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Why Deep Learning for Natural Language Processing (NLP)?

* Deep learning is now commonly used in natural language processing (NLP)
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Recap: RNN & CNN for Sequence Modeling

* Language is sequential: It is natural to use RNN architectures
* RNN (or LSTM variants) is a natural choice for sequence modelling

® ® ® ®

L»A = Ar— A AlI— A

A A A A A

* Language is translation-invariant: It is natural to use CNN architectures
* One can use CNN [Gehring et al., 2017] for parallelization
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*Source: https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202¢3945f3
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Limitations of prior works

* However, prior works have several limitations...

 Network architecture

* Long-term dependencies: Network forgets previous information as it summarizes
inputs into a single feature vector

e Limitations of softmax: Computation linearly increases to the vocabulary size,

and expressivity is bounded by the feature dimension

* Training methods

* Exposure bias: Model only sees true tokens at training, but it sees generated
tokens at inference (and noise accumulates sequentially)

* Loss/evaluation mismatch: Model uses MLE objective at training, but use other
evaluation metrics (e.g., BLEU score [Papineni et al., 2002]) at inference

* Unsupervised setting: How to train models if there are no paired data?
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Attention [Bahdanau et al., 2015]

* Motivation:
* Previous models summarize inputs into a single feature vector
* Hence, the model forgets old inputs, especially for long sequences

e |dea:

* Use input features, but attend on the most importance features

* Example) Translate “Ich mochte ein bier” < “I'd like a beer”
* Here, when the model generates “beer”, it should attend on “bier”
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Attention [Bahdanau et al., 2015]

e Method:

* Task: Translate source sequence [x4, ..., X, ] to target sequence [y, ..., Y]

* Now the decoder hidden state s; is a function of previous state s;_4, current input
Y¢—1, and context vector ¢, i.e., s; = f(S¢_1, Vi—1, Ct)
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Attention [Bahdanau et al., 2015]

e Method:

* Task: Translate source sequence [x4, ..., X, ] to target sequence [y, ..., Y]

* Now the decoder hidden state s; is a function of previous state s;_1, current input
y¢—1, and context vector ¢, i.e., Sy = f(S¢—1, Ve—1,Ct)

* The context vector c; is linear combination of input hidden features [hy, ..., b, ]
n
Ct = Z at,ihi
i=1

* Here, the weight a ; is alignment score of two words y, and x;

score(s¢—1, h;)

at,'i e allgn(yt7x'l) — Z SCOre(St 1 h )
i —b

where score is also jointly trained, e.g., score(s;, h;) = v’ tanh(W/s; hs])

Algorithmic Intelligence Laboratory
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Attention [Bahdanau et al., 2015]

* Results: Attention shows good correlation between source and target
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Attention [Bahdanau et al., 2015]

* Results: Attention improves machine translation performance

* RNNenc: no attention / RNNsearch: with attention / #: max length of train data

30 T T l T T
25
o 20} 7
o 15 |
£ : : RN : \ :
E 10} — RNNsearch-50 ................ ...... RSP ...... \\\ .......... 4
----- RNNsearch-30 | ; L RIS
5 = - RNNenc-50 S Bessesaeniiin ....... feeeeenanaaes i
RNNenc-30 | | BN
0O 110 210 310 4|0 5|0 60
Sentence length
Model All No UNK®
RNNencdec-30 | 13.93 24.19
RNNsearch-30 21.50 31.44 No UNK: omit unknown words
I}Rﬁesgg‘l;i'gg ;’égg %2’{; *: longer train until converge
RNNsearch-50* | 28.45 36.15
Moses 33.30 35.63
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Show, Attend, and Tell [Xu et al., 2015]

* Motivation: Can apply attention for image captioning?
* Task: Translate source image [x] to target sequence [y, ..., Vim]
* Now attend on specific location on the image, not the words

* Idea: Apply attention to convolutional features [hy, ..., hg] (with K channels)

