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• Neural networks that use convolution in place of general matrix multiplication
• Sharing parameters across multiple image locations

• Translation equivariant (invariant with pooling) operation

• Specialized for processing data that has a known, grid-like topology
• e.g. time-series data (1D grid), image data (2D grid)

Recap: Convolutional neural networks
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*sources : 
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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• CNNs have been tremendously successful in practical applications

Recap: Convolutional neural networks

3

Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

Classification and retrieval [Krizhevsky et al., 2012]
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• Typically, designing a CNN model requires some effort
• There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, …

• It is costly to measure the performance of each model and choose the best one

• Example: LeNet for handwritten digits recognition [LeCun et al., 1998]

• However, LeNet is not enough to solve real-world problems in AI domain
• CNNs are typically applied to extremely complicated domains, e.g. raw RGB images 

• We need to design a larger model to solve them adequately 

Why do we develop CNN architectures?

4
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• Problem: The larger the network, the more difficult it is to design
1. Optimization difficulty

• When the training loss is degraded

• Deeper networks are typically much harder to optimize

• Related to gradient vanishing and exploding

2. Generalization difficulty 

• The training is done well, but the testing error is degraded

• Larger networks are more likely to over-fit, i.e., regularization is necessary

• Good architectures should be scalable that solves both of these problems

Why do we develop CNN architectures?
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*sources : 
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
- https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png

https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png
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1. Evolution of CNN Architectures
• AlexNet and ZFNet

• VGGNet and GoogLeNet

• Batch normalization and ResNet

2. Modern CNN Architectures
• Beyond ResNet

• Toward automation of network design

3. Observational Study on Modern Architectures
• ResNets behave like ensembles of relatively shallow nets

• Visualizing the loss landscape of neural nets

• Essentially no barriers in neural network energy landscape
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• ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
• ImageNet dataset: a large database of visual objects

• ~14M labeled images, 20K classes

• Human labels via Amazon MTurk

• Classification: 1,281,167 images for training / 1,000 categories

• Annually ran from 2010 to 2017, and now hosted by Kaggle

• For details, see [Russakovsky et al., 2015]

Evolution of CNN architectures

8*source :  http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png

http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png
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Evolution of CNN architectures
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13.51%
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7.33%
6.66%

4.90%
3.57%

2.99%
2.25%

Trend on ILSVRC classification top-5 error rates

2012 20152013 2014 2016 ~

AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections

• ILSVRC contributed greatly to development of CNN architectures
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• The first winner to use CNN in ILSVRC, with an astounding improvement

• Top-5 error is largely improved: 25.8% → 15.3%

• The 2nd best entry at that time was 26.2%

• 8-layer CNN (5 Conv + 3 FC) 

• Utilized 2 GPUs (GTX-580 × 2) for training the network
• Split a single network into 2 parts to distribute them into each GPU

Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012] 

11

Convolutional layer Max pooling Fully-connected layers

*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
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• Local response normalization layers (LRN)
• Detects high-frequency features with a big neuron response

• Dampens responses that are uniformly large in a local neighborhood

• Useful when using neurons with unbounded activations (e.g. ReLU)

Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012] 

12*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012

Next, ZFNet
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• A simple variant of AlexNet, placing the 3rd in ILSVRC’13 (15.3% → 13.5%)
• Smaller kernel at input: 11 × 11 → 7 × 7

• Smaller stride at input: 4 → 2

• The # of hidden filters are doubled

• Lessons:
1. Design principle: Use smaller kernel, and smaller stride

2. CNN architectures can be very sensitive on hyperparameters

Evolution of CNN architectures: ZFNet [Zeiler et al., 2014] 

13*source :  Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014
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• Networks were getting deeper 
• AlexNet: 8 layers

• VGGNet: 19 layers

• GoogleNet: 24 layers

• Both focused on parameter efficiency of each block
• Mainly to allow larger networks computable at that time

Evolution of CNN architectures: VGGNet and GoogleNet
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AlexNet

VGGNet

GoogLeNet

*sources : 
- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015

Next, VGGNet
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• The 2nd place in ILSVRC’14 (11.7% → 7.33%)

