxiv.org/pdf/1801.01078.pdf 25
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Machine Translation

* Whatis machinetranslation?
* Task of automatically converting source text in one language to another language
* Nosingle answer due to ambiguity/flexibility of human language (challenging)

English Spanish French Detect language ~ AT Spanish English Romanian ~ m

-
d

e Classical machinetranslation methods
* Rule-based machine translation (RBMT)
» Statistical machine translation (SMT; use of statistical model)

* Neural Machine Translation (NMT)
e Use of neural network models to learn a statistical model for machine translation

Algorithmic Intelligence Lab
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Breakthroughsin NMT: Sequence-to-Sequence Learning

e Difficultiesin Neural Machine Translation
* Intrinsic difficulties of MT (ambiguity of language)
* Variable length of input and output sequence (difficult to learn a single model)

* The core idea of sequence-to-sequence model [sutskever et al., 2014]
* Encoder-Decoder architecture (input = vector > output)

* Use one RNN network (Encoder) to read input sequence at a time to obtain large
fixed-length vector representation

* Use another RNN (Decoder) to extract the output sequence from that vector
w X
W

A B C <EOS>

<EOS>

l
l

Y
Y

x —»  —> <
< —> —>N
—>

Input sequence “ABC” and output sequence “WXYZ”
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Breakthroughsin NMT: Sequence-to-Sequence Learning

* Encoder
* Reads the input sentence, a sequence of vectors x = (x1,...,x) into a vector ¢

e Use RNNssuch that h; = f(x¢,hs—1) and ¢ =q({h1,...,hr}),where f and ¢
are some non-linear functions

e LSTMsas f and ¢q({h1,...,h7}) = hr (in the original seq2seq model)

e Decoder

* Trained to predict the next word Y/ given the context vector ¢ and the previously
predicted words {yi, - ypr—1}

* Defines a probability over the translation y by decomposing the joint probability into

the ordered conditionals:
T

p(y) = Hp(yt|{y1, e Ypr—1},0),

t=1
where 'y = (y1,---,y1).
* The conditional probability is modeled as
p(ytl{y17 voe 7yt’—1}a C) — g(yt—la St C)a

where g is a nonlinear, potentially multi-layered function that outputs the probability
of y+ and s; is the hidden state of the RNN

Algorithmic Intelligence Lab 29



Breakthroughsin NMT: Sequence-to-Sequence Learning

* Example ofthe seq2seq model
* For English = French task
* With 2-layer LSTM for encoder and encoder

target output words

»
>

<
«

Je suis étudiant </s> iloss layer

V] projection layer

i Ihidden layer 2
Ihidden layer 1

\ 4
\ 4
Y

\ 4
Y
\ 4
y
y
Y

embedding layer

A
| l ]
a student <s> suis etudlant
encoding decoding

Algorithmic Intelligence Lab *source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ec0c557e560f 30



Breakthroughsin NMT: Sequence-to-Sequence Learning

e Resultson WMT’14 English to French dataset
* Measure : BLEU(Bilingual Evaluation Understudy) score
* Widely used quantitative measure for MT task
* On par with the state-of-the-art SMT system (without any neural network)
* Achieved better results than the previous baselines

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
State of the art [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
| Oracle Rescoring of the Baseline 1000-best lists | ~45

* Simple butvery powerfulin MT task

Next, Seg2seq with attention

Algorithmic Intelligence Lab *source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning 31



Breakthroughsin NMT: Joint Learning to Align and Translate

* NMT by Joint Learning to Align and Translate [Bahdanauetal., 2015]

* Problem of original encoder-decoder (or seq2seq) model
* Need to compress all the necessary information of a source sentence into a
fixed-length vector

* Very difficult to cope with long sentences, especially when the test sequence is
longer than the sentences in the training corpus

* Extension of encoder-decoder model + attention mechanism
* Encode input sentence into a sequence of vectors
* And chooses a subset of these vectors adaptively while decoding the translation

* Frees the neural network model from having to squash all the information into a
single fixed-length vector

32



Breakthroughsin NMT: Joint Learning to Align and Translate

Define each conditional probability as:

p(yi|{y17 e ayi—l}a X) = g(y@'—h Si, Ci)7

where s; isan RNN hidden state fortime ¢ computed by s;

* Distinct contextvector ¢; for each targetword v

* The context vector ¢; iscomputed as weighted sum of A,
T
C;, — Zaijhj'
j=1

* The weight «i; of each h; is computed by

0 = exp(eij)

Y

= f(si—1,%i-1,Ci)-

- T
Zkzl el'p(eik-)

where ei; = a(s;—1,h;) isan alighment model which
scores how well the inputs around position; andthe
output position: match.

