# **Graphical Models**

EE807: Recent Advances in Deep Learning Lecture 5

Slide made by

Sejun Park and Sungsoo Ahn

**KAIST EE** 

# **Table of Contents**

### 1. Introduction

• Generative model and discriminative model

#### 2. Boltzmann Machine

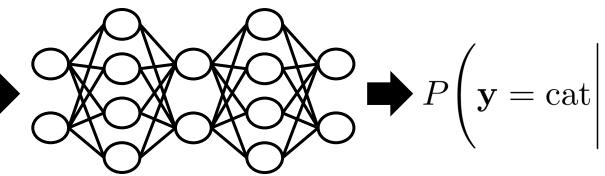
- Boltzmann machine (BM)
- Restricted Boltzmann machine (RBM)
- Deep Boltzmann machine (DBM)

## 3. Sum-product Network

- Sum-product network (SPN)
- Inference in SPN
- Structure learning of SPN

- Given an observed variable  ${\bf x}\,$  and a target variable  $\,{\bf y}\,$
- Discriminative model is a model of a conditional distribution  $P(\mathbf{y}|\mathbf{x})$ 
  - e.g., neural networks (supervised)



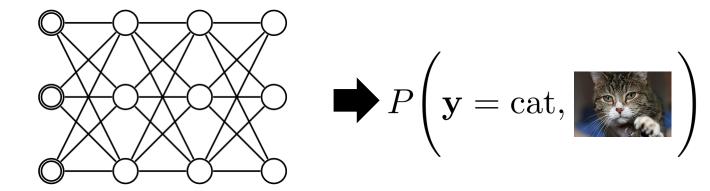




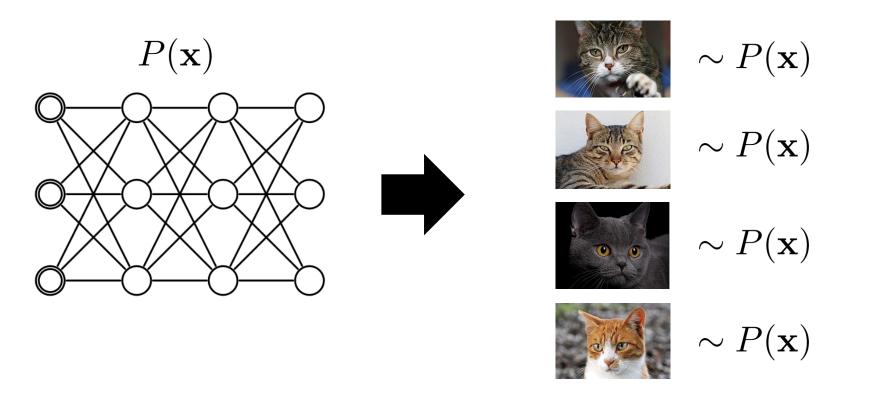
e.g., Boltzmann machines, sum-product networks (unsupervised)



 $\mathbf{y} = \operatorname{cat}$ 



- Generative models model a full probability distribution given data
- $P(\mathbf{x}, \mathbf{y})$  enables us to generate new data similar to existing (training) data
  - This is impossible under discriminative models
- Sampling methods (e.g., Markov chain) are required for generation



- Modelling a joint distribution of  ${\bf x}$ 
  - Mean Fields
    - $P(\mathbf{x}) = \prod_i P(x_i)$
    - Tractable inference, low expressive power
  - Multivariate Gaussian distributions
    - $P(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)\Sigma^{-1}(\mathbf{x}-\mu)\right)$
    - Tractable inference, low expressive power
  - Graphical models (e.g., RBM, DBM, etc.)

• 
$$P(\mathbf{x}) \propto \exp\left(\sum_{i} b_i x_i + \sum_{i,j} w_{ij} x_i x_j\right)$$

- Intractable inference, high expressive power with compact representation
- Generative adversarial networks
  - $P(\mathbf{x}) \propto |f^{-1}(\mathbf{x})|$  for some neural network
  - Intractable inference, high expressive power with complex expression

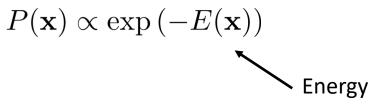
# **Table of Contents**

- 1. Introduction
  - Generative model and discriminative model

# 2. Boltzmann Machine

- Boltzmann machine (BM)
- Restricted Boltzmann machine (RBM)
- Deep Boltzmann machine (DBM)
- 3. Sum-product Network
  - Sum-product network (SPN)
  - Inference in SPN
  - Structure learning of SPN

• Energy based model (EBM) is a joint distribution on a vector  ${\bf x}$  satisfying



- Assignments with high energy appear less likely in EBM
- Examples of EBM
  - Gaussian distribution

$$P(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right)$$

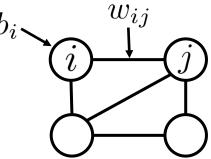
• Bernoulli distribution

$$P(x) = \exp\left(\log(P(x=1))\mathbf{1}_{x=1} + \log(P(x=0))\mathbf{1}_{x=0}\right)$$

• Poisson, binomial, ....

• Given a graph (V, E), Boltzmann machine (BM) is a joint distribution on a binary vector  $\mathbf{x} = [x_i] \in \{0, 1\}^{|V|}$  such that

$$P(\mathbf{x}) \propto \exp\left(\sum_{i \in V} b_i x_i + \sum_{(i,j) \in E} w_{ij} x_i x_j\right)$$



- Given a neighborhood of *i*, conditional distribution of  $x_i$  is
  - +  $\sigma(x) = 1/(1 + \exp(-x))$  : logistic sigmoid function

$$P(x_i = 1 | x_{\mathcal{N}(i)}) = \sigma \left( b_i + \sum_{j \in \mathcal{N}(i)} w_{ij} x_j \right)$$

where  $\mathcal{N}(i) = \{j: (i, j) \in E\}$  is a set of neighbors of i

• To generate new data using BM, we need to learn parameters of BM

## **Learning BM**

- Given training data  $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ , learn the distribution  $P(\mathbf{x})$
- Goal (Maximum Likelihood Estimation):

Maximize 
$$\ell(\mathbf{b},\mathbf{w}) = \sum_{n=1}^N \log P_{ ext{model}}(\mathbf{x}^{(n)})$$

- $\ell(\mathbf{b}, \mathbf{w})$  is a convex function of parameters  $b_i, w_{ij}$
- Gradient descent converges to the global optimum with gradients