• Designed using only 3 × 3 kernels for convolutions

• Lesson: Stacking multiple 3 × 3 is advantageous than using other kernels

• Example: ( 3 × 3 × 3) v.s. (7 × 7)
• Essentially, they get the same receptive field

• ( 3 × 3 × 3) have less # parameters

• 3 × C × 3 × 3 × C = 𝟐𝟕𝐂𝟐

• C × 7 × 7 × C = 𝟒𝟗𝐂𝟐

• ( 3 × 3 × 3) gives more non-linearities

Evolution of CNN architectures: VGGNet [Simonyan et al., 2014]

16*source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 

Next, GoogLeNet
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• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• Inception module
• Multiple operation paths with different receptive fields

• Each of the outputs are concatenated in filter-wise

• Capturing sparse patterns in a stack of features

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

17*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• Use of 1 × 1 convolutions
• Naïve inceptions can be too expensive to scale up

• Dimension reduction before expensive convolutions

• They also gives more non-linearities

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

18*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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• The winner of ILSVRC’14 (11.7% → 6.66%)

• Achieved 12× fewer parameters than AlexNet

• cf. 1 × 1 convolutions
• Linear transformation done in pixel-wise

• Can be represented by a matrix

• Useful for changing # channels efficiently

Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

19

*sources : 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015
- Lana Lazebnik, “Convolutional Neural Network Architectures: from LeNet to ResNet”.
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• Training a deep network well had been a delicate task
• It requires a careful initialization, with adequately low learning rate

• Gradient vanishing: networks containing saturating non-linearity

• Ioffe et al. (2015): Such difficulties are come from internal covariate shift

• Motivation: “The cup game analogy”

• Similar problem happens during training of deep neural networks

• Updates in early layers may shift the inputs of later layers too much 

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]
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“Go water 
the plants!”

“Got water 
in your pants!”

“kite bang eat 
face monkey…”

*sources : 
- Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
- https://www.quora.com/Why-does-batch-normalization-help

http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
https://www.quora.com/Why-does-batch-normalization-help
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• Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

• Idea: A normalization layer that behaves differently in training and testing

1. During training, input distribution of     only depends on γ and 𝛽

• Training mini-batches are always normalized into mean 0, variance 1

2. There is some gap between       and             (      , resp.) 

• Noise injection effect for each mini-batch ⇒ Regularization effect

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]

22

Normalize Affine transform

Trainable

Training

Testing

*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015
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• Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network
• BN allows much higher learning rates, i.e. faster training

• BN stabilizes gradient vanishing on saturating non-linearities

• BN also has its own regularization effect, so that it allows to reduce weight decay, 
and to remove dropout layers

• BN makes GoogLeNet much easier to train with great improvements

Evolution of CNN architectures: Batch normalization [Ioffe et al., 2015]

23
*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015

Next, ResNet
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• The winner of ILSVRC’15 (6.66% → 3.57%)

• ResNet is the first architecture succeeded to train >100-layer networks
• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

• 56-layer net gets higher training error than 20-layers network

• Deeper networks are much harder to optimize even if we use BNs

• It’s not due to overfitting, but optimization difficulty
• Quiz: Why is that?

Evolution of CNN architectures: ResNet [He et al., 2016a]

24

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• The winner of ILSVRC’15 (6.66% → 3.57%)

• ResNet is the first architecture succeeded to train >100-layer networks
• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

• It’s not due to overfitting, but optimization difficulty
• Quiz: Why is that?

