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Recap: Convolutional neural networks

* Neural networks that use convolution in place of general matrix multiplication
e Sharing parameters across multiple image locations
* Translation equivariant (invariant with pooling) operation

» Specialized for processing data that has a known, grid-like topology
* e.g.time-series data (1D grid), image data (2D grid)
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*sources :
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/

- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 2
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Recap: Convolutional neural networks

* CNNs have been tremendously successful in practical applications
Classification and retrieval [Krizhevsky et al., 2012]
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Why do we develop CNN architectures?

* Typically, designing a CNN model requires some effort
* There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, ...
* Itis costly to measure the performance of each model and choose the best one

* Example: LeNet for handwritten digits recognition [LeCun et al., 1998]
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* However, LeNet is not enough to solve real-world problems in Al domain
* CNNs are typically applied to extremely complicated domains, e.g. raw RGB images
* We need to design a larger model to solve them adequately
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Why do we develop CNN architectures?

* Problem: The larger the network, the more difficult it is to design

1. Optimization difficulty
* When the training loss is degraded
* Deeper networks are typically much harder to optimize
* Related to gradient vanishing and exploding

2. Generalization difficulty
e The training is done well, but the testing error is degraded
* Larger networks are more likely to over-fit, i.e., regularization is necessary

* Good architectures should be scalable that solves both of these problems
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*sources :
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
- https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png
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Evolution of CNN architectures

* ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
* ImageNet dataset: a large database of visual objects
e ~14M labeled images, 20K classes
* Human labels via Amazon MTurk
 Classification: 1,281,167 images for training / 1,000 categories
* Annually ran from 2010 to 2017, and now hosted by Kaggle
* For details, see [Russakovsky et al., 2015]

Person
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Evolution of CNN architectures

* ILSVRC contributed greatly to development of CNN architectures

a SIFT + FVs (2012) Trend on ILSVRC classification top-5 error rates
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3.57% .
2012 2013 2014 2015 2016 ~

Algorithmic Intelligence Laboratory



Evolution of CNN architectures

* ILSVRC contributed greatly to development of CNN architectures
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Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012]

* The first winner to use CNN in ILSVRC, with an astounding improvement
* Top-5 error is largely improved: 25.8% — 15.3%
e The 2" best entry at that time was 26.2%

e 8-layer CNN (5 Conv + 3 FC)

e Utilized 2 GPUs (GTX-580 X 2) for training the network
e Split a single network into 2 parts to distribute them into each GPU
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Algorithmic Intelligence Laboratory *source : Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012 11



Evolution of CNN architectures: AlexNet [Krizhevsky et al., 2012]

* Local response normalization layers (LRN)

* Detects high-frequency features with a big neuron response

* Dampens responses that are uniformly large in a local neighborhood

e Useful when using neurons with unbounded activations (e.g. ReLU)
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*source : Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012 12



Evolution of CNN architectures: ZFNet [Zeiler et al., 2014]

* A simple variant of AlexNet, placing the 3" in ILSVRC’13 (15.3% — 13.5%)
* Smaller kernel atinput: 11 X 11 -7 X7
* Smaller stride at input: 4 — 2
* The # of hidden filters are doubled

* Lessons:
1. Design principle: Use smaller kernel, and smaller stride
2. CNN architectures can be very sensitive on hyperparameters
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Algorithmic Intelligence Laboratory *source : Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014 13



Evolution of CNN architectures

* ILSVRC contributed greatly to development of CNN architectures

Trend on ILSVRC classification top-5 error rates
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Evolution of CNN architectures: VGGNet and GoogleNet

* Networks were getting deeper
* AlexNet: 8 layers
* VGGNet: 19 layers
e GoogleNet: 24 layers

Both focused on parameter efficiency of each block
* Mainly to allow larger networks computable at that time
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*sources :

Next, VGGNet

- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012

Algorithmic Intelligence Laboratory - Szegedy et al., “Going deeper with convolutions”. CVPR 2015

- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014.
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Evolution of CNN architectures: VGGNet [Simonyan et al., 2014]

The 2" place in ILSVRC’14 (11.7% — 7.33%)

Designed using only 3 X 3 kernels for convolutions

Lesson: Stacking multiple 3 X 3 is advantageous than using other kernels

Example: ((3 X 3) X 3) v.s. (7 X 7)
* Essentially, they get the same receptive field
* ((3 x 3) x 3) have less # parameters ]