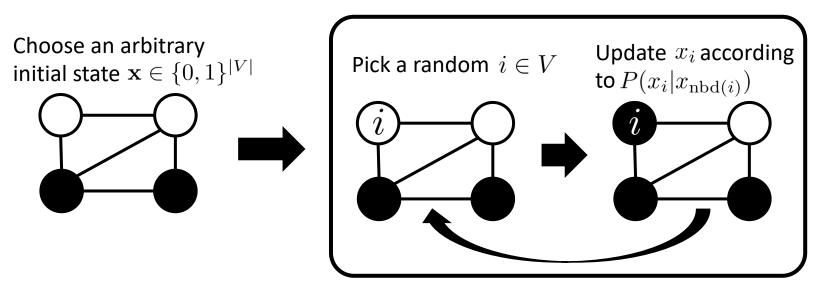
$$\frac{\partial \ell}{\partial b_i} = E_{\text{data}}[x_i] - E_{\text{model}}[x_i] \qquad \frac{\partial \ell}{\partial w_{ij}} = E_{\text{data}}[x_i x_j] - E_{\text{model}}[x_i x_j]$$

where  $E_{\text{data}}[f(x)] = \frac{1}{N} \sum_{n=1}^{N} f(x^{(n)})$  is an empirical expectation

# Learning BM

- **Problem**: Calculating  $E_{\text{model}}[\cdot]$  is intractable in general, i.e., NP-Hard
  - Naïve approach requires  $\Omega(2^{|V|})$  summations
- Instead of exact gradient, we approximate it using samples from  $P_{\text{model}}(\mathbf{x})$
- **Gibbs sampler** is the most popular sampling algorithm in BM

Repeat for fixed number of iterations



# Learning BM

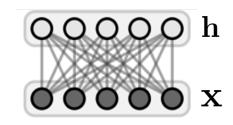
- Learning BM
  - 1. Choose initial  $\mathbf{b}, \mathbf{w}$
  - 2. Generate samples from  $P_{model}(\mathbf{x})$  using Gibbs sampler
  - 3. Update parameters with approximated gradients from samples

$$b_i \leftarrow b_i + \gamma(E_{\text{data}}[x_i] - \widehat{E}_{\text{model}}[x_i])$$
$$w_{ij} \leftarrow w_{ij} + \gamma(E_{\text{data}}[x_i x_j] - \widehat{E}_{\text{model}}[x_i x_j])$$

4. Repeat 2-3 until convergence

 Restricted Boltzmann machine (RBM) is a bipartite Boltzmann machine with visible nodes and hidden nodes

$$P(\mathbf{x}) \propto \sum_{\mathbf{h}} \exp\left(\sum_{i} b_{i} x_{i} + \sum_{j} c_{j} h_{j} + \sum_{i,j} w_{ij} x_{i} h_{j}\right)$$



- Hidden nodes can be described by hidden features of visible nodes
- In RBM structure, all hidden nodes are conditionally independent given visible nodes and vise versa

$$P(x_i = 1 | \mathbf{h}) = \sigma \left( \sum_j w_{ij} h_j + b_i \right) \quad P(h_j = 1 | \mathbf{x}) = \sigma \left( \sum_i w_{ij} x_i + c_j \right)$$

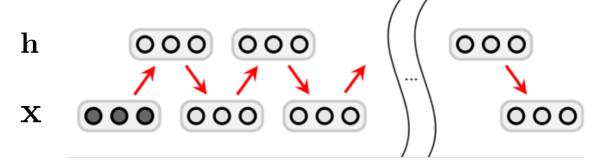
Higher order potential

# Learning **RBM**

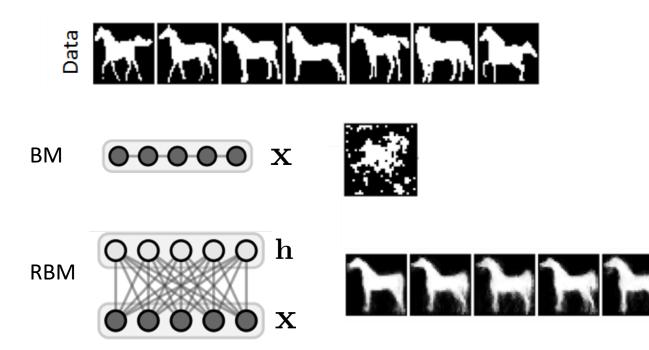
- Given training data  $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ , learn the distribution  $P(\mathbf{x})$
- Goal: Maximize  $\ell(\mathbf{b}, \mathbf{c}, \mathbf{w}) = \sum_{n=1}^{N} \log P_{\text{model}}(\mathbf{x}^{(n)})$
- $\ell(b, w)$  is a non-convex function of parameters  $b_i, w_{ij}$
- But we still use gradient descent with gradients

$$\frac{\partial \ell}{\partial b_i} = E_{\text{data}}[x_i] - E_{\text{model}}[x_i]$$
$$\frac{\partial \ell}{\partial c_j} = \frac{1}{N} \sum_{n=1}^N P_{\text{model}}(h_j = 1 | \mathbf{x}^{(n)}) - E_{\text{model}}[h_j]$$
$$\frac{\partial \ell}{\partial w_{ij}} = \frac{1}{N} \sum_{n=1}^N x_i^{(n)} P_{\text{model}}(h_j = 1 | \mathbf{x}^{(n)}) - E_{\text{model}}[x_i h_j]$$

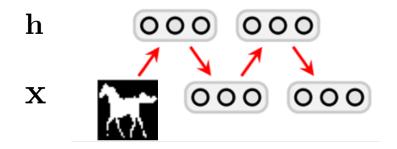
• Due to conditional independence of RBM, block Gibbs sampling is possible



• Samples generated by BM and RBM



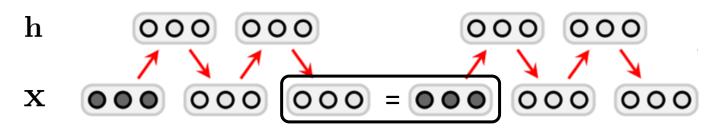
- Convergence of a Gibbs sampler requires exponential number of iterations
- Contrastive divergence (CD-k) is a sampling method which runs only k iterations of a Markov chain without convergence guarantee
- For rapid mixing, CD chooses a initial state of the Markov chain from the training data



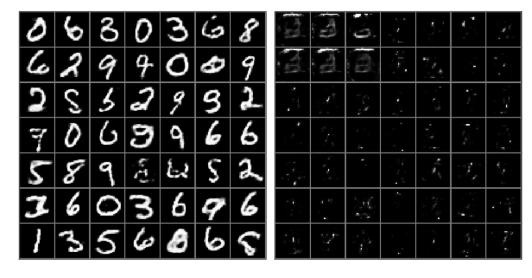
• CD-1 works surprisingly well in practice even though there is no guarantee

# **Persistent Contrastive Divergence [Tieleman, 2008]**

- **Persistent Contrastive divergence** (PCD-k) runs k iterations of a Markov chain with initial state from the last Markov chain output
- We expect PCD chain approximates the full Markov chain of long iterations
- PCD requires more iterations than CD, but it shows better performance

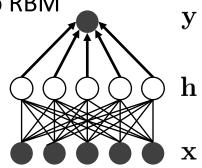


MNIST examples generated from RBM trained with PCD-1 and CD-1



- For a supervised learning using RBM, add a class variable to RBM
  - x: binary input, y: multinomial label
  - Assume  $P(y|\mathbf{x},\mathbf{h}) = P(y|\mathbf{h})$