Algorithmic Intelligence Lab
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Breakthroughsin NMT: Joint Learning to Align and Translate

* Graphicalillustration of seq2seq with attention
e e.g., Chinese to English

l l l | l | l

Encoder €@ |/ €1 |/ 62 |—/| €3 |—/| 64 |/—>| 65 |—/>| 6s
Decoder do _— d; —_— dz — da
| l | |

Algorithmic Intelligence Lab *source: https://google.github.io/seq2seq/ 34



Breakthroughsin NMT: Joint Learning to Align and Translate

* Results

* RNNsearch (proposed) is better than RNNenc (vanilla seq2seq)

* RNNsearch-50: model trained with sentences of length up to 50 words

30 : ,
25
© 20 byl
;j'. -
o 15F
Ei : : Lo N :
M 10— RNNsearch-50}................ SN SR A S
""" RNNsearch-30]|: : N NN T
5H — - RNNenc-50 p i
- RNNenc-30
0 I i i i i
0 10 20 30 10 50 60
Sentence length
b € g = g
£ 3 E - o A @ @
] Q o g o € £
2f 028885 288 § T 5 g5 .5 § 4
FeoSouwgIHEIA \ 3 . 2B052 o020 = %
L =G 8C8EEEG0E2ES 6 .V

Il
convient
de
noter
que
économique I
européenne envkonnemeqt
a marin
. est
été le
signé moins
en connu
de

I
environnement

accord
sur
la
zone

aolt
1992

<end>

(a) (b)
Sample alignment results

<end>

Next, Google’s NMT
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Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* |Improves over previous NMT systems on accuracy and speed
8-layer LSTMS for encoder/decoder with attention
Achieve model parallelism by assigning each LSTM layer into different GPUs
Add residual connectionsin standard LSTM
... and lots of domain-specific details to apply it to production model

Y; >y, > —>» </s>

8§Iayers

. GPU3
i GPU3
GPU2 GPU2
GPU1 GPU1

Algorithmic Intelligence Lab
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Google’s Neural Machine Translation (GNMT)

* Addingresiduals connections in stacked LSTM
* |n practice, LSTM has also problem of vanishing gradient when stacking more layers
* Empirically, 4-layer works okay, 6-layer has problem, 8-layer does not work at all
* Apply residual connections with 8-layer stacked LSTM worked best

56 &

Standard stacked LSTM Stacked LSTM with residual connections
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Google’s Neural Machine Translation (GNMT)

* Results
e State-of-the-art results on various MT datasets
* Also comparable with Human expert

Table 5: Single model results on WMT En—De (newstest2014)
Model BLEU CPU decoding time

per sentence (s)

— GNMT with different configurations

Algorithmic Intelligence Lab

Word 2312 02972 Table 10: Mean of side-by-side scores on production data
Character (512 nodes)  22.62 0.8011 PBMT GNMT Human Relative
WPM-8K  23.50 0.2079 Improvement
WPM-16K  24.36 0.1931 English — Spanish ~ 4.885 5.428 5.504 87%
WPM-32K 24.61 0.1882 English — French 4.932 5.295 5.496 64%
I\leed Word/Character 2417 03268 Enghsh — Chinese 4.035 4.594 4.987 58%
n Spanish — English ~ 4.872 5.187 5.372 63%
RNNSP'Bl\ilT 3[?,] ?2; French — English 5.046 5.343 5.404 83%
RNNSea c?fv { 37% 6o Chinese — English  3.604  4.263  4.636 60%
arch- .
RNNSearch-LV [37]  16.9
Deep-Att [45]  20.6
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Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Further improved in [Johnson et al., 2016]

e Extensionsto make this model to be Multilingual NMT system by adding
artificial token to indicate therequired target language

* e.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

Y, o Y, —> —>» </s>
*.,.\ g _ e 4
e RN
i Encoder LSTMs ” -
; I }__ i eenTmmm ;../.f..’...l.,. ...... .\..\.\..\. ............................ ..
: 1 1 A : _-” Detoder LSTMs ™+ _
H H | 1
i GPUB C P -—C P ] _’D GPUS
t t t i |
+ + + ; A +
L+—» Attention
| GPU3 . "' GPU3
 opu2 o GPU2
H h
GPU2
GPUL —>D GPUL
: ’ </s> —» iHola —> - 7
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e Convolutional Sequence to Sequence Learning
* Exploring Sparsity in RNNs