* Apply deterministic soft attention (as previous one) and stochastic hard attention
(pick one h; by sampling multinomial distribution with parameter «)

* Hard attention picks more specific area and shows better results, but training is
less stable due to the stochasticity and differentiability

Up: hard attention / Down: soft attention
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FERREENNR

bird flying over body water
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Show, Attend, and Tell [Xu et al., 2015]

» Results: Attention picks visually plausible locations

n "‘H““

A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

d l‘; -
A giraffe standing in a forest with

e
B R

A little girl sitting on a bed with A group of people sitting on a boat

a teddy bear. in the water. trees in the background.
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Show, Attend, and Tell [Xu et al., 2015]

* Results: Attention improves the image captioning performance

BLEU
Dataset Model B-1 | B-2 | B-3 | B-4 | METEOR
Google NIC(Vinyals et al., 2014)T* 63 41 27— —
Flickr8k Log Bilinear (Kiros et al., 2014a)° 65.6 424 27.7 17.7 17.31
Soft-Attention 67 448 299 19.5 18.93
Hard-Attention 67 457 314 213 20.30
Google NICT°* 663 423 277 183 —
: Log Bilinear 60.0 38 254 17.1 16.88
Flickr30k Soft-Adttention 667 434 288 191  18.49
Hard-Attention 669 439 296 19.9 18.46
CMU/MS Research (Chen & Zitnick, 2014)¢ — — — — 20.41
MS Research (Fang et al., 2014)f@ — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 304 203 -
COCO Google NICT°* 66.6 46.1 329 246 —
Log Bilinear® 70.8 489 344 243 20.03
Soft-Attention 70.7 492 344 243 23.90
Hard-Attention 71.8 504 357 250 23.04

Algorithmic Intelligence Laboratory
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Transformer [Vaswani et al., 2017]

e Motivation:

* Prior works use RNN/CNN to solve sequence-to-sequence problems

* Attention already handles arbitrary length of sequences, easy to parallelize, and
not suffer from forgetting problems... Why should one use RNN/CNN modules?

* |dea:
* Design architecture only using attention modules

* To extract features, the authors use self-attention, that features attend on itself
 Self-attention has many advantages over RNN/CNN blocks

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) 0O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

n: sequence length, d: feature dimension, k: (conv) kernel size, r: window size to consider
Maximum path length: maximum traversal between any two input/outputs (lower is better)

*Cf. Now self-attention is widely used in other architectures, e.g., CNN [Wang et al., 2018] or GAN [Zhang et al., 2018]
Algorithmic Intelligence Laboratory
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Transformer [Vaswani et al., 2017]

* Multi-head attention: The building block of the Transformer

* In previous slide, we introduced additive attention [Bahdanau et al., 2015]

n
Ct = E at,ihz’
i=1

Here, the context vector is a linear combination of

* weight a, ;, a function of inputs [x;] and output y,

* and input hidden states [h;]

In general, attention is a function of key K, value I/, and query Q

* key [x;] and query y, defines weights a; ;, which are applied to value [h;]

* For sequence length T and feature dimension d, (K,V, Q) are TXd, TXd, and 1Xd matrices

Transformer use scaled dot-product attention

Attention(@, K, V') = softmax (

In addition, transformer use multi-head attention,
ensemble of attentions
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Transformer [Vaswani et al., 2017]

* Transformer:

Since the model don’t have a sequential structure,

the authors give position embedding (some handcrafted
feature that represents the location in sequence)

Algorithmic Intelligence Laboratory

First, extract features with self-attention (see lower part of the block)

Then decode feature with usual attention (see middle part of the block)