 $P(\mathbf{x}, \mathbf{h}, y) = P(y|\mathbf{x}, \mathbf{h})P(\mathbf{x}, \mathbf{h}) = P(y|\mathbf{h})P(\mathbf{x}, \mathbf{h})$  $P(y|\mathbf{h}) \propto \exp\left(d^y + \sum_j v_j^y h_j\right)$  $P(\mathbf{x}, \mathbf{h}) \propto \exp\left(\sum_i b_i x_i + \sum_j c_j h_j + \sum_{i,j} w_{ij} x_i h_j\right)$ 



- Gradient descent for parameter learning
  - Goal: Maximize log likelihood  $\ell(\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{v}, \mathbf{w}) = \sum_{n=1}^{N} \log P_{\mathrm{model}}(\mathbf{x}^{(n)}, y^{(n)})$
  - Similar to learning RBM, computing gradient requires  $P_{\text{model}}(h_j = 1 | \mathbf{x}^{(n)}, y^{(n)})$ but block Gibbs sampler is not available (inefficient sampling)
    - $P(\mathbf{h}|\mathbf{x}, y) \neq \prod_{j} P(h_j|\mathbf{x}, y)$

- Gradient descent for parameter learning
  - Solution: Use  $Q(\mathbf{h}) = \prod_j Q(h_j)$  for approximating  $P_{\text{model}}(\mathbf{h}|\mathbf{x}^{(n)}, y^{(n)})$ 
    - Such an approximation is called the **mean field approximation**
    - Solve the optimization minimizing KL divergence  $\min_{Q} KL(Q(\mathbf{h})||P(\mathbf{h}|\mathbf{x}, y))$   $= \min_{Q} \left( E_{Q(\mathbf{h})}[\log Q(\mathbf{h})] - E_{Q(\mathbf{h})}[\log P(\mathbf{x}, \mathbf{h}, y)] \right) - \log P(\mathbf{x}, y)$
  - Formulation  $E_{Q(\mathbf{h})}[\log Q(\mathbf{h})]$  as a function of  $\mu_j = Q(h_j = 1)$

$$\begin{split} E_{Q(\mathbf{h})}[\log Q(\mathbf{h})] &= \sum_{\mathbf{h}} \left( \prod_{j} Q(h_{j}) \right) \log \left( \prod_{j} Q(h_{j}) \right) = \sum_{\mathbf{h}} \left( \prod_{j} Q(h_{j}) \right) \left( \sum_{j} \log Q(h_{j}) \right) \\ &= \sum_{\mathbf{h}} \left( \prod_{j} Q(h_{j}) \right) \left( \sum_{j} \log Q(h_{j} = 1) \mathbf{1}_{h_{j}=1} + \log Q(h_{j} = 0) \mathbf{1}_{h_{j}=0} \right) \\ &= \sum_{\mathbf{h}} \left( \prod_{j} Q(h_{j}) \right) \left( \sum_{j} \log Q(h_{j} = 1) \mathbf{1}_{h_{j}=1} \right) + \sum_{\mathbf{h}} \left( \prod_{j} Q(h_{j}) \right) \left( \sum_{j} \log Q(h_{j} = 0) \mathbf{1}_{h_{j}=0} \right) \\ &= \sum_{j} \log Q(h_{j} = 1) \left( \sum_{\mathbf{h}:h_{j}=1} \prod_{j'} Q(h_{j'}) \right) + \sum_{j} \log Q(h_{j} = 0) \left( \sum_{\mathbf{h}:h_{j}=0} \prod_{j'} Q(h_{j'}) \right) \\ &= \sum_{j} Q(h_{j} = 1) \log Q(h_{j} = 1) + \sum_{j} Q(h_{j} = 0) \log Q(h_{j} = 0) \\ &= \sum_{j} \mu_{j} \log \mu_{j} + (1 - \mu_{j}) \log(1 - \mu_{j}) \end{split}$$

- Gradient descent for parameter learning •
  - Formulation of  $E_{Q(\mathbf{h})}[\log P(\mathbf{x},\mathbf{h},y)]$  as a function of  $\mu_j = Q(h_j = 1)$

where 
$$A(\mathbf{d}, \mathbf{v}, \mathbf{h}) = \log \left( \sum_{y} \exp \left( d^{y} + \sum_{j} v_{j}^{y} h_{j} \right) \right)$$
  
 $B(\mathbf{b}, \mathbf{c}, \mathbf{w}) = \log \left( \sum_{\mathbf{x}, \mathbf{h}} \exp \left( \sum_{i} b_{i} x_{i} + \sum_{j} c_{j} h_{j} + \sum_{i, j} w_{ij} x_{i} h_{j} \right) \right)$ 
mic Intelligence Lab

Algorithr b

- Gradient descent for parameter learning
  - Problem: Computing below is hard

$$\begin{aligned} \frac{\partial}{\partial \mu_j} E_{Q(\mathbf{h})}[A(\mathbf{d}, \mathbf{v}, \mathbf{h})] &= \frac{\partial}{\partial \mu_j} \sum_{\mathbf{h}} \left( \prod_j \mu_j^{h_j} (1 - \mu_j)^{1 - h_j} \right) \log \left( \sum_y \exp\left( d^y + \sum_j v_j^y h_j \right) \right) \\ &= \sum_{\mathbf{h}: h_j = 1} \left( \prod_{j' \neq j} \mu_{j'}^{h_{j'}} (1 - \mu_{j'})^{1 - h_{j'}} \right) \log \left( \sum_y \exp\left( d^y + \sum_j v_j^y h_j \right) \right) \\ &- \sum_{\mathbf{h}: h_j = 0} \left( \prod_{j' \neq j} \mu_{j'}^{h_{j'}} (1 - \mu_{j'})^{1 - h_{j'}} \right) \log \left( \sum_y \exp\left( d^y + \sum_j v_j^y h_j \right) \right) \end{aligned}$$

- Solution: Approximate  $E_{Q(\mathbf{h})}[A(\mathbf{d},\mathbf{v},\mathbf{h})]$  into tractable expression
  - 1<sup>st</sup> order Taylor series approximation at  $\mathbf{h}=oldsymbol{\mu}$

