Algorithmic Intelligence Lab

Stochastic Gradient Descent

EE807: Recent Advances in Deep Learning

Lecture 2

Slide made by

Insu Han and Jongheon Jeong
KAIST EE

Algorithmic Intelligence Lab

Table of Contents

1. Introduction
* Empirical risk minimization (ERM)

2. Gradient Descend Methods
e Gradient descent (GD)
* Stochastic gradient descent (SGD)

3. Momentum and Adaptive Learning Rate Methods
e Momentum methods
e Learning rate scheduling
* Adaptive learning rate methods (AdaGrad, RmsProp, Adam)

4. Changing Batch Size
* |Increasing the batch size without learning rate decaying

5. Summary

Empirical Risk Minimization (ERM)

Given training set {(X1, y1), ceey (Xn, yn)}

Prediction function f(x;,0) € R parameterized by 0

Empirical risk minimization: Find a paramater that minimizes the loss function
mm— E 0(f(x4,0),y;) := L(0)

where £ (-,-) is aloss function e.g., MSE, cross entropy,
For example, neural network has f(x,0) =0, o (6,_,0(---o(6{ x)))

01 02

Next, how to solve ERM?

Algorithmic Intelligence Lab

Gradient Descent (GD)

» Gradient descent (GD) updates parameters iteratively by taking gradient.

parameters loss function [

011 =0, —~yVL (975) NG _

1
learning rate = n Z V(O xi,15)

1=1

* (+) Converges to global (local) minimum for convex (non-convex) problem.
* (—) Not efficient with respect to computation time and memory space for huge n.
* For example, ImageNet dataset has n =1,281,167 images for training.

"}f

1.2M of 256x256 RGB images
~ 236 GB memory

>
o[

2=
kot
R

-
bv
]
L

i

300

Next, efficient GD

Algorithmic Intelligence Lab

Stochastic Gradient Descent (SGD)

» Stochastic gradient descent (SGD) use samples to approximate GD

Qs

1 mn
VL(0) = - > Ve %, i)
i=1

1
5|

S

Z V(05 %5, y:)

sample 1€B

* |n practice, minibatch sizes |3|can be 32/64/128.

* Main practical challenges and current solutions:
1. SGD can be too noisy and might be unstable = —— momentum
2. hard to find a good learning rate ——— adaptive learning rate

Next, momentum

Algorithmic Intelligence Lab *source : https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/ 5

Momentum Methods

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

Or+1 = 0y — my m; = umy_1 +YVL(0;)
momintum preservation ratio U € [O, 1]

* Equivalent to the weighted-sum of the fraction u of previous update.
Ori1=0; — v (VL(0:) + pVL(01—1) + p*VL(01—2) + - - -)

* (+4) Momentum reduces the oscillation and accelerates the convergence.
SGD A

friction to vertical fluctuation

SGD + momentum _ v

~

acceleration to left

Algorithmic Intelligence Lab

Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

Or+1 = 0y — my m; = umy_1 +YVL(0;)
momintum preservation ratio U € [O, 1]

* (—) Momentum can fail to converge even for simple convex optimizations.

* Nestrov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for
approximate future position, i.e.,

m; < pmy_1 +~YVL(0; — pmy;_q)

Momentum update: Nesterov Momentum

YVL (0 — pmy_1q)

Gradient “lookahead” gradient

Velocity .
Velocity

actual step
{my_q actual step

.
>

Gradient ’yVL(Ht)

Algorithmic Intelligence Lab

Momentum Methods: Nesterov’s Momentum

1. Momentum gradient descent
* Add decaying previous gradients (momentum).

041 =0 —my m; = umy_; +~yVL(0,)

!

momentum preservation ratio U € [O, 1]

* Nesterov’s accelerated gradient (NAG) [Nesterov’ 1983] use gradient for

approximate future position, i.e.,

my < umy_q +yVL (0, — pm;_q)

dtheta =

m=mu *

theta =

compute_gradient(theta, batch_size)

m + learning_rate * dtheta

theta - m

SGD + momentum

NAG

Quiz: fill in the pseudo code of Nesterov’ accelerated gradient

Algorithmic Intelligence Lab

Adaptive Learning Rate Methods

2. Learning rate scheduling
* Learning rate is critical for minimizing loss !

loss

low learning rate
high learning rate

>

good learning rate

epoch

Too — May ignore the narrow valley, can diverge
Too low — May fall into the local minima, slow converge

Next, learning rate scheduling

Algorithmic Intelligence Lab *source : http://cs231n.github.io/neural-networks-3/ 9