. 3><(C><((3><3)xc))=27c2
« Cx((7%x7)xC)=49C?
* ((3 x 3) x 3) gives more non-linearities
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Next, GooglLeNet

Algorithmic Intelligence Laboratory *source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv2014. 16



Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

 The winner of ILSVRC’14 (11.7% — 6.66%)

* Achieved 12X fewer parameters than AlexNet

* Inception module

= B
* Multiple operation paths with different receptive fields o e

* Each of the outputs are concatenated in filter-wise

e Capturing sparse patterns in a stack of features _——

-

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

~_

Previous layer

(a) Inception module, naive version
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*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

 The winner of ILSVRC’14 (11.7% — 6.66%)

* Achieved 12X fewer parameters than AlexNet

 Use of 1 X 1 convolutions

* Naive inceptions can be too expensive to scale up

* Dimension reduction before expensive convolutions
* They also gives more non-linearities

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

[

1

(b) Inception module with dimensionality reduction

Algorithmic Intelligence Laboratory
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*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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Evolution of CNN architectures: GoogleNet [Szegedy et al., 2015]

 The winner of ILSVRC’14 (11.7% — 6.66%)

* Achieved 12X fewer parameters than AlexNet

pfeefee:

B i
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* Linear transformation done in pixel-wise 20 e e
e Can be represented by a matrix s
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*sources :

- Szegedy et al., “Going deeper with convolutions”. CVPR 2015
Algorithmic Intelligence Laboratory

- Lana Lazebnik, “Convolutional Neural Network Architectures: from LeNet to ResNet”.
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Evolution of CNN architectures

* ILSVRC contributed greatly to development of CNN architectures

26.17% Trend on ILSVRC classification top-5 error rates

()

Batch Normalization (2015)
* By Google
* Preventing internal covariate shift

Residual Network (2016)
o/ e
15.32% 13.51% * 15t place in 2015
* By MSRA
11.74% * > 100 layers CNNs via
‘ identity skip connections

o o
7.33% 6.66%
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4.90%

2012 2013 2014 2015 2016 ~

Algorithmic Intelligence Laboratory



Evolution of CNN architectures: Batch normalization [loffe et al., 2015]

* Training a deep network well had been a delicate task

* |t requires a careful initialization, with adequately low learning rate
* Gradient vanishing: networks containing saturating non-linearity

 |offe et al. (2015): Such difficulties are come from internal covariate shift

* Motivation: “The cup game analogy”
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Similar problem happens during training of deep neural networks

e Updates in early layers may shift the inputs of later layers too much

Algorithmic Intelligence Laboratory -

*sources :

- loffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch Normalization.pptx
https://www.quora.com/Why-does-batch-normalization-help
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Evolution of CNN architectures: Batch normalization [loffe et al., 2015]

e Batch normalization (BN) accelerates neural network training by eliminating
internal covariate shift inside the network

* Idea: A normalization layer that behaves differently in training and testing

Normalize

Affine transform

O,
*ﬁ
=

Trainable

1. During training, input distribution of ¥ only depends ony and f8

* Training mini-batches are always normalized into mean 0, variance 1

2. There is some gap between s and E[uz] (0123, resp.)

* Noise injection effect for each mini-batch = Regularization effect

Algorithmic Intelligence Laboratory

*source : loffe et al., “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. ICML 2015 22



Evolution of CNN architectures: Batch normalization [loffe et al., 2015]

e Batch normalization (BN) accelerates neural network training by eliminating
internal covariate shift inside the network

* BN allows much higher learning rates, i.e. faster training
* BN stabilizes gradient vanishing on saturating non-linearities

* BN also has its own regularization effect, so that it allows to reduce weight decay,
and to remove dropout layers

BN makes GooglLeNet much easier to train with great improvements

Model Resolution Crops Models Top-1 error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 | 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Next, ResNet

*source : loffe et al., “Batch Normalization: Accelerating Deep
Algorithmic Intelligence Laboratory Network Training by Reducing Internal Covariate Shift”. ICML 2015 23



Evolution of CNN architectures: ResNet [He et al., 2016a]

* The winner of ILSVRC’15 (6.66% — 3.57%)

* ResNet is the first architecture succeeded to train >100-layer networks
* Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
* 56-layer net gets higher training error than 20-layers network
* Deeper networks are much harder to optimize even if we use BNs

* It’s not due to overfitting, but optimization difficulty
* Quiz: Why is that?