The final transformer model is built upon the (multi-head) attention blocks

Output
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Embedding Embedding
Inputs Outputs
(shifted right)
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Transformer [Vaswani et al., 2017]

e Results: Transformer architecture shows good performance for languages

Model BLEU Training Cost (FLOPs)
oce EN-DE EN-FR  EN-DE  EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0-
GNMT + RL [31] 24.6 39.92 2.3-10° 14.
ConvS2S [8] 25.16 40.46 9.6-10% 1.5-
MoE [26] 26.03 40.56 2.0-101% 1.2
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 -
GNMT + RL Ensemble [31] 2630  41.16 1.8-10%° 1.1-
ConvS2S Ensemble [8] 26.36  41.29 7.7-1019  1.2.
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3-10'°
S
o g § = - w g 'é é 3
E35228 3285822 £.5¢8¢ sag‘e§
g;ggg*g Egégg‘gé’”ﬁ%’%g SES 0%
2 % g £ 3 3 & Q&
= £ o v
&
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BERT [Delvin et al., 2018]

e Motivation:

* Many success of CNN comes from ImageNet-pretrained networks
e Can train a universal encoder for natural languages?

e Method:

* BERT (bidirectional encoder representations from transformers): Design a neural
network based on bidirectional transformer, and use it as a pretraining model

* Pretrain with two tasks (masked language model, next sentence prediction)

* Use fixed BERT encoder, and fine-tune simple 1-layer decoder for each task

BERT (Ours) v Sentence classification Question answering ~ >@Ene Sean
) - ) G- Ca)

BERT BERT
T =] - . 5] (&= ] [&]

I

Single Sentence

L L L e B e By u i
@ Tolk1 Tok 2 k W( [SEP] ][ T‘,’k ] ( Tn:k W
\_'_1

Question Paragraph
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BERT [Delvin et al., 2018]

e Results:

* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP
tasks, including classification, question answering, tagging, etc.

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 8.5k 57k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 617, 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648 799 904 360 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 80.0 823 56.0| 752
BERTgAsE 84.6/83.4 712 90.1 935 521 858 889 664 79.6
BERT ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 819
System Dev Test
System Dev Fl Test Fl ESIM+GloVe 51.9 527
ELMo+BiLSTM+CRF 95.7 922 ESIM+ELMo 59.1 59.2
CVT+Multi (Clark et al., 2018) - 92.6 BERTgASE 81.6 -
BERTgASE 96.4 92.4 BERT ARGE 86.6 86.3
BERTARGE 96.6 92.8 Human (expert)! - 85.0
Human (5 annotations)’ -  88.0
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Adaptive Softmax [Grave et al., 2017]

 Motivation:

e Computation of softmax is expensive, especially for large vocabularies

e Hierarchical softmax [Mnih & Hinton, 2009]:

« Cluster k words into balanced V'k groups, which reduces the complexity to 0(\/E)
* For hidden state h, word w, and cluster C(w),

p(w|h) = p(C(w)|h) x p(w|C(w),h)

* One can repeat clustering for subtrees (i.e., build a balanced n-ary tree), which
reduces the complexity to O(log k)

TN
A& R
W © ® W G W

Algorithmic Intelligence Laboratory *Source: http://opendatastructures.org/versions/edition-0.1d/ods-java/node40.html 23




Adaptive Softmax [Grave et al., 2017]

e Limitation of prior works & Proposed idea:

Cluster k words into balanced V'k groups, which reduces the complexity to 0(\@)
One can repeat clustering for subtrees, which reduces the complexity to O(log k)

However, putting all words to the leaves drop the performance (around 5-10%)

Instead, one can put frequent words in front (similar to Huffman coding)

Put top k; words (p;, of frequencies) and token “NEXT-i” in the first layer, and
put k; words (p; of frequencies) in the next layers

Vh

V1 Va V3
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Adaptive Softmax [Grave et al., 2017]

e Limitation of prior works & Proposed idea:

e Put top kj, words (p;, of frequencies) and token “NEXT-i” in the first layer, and
put k; words (p; of frequencies) in the next layers

* Let g(k, B) be the computation time for k words and batch size B

* Then the computation time of adaptive softmax (with J clusters) is

* For k, B larger than some threshold, one can simply assume g(k, B) = kB (see paper for details)