Adaptive Learning Rate Methods: Learning rate annealing

2. Learning rate scheduling : decay methods
* A naive choice is the constant learning rate
* Common learning rate schedules include time-based/step/exponential decay

Time-based Exponential Step (most popular in practice)

_Jo ot b
1+ kt Tepoch

Tt Yo exp(—kt) Yo exp(—Fk|

» “Step decay” decreases learning rate by a factor every few epochs
* Typically, it is set 70 = 0.01 and drops by half ever T¢,0.n = 10 epoch

Learning rate Learning rate

010 —— learning rate — learning rate

0.08
0.08

" v 006
& 0.06 g

gm §°°4 I - Constant Ir
8 3 e Time-based
0.02 L - Step decay
- - == - Exponential decay
20 20 60 80 100 20 20 60 80 100
epoch epoch » © epochs
step decay exponential decay accuracy

Algorithmic Intelligence Lab *source : https://towardsdatascience.com/ 10

Adaptive Learning Rate Methods: Learning rate annealing

2. Learning rate scheduling : cycling method
* [Smith’ 2015] proposed cycling learning rate (triangular)
* Why “cycling” learning rate?
* Sometimes, increasing learning rate is helpful to escape the saddle points

* It can be combined with exponential decay or periodic decay

CLR - ‘triangular' Policy

CIFAR-10

0.006 1

0.005 1

Learning Rate
o
o
(=]
ey

o
o
o
w

0.002 0.4 ---Original learning rate|
0.3} ---Exponential I
00019 ' ' . : ’ ' —CLR (our approach)
0 2000 4000 6000 8000 10000 L - - s : s s
Training Iterations 0 1 2 3 4 5 6 7
Iteration - 04

cycling (triangular) decay

Algorithmic Intelligence Lab *source : https://github.com/bckenstler/CLR 11

Adaptive Learning Rate Methods: Learning rate annealing

2. Learning rate scheduling : cycling method
* [Loshchilov’ 2017] use cosine cycling and restart the maximum at each cycle
* Why “cosine” ?
* It decays slowly at the half of cycle and drop quickly at the rest

* (+) can climb down and up the loss surface, thus can traverse several local minima
* (+) same as restarting at good points with an initial learning rate Ymax

Yt = Ymin + 3 (Ymax — Ymin) (1 4+ cos(mod(t, T)w)) T: period

0.010 1 05 Single Model - °%7 Snapshot Ensemble
04 Standard LR Schedule 0 04+ Cyclic LR Schedule - A}/)
: : y"‘ 1\ : 'Y ‘n‘!
0.008 03 A S : 03 A
o 0.2 0.2
© 0.006 o o v
g 7 J 1q \
c 0 / 04 Y
5 0004 Ay /}A
= o & R o ,
0.002 -0.2 o Z 02 r . W
-03 e e Sl -03 R e
] 4 04l 045 = = :
0.000 T T T T T T 50 = =2 50 50 = *"*—; = 50
0 200 400 600 800 1000 40 T 40 40 T 40
) . 30 30 30 30
iterations 20 20 20

——

Algorithmic Intelligence Lab * source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017 12

Adaptive Learning Rate Methods: Learning rate annealing

2. Learning rate scheduling : cycling method
e [Loshchilov’ 2017] also proposed warm restart in cycling learning rate
*Warm restart : frequently restart in early iterations
* (+) It help to escape saddle points since it is more likely to stuck in early iteration

WRN-28-10 on CIFAR-100
10U T T T T T T

T T T T T 50 "IITAL Al
10 o 40f
= N . —_
8 107 5 N - . £ 30}
2 AN 5
5 10° 7 20}
(] ()
— [
107 10}
| I | 1 1 | | | 0 l L i
20 40 60 80 100 120 140 160 180 20(50 100 150 200
Epochs Epochs
—e— . d . . + . .
—5— - Step decay —— : cycling with no restart A :cycling with restart
<4

But, there is no perfect learning rate scheduling! It depends on specific task.

Next, adaptive learning rate

* source : Loshchilov et al., SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017 13

Algorithmic Intelligence Lab

Adaptive Learning Rate Methods: AdaGrad, RMSProp

3. Adaptively changing learning rate (AdaGrad, RMSProp)
* AdaGrad [Duchi’ 11] downscales a learning rate by magnitude of previous gradients.

Oty1=0¢ — \/LUTVL (0¢) Vip1 = V¢ + VL (Ht)2
!

sum of all previous squared gradients

* (—) the learning rate strictly decreases and becomes too small for large iterations.