‘“\fw\

N— g
-~

56-layers

20-layers 36-layers
Sh-laver

training error (%)

20-layer

: : 3
iter. (led)

Algorithmic Intelligence Laboratory *source : He et al., “Deep residual learning for image recognition”. CVPR 2016 24



Evolution of CNN architectures: ResNet [He et al., 2016a]

* The winner of ILSVRC’15 (6.66% — 3.57%)

* ResNet is the first architecture succeeded to train >100-layer networks
* Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

* It’s not due to overfitting, but optimization difficulty
* Quiz: Why is that?

* If the 56-layer model optimized well, then it must be better than the 20-layer
* There is a trivial solution for the 36-layer: identity

|

N— g

20-layers 36-layers
Sh-laver

—~

56-layers

training error (%)

20-layer

: : 3
iter. (led)

Algorithmic Intelligence Laboratory *source : He et al., “Deep residual learning for image recognition”. CVPR 2016 25



Evolution of CNN architectures: ResNet [He et al., 2016a]

* Motivation: A non-linear layer may struggle to represent an identity function
* Due to its internal non-linearities, e.g. RelLU

* This may cause the optimization difficulty on large networks

* Idea: Reparametrize each layer to make them easy to represent an identity
* When all the weights are set to zero, the layer represents an identity

"

weight layer

lrelu

weight layer

lu
HO) lre
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weight layer

F(x)

lrelu

weight layer

H(x)=F(x)+x

*source : He et al., “Deep residual learning for image recognition”. CVPR 2016

identity
X
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Evolution of CNN architectures: ResNet [He et al., 2016a]

Plain nets v.s. ResNets

ImageNet plain nets
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Deeper ResNets can be trained without any difficulty

this model has

lower time complexity

than VGG-16/19
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- Heetal., “Deep residual learning for image recognition”. CVPR 2016

- He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016. 27



Evolution of CNN architectures: ResNet [He et al., 2016a]

 |dentity connection resolved a major difficulty on optimizing large networks

* Revolution of depth: Training >100-layer network without difficulty
* Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b]

* ResNet also shows good generalization ability as well

28.2

152 layers ’ Revolution of
A depth

\ 16.4

22 layers | I 19 layers ]

' 6.7 /-3

L I I

ILSVRC'15 | ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)

*sources :

- Heetal., “Deep residual learning for image recognition”. CVPR 2016

- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
Algorithmic Intelligence Laboratory - He et al. "Identity mappings in deep residual networks.", ECCV 2016 28



Evolution of CNN architectures

e Comparisons on ImageNet for a single model of popular CNNs

Inception-v4
80 - e
Inception-v3 ‘ . ResNet-152
s |ResNet-50 . ' VGG-16 VGG-19
1 ResMNet-101
. ResNet-34
£ 70 ResNet-18
=
@ -] GoogleNet
3 EMNet
H 65 4
';;L' o BN-NIN
~ 60 4 5M 35M  65M  95M  125M  155M
BM-AlexMNet
55 “AlexNet
50 : : . : . : : .
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Algorithmic Intelligence Laboratory *source : https://towardsdatascience.com/neural-network-architectures-156e5bad51ba 29
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Beyond ResNet

e Various architectures now are based on ResNet

ResNet with stochastic depth [Huang et al., 2016]
Wide ResNet [Zagoruyko et al., 2016]

X
ResNet in ResNet [Targ et al., 2016] weigh‘trlayer
ResNeXt [Xie et al., 2016] F(x) o dentity
PyramidNet [Han et al., 2016] weight layer X

Inception-v4 [Szegedy et al., 2017]
DenseNet [Huang et al., 2017]
Dual Path Network [Chen et al., 2017]

H(x)=F(x)+x

* Transition of design paradigm: Optimization = Generalization

People are now less concerned about optimization problems in a model
Instead, they now focus more on its generalization ability
“How well does an architecture generalize as its scale grows?”