- Gradient descent for parameter learning
  - Approximate  $E_{Q(\mathbf{h})}[A(\mathbf{d},\mathbf{v},\mathbf{h})]$  into polynomial
    - 2<sup>nd</sup> order Taylor series approximation at  $\mathbf{h}=oldsymbol{\mu}$

$$\begin{split} E_{Q(\mathbf{h})}[A(\mathbf{d},\mathbf{v},\mathbf{h})] &\approx E_{Q(\mathbf{h})}[A(\mathbf{d},\mathbf{v},\boldsymbol{\mu}) + (\mathbf{h}-\boldsymbol{\mu})^T \nabla_{\mathbf{h}} A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}}] \\ &+ E_{Q(\mathbf{h})} \left[ \frac{1}{2} (\mathbf{h}-\boldsymbol{\mu})^T \nabla_{\mathbf{h}}^2 A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}} (\mathbf{h}-\boldsymbol{\mu}) \right] \\ &= A(\mathbf{d},\mathbf{v},\boldsymbol{\mu}) + E_{Q(\mathbf{h})} \left[ \frac{1}{2} \sum_{j,j'} (h_j - \mu_j)(h_{j'} - \mu_{j'}) \frac{\partial}{\partial h_j} \frac{\partial}{\partial h_{j'}} A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}} \right] \\ &= A(\mathbf{d},\mathbf{v},\boldsymbol{\mu}) + \frac{1}{2} \sum_{j,j'} E_{Q(\mathbf{h})} \left[ (h_j - \mu_j)(h_{j'} - \mu_{j'}) \right] \frac{\partial}{\partial h_j} \frac{\partial}{\partial h_{j'}} A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}} \\ &= A(\mathbf{d},\mathbf{v},\boldsymbol{\mu}) + \frac{1}{2} \sum_j E_{Q(\mathbf{h})} \left[ (h_j - \mu_j)^2 \right] \frac{\partial}{\partial h_j} \frac{\partial}{\partial h_{j'}} A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}} \\ &= A(\mathbf{d},\mathbf{v},\boldsymbol{\mu}) + \frac{1}{2} \sum_j \mu_j (1 - \mu_j) \frac{\partial^2}{\partial h_j^2} A(\mathbf{d},\mathbf{v},\mathbf{h})|_{\mathbf{h}=\boldsymbol{\mu}} \\ & \longrightarrow \begin{array}{c} \text{Closed form} \\ \text{gradient exists} \end{array}$$

- After Taylor series approximation,  $\mu$  can be optimized using coordinate descent
- Also, gradient can be approximated by approximating  $Q(\mathbf{h}) \approx P(\mathbf{h} | \mathbf{x}, y)$

• Evaluation: Exact inference is intractable, use approximated inference

$$P(y|\mathbf{x}) = \sum_{\mathbf{h}} P(y|\mathbf{h}) P(\mathbf{h}|\mathbf{x}) \approx \frac{\exp\left(\sum_{j} w_{j}^{y} \nu_{j} + b^{y}\right)}{\sum_{y} \exp\left(\sum_{j} w_{j}^{y} \nu_{j} + b^{y}\right)}$$
  
where  $\nu_{j} = P(h_{j} = 1|\mathbf{x})$ 

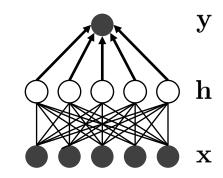
- Classification using
  - 1. Above approximated output
  - 2. kNN, SVN on the hidden feature space of RBM

|              | MNIST | 20 Newsgroups |
|--------------|-------|---------------|
| RBM+kNN      | 3.03  | 56.15         |
| RBM+SVM      | 1.76  | 41.79         |
| ClassRBM+kNN | 2.98  | 57.80         |
| ClassRBM+SVM | 1.68  | 40.88         |
| ClassRBM     | 3.39  | 24.9          |
| sRBM+kNN     | 2.94  | 55.89         |
| sRBM+SVM     | 1.42  | 38.43         |
| sRBM-1st     | 2.27  | 24.1          |
| sRBM-2nd     | 2.21  | 23.2          |

Table 1: Classification errors (%) on testing sets.



#### Hidden feature projection of MNIST examples



• Evaluation: Exact inference is intractable, use approximated inference

$$P(y|\mathbf{x}) = \sum_{\mathbf{h}} P(y|\mathbf{h}) P(\mathbf{h}|\mathbf{x}) \approx \frac{\exp\left(\sum_{j} w_{j}^{y} \nu_{j} + b^{y}\right)}{\sum_{y} \exp\left(\sum_{j} w_{j}^{y} \nu_{j} + b^{y}\right)}$$
  
where  $\nu_{j} = P(h_{j} = 1|\mathbf{x})$ 

- Classification using
  - 1. Above approximated output
  - 2. kNN, SVN on the hidden feature space of RBM
- Generation of RBM using Gibbs sampler

GAN

У

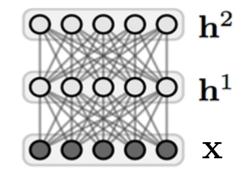
 $\mathbf{h}$ 

 $\mathbf{X}$ 

# Deep Boltzmann Machine [Salakhutdinov et al., 2009]

- Deep Boltzmann machine (DBM) has a deeper structure than RBM
- Higher expressive power as DBM becomes deeper

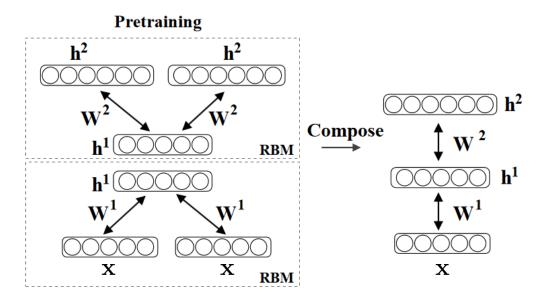
$$P(\mathbf{x}) \propto \sum_{\mathbf{h}^1, \mathbf{h}^2} \exp\left(\sum_i b_i x_i + \sum_j c_j^1 h_j^1 + \sum_k c_k^2 h_k^2\right)$$
  
Higher order &  $+ \sum_{i,j} w_{ij}^1 x_i h_j^1 + \sum_{j,k} w_{jk}^1 h_j^1 h_k^2$ 



• DBM also contains conditionally independence

$$\begin{aligned} P(x_i &= 1 | \mathbf{h}^1) = \sigma \left( \sum_j w_{ij}^1 h_j^1 + b_i \right) \\ P(h_j^1 &= 1 | \mathbf{x}, \mathbf{h}^2) = \sigma \left( \sum_i w_{ij}^1 x_i + \sum_k w_{jk}^2 h_k^2 + c_j^1 \right) \\ P(h_k^2 &= 1 | \mathbf{h}^1) = \sigma \left( \sum_j w_{jk}^2 h_j^1 + c_k^2 \right) \end{aligned}$$

- Learning DBM is similar to learning RBM
- **Pretraining** each layer with RBM empirically achieves better performance

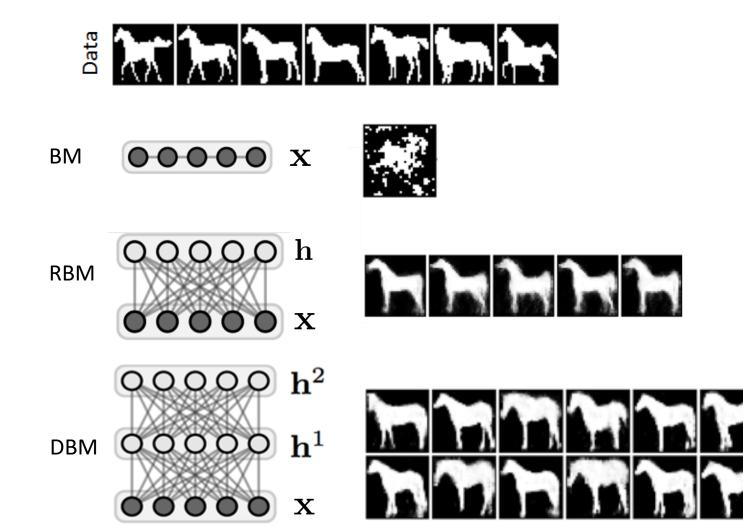


• As used in [Nguyen et al., 2017], the mean field approximation is a good alternative for slow Gibbs sampler in DBM [Salakhutdinov, 2010]