• If the 56-layer model optimized well, then it must be better than the 20-layer

• There is a trivial solution for the 36-layer: identity

Evolution of CNN architectures: ResNet [He et al., 2016a]
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20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• Motivation: A non-linear layer may struggle to represent an identity function
• Due to its internal non-linearities, e.g. ReLU

• This may cause the optimization difficulty on large networks

• Idea: Reparametrize each layer to make them easy to represent an identity
• When all the weights are set to zero, the layer represents an identity

Evolution of CNN architectures: ResNet [He et al., 2016a]

26*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Evolution of CNN architectures: ResNet [He et al., 2016a]

27

• Plain nets v.s. ResNets

• Deeper ResNets can be trained without any difficulty

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
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Evolution of CNN architectures: ResNet [He et al., 2016a] 

28

• Identity connection resolved a major difficulty on optimizing large networks

• Revolution of depth: Training >100-layer network without difficulty
• Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b] 

• ResNet also shows good generalization ability as well

Revolution of 
depth 

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
- He et al. "Identity mappings in deep residual networks.", ECCV 2016
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Evolution of CNN architectures

29

• Comparisons on ImageNet for a single model of popular CNNs

*source :  https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
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Beyond ResNet

31

• Various architectures now are based on ResNet
• ResNet with stochastic depth [Huang et al., 2016]

• Wide ResNet [Zagoruyko et al., 2016]

• ResNet in ResNet [Targ et al., 2016]

• ResNeXt [Xie et al., 2016]

• PyramidNet [Han et al., 2016]

• Inception-v4  [Szegedy et al., 2017]

• DenseNet [Huang et al., 2017]

• Dual Path Network [Chen et al., 2017]

• Transition of design paradigm: Optimization ⇒ Generalization 
• People are now less concerned about optimization problems in a model 

• Instead, they now focus more on its generalization ability

• “How well does an architecture generalize as its scale grows?”

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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• Wide Residual Networks [Zagoruyko et al., 2016]
• Residuals can also work to enlarge the width, not only its depth

• Residual blocks with × k wider filters 

• Increasing width instead of depth can be more computationally efficient

• GPUs are much better on handling "wide-but-shallow" than "thin-but-deep“

• WRN-50 outperforms ResNet-152

• Deep Networks with Stochastic Depth [Huang et al., 2016]
• Randomly drop a subset of layers during training

• Bypassing via identity connections

• Reduces gradient vanishing, and training time as well

Beyond ResNet: Improving ResNet

32*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University



Algorithmic Intelligence Laboratory

• ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a 

residual block (“cardinality”)

• Increasing cardinality is more effective than 
going deeper or wider

• DenseNet [Huang et al. 2017]
• Passing all the previous representation 

directly via concatenation of features

• Strengthens feature propagation and 
feature reuse

Beyond ResNet

33*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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• ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a residual block (“cardinality”)

• Increasing cardinality is more effective than going deeper or wider

• DenseNet [Huang et al. 2017]
• Passing all the previous representation directly via concatenation of features

• Strengthens feature propagation and feature reuse

Beyond ResNet
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Next, automation of design

*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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• Although the CNN architecture has evolved greatly, our design principles are 
still relying on heuristics
• Smaller kernel and smaller stride, increase cardinality instead of width ...

• Recently, there have been works on automatically finding a structure which can 
outperform existing human-crafted architectures

1. Search space: Naïvely searching every model is nearly impossible

2. Searching algorithm: Evaluating each model is very costly, and black-boxed

Toward automation of network design

35

A sample architecture found in [Brock et al., 2018] Next, NASNet

*source :  Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Motivation: modern architectures are built simply: a repeated modules
• Try not to search the whole model, but only cells modules

• Normal cell and Reduction cell (cell w/ stride 2)

Toward automation of network design: NASNet [Zoph et al., 2018]

36

CIFAR

ImageNet

*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks

• Each block is determined by selecting methods

1. Select two hidden states from ℎ𝑖, ℎ𝑖−1 or of existing block

2. Select methods to process for each of the selected states

3. Select a method to combine the two states

• (1) element-wise addition or (2) concatenation

Toward automation of network design: NASNet [Zoph et al., 2018]

37*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks

• Example: 𝐵 = 4

Toward automation of network design: NASNet [Zoph et al., 2018]

38*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018



Algorithmic Intelligence Laboratory

• Designing a good search space is important in architecture searching

• NASNet reduces the search space by incorporating our design principles

• Set of methods to be selected based on their prevalence in the CNN literature

• Any searching methods can be used
• Random search [Bergstra et al., 2012] could also work

