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Generative Model and Discriminative Model
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• Given an observed variable      and a target variable

• Discriminative model is a model of a conditional distribution
• e.g., neural networks (supervised)

• Generative model is a model of a joint distribution                 (or           )
• e.g., Boltzmann machines, sum-product networks (unsupervised)

*reference : https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_edit1.jpg
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Why Generative Model?
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• Generative models model a full probability distribution given data

• enables us to generate new data similar to existing (training) data 
• This is impossible under discriminative models

• Sampling methods (e.g., Markov chain) are required for generation

*reference : https://en.wikipedia.org/wiki/File:Cat_poster_1.jpg
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• Modelling a joint distribution of
• Mean Fields

•
• Tractable inference, low expressive power

• Multivariate Gaussian distributions
•
• Tractable inference, low expressive power

• Graphical models (e.g., RBM, DBM, etc.)
•

• Intractable inference, high expressive power with compact representation

• Generative adversarial networks
• for some neural network 
• Intractable inference, high expressive power with complex expression

Examples of Generative Models

5
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• Energy based model (EBM) is a joint distribution on a vector     satisfying

• Assignments with high energy appear less likely in EBM

• Examples of EBM
• Gaussian distribution

• Bernoulli distribution

• Poisson, binomial, ….

Energy Based Model

7

Energy
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Boltzmann Machine
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• Given a graph             , Boltzmann machine (BM) is a joint distribution on a 
binary vector                                        such that 

• Given a neighborhood of   , conditional distribution of      is  
• : logistic sigmoid function

where                                               is a set of neighbors of 

• To generate new data using BM, we need to learn parameters of BM
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• Given training data                               , learn the distribution  
• Goal (Maximum Likelihood Estimation): 

Maximize 

• is a convex function of parameters               
• Gradient descent converges to the global optimum with gradients

where                                                         is an empirical expectation

Learning BM

9
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• Problem: Calculating                   is intractable in general, i.e., NP-Hard
• Naïve approach requires                summations

• Instead of exact gradient, we approximate it using samples from 

• Gibbs sampler is the most popular sampling algorithm in BM

Learning BM

10

Pick a random Update      according 
to  

Choose an arbitrary 
initial state 

Repeat for fixed number of iterations
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• Learning BM
1. Choose initial 
2. Generate samples from                       using Gibbs sampler 
3. Update parameters with approximated gradients from samples

4. Repeat 2-3 until convergence

Learning BM

11



Algorithmic Intelligence Lab

Restricted Boltzmann Machine [Smolensky, 1986]
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• Restricted Boltzmann machine (RBM) is a bipartite Boltzmann machine with 
visible nodes and hidden nodes

• Hidden nodes can be described by hidden features of visible nodes

• In RBM structure, all hidden nodes are conditionally independent given visible 
nodes and vise versa

Higher order potential

*reference : http://arkitus.com/files/bms-eslami-slides.pptx
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• Given training data                               , learn the distribution  
• Goal: Maximize 

• is a non-convex function of parameters               
• But we still use gradient descent with gradients

Learning RBM

13
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• Due to conditional independence of RBM, block Gibbs sampling is possible 

• Samples generated by BM and RBM

Learning RBM

14

BM

RBM

*reference : http://arkitus.com/files/bms-eslami-slides.pptx
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• Convergence of a Gibbs sampler requires exponential number of iterations

• Contrastive divergence (CD- ) is a sampling method which runs only      
iterations of a Markov chain without convergence guarantee

• For rapid mixing, CD chooses a initial state of the Markov chain from the 
training data

• CD-1 works surprisingly well in practice even though there is no guarantee 

Contrastive Divergence [Hinton, 2002]
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=

• Persistent Contrastive divergence (PCD- ) runs     iterations of a Markov chain 
with initial state from the last Markov chain output

• We expect PCD chain approximates the full Markov chain of long iterations
• PCD requires more iterations than CD, but it shows better performance

Persistent Contrastive Divergence [Tieleman, 2008]

MNIST examples generated from RBM trained with PCD-1 and CD-1
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• For a supervised learning using RBM, add a class variable to RBM
• : binary input,    : multinomial label 
• Assume 

• Gradient descent for parameter learning
• Goal: Maximize log likelihood
• Similar to learning RBM, computing gradient requires 

but block Gibbs sampler is not available (inefficient sampling)
•

Application: Classification using RBM [Nguyen et al., 2017]

17
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• Gradient descent for parameter learning
• Solution: Use                                 for approximating

• Such an approximation is called the mean field approximation
• Solve the optimization minimizing KL divergence

• Formulation                               as a function of

Application: Classification using RBM [Nguyen et al., 2017]

18

Gradient w.r.t.       is tractable 

: Indicator function
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• Gradient descent for parameter learning
• Formulation of                                      as a function of