C=g(J +kn,B)+ ) g(ki,p:B)

= (J+1)c+AB[J +kn+ Y _ piki]

* By solving the optimization problem (for k; and J), the model is 3-5x faster than
the original softmax (in practice, ] = 5 works well)

Algorithmic Intelligence Laboratory
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Adaptive Softmax [Grave et al., 2017]

* Results: Adaptive softmax shows comparable results to the original softmax
(while much faster)

ppl: perplexity (lower is better) 200 T T ; T 1 \ .
Full
ppl training time 180 o Sampling
: 160 o HSM
full softmax 144 83 min 2 A D-Softmax[*]||
sampling 166 41 min 5 140 o Ours
HSM (freq) 166 34 min =
HSM (sim) 155 41 min o 120
D-softmax 195 53 min 100
D-softmax [*] 147 54 min
80 | | | | | | |
Ours 147 30 min 0 100 200 300 400 500 600 700 800
Time (min)
Language: bg cs da de el es
k= 50k 83k 128k 143k 100k 87k
Method ppl ¢ ppl t pp! t pp! t pp! t ppl t
Full 37 58 62 132 37 713 42 802 38 383 30 536
Sampling 40 29 70 53 40 247 45 262 41 144 32 217
HSM (freq) 43 17 78 29 42 114 51 124 45 73 34 110
HSM (sim) 39 25 68 43 38 150 43 154 39 98 30 147
D-softmax 47 36 82 75 46 369 56 397 50 211 38 296
D-softmax [*] 37 36 62 76 36 366 41 398 37 213 29 303
Ours 37 18 62 30 35 105 40 110 36 72 29 103
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Mixture of Softmax [Yang et al., 2018]

 Motivation:

* Rank of softmax layer is bounded by the feature dimension d

* Recall: By definition of softmax P(:B|C) = Z

exp(h;rwm)

x’ eXp(h;er/)

we have hIWm = log P*(x|c) + const (which is called logit)

* Let N be number of possible contexts, and M be vocabulary size, then

Goal:

All possible context
(encoded by RNN)

Algorithmic Intelligence Laboratory

X

All possible next token

log P*(xy|ley) log P*(xsley) . log P*(xrasley) A
: IH‘L‘,I'.\'.I’I Ca2) l()L'\I‘.(I'_-‘I_»I ]IJ};I"IJ,I"\! 1'.») —_— A
]ll;l"l.l‘l l'\jl lllL" [)’[.l'_» cn) .o ]H",_: I)'Il‘l_[ cy)

- row-wise shift

Ground-truth log probability matrix A

(encoded as word embeddings)

which implies that softmax can represent at most rank d (real A can be larger)

*Source: https://www.facebook.com/iclr.cc/videos/2127071060655282/ 27




Mixture of Softmax [Yang et al., 2018]

* Motivation:
* Rank of softmax layer is bounded by the feature dimension d

* Naively increasing dimension d to vocab size M is inefficient

* |dea:

* Use mixture of softmaxes (MoS)

K
exp(h/ ,w,)
PMOS (z|c Te, S.t. Mo = 1
R

* Itis easily implemented by defining ., and h ; as a function of original h,

log PMS(z|c) = log Z ek exp(h, ,w5) + const
k=1

* Note that now

is a nonlinear (log-sum-exp) function of h and w, hence can represent high rank

Algorithmic Intelligence Laboratory
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Mixture of Softmax [Yang et al., 2018]

e Results: MoS learns full rank (= vocab size) while softmax is bounded by d

* Measured empirical rank, collect every empirical contexts & outputs

Algorithmic Intelligence Laboratory

Model Validation Test
Softmax 400 400
MoC 280 280
MoS 9981 9981
#Softmax | Rank | Perplexity
3 6467 58.62
5 8930 57.36
10 9973 56.33
15 9981 55.97
20 9981 56.17