*source : He et al., “Deep residual learning for image recognition”. CVPR 2016 31



Beyond ResNet: Improving ResNet

* Wide Residual Networks [Zagoruyko et al., 2016]
* Residuals can also work to enlarge the width, not only its depth
* Residual blocks with X k wider filters
* Increasing width instead of depth can be more computationally efficient
* GPUs are much better on handling "wide-but-shallow" than "thin-but-deep”
 WRN-50 outperforms ResNet-152

* Deep Networks with Stochastic Depth [Huang et al., 2016]
* Randomly drop a subset of layers during training
* Bypassing via identity connections
* Reduces gradient vanishing, and training time as well

*source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University 32



Beyond ResNet

256-d out

* ResNeXt [Xie et al., 2016]

* Aggregating multiple parallel paths inside a
residual block (“cardinality”)

* Increasing cardinality is more effective than
going deeper or wider

* DenseNet [Huang et al. 2017]

* Passing all the previous representation
directly via concatenation of features

» Strengthens feature propagation and
feature reuse

256-din

Densa Block 1 Dense Block 2 Dense Block 3

r

Source layear (1)
™ 1

Lh

 Transition layer 1. Transilion layer 2 ; Classification layer
2 4 & & W 1F z 4 & 8 10 12 @ 4 8 & W n

Target layer () Target layer () Target layer ({) Dense Block

Algorithmic Intelligence Laboratory *source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University 33



Beyond ResNet

* ResNeXt [Xie et al., 2016]
* Aggregating multiple parallel paths inside a residual block (“cardinality”)

* Increasing cardinality is more effective than going deeper or wider

* DenseNet [Huang et al. 2017]
* Passing all the previous representation directly via concatenation of features

» Strengthens feature propagation and feature reuse

Results on ImageNet

26 @@ ResNet 26 @@ ResNet
0@ ResNeXt OO0 ResNeXt
25 @@ DenseNet (original) 25 @—@ DenseNet (original)
— BB DenseNet (efficient) - EHE DenseNet (efficient)
S 94 DenseNet cosine (efficient) ) 924 Y% DenseNet cosine (efficient)
= =
= = ;
@ 23 N © 23 3
iy P i P
% 0l ; % i ‘:z'\\"J
& 22 i B 22 - $Y:
At Gkt
DenseNet \\-C\' DenseNet e v
21 Cosine-264 (k=32 21 Cosine-264-(k=32)
920 DenseNet Cosine-264 (k=48) e 20 DenseNet Cosine-264 (k=48) ®
0 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25 30 35
# Parameters x10° # GFLOPs

Next, automation of design

Algorithmic Intelligence Laboratory *source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University 34



Toward automation of network design

» Although the CNN architecture has evolved greatly, our design principles are
still relying on heuristics

* Smaller kernel and smaller stride, increase cardinality instead of width ...

* Recently, there have been works on automatically finding a structure which can
outperform existing human-crafted architectures

1. Search space: Naively searching every model is nearly impossible
2. Searching algorithm: Evaluating each model is very costly, and black-boxed

A sample architecture found in [Brock et al., 2018]

Next, NASNet

Algorithmic Intelligence Laboratory *source : Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018 35



Toward automation of network design: NASNet [Zoph et al., 2018]

* Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

* Motivation: modern architectures are built simply: a repeated modules
* Try not to search the whole model, but only cells modules
* Normal cell and Reduction cell (cell w/ stride 2)
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Toward automation of network design: NASNet [Zoph et al., 2018]

Designing a good search space is important in architecture searching

NASNet reduces the search space by incorporating our design principles

Each cell consists of B blocks Inew i fyer

Each block is determined by selecting methods

1. Select two hidden states from h;, h;_4 or of existing block N
2. Select methods to process for each of the selected states 3x3{0m 2xzm{xp°°'
3. Select a method to combine the two states | hddenayerA || ioden ayer

* (1) element-wise addition or (2) concatenation

Select one Select second Select operation for Select operation for Select method to

v hidden state [ hidden state | first hidden state [ | second hidden state | combine hidden state

P S N E N N |
\ \ \ \ \
— 5 ——— L » ——\ > ——\—> L > e
\ \ \ \ \
A A |

- - — - —

f repeat B times |
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Toward automation of network design: NASNet [Zoph et al., 2018]

* Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

e Each cell consists of B blocks
* Example: B = 4

sep| | sep sep | | sep sep | | sep sep| | 1x3 max| |[max 1x7 | |max max| [max sep | |max

Normal Cell Reduction Cell

Algorithmic Intelligence Laboratory *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 38



Toward automation of network design: NASNet [Zoph et al., 2018]

* Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

* Set of methods to be selected based on their prevalence in the CNN literature

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

* Any searching methods can be used
 Random search [Bergstra et al., 2012] could also work
* RL-based search [Zoph et al., 2016] is mainly used in this paper
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Toward automation of network design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