Algorithmic Intelligence Lab

40



Problem in RNNs

* The most fundamental problem of RNNs
* Require heavy computations (slow)
* Especially when we stack multiple layers
* GNMT solved this by model parallelism

* How toalleviate thisissuein terms of architectures?
* CNN encoder
* CNN encoder + decoder
* Optimizing RNNs (pruning approach)

Algorithmic Intelligence Lab
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Solution 1-1. CNN encoder

* A convolutional encoder model for Neural Machine Translation [Gehring et al., 2016]
* CNN encoder + RNN decoder
* Replace the RNN encoder with stack of 1-D convolutions with nonlinearities

* Two different CNNs for attention score computation and conditional input aggregation
* More parallelizable than using RNN

<p> Die Katze schlief ein <p> <p> Die Katze schlief ein <p>
Convolutional
Encoder Networks
Attention Weights Encoder Words/s BLEU
conditional 4 2-layer BILSTM 109.9 236
onditiona <
Input Computation « geep gonv- ?/54/5 38;; gig
4 eep Conv. . .
o
LSTM Decoder — LSTM —
—,L N L >
the o cat o lel

Algorithmic Intelligence Lab
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Solution 1-2. CNN encoder + decoder

* Convolutionalsequenceto sequence learning[Gehring et al., 2017]
* CNNs for both encoder and encoder

<p> They agree </s> <p>

Embeddings CH H — WMT’14 English-French BLEU
. Wu et al. (2016) GNMT (Word 80K) 37.90
Convolutions )
Wau et al. (2016) GNMT (Word pieces) 38.95
Wau et al. (2016) GNMT (Word pieces) + RL 39.92
Gated ConvS2S (BPE 40K) 40,51
Units
ﬁi Performance
A
Attention ﬁ
z

BLEU Time (s)

: ‘/9 GNMT GPU (K80) 31.20 3,028
»(z GNMT CPU 88 cores 31.20 1,322
Dot products GNMT TPU 31.21 384
ConvS2S GPU (M40)b =1 3345 221
\ v ’ ConvS2S GPU (GTX-1080ti) b =1 33.45 142
LT T T P [ T T ] ConvS2S CPU 48 cores b = 1 33.45 142
ConvS2S GPU (K40)b =5 34.10 587
ConvS2S CPU 48 cores b = 5 34.10 482
ConvS2S GPU (M40)b =5 34.10 406
ConvS2S GPU (GTX-1080ti) b = 5 34.10 256
e Generation speed
Y Y A\ 4 A\
L H H H H H ] L JC J0L 1
<p>  <p> <s> Sie stimmen zu Sie stimmen zu </s>

Algorithmic Intelligence Lab
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Solution 2. Optimizing RNNs

e ExploringSparsityin Recurrent Neural Networks [Narang etal., 2017]

* Pruning RNNs to improve inference time with marginal performance drop
* Simple heuristics to calculate the threshold
* And apply that threshold to every binary mask corresponds to each weight

* Reduces the size of the model by 90%
* Significant inference time speed-up using sparse matrix multiply around 2x to 7x

MODEL #UNITS CER #PARAMS RELATIVE PERF

RNN Dense Baseline 1760 10.67 67 million 0.0%

RNN Dense Small 704 1450 11.6 million -35.89%

RNN Dense Medium 2560 943 141 million  11.85%

RNN Sparse 1760 1760 12.88 8.3 million -20.71%

RNN Sparse Medium 2560 10.59 11.1 million 0.75%

RNN Sparse Big 3072 10.25 16.7 million 3.95%

GRU Dense 2560 9.55 115 million  0.0%

GRU Sparse 2560 10.87 13 million -13.82%

GRU Sparse Medium 3568 9.76 17.8 million -2.20%

LAYER SIZE SPARSITY LAYERTYPE TIME (usec) SPEEDUP

1760 0% RNN 56 1
1760 95% RNN 20 2.8
2560 95% RNN 29 1.93
3072 95% RNN 48 1.16
2560 0% GRU 313 1
2560 95% GRU 46 6.80
3568 95% GRU 89 3.5

Algorithmic Intelligence Lab GEMM (General Matrix-Matrix Multiply) times comparison



Summary

RNN architectures have developed in a way that
e Can better model long-term dependency
* Robust to vanishing gradient problems
* While having less memory or computational costs

Breakthroughsin machine translation
* Seqg2seg model with attention
 GNMT and extension to multilingual NMT

Alleviatingthe problem of RNNs” heavy computations
e Convolutional sequence to sequence learning
* Pruning approach

There are various applications combining RNNs with other networks
* Image caption generation, visual question answering(VQA), etc.
* Will be covered in later lectures
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