MoC: mixture of contexts
(mixture before softmax)

d = 400,280, 280 for
Softmax, MoC, MoS, respectively

Note that 9981 is full rank
as vocab size = 9981
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Mixture of Softmax [Yang et al., 2018]

e Results: Simply changing Softmax to MoS improves the performance
e By applying MoS to SOTA models, the authors achieved new SOTA records

Model | #Param  Validation  Test
Mikolov & Zweig (2012) —- RNN-LDA + KN-5 + cache oM?* . 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 1I9M - 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointerT - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0
Melis et al. (2017) — 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) — AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) — AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours — AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) — AWD-LSTM + continuous cache pointer’ 24M 53.9 52.8
Krause et al. (2017) — AWD-LSTM + dynamic evaluation® 24M 51.6 51.1
Ours — AWD-LSTM-MoS + dynamic evaluation' 22M 48.33 47.69
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Scheduled Sampling [Bengio et al., 2015]

 Motivation:

* Teacher forcing [Williams et al., 1989] is widely used for sequential training
* |t use real previous token and current state to predict current output

In & Ry T9F o | Target

A\ 4

Mean Cross Entropy Loss

i

w; Wy W3 W4 Ws5 Output

PR R N

F 3 F 3 F N

Softmax

Encoder LSTM ud T ud I ad B g »l c.h ¥ > Decoder LSTM
A A T T T A A T

Embed Embed
T T T T T T A A A A

Source this is a pen . nulll N (& ~R> T9 Shifted target

*Source: https://satopirka.com/2018/02/encoder-decoder%E3%83%A2%E3%83%87 %E3%83%AB%E3%81%AS8
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Scheduled Sampling [Bengio et al., 2015]

 Motivation:

* Teacher forcing [Williams et al., 1989] is widely used for sequential training

* |t use real previous token and current state to predict current output

* However, the model use predicted token at inference (a.k.a. exposure bias)

Encoder LSTM —

Embed

Source this

Algorithmic Intelligence Laboratory

h & XY T9 , Target
Mean Cross Entropy Loss
a
w; W2 W3 W4 Ws| Output
A A A A A
Softmax
Decoder LSTM
Embed
\%
null

*Source: https://satopirka.com/2018/02/encoder-decoder%E3%83%A2%E3%83%87 %E3%83%AB%E3%81%AS8
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Scheduled Sampling [Bengio et al., 2015]

* Motivation:
* Teacher forcing [Williams et al., 1989] is widely used for sequential training
* |t use real previous token and current state to predict current output
* However, the model use predicted token at inference (a.k.a. exposure bias)

* Training with predicted token is not trivial, since (a) training is unstable, and (b) as
previous token is changed, target also should be changed

* |dea: Apply curriculum learning

e At beginning, use real tokens, and slowly move to predicted tokens

I T T
0.9 Exponential decay
Inverse sigmoid decay

0.8 - Linear decay _
0.7

0.6
0.5
0.4
0.3
0.2
0.1

true y(t-1) 0 | 1 1

0 200 400 600 800 1000

I
|

T
|

I
l

sampled y(t-2)  true y(t-2)
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Scheduled Sampling [Bengio et al., 2015]

* Results: Scheduled sampling improves baseline for many tasks

Image captioning

Approach vs Metric BLEU-4 | METEOR | CIDER
Baseline 28.8 24.2 89.5
Baseline with Dropout 28.1 23.9 87.0
Always Sampling 11.2 15.7 49.7
Scheduled Sampling 30.6 24.3 92.1
Uniform Scheduled Sampling 29.2 24.2 90.9
Baseline ensemble of 10 30.7 25.1 95.7
Scheduled Sampling ensemble of 5 323 254 98.7
Constituency parsing
Approach F1
Baseline LSTM 86.54
Baseline LSTM with Dropout 87.0
Always Sampling -
Scheduled Sampling 88.08
Scheduled Sampling with Dropout | 88.68

Algorithmic Intelligence Laboratory
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Professor Forcing [Lamb et al., 2016]

e Motivation:

* Scheduled sampling (SS) is known to optimize wrong objective [Huszar et al., 2015]

* |dea:
* Make features of predicted tokens be similar to the features of true tokens

» To this end, train a discriminator classifies features of true/predicted tokens

» Teacher forcing: use real tokens / Free running: use predicted tokens

Teacher
Forcing

b e )

D

Distributions of -
- hidden states are : o
. forced to be close : | Discriminator
- to each other by -
Discriminator

S e b s A .......... : ’

Share

L o)

Free
Running
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Professor Forcing [Lamb et al., 2016]

e Results:

* Professor forcing improves the generalization performance, especially for the
long sequences (test samples are much longer than training samples)

Method MNIST NLL
DBN 2hl (Germain et al., 2015) ~ 84.55
NADE (Larochelle and Murray, 2011) 88.33
EoNADE-5 2hl (Raiko et al., 2014) 84.68
DLGM 8 leapfrog steps (Salimans et al., 2014) ~ 85.51
DARN 1hl (Gregor et al., 2015) ~ 84.13
DRAW (Gregor et al., 2015) < 80.97
Pixel RNN (van den Oord et al., 2016) 79.2
Professor Forcing (ours) 79.58
Response Percent Count
Professor Forcing Much Better 19.7 151
Professor Forcing Slightly Better 57.2 439
Teacher Forcing Slightly Better 18.9 145
Teacher Forcing Much Better 4.3 33
Total 100.0 768

Algorithmic Intelligence Laboratory

NLL for MNIST
generation

Human evaluation
for handwriting
generation
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MIXER [Ranzato et al., 2016]

e Motivation:

e Prior works use word-level objectives (e.g., cross-entropy) for training, but use
sequence-level objectives (e.g., BLEU [Papineni et al., 2002]) for evaluation

 |dea: Directly optimize model with sequence-level objective (e.g., BLEU)

* Q. How to backprop (usually not differentiable) sequence-level objective?

* Seguence generation is a kind of RL problem
» state: hidden state, action: output, policy: generation algorithm
* Sequence-level objective is the reward of current algorithm

* Hence, one can use policy gradient (e.g., REINFORCE) algorithm

* However, the gradient estimator of REINFORCE has high variance

* To reduce variance, MIXER (mixed incremental cross-entropy reinforce) use
MLE for first T' steps and REINFOCE for next T — T’ steps (T’ goes to zero)

* Cf. One can also use other variance reduction techniques, e.g., actor-critic [Bahdanau et al., 2017]
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MIXER [Ranzato et al., 2016]

e Results:

* MIXER shows better performance than other baselines
* XENT (= cross entropy): another name of maximum likelihood estimation (MLE)
* DAD (= data as demonstrator): another name of scheduled sampling

* E2D (= end-to-end backprop): use top-K vector as input (approx. beam search)

TASK XENT | DAD | E2E | MIXER
summarization 13.01 12.18 | 12.78 | 16.22
translation 17.74 20.12 | 17.77 | 20.73
image captioning || 27.8 28.16 | 26.42 | 29.16
17 e S UMMARIZATION . Machine Translation 29_5bl _____ IMAGE CAPTIONING
16ERR =1 22 MIXER k=10 e 2o
o h m" =1 2840: P LR AT
W @ A N R PP PP PP PP PITLITLL @ S PC A L LT E T
§ 2] m 75}
XENT 7.0l XENT []
-------- DAD s DAD
: — E2E o — E2E
12 2 3 4 5 k é 7 8 9 10 1 2 3 4 7 8 9 10 26.01 2 é 4 7 8 9 10
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SeqGAN [Yu et al., 2017]

* Motivation:
* RL-based method still relies on handcrafted objective (e.g., BLEU)
* Instead, one can use GAN loss to generate realistic sequences

* However, it is not trivial to apply GAN for natural languages, since data is discrete
(hence not differentiable) and sequence (hence need new architecture)

* |dea: Backprop discriminator’s output with policy gradient
» Similar to actor-critic; only difference is now the reward is discriminator’s output
* Use LSTM-generator and CNN (or Bi-LSTM)-discriminator architectures

PPy : (G Next MC D
. -0-0-0-0 | ; action search
True data: ©-0-0-0-0 '
— 00000 : Reward
' 0-0-0-0-0 . State
Real World 0000 ! T.i ¢ —L— Reward
: ! rain D '
: 0000 . Reward
G Generate: 0—0—0—0—0:
—> 00000 .
. 0-0-0-00 | RNl
. 0009 | |

...............