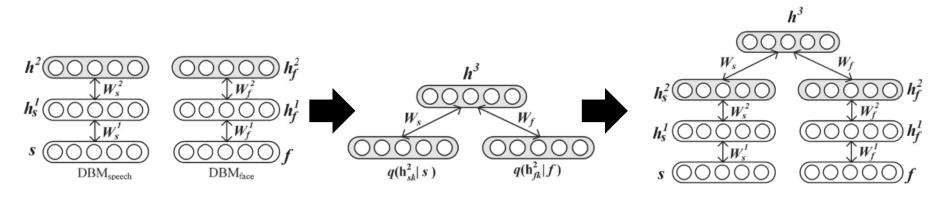
$$Q^{MF}(\mathbf{h}^1, \mathbf{h}^2 | x) = \prod_j \prod_k q(h_j^1) q(h_k^2)$$

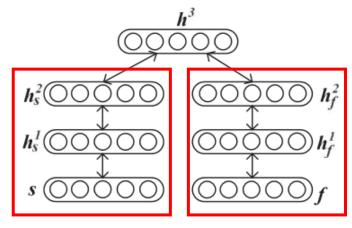
# Learning DBM

• Samples generated by BM, RBM and DBM



- Goal: Extract a joint feature from image and audio data
- Joint DBM consisting of sub-DBMs corresponding to modalities
- Learning joint DBM
  - 1. Extract features from each modality
  - 2. Pretrain sub-DBM for each modality using extracted features
  - 3. Pretrain the shared parameters
  - 4. Fine tune the joint DBM with pretrained parameter



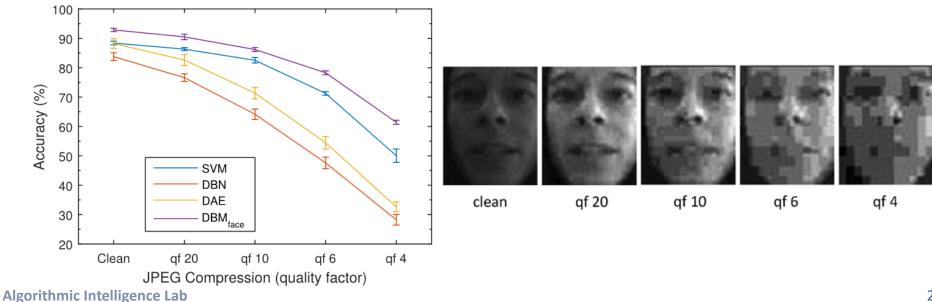


# Application of DBM: Multimodal Learning [Pang et al., 2017]

- **Evaluation**: Person identification using face image and audio data
  - Logistic regression classifier is used for extracted DBM features

| Method                                   | IR (%)                     |
|------------------------------------------|----------------------------|
| SVM (concatenated features)              | $94.33\pm0.087$            |
| Bimodal DAE [9]                          | $88.70 \pm 0.256$          |
| Bimodal DBN (Fig. 1c)                    | $88.33 \pm 0.465$          |
| Bimodal DBM (conventional training) [11] | $93.90\pm0.114$            |
| score fusion [14], [15]                  | $93.70\pm0.247$            |
| jDBM (proposed three-step training)      | $\textbf{96.33} \pm 0.074$ |

DBM also shows robustness on noisy unimodal data ۲



# **Table of Contents**

- 1. Introduction
  - Generative model and discriminative model

# 2. Boltzmann Machine

- Boltzmann machine (BM)
- Restricted Boltzmann machine (RBM)
- Deep Boltzmann machine (DBM)

# 3. Sum-product Network

- Sum-product network (SPN)
- Inference in SPN
- Structure learning of SPN

# **Recall: Examples of Generative Models**

- Modelling a joint distribution of  ${\bf x}$ 
  - Mean Fields
    - $P(\mathbf{x}) = \prod_i P(x_i)$
    - Tractable inference, low expressive power
  - Multivariate Gaussian distributions
    - $P(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)\Sigma^{-1}(\mathbf{x}-\mu)\right)$
    - Tractable inference, low expressive power
  - Graphical models (e.g., RBM, DBM, etc.)
    - $P(\mathbf{x}) \propto \exp\left(\sum_{i} b_i x_i + \sum_{i,j} w_{ij} x_i x_j\right)$
    - Intractable inference, complex but simple expression
  - Generative adversarial networks
    - $P(\mathbf{x}) \propto |f^{-1}(\mathbf{x})|$  for some neural network
    - Intractable inference, complex expression

# Complex and tractable model?

Simple and tractable models

Complex and intractable models

- Goal: Model tractable distributions over  $\mathbf{x} \in \{0,1\}^n$
- Any distribution can be represented by **network polynomial**

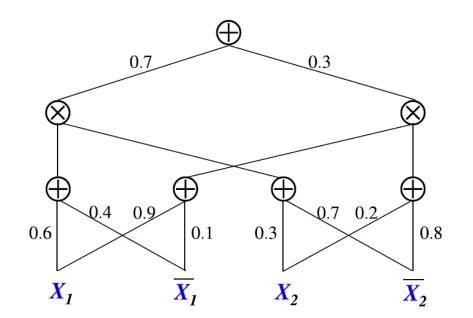
$$P(x_1, x_2) \propto F(x_1 = 0, x_2 = 0)\bar{x}_1\bar{x}_2 + F(x_1 = 0, x_2 = 1)x_1\bar{x}_2 + F(x_1 = 1, x_2 = 0)\bar{x}_1x_2 + F(x_1 = 1, x_2 = 1)x_1x_2$$

- Idea: Learn coefficients of network polynomial which enables tractable inference
  - Example: mean field

Iterative sum and product

$$\begin{split} P(\mathbf{x}) \propto F(\mathbf{x}) &= \prod_{i} \left( f_i(x_i = 1)x_i + f_i(x_i = 0)\bar{x}_i \right) \\ \sum_{\mathbf{x}} F(\mathbf{x}) &= \sum_{\mathbf{x}} \prod_{i}^{i} \left( f_i(x_i = 1)x_i + f_i(x_i = 0)\bar{x}_i \right) \\ &= \prod_{i} \left( \sum_{x_i} \left( f_i(x_i = 1)x_i + f_i(x_i = 0)\bar{x}_i \right) \right) \\ &= \prod_{i} \left( f_i(x_i = 1) + f_i(x_i = 0) \right) \end{split}$$