 RMSProp [Tieleman’ 12] uses the moving averages of squared gradient.

Vg1 = vy + (1 —) VL (6)°
}

preservation ratio p € [0, 1]

* Other variants also exist, e.g., Adadelta [Zeiler’ 2012]

Algorithmic Intelligence Lab 14

Adaptive Learning Rate Methods

* Visualization of algorithms

optimization on saddle point

- SGD

= Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

RN
IR,

L "’o'""'o":f'

S

1.0

optimization on local optimum

- SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

* Adaptive learning-rate methods, i.e., Adadelta and RMSprop are most suitable and
provide the best convergence for these scenarios

Algorithmic Intelligence Lab

Next, momentum + adaptive learning rate

* source: animations from from Alec Radford’ blog

15

Adaptive Learning Rate Methods: ADAM

Algorithmic Intelligence Lab

3. Combination of momentum and adaptive learning rate
* Adam (ADAptive Moment estimation) [Kingma’ 2015]
momentum

v
My < U110y + (1 — /Ll)VL (Ht)

9t—|—1 — 975 — L Iy
A/ U
t Vigq /LQ’Ut\:l— (1 — p2) VL (6;)
average of squared gradients

e Can be seen as momentum + RMSprop update.
e Other variants exist, e.g., Adamax [Kingma’ 14], Nadam [Dozat’ 16]

N CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 10k P — AdaGrad
— AdaGrad+dropout — AdaGrad+dropout
— SGDNesterov — SGDNesterov
2.51 : SGDNesterov+dropout 100k SGDNesterov+dropout
— Adam — Adam
Adam-+dropout Adam-+dropout

H H H H H 4 H H H H H H H i
0'6.0 0.5 1.0 15 2.0 2.5 3.0 10 0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

* source : Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015 16

Decaying the Learning Rate = Increasing the Batch Size

* In practice, SGD + Momentum and Adam works well in many applications.
* But, scheduling learning rates is still critical! (should be decay appropriately)

e [Smith’ 2017] shows that decaying learning rate = increasing batch size,
* (+) Alarge batch size allows fewer parameter updates, leading to parallelism!

20 20

-
w

- Decaying learning rate
= Hybrid
- |ncreasing batch size

- Decaying learning rate
= Hybrid
- |ncreasing batch size

10

o
w

Training cross-entropy
& s
Training cross-entropy

0 50 100 150 200 0 20000 40000 60000 80000
Number of epochs Number of parameter updates

Algorithmic Intelligence Lab * source : Smith et al., "Don't Decay the Learning Rate, Increase the Batch Size.”, ICLR 2017 17

Summary

SGD have been used as essential algorithms to deep learning as back-
propagation.

Momentum methods improve the performance of gradient descend algorithms.
* Nesterov’s momentum

Annealing learning rates are critical for training loss functions
* Exponential, harmonic, cyclic decaying methods
» Adaptive learning rate methods (RMSProp, AdaGrad, AdaDelta, Adam, etc)

In practice, SGD + momentum shows successful results, outperforming Adam!
* For example, NLP (Huang et al., 2017) or machine translation (Wu et al., 2016)

18

References

* [Nesterov’ 1983] Nesterov. A method of solving a convex programming problem with convergence rate O(1/k"2).
1983
link: http://mpawankumar.info/teaching/cdt-big-data/nesterov83.pdf

* [Duchiet al 2011], “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
link : http://www.jmlr.org/papers/volumel2/duchilla/duchilla.pdf

* [Tieleman’ 2012] Geoff Hinton’s Lecture 6e of Coursera Class
link : http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

* [Zeiler’ 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method
link : https://arxiv.org/pdf/1212.5701.pdf

* [Smith’ 2015] Smith, Leslie N. "Cyclical learning rates for training neural networks.”
link : https://arxiv.org/pdf/1506.01186.pdf

* [Kingma and Ba., 2015] Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015
link : https://arxiv.org/pdf/1412.6980.pdf

* [Dozat’ 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop,
link : http://cs229.stanford.edu/proj2015/054 report.pdf

* [Smith et al., 2017] Smith, Samuel L., Pieter-Jan Kindermans and Quoc V. Le. Don't Decay the Learning Rate,
Increase the Batch Size. ICLR 2017.
link : https://openreview.net/pdf?id=B1Yy1BxCZ

* [Loshchilov et al., 2017] Loshchilov, |., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts.
ICLR 2017.
link : https://arxiv.org/pdf/1608.03983.pdf

Algorithmic Intelligence Lab 19