Policy Gradient
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SeqGAN [Yu et al., 2017]

e Results:
* SegGAN shows better performance than prior methods

Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736

pvalue | <107° | <107° | <107® | <10°°

Learning curve

10.0
—— SeqGAN
98 - MLE
QL 96 - - - Schedule Sampling
@  PG-BLEU
5 9.4
2 4, Synthetic generation
-4 (follow the oracle)
Z 9.0
8.8
8.6
0 50 100 150 200 250
Epochs
Chinese poem generation Obama speech generation
Algorithm | Human score | p-value | BLEU-2 | p-value .

MLE 04165 00034 0.6670 - 10-9 Algorithm | BLEU-3 | p-value | BLEU-4 | p-value
SeqGAN |  0.5356 : 0.7389 el B } <1070 | 070 ’ 0.00014
Real data 0.6011 0.746 d ° °
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3. Training Methods

e Extension to unsupervised setting
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UNMT [Artetxe et al., 2018]

e Motivation:

e Can train neural machine translation models in unsupervised way?

* |Idea: Apply the idea of domain transfer in Lecture 12

* Combine two losses: reconstruction loss and cycle-consistency loss

* Recall: Cycle-consistency loss forces twice cross-domain generated (e.g., L1=L2—L1) data to
become the original data

Model architecture (L1/L2: language 1, 2)

Shared encoder (L1/L2)
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UNMT [Artetxe et al., 2018]

e Results: UNMT produces good translation results

BPE (byte pair encoding),
a preprocessing method

FR-EN EN-FR DE-EN EN-DE

1. Baseline (emb. nearest neighbor) 9.98
Unsupervised 2. Proposed (denoising) 7.28
3. Proposed (+ backtranslation) 15.56
4. Proposed (+ BPE) 15.56

6.25 7.07 4.39
5.33 3.64 2.40
15.13 10.21 6.55
14.36 10.16 6.89

Semi-supervised 5. Proposed (full) + 100k parallel 21.81

21.74 15.24 10.95

Supervised 6. Comparable NMT 2048 19.89 15.04 11.05
P 7. GNMT (]Wu et al.L [2016D - 38.95 - 24.61
Source Reference Proposed system (full)

Une fusillade a eu lieu a
I’aéroport international de Los
Angeles.

There was a shooting in Los An-
geles International Airport.

A shooting occurred at Los An-
geles International Airport.

Cette controverse croissante au-
tour de l’agence a provoqué
beaucoup de spéculations selon
lesquelles 1’incident de ce soir
était le résultat d’une cyber-
opération ciblée.

Such growing controversy sur-
rounding the agency prompted
early speculation that tonight’s
incident was the result of a tar-
geted cyber operation.

This growing scandal around the
agency has caused much spec-
ulation about how this incident
was the outcome of a targeted
cyber operation.

Le nombre total de morts en oc-
tobre est le plus élevé depuis
avril 2008, quand 1 073 person-
nes avaient été tuées.

The total number of deaths in
October is the highest since
April 2008, when 1,073 people
were killed.

The total number of deaths in
May is the highest since April
2008, when 1 064 people had
been killed.

A lexception de l’opéra, la
province reste le parent pauvre
de la culture en France.

With the exception of opera, the
provinces remain the poor rela-
tive of culture in France.