- Sum-product network (SPN) provides tractable distribution over  $\mathbf{x} \in \{0,1\}^n$ 
  - $P(\mathbf{x}) = F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)/Z, \ F(\cdot) \text{ is SPN}$
  - $Z = \sum_{\mathbf{x} \in \{0,1\}^n} F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)$
- SPN consists of iterative sum and product nodes (operations)
  - e.g.  $F(x_1, \bar{x}_1, x_2, \bar{x}_2) = 0.7(0.6x_1 + 0.4\bar{x}_1)(0.3x_2 + 0.7\bar{x}_2) + 0.3(0.9x_1 + 0.1\bar{x}_1)(0.2x_2 + 0.8\bar{x}_2)$



- Sum-product network (SPN) provides tractable distribution over  $\mathbf{x} \in \{0,1\}^n$ 
  - $P(\mathbf{x}) = F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)/Z, \ F(\cdot)$  is SPN
  - $Z = \sum_{\mathbf{x} \in \{0,1\}^n} F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)$
  - Direct calculation of Z requires  $2^n \, {\rm number} \, {\rm of} \, {\rm summations} \, {\rm but}...$
- **Observation**: If *F* is a polynomial with a form

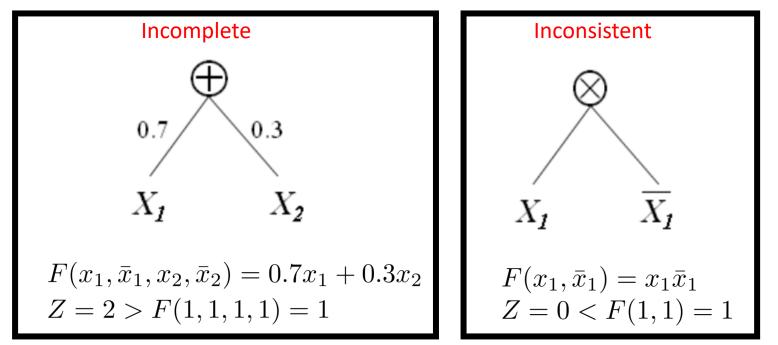
$$F(x_1, \bar{x}_1, x_2, \bar{x}_2) = F(0, 1, 0, 1)\bar{x}_1\bar{x}_2 + F(1, 0, 0, 1)x_1\bar{x}_2 + F(0, 1, 1, 0)\bar{x}_1x_2 + F(1, 0, 1, 0)x_1x_2$$

then 
$$F(1, 1, 1, 1) = \sum_{\mathbf{x} \in \{0, 1\}^2} F(\mathbf{x}) = Z$$

• What if there exist monomials such as  $x_i$  or  $x_i \bar{x}_i$ ?

# **Any SPN Produces Tractable and Valid Distribution?**

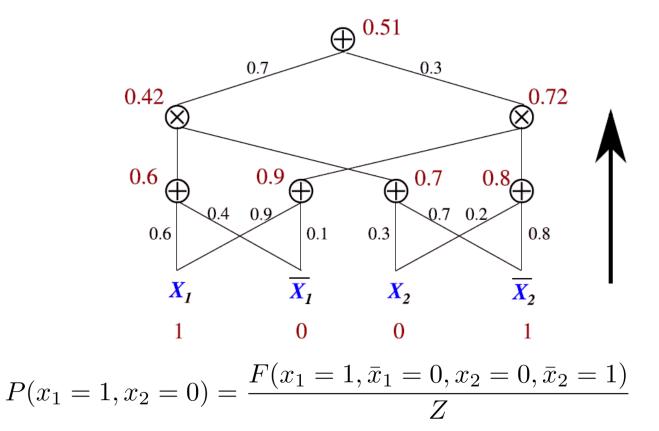
- Theorem: SPN is valid (Z = F(1, ..., 1)) if
  - (consistent) There is no monomial containing both  $x_i$ ,  $\bar{x}_i$
  - (complete) Children of sum node have same set of descendant leaf node



• Theorem implies that SPN is valid if it only contains *n*-th order monomials which consist of all  $x_i$  or  $\bar{x}_i$  for all i

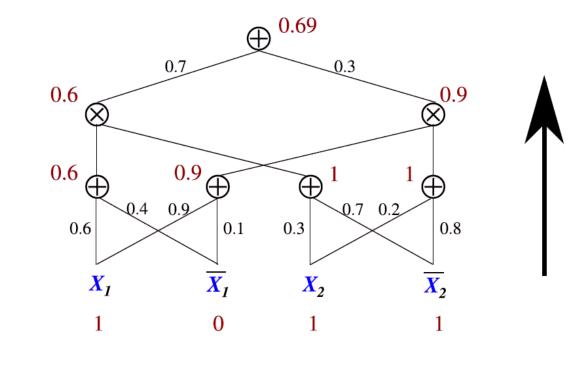
- Goal: calculate joint probability in valid SPN
  - $P(\mathbf{x}) = F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)/Z$
  - $Z = \sum_{\mathbf{x}} F(x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n)$

 $= F(x_1 = 1, \bar{x}_1 = 1, x_2 = 1, \bar{x}_2 = 1, \dots, x_n = 1, \bar{x}_n = 1)$ 



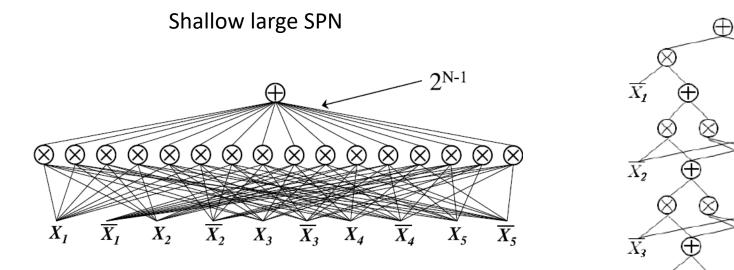
• Goal: calculate marginal probability in valid SPN

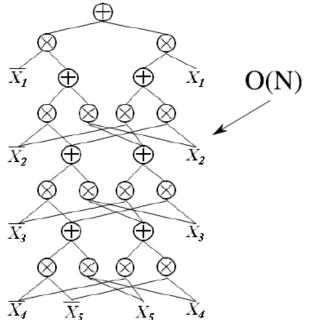
• 
$$P(x_1 = 1) = F(x_1 = 1, \bar{x}_1 = 0, x_2 = 1, \bar{x}_2 = 1, \dots, x_n = 1, \bar{x}_n = 1)/Z$$



$$P(x_1 = 1) = \frac{F(x_1 = 1, \bar{x}_1 = 0, x_2 = 1, \bar{x}_2 = 1)}{Z}$$

- Any distribution can be encoded using shallow large SPN [Poon et al., 2012]
- Some distribution can be encoded using compact deep SPN
  - e.g. uniform distribution over states with even number of 1's