Application: Classification using RBM [Nguyen et al., 2017]
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Gradient w.r.t.       is tractable 

where
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• Gradient descent for parameter learning
• Problem: Computing below is hard

• Solution: Approximate                                   into tractable expression
• 1st order Taylor series approximation at      

Application: Classification using RBM [Nguyen et al., 2017]
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• Gradient descent for parameter learning
• Approximate                                   into polynomial 

• 2nd order Taylor series approximation at

• After Taylor series approximation,      can be optimized using coordinate descent
• Also, gradient can be approximated by approximating 

Application: Classification using RBM [Nguyen et al., 2017]

21

Closed form 
gradient exists
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• Evaluation: Exact inference is intractable, use approximated inference

where 

• Classification using
1. Above approximated output
2. kNN, SVN on the hidden feature space of RBM

Application: Classification using RBM [Nguyen et al., 2017]

22

Hidden feature projection of MNIST examples
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• Evaluation: Exact inference is intractable, use approximated inference

where 
• Classification using

1. Above approximated output
2. kNN, SVN on the hidden feature space of RBM

• Generation of RBM using Gibbs sampler

Application: Classification using RBM [Nguyen et al., 2017]

23
RBM VAE GAN
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Deep Boltzmann Machine [Salakhutdinov et al., 2009]
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• Deep Boltzmann machine (DBM) has a deeper structure than RBM
• Higher expressive power as DBM becomes deeper

• DBM also contains conditionally independence

Higher order &
complex potential

*reference : http://arkitus.com/files/bms-eslami-slides.pptx
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Learning DBM

25

• Learning DBM is similar to learning RBM

• Pretraining each layer with RBM empirically achieves better performance

• As used in [Nguyen et al., 2017], the mean field approximation is a good 
alternative for slow Gibbs sampler in DBM [Salakhutdinov, 2010]
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Learning DBM
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• Samples generated by BM, RBM and DBM

BM

RBM

DBM

*reference : http://arkitus.com/files/bms-eslami-slides.pptx
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• Goal: Extract a joint feature from image and audio data

• Joint DBM consisting of sub-DBMs corresponding 
to modalities

• Learning joint DBM
1. Extract features from each modality
2. Pretrain sub-DBM for each modality using extracted features
3. Pretrain the shared parameters
4. Fine tune the joint DBM with pretrained parameter

Application of DBM: Multimodal Learning [Pang et al., 2017]

27
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• Evaluation: Person identification using face image and audio data
• Logistic regression classifier is used for extracted DBM features 

• DBM also shows robustness on noisy unimodal data

Application of DBM: Multimodal Learning [Pang et al., 2017]

28
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• Modelling a joint distribution of
• Mean Fields

•
• Tractable inference, low expressive power

• Multivariate Gaussian distributions
•
• Tractable inference, low expressive power

• Graphical models (e.g., RBM, DBM, etc.)
•

• Intractable inference, complex but simple expression 

• Generative adversarial networks
• for some neural network 
• Intractable inference, complex expression

Recall: Examples of Generative Models

30

Complex and tractable model?

�
�

Simple and 
tractable models

Complex and 
intractable models
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• Goal: Model tractable distributions over

• Any distribution can be represented by network polynomial

• Idea: Learn coefficients of network polynomial which enables tractable inference
• Example: mean field

Network Polynomial

31

Iterative sum and product
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• Sum-product network (SPN) provides tractable distribution over
• is SPN
•

• SPN consists of iterative sum and product nodes (operations)
• e.g. 

Sum-product Network [Poon et al., 2012]

32*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Sum-product network (SPN) provides tractable distribution over

• is SPN

•
• Direct calculation of      requires       number of summations but…

• Observation:  If      is a polynomial with a form

then 

• What if there exist monomials such as      or          ?

Sum-product Network [Poon et al., 2012]

33*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Theorem: SPN is valid (                            ) if
• (consistent) There is no monomial containing both !", !̅"
• (complete) Children of sum node have same set of descendant leaf node

• Theorem implies that SPN is valid if it only contains    -th order monomials 
which consist of  all      or       for all 

Any SPN Produces Tractable and Valid Distribution?