* All architecture searches are performed on CIFAR-10
* NASNet-A: State-of-the-art error rates could be achieved
* NASNet-B/C: Extremely parameter-efficient models were also found

model | depth  # params | error rate (%)
DenseNet (L = 40, k = 12) [26] 40 1.0M 5.24
DenseNet(L = 100,k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 27.2M 3.74
DenseNet-BC (L = 100,k = 40) [26] | 190 25.6M 3.46
Shake-Shake 26 2x32d [[18]] 26 2.9M 3.55
Shake-Shake 26 2x96d [[18]] 26 26.2M 2.86
Shake-Shake 26 2x96d + cutout [12] 26 26.2M 2.56
NAS v3 [70] 39 71M 4.47
NAS v3 [70] 39 37.4M 3.65
NASNet-A (6 @ 768) - 3.3M 3.41
NASNet-A (6 @ 768) + cutout - 3.3M 2.65
NASNet-A (7 @ 2304) - 27.6M 2.97
NASNet-A (7 @ 2304) + cutout - 27.6M 2.40
NASNet-B (4 @ 1152) . 2.6M 3.73
NASNet-C (4 @ 640) - 3.1M 3.59

Algorithmic Intelligence Laboratory *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 40



Toward automation of network design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

* All architecture searches are performed on CIFAR-10
* NASNet-A: State-of-the-art error rates could be achieved
* NASNet-B/C: Extremely parameter-efficient models were also found

add [ ada | [ ada |
4 b I A
idlen avg | | avg sep' sep
tity 3x3 | | 3x3 5x5| | 3x3

a.

Normal Cell Reduction Cell
NASNet-A
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Toward automation of network design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days
* All architecture searches are performed on CIFAR-10

* Cells found in CIFAR-10 could also transferred well into ImageNet

Model image size ‘ # parameters Mult-Adds | Top 1 Acc. (%) Top 5 Acc. (%)
Inception V2 [29] 224 x224 11.2M 1.94B 74.8 92.2
NASNet-A (5 @ 1538) 299 <299 10.9M 2.35B 78.6 94.2
Inception V3 [59] 299%299 23.8M 5.72B 78.0 93.9
Xception [9] 299 %299 22.8M 8.38B 79.0 94.5
Inception ResNet V2 [57] 299x%299 55.8M 13.2B 80.4 95.3
NASNet-A (7 @ 1920) 299x%299 22.6 M 493B 80.8 95.3
ResNeXt-101 (64 x 4d) [67]  320x320 83.6 M 31.5B 80.9 95.6
PolyNet [68] 331x331 92M 34.7B 81.3 95.8
DPN-131 [8] 320x320 79.5M 32.0B 81.5 95.8
SENet [25] 320x 320 145.8M 42.3B 82.7 96.2
NASNet-A (6 @ 4032) 331x331 88.9M 23.8B 82.7 96.2

Algorithmic Intelligence Laboratory
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Toward automation of network design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

* All architecture searches are performed on CIFAR-10

* Cells found in CIFAR-10 could also transferred well into ImageNet
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Toward automation of network design

* Architecture searching is still an active research area
« AmoebaNet [Real et al., 2018]
 Efficient-NAS (ENAS) [Pham et al., 2018]
* NAONet [Luo et al., 2018]

Model Error(%) #params GPU Days
DenseNet-BC [19] 3.46 25.6M /
ResNeXt-29 [43] 3.58 68.1M / |
NASNet-A [48] 3.41 3.3M 2000
NASNet-B [48] 3.73 2.6M 2000
NASNet-C [48] 3.59 3.1M 2000
Hier-EA [28] 3.75 15.7TM 300
AmoebaNet-A [38] 3.34 3.2M 3150
AmoebaNet-B [38] 3.37 2.8M 3150
AmoebaNet-B [38] 3.04 13.7M 3150
AmoebaNet-B [38] 2.98 34.9M 3150
AmoebaNet-B + Cutout [38] 2.13 34 9M 3150
ENAS [37] 3.54 4.6M 0.45
PNAS [27] 3.41 3.2M 225
DARTS + Cutout [29] 2.83 4.6M 4
NAONet 3.18 10.6M 200
NAONet 2.98 28.6M 200
) NAONet + Cutout 2.07 128M 200 |
NAONet-WS 3.53 3.7M 04
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ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

* ResNet improved generalization by revolution of depth
Quiz: But, does it fully explain why deep ResNets generalize well?