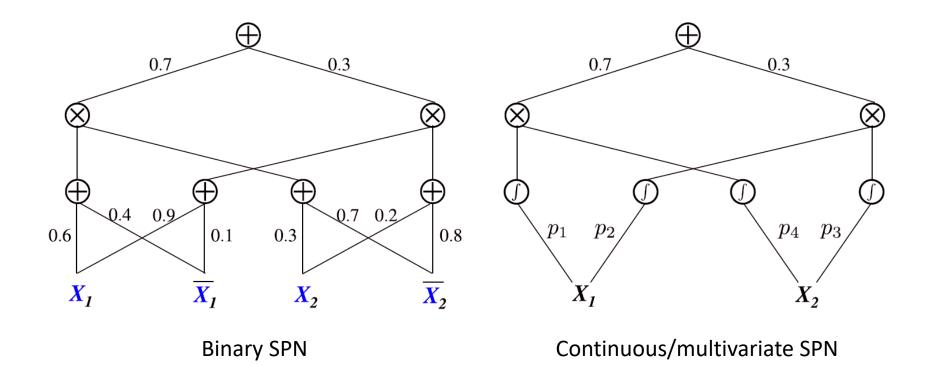


Algorithmic Intelligence Lab

Deep compact SPN

### **Extension to Multivariate/Continuous Models**

- Replace sum nodes by integral (or weighted sum) nodes
  - Integral for continuous models and weighted sum for multivariate models
- When all p are Gaussian, SPN defines very large mixture of Gaussian

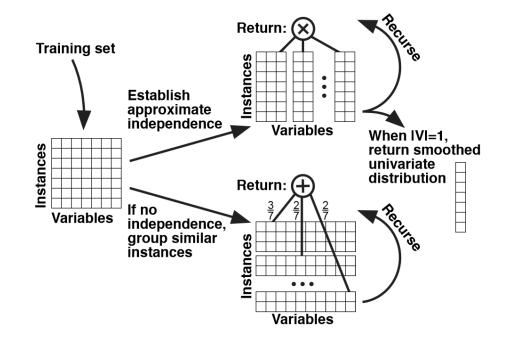


## Learning SPN

- Learning SPN is similar to learning neural networks
  - Select an appropriate structure for target dataset
  - Define target loss function from target dataset/distribution
  - Iteratively update weights using back-propagation
- Learning SPN
  - 1. Initialize SPN with some 'valid' structure and random parameter
  - 2. Choose an appropriate loss function (e.g., maximum likelihood:max  $\sum_{n} P(\mathbf{x}^{(n)})$ )
  - 3. Update weight until convergence
    - Weight update algorithm can be generally chosen (e.g., gradient descent)
    - Gradient descent can be done using back-propagation
  - 4. **Prune** zero weighted edges

### Structure Learning of SPN [Gens et al., 2013]

- Recall: Intuition behind SPN
  - Each sum node represents the mixture of distributions
  - Each product node represents the independence of variables
- Given samples, structure learning of SPN is an iterative procedure of
  - Finding independence (independence test, e.g., G-test of pairwise independence)
  - Finding similar instances (clustering methods, e.g., k-means clustering)



## Application of SPN: Image Completion [Poon et al., 2012]

- Completing the missing left half of images
  - SPN is trained using Caltech-101, Olivetti datasets
  - Consider each pixel as a mixture of Gaussian with unit variance
- Comparison with several algorithms

Top to bottom: original, SPN, DBM, DBN, PCA, nearest neighbor

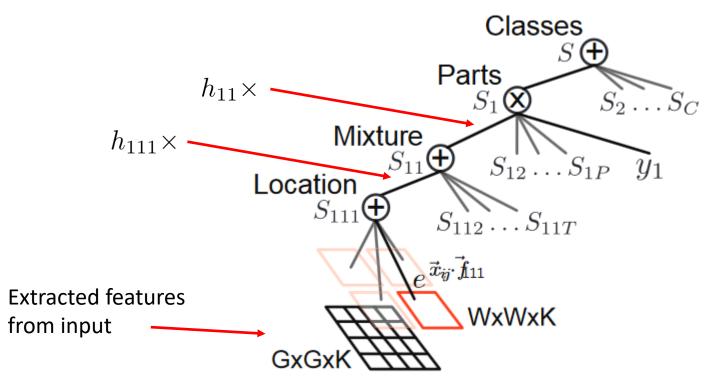


- Goal: Use SPN as an image classifier
- Problem
  - Finding deep valid structure for high dimensional variable may decrease the classification accuracy as it restrict the number of edges
  - Modelling continuous image pixels into Gaussian distribution may not be realistic
- Idea: Ignore the distribution of input  $\mathbf{x}$ . Only model the distribution of target variable y given  $\mathbf{x}$
- Learn SPN which maximizes  $\log \sum_{\mathbf{h}} p(\mathbf{y}, \mathbf{h} | \mathbf{x})$ 
  - Hidden variables are introduced to enhance the expressive power

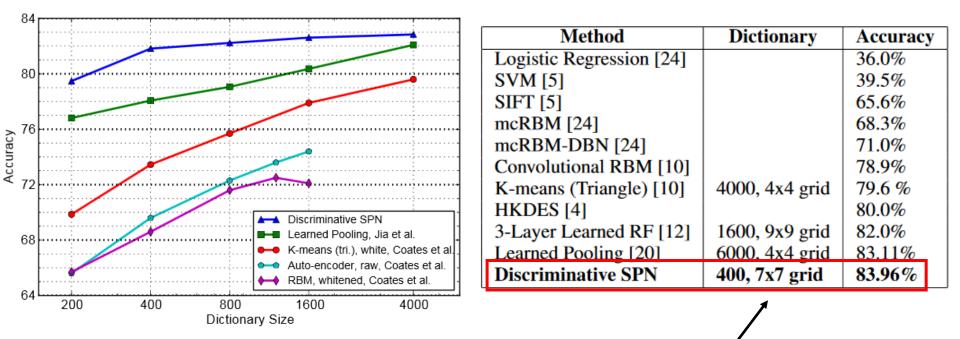
# Application of SPN: Discriminative Learning [Gens et al., 2012]

- Structure of SPN follows some convolutional structure
  - Each parts affects the weight of a target variable  $y_c$
  - Each mixture extracts image features using convolutional filters

• Hidden variable determine whether discard the part of filter/location of images



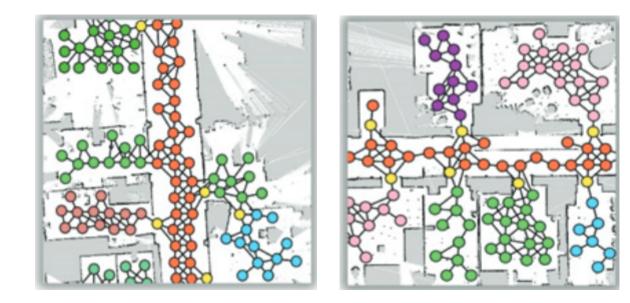
- Test accuracy on CIFAR-10 dataset
  - SPN estimation  $\max_c P(y_c | \mathbf{x}, \mathbf{h})$
  - Input images are preprocessed by feature extraction algorithm [Coates et al., 2011]
  - Vary number of extracted features for quality measure