At an exception, opera remains
of the state remains the poorest
parent culture.
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Conclusion

* Deep learning is widely used for natural language processing (NLP)
« RNN and CNN were popularin 2014-2017
* Recently, self-attention based methods are widely used

 Many new ideas are proposed to solve language problems
* New architectures (e.g., self-attention, softmax)
* New training methods (e.g., loss, algorithm, unsupervised)

* Research for natural languages are now just began

* Deep learning (especially GAN) is not widely used in NLP as computer vision
* Transformer and BERT are just published in 2017-2018
* There are still many research opportunities in NLP
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Transformer [Vaswani et al., 2017]

 Method:
e (Scaled dot-product) attention is given by

QK”
/n

* Use multi-head attention (i.e., ensemble of attentions)

Attention(Q, K, V) = softmax Vv

* The final transformer model is built upon the attention blocks

* First, extract features with self-attention
* Then decode feature with usual attention

* Since the model don’t have a sequential structure,

the authors give position embedding (some handcrafted
feature that represents the location in sequence)

*Notation: (K, V) is (key, value) pair, and Q is query
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Adaptive Softmax [Grave et al., 2017]

e Limitation of prior works & Proposed idea:

Put top k;, words (p;, of frequencies) and a token “NEXT” in the first layer, and
put k; = k — k; words (p; = 1 — p;, of frequencies) in the next layer

Let g(k, B) be a computation time for k vocabularies and batch size B

Then the computation time of the proposed method is

C = g(kn + 1, B) + g(k¢, pt B)

Here, g(k, B) is a threshold function (due to the initial setup of GPU)
g(k, B) = max(c + M\kgBy,c + A\kB)

ls f_ 1 T T T T T T T T T T T T 3
—o— K40 (1=0.0035, c=0.4)
100 ms | —=— M40 (1=0.002, ¢=0.22)

lOms;

lms;

100 uszl 212 2'3 22 2‘5 2‘(, 2'7 2'3 2‘9 21'02i|21'22f321'4215

number of vectors k
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Adaptive Softmax [Grave et al., 2017]

e Limitation of prior works & Proposed idea:

The computation time of the proposed method is
C = g(kn + 1, B) + g(k¢, pt B)
g(k, B) = max(c + A\koBy,c+ \kB)

* Hence, give a constraint that kB = kB, (for efficient usage for GPU)

Also, extend the model to multi-cluster setting (with J clusters):

C = g(J + kn, B) + ) _ g(ki, piB)

=(J+1)c+AB[J +kn+ Y piki]

By solving the optimization problem (for k; and J), the model is 3-5x faster than
the original softmanx (in practice, ] = 5 shows good computation/performance trade-off)
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Professor Forcing [Lamb et al., 2016]

* Motivation:
* Scheduled sampling (SS) is known to optimize wrong objective [Huszar et al., 2015]

* Let P and Q be data and model distribution, respectively

* Assume length 2 sequence x;x,, and let € be the ratio of real sample

* Then the objective of scheduled sampling is

+(1 o G)IEZNQleL[PCQ ||Q£132|$1=Z] + 6I{L[szkm ”Q.’IJ2|ZB1]

 Ife =1, itisusual MLE objective, but as € = 0, it pushes the conditional

distribution Qy, |, to the marginal distribution Py, instead of P,

* Hence, the factorized Q" = P, Py, can minimize the objective
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More Methods for Discrete GAN

 Gumbel-Softmax (a.k.a. concrete distribution):
* Gradient estimator of REINFORCE has high variance
* One can apply reparameterization trick... but how for discrete variables?

* One can use Gumbel-softmax trick [Jang et al., 2017]; [Maddison et al., 2017] to
achieve a biased but low variance gradient estimator

* One can also get unbiased estimator using Gumbel-softmax estimator as a control
variate for REINFORCE, called REBAR [Tucker et al., 2017]

* Discrete GAN is still an active research area
 BSGAN [Hjelm et al., 2018], ARAE [Zhao et al., 2018], etc.
* However, GAN is not popular for sequences (natural languages) as images yet
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