* Increasing depth does not always mean better generalization
* Naive CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]
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ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

* Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead
of a single ultra-deep network

e FEach module in a ResNet receives a mixture of 2™ 1 different distributions

ys = Y2 + f3(y2)

=|y1 +f2(912| + f3q111‘|‘f2(yl))
= |y0+f1(yol+f2(yo+f1(yoil)] + f3lyo + f1(vo) + f2(vo + f1(w0)))

Building block

Skip
connaction

(a) Conventional 3-block residual network (b) Unraveled view of (a)
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ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

* Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead
of a single ultra-deep network

* Deleting a module in ResNet has a minimal effect on performance
« Similar effect as removing 2"~ paths out of 2™: still 2! paths alive!

Test error when dropping any single block
from residual network vs. VGG on CIFAR-10

1 I:l_ o T
| — residual network v2, 110 layers
= VGG natwork, 15 layers
20 . .
= ' residual network baseline
c VGG network baseline
B 06 cmm e -__--_-_---------C
m
!
=
A
e e
(=)
i
R
N P 1 A
. . . 0.0
(a) Deleting f2 from unraveled view 0 10 20 30 40 50

dropped layer index

Next, visualizing loss functions in CNN
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Visualizing the loss landscape of neural nets [Li et al., 2018]

* Trainability of neural nets is highly dependent on network architecture

* However, the effect of each choice on the underlying loss surface is unclear
 Why are we able to minimize highly non-convex neural loss?
 Why do the resulting minima generalize?

 Lietal. (2018) analyzes random-direction 2D plot of loss around local minima

flo, B) = L(0" 4 ad + Bn)

Local minima Random directions

* § and n are sampled from a random Gaussian distribution
* To remove some scaling effect, 6 and 1 are normalized filter-wise

1,]

51’,3’ —

1103511

10,5 ~

it layer, j filter
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Visualizing the loss landscape of neural nets [Li et al., 2018]

 Lietal. (2018) analyzes random-direction 2D plot of loss around local minima

* Modern architectures prevent the loss to be chaotic as depth increases

(a) without skip connections (b) with skip connections

ResNet-56

Algorithmic Intelligence Laboratory *source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018 50



Visualizing the loss landscape of neural nets [Li et al., 2018]

 Lietal. (2018) analyzes random-direction 2D plot of loss around local minima

* Modern architectures prevent the loss to be chaotic as depth increases

(a) 110 layers, no skip connections (b) DenseNet, 121 layers

Algorithmic Intelligence Laboratory *source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018 51



Visualizing the loss landscape of neural nets [Li et al., 2018]

 Lietal. (2018) analyzes random-direction 2D plot of loss around local minima

* Modern architectures prevent the loss to be chaotic as depth increases

ResNet, no shortcuts = sharp minima
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Visualizing the loss landscape of neural nets [Li et al., 2018]

 Lietal. (2018) analyzes random-direction 2D plot of loss around local minima

e Wide-ResNet lead the network toward more flat minimizer
* WideResNet-56 with width-multiplierk = 1,2,4,8
* |ncreased width flatten the minimizer in ResNet
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Next, minimum energy paths in CNNs
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Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

* Draxler et al. (2018) analyzes minimum energy paths [Jonsson et al., 1998]

between two local minima 6; and 6, of a given model:

max L(6)

argmin
Ocp

path p: 61 —0-

p(e’w 92)* —

- They found a path 8; — 6, with almost zero barrier
* A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures
* e.g. ResNet, DenseNet
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Linear interpolation
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Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

For a given model with two local minima 6, and 8,, they applied AutoNEB
[Kolsbjerg et al., 2016] to find a minimum energy path

* A state-of the-art for connecting minima from molecular statistical mechanics
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Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

* The deeper and wider an architecture, the lower are the barriers

* They essentially vanish for current-day deep architectures

* Why do this phenomenon happen?
* Parameter redundancy may help to flatten the neural loss

Lowest saddle has 25% error.

Minimum A

Extra neuron “unlocks” flat path.

Algorithmic Intelligence Laboratory *source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018 56



Summary

The larger the network, the more difficult it is to design
1. Optimization difficulty
2. Generalization difficulty

ImageNet challenge contributed greatly to development of CNN architectures

ResNet: Optimization = Generalization
* Many variants of ResNet have been emerged

Very recent trends towards automation of network design

Many observational study supports the advantages of modern CNN
architectures
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