• SPN works well even with a small number of feature size

Size of features

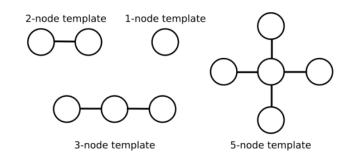
- Goal: Learn the graph structured semantic map for predicting the labels of unvisited location
  - Each node represents a location of semantic place that a robot can visit
  - Each node associate with some local observation  $X_i$  (vision, sound, ...) and its hidden label  $Y_i$  (office, corridor, ...)
  - Each edge represents a spatial relation between nodes representing navigability



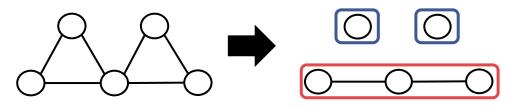
○-Graph node (Place)

-Labels (Semantic categories)

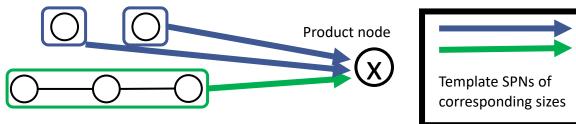
- Encoding samples of arbitrary size of graph into SPN is hard
  - Instead, learn SPN for small templates
  - Given training data, learn template SPNs for modelling distribution of  $X_i, Y_i$  from subgraphs



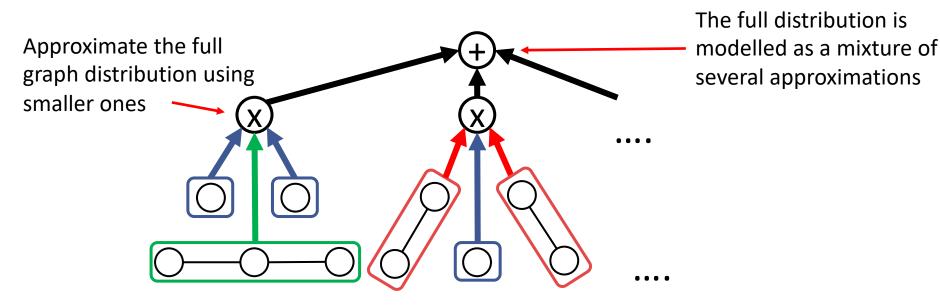
- Modelling distribution of test data
  - 1. Given a graph, decompose a graph into random disjoint templates



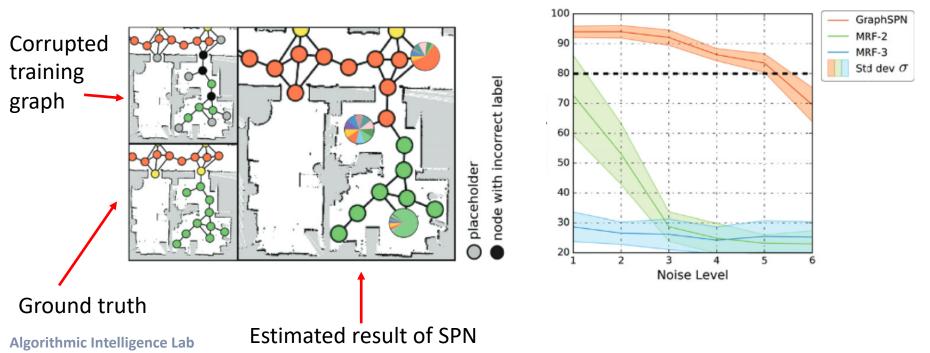
2. Add a product node and trained template SPNs on the graph as its children



- Modelling distribution of data
  - 1. Given a graph, decompose a graph into random disjoint templates
  - 2. Add a product node and trained template SPNs on the graph as its children
  - 3. Repeat 1-2 for fixed number
  - 4. For added product nodes, add a sum node as their parent. Use resulting SPN as a modelled distribution



- Experiment setup
  - Generate labels and observations under some ground truth distribution of  $X_i, Y_i$
  - Add some noisy labels which are most likely to be correct except for the true label
  - Add placeholders which have no label and observation
  - Train SPN with above corrupted/missing data
- Comparison with usual graphical models (Markov random field) of pairwise potentials and three nodes potentials



- Generative models enables us to model the probability distribution of training samples
- BM, RBM, DBM have high expressive power but both inference and learning are intractable
  - They lead major breakthrough of deep learning before 2012 (AlexNet arrives)
- Sum-product network exhibits complex structure, tractable inference and efficient learning using back-propagation

#### References

- [Smolensky, 1986] "Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory", Parallel Distributed Processing 1986 link : http://stanford.edu/~jlmcc/papers/PDP/Volume%201/Chap6 PDP86.pdf
- [Hinton, 2002] "Training Products of Experts by Minimizing Contrastive Divergence", Neural Computation 2002 link : <u>http://www.cs.toronto.edu/~fritz/absps/tr00-004.pdf</u>
- [Hinton et al., 2006] "A fast learning algorithm for deep belief nets", Neural Computation 2006 link : <u>https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf</u>
- [Wainwright et al., 2008] "Graphical Models, Exponential Families, and Variational Inference", FTML 2008 link : <u>https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08\_FTML.pdf</u>
- [Tieleman, 2008] "Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient", ICML 2008
   Link: https://arxiv.org/pdf/1705\_11140\_pdf

link : <u>https://arxiv.org/pdf/1705.11140.pdf</u>

- [Salakhutdinov et al., 2009] "Deep Boltzmann Machines", AISTATS 2009 link : <u>http://www.cs.toronto.edu/~fritz/absps/dbm.pdf</u>
- [Salakhutdinov et al., 2010] "Efficient Learning of Deep Boltzmann Machines", AISTATS 2010 link : <u>http://proceedings.mlr.press/v9/salakhutdinov10a/salakhutdinov10a.pdf</u>
- [Poon et al., 2012], "Sum-Product Networks: A New Deep Architecture", UAI 2012 link : <u>https://arxiv.org/ftp/arxiv/papers/1202/1202.3732.pdf</u>
- [Gens et al., 2012] "Discriminative Learning of Sum-Product Networks", NIPS 2012 link : <u>https://papers.nips.cc/paper/4516-discriminative-learning-of-sum-product-networks.pdf</u>
- [Gens et al., 2013] "Learning the Structure of Sum-Product Networks", ICML 2013 link : <u>http://proceedings.mlr.press/v28/gens13.pdf</u>

#### References

- [Nguyen et al., 2017], "Supervised Restricted Boltzmann Machines", UAI 2017 link : <u>http://auai.org/uai2017/proceedings/papers/106.pdf</u>
- [Pang et al., 2017], "A Joint Deep Boltzmann Machine (jDBM) Model for Person Identification Using Mobile Phone Data", IEEE Transactions on Multimedia link : <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7583729</u>
- [Zheng et al., 2018], "Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps", AAAI 2018

link : http://kaiyuzheng.me/documents/papers/zheng2018aaai.pdf