• RL-based search [Zoph et al., 2016] is mainly used in this paper

Toward automation of network design: NASNet [Zoph et al., 2018]

39*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

• All architecture searches are performed on CIFAR-10
• NASNet-A: State-of-the-art error rates could be achieved

• NASNet-B/C: Extremely parameter-efficient models were also found

Toward automation of network design: NASNet [Zoph et al., 2018]

40*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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NASNet-A

*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

• All architecture searches are performed on CIFAR-10

• Cells found in CIFAR-10 could also transferred well into ImageNet

Toward automation of network design: NASNet [Zoph et al., 2018]

42*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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43*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• Architecture searching is still an active research area
• AmoebaNet [Real et al., 2018]

• Efficient-NAS (ENAS) [Pham et al., 2018]

• NAONet [Luo et al., 2018]

Toward automation of network design

44*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018
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• ResNet improved generalization by revolution of depth

Quiz: But, does it fully explain why deep ResNets generalize well?

• Increasing depth does not always mean better generalization
• Naïve CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

46*source : Eigen et al., “Understanding Deep Architectures using a Recursive Convolutional Network”, Arxiv 2014
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• Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead 
of a single ultra-deep network

• Each module in a ResNet receives a mixture of 𝟐𝒏−𝟏 different distributions

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

47*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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• Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead 
of a single ultra-deep network
• Deleting a module in ResNet has a minimal effect on performance

• Similar effect as removing 2𝑛−1 paths out of 2𝑛: still 2𝑛−1 paths alive!

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

48

Next, visualizing loss functions in CNN

*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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• Trainability of neural nets is highly dependent on network architecture

• However, the effect of each choice on the underlying loss surface is unclear
• Why are we able to minimize highly non-convex neural loss?

• Why do the resulting minima generalize?

• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• 𝛿 and 𝜂 are sampled from a random Gaussian distribution

• To remove some scaling effect, 𝛿 and 𝜂 are normalized filter-wise

Visualizing the loss landscape of neural nets [Li et al., 2018]

49

Local minima Random directions

𝒊𝐭𝐡 layer, 𝒋𝐭𝐡 filter

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

50

ResNet-56

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]
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ResNet, no shortcuts ⇒ sharp minima

ResNet ⇒ flat minima

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• Wide-ResNet lead the network toward more flat minimizer

• WideResNet-56 with width-multiplier 𝑘 = 1, 2, 4, 8

• Increased width flatten the minimizer in ResNet

Visualizing the loss landscape of neural nets [Li et al., 2018]
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WRN-56

WRN-56, no shortcuts

Next, minimum energy paths in CNNs

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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• Draxler et al. (2018) analyzes minimum energy paths [Jónsson et al., 1998] 
between two local minima 𝜃1 and  𝜃2 of a given model: 

- They found a path 𝜃1 → 𝜃2 with almost zero barrier

• A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures

• e.g. ResNet, DenseNet

• Minima of a loss of deep neural networks 
are perhaps on a single connected manifold

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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• For a given model with two local minima 𝜃1 and 𝜃2, they applied AutoNEB
[Kolsbjerg et al., 2016] to find a minimum energy path 

• A state-of the-art for connecting minima from molecular statistical mechanics

• The deeper and wider an architecture, 
the lower are the saddles between minima 

• They essentially vanish for current-day 
deep architectures

• The test accuracy is also preserved

• CIFAR-10: < +0.5%

• CIFAR-100: < +2.2%

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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• The deeper and wider an architecture, the lower are the barriers 

• They essentially vanish for current-day deep architectures

• Why do this phenomenon happen?

• Parameter redundancy may help to flatten the neural loss

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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• The larger the network, the more difficult it is to design
1. Optimization difficulty

2. Generalization difficulty

• ImageNet challenge contributed greatly to development of CNN architectures

• ResNet: Optimization ⇒ Generalization

• Many variants of ResNet have been emerged 

• Very recent trends towards automation of network design

• Many observational study supports the advantages of modern CNN 
architectures

Summary
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