34

Incomplete Inconsistent

*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Goal: calculate joint probability in valid SPN
•
•

Joint Probability in Valid SPN

35*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Goal: calculate marginal probability in valid SPN
•

Marginal Probability in Valid SPN

36*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Any distribution can be encoded using shallow large SPN [Poon et al., 2012]

• Some distribution can be encoded using compact deep SPN
• e.g. uniform distribution over states with even number of 1’s

Deep vs Shallow SPNs

37

Shallow large SPN
Deep compact SPN

*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf
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• Replace sum nodes by integral (or weighted sum) nodes

• Integral for continuous models and weighted sum for multivariate models

• When all     are Gaussian, SPN defines very large mixture of Gaussian

Extension to Multivariate/Continuous Models

38*reference : https://jmhldotorg.files.wordpress.com/2013/11/slidescambridgesumproductnetworks2013.pdf

Binary SPN Continuous/multivariate SPN
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• Learning SPN is similar to learning neural networks
• Select an appropriate structure for target dataset
• Define target loss function from target dataset/distribution
• Iteratively update weights using back-propagation

• Learning SPN
1. Initialize SPN with some ‘valid’ structure and random parameter
2. Choose an appropriate loss function (e.g., maximum likelihood:                             )
3. Update weight until convergence

• Weight update algorithm can be generally chosen (e.g., gradient descent)
• Gradient descent can be done using back-propagation

4. Prune zero weighted edges

Learning SPN

39
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• Recall: Intuition behind SPN
• Each sum node represents the mixture of distributions
• Each product node represents the independence of variables

• Given samples, structure learning of SPN is an iterative procedure of
• Finding independence (independence test, e.g., G-test of pairwise independence)
• Finding similar instances (clustering methods, e.g., k-means clustering)

Structure Learning of SPN [Gens et al., 2013]

40
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• Completing the missing left half of images
• SPN is trained using Caltech-101, Olivetti datasets
• Consider each pixel as a mixture of Gaussian with unit variance

• Comparison with several algorithms

Application of SPN: Image Completion [Poon et al., 2012]

41

Top to bottom: original, SPN, DBM, DBN, PCA, nearest neighbor
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• Goal: Use SPN as an image classifier

• Problem
• Finding deep valid structure for high dimensional variable may decrease the 

classification accuracy as it restrict the number of edges
• Modelling continuous image pixels into Gaussian distribution may not be realistic

• Idea: Ignore the distribution of input    . Only model the distribution of target 
variable     given

• Learn SPN which maximizes
• Hidden variables are introduced to enhance the expressive power

Application of SPN: Discriminative Learning [Gens et al., 2012]

42
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• Structure of SPN follows some convolutional structure
• Each parts affects the weight of a target variable 
• Each mixture extracts image features using convolutional filters

• Hidden variable determine whether discard the part of filter/location of images

Application of SPN: Discriminative Learning [Gens et al., 2012]

43

Extracted features 
from input
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• Test accuracy on CIFAR-10 dataset
• SPN estimation 

• Input images are preprocessed by feature extraction algorithm [Coates et al., 2011]
• Vary number of extracted features for quality measure

• SPN works well even with a small number of feature size

Application of SPN: Discriminative Learning [Gens et al., 2012]

44

Size of features
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• Goal: Learn the graph structured semantic map for predicting the labels of 
unvisited location
• Each node represents a location of semantic place that a robot can visit
• Each node associate with some local observation (vision, sound, …) and its 

hidden label (office, corridor, …)
• Each edge represents a spatial relation between nodes representing navigability

Application of SPN: Learning Graph Structured Data [Zheng et al, 2018] 

45
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• Encoding samples of arbitrary size of graph into 
SPN is hard
• Instead, learn SPN for small templates
• Given training data, learn template SPNs for

modelling distribution of            from subgraphs

• Modelling distribution of test data
1. Given a graph, decompose a graph into random disjoint templates

2. Add a product node and trained template SPNs on the graph as its children

Application of SPN: Learning Graph Structured Data [Zheng et al, 2018] 

46

x Template SPNs of 
corresponding sizes

Product node
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• Modelling distribution of data
1. Given a graph, decompose a graph into random disjoint templates
2. Add a product node and trained template SPNs on the graph as its children
3. Repeat 1-2 for fixed number
4. For added product nodes, add a sum node as their parent. Use resulting SPN as a 

modelled distribution

Application of SPN: Learning Graph Structured Data [Zheng et al, 2018] 

47

x x

+

….

….

Approximate the full 
graph distribution using 
smaller ones

The full distribution is 
modelled as a mixture of 
several approximations
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• Experiment setup
• Generate labels and observations under some ground truth distribution of  
• Add some noisy labels which are most likely to be correct except for the true label
• Add placeholders which have no label and observation
• Train SPN with above corrupted/missing data

• Comparison with usual graphical models (Markov random field) of pairwise 
potentials and three nodes potentials

Application of SPN: Learning Graph Structured Data [Zheng et al, 2018] 

48

Ground truth

Corrupted 
training 
graph

Estimated result of SPN
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• Generative models enables us to model the probability distribution of training 
samples

• BM, RBM, DBM have high expressive power but both inference and learning are 
intractable
• They lead major breakthrough of deep learning before 2012 (AlexNet arrives)

• Sum-product network exhibits complex structure, tractable inference and 
efficient learning using back-propagation

Summary

49
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