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Why	Deep	Learning	for	Natural	Language	Processing	(NLP)?

• Deep	learning is	now	commonly	used in	natural	language	processing	(NLP)

*Source:	Young	et	al.	“Recent	Trends	in	Deep	Learning	Based	Natural	Language	Processing”,	arXiv	2017 4
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Recap:	RNN	&	CNN	for	Sequence	Modeling

• Language is	sequential: It	is	natural	to	use	RNN	architectures
• RNN (or	LSTM	variants)	is	a	natural	choice	for	sequence	modelling

• Language is	translation-invariant: It	is	natural	to	use	CNN	architectures
• One	can	use	CNN [Gehring	et	al.,	2017]	for	parallelization

*Source:	https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c3945f3
Gehring	et	al.	“Convolutional	Sequence	to	Sequence	Learning”,	ICML	2017 5
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Limitations	of	prior	works

• However,	prior	works have	several	limitations…

• Network	architecture
• Long-term	dependencies:	Network	forgets previous	information	as	it	summarizes	
inputs	into	a	single feature	vector

• Limitations	of	softmax:	Computation linearly	increases	to	the	vocabulary	size,
and	expressivity is	bounded	by	the	feature	dimension

• Training	methods
• Exposure	bias:	Model	only	sees	true tokens	at	training,	but	it	sees	generated
tokens	at	inference	(and	noise	accumulates	sequentially)

• Loss/evaluation	mismatch:	Model	uses	MLE objective	at	training,	but	use	other	
evaluation	metrics (e.g.,	BLEU	score	[Papineni	et	al.,	2002])	at	inference

• Unsupervised	setting:	How	to	train	models	if	there	are	no	paired data?

6
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Attention	[Bahdanau	et	al.,	2015]

• Motivation:
• Previous	models	summarize inputs	into	a	single feature	vector
• Hence,	the	model	forgets old	inputs,	especially	for	long sequences

• Idea:
• Use	input	features,	but	attend	on	the	most	importance features

• Example)	Translate	“Ich	mochte	ein	bier”⇔ “I’d	like	a	beer”
• Here,	when	the	model	generates	“beer”,	it	should	attend	on	“bier”

8*Source:	https://ratsgo.github.io/from%20frequency%20to%20semantics/2017/10/06/attention/
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Attention	[Bahdanau	et	al.,	2015]

• Method:
• Task: Translate	source	sequence	[𝑥$, … , 𝑥'] to	target	sequence	[𝑦$, … , 𝑦*]

• Now	the	decoder	hidden	state	𝑠, is	a	function	of	previous	state	𝑠,-$,	current	input	
𝑦.,-$,	and	context	vector	𝑐,,	i.e.,	𝑠, = 𝑓 𝑠,-$, 𝑦.,-$, 𝑐,

9*Source:	https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

𝑐,

𝑠,𝑠,-$

𝑦.,-$
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Attention	[Bahdanau	et	al.,	2015]

• Method:
• Task: Translate	source	sequence	[𝑥$, … , 𝑥'] to	target	sequence	[𝑦$, … , 𝑦*]

• Now	the	decoder	hidden	state	𝑠, is	a	function	of	previous	state	𝑠,-$,	current	input	
𝑦.,-$,	and	context	vector	𝑐,,	i.e.,	𝑠, = 𝑓 𝑠,-$, 𝑦.,-$, 𝑐,

• The	context	vector	𝑐, is	linear	combination of	input	hidden	features [ℎ$, … , ℎ']

• Here,	the	weight	𝛼,,4 is	alignment	score of	two	words	𝑦, and	𝑥4

where	score is	also	jointly	trained,	e.g.,	

10



Algorithmic	Intelligence	Laboratory

Attention	[Bahdanau	et	al.,	2015]

• Results:	Attention	shows	good	correlation between	source	and	target

11
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Attention	[Bahdanau	et	al.,	2015]

• Results:	Attention	improves machine	translation	performance
• RNNenc:	no	attention	/	RNNsearch:	with	attention	/	#:	max	length	of	train	data

12

No	UNK:	omit	unknown	words
*:	longer	train	until	converge
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Show,	Attend,	and	Tell	[Xu	et	al.,	2015]

• Motivation:	Can	apply	attention for	image	captioning?
• Task: Translate	source	image	[𝑥] to	target	sequence	[𝑦$, … , 𝑦*]
• Now	attend	on	specific	location on	the	image,	not	the	words

• Idea:	Apply	attention	to	convolutional	features [ℎ$, … , ℎ:] (with	𝐾 channels)

• Apply	deterministic	soft attention	(as	previous	one) and	stochastic	hard attention
(pick	one	ℎ4 by	sampling	multinomial	distribution	with	parameter	𝛼)

• Hard	attention picks	more	specific area	and	shows	better results,	but	training	is	
less	stable due	to	the	stochasticity and	differentiability

13

Up:	hard	attention	/	Down:	soft	attention
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Show,	Attend,	and	Tell	[Xu	et	al.,	2015]

• Results:	Attention	picks	visually	plausible	locations

14
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Show,	Attend,	and	Tell	[Xu	et	al.,	2015]

• Results:	Attention	improves the	image	captioning	performance

15
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Transformer	[Vaswani	et	al.,	2017]	

• Motivation:
• Prior	works	use	RNN/CNN	to	solve	sequence-to-sequence problems
• Attention already	handles	arbitrary	length of	sequences,	easy	to	parallelize,	and	
not	suffer	from	forgetting problems…	Why	should	one	use	RNN/CNN modules?

• Idea:
• Design	architecture	only	using attention modules
• To	extract	features,	the	authors	use	self-attention,	that	features	attend	on	itself

• Self-attention	has	many	advantages	over	RNN/CNN	blocks

16

𝑛: sequence	length,	𝑑:	feature	dimension,	𝑘:	(conv)	kernel	size,	𝑟:	window	size	to	consider
Maximum	path	length:maximum	traversal	between	any	two	input/outputs	(lower	is	better)

*Cf.	Now	self-attention	is	widely	used	in	other	architectures,	e.g.,	CNN	[Wang	et	al.,	2018]	or	GAN	[Zhang	et	al.,	2018]	
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Transformer	[Vaswani	et	al.,	2017]	

• Multi-head	attention:	The	building	block	of	the	Transformer
• In	previous	slide,	we	introduced	additive attention	[Bahdanau	et	al.,	2015]
• Here,	the	context	vector	is	a	linear	combination of

• weight	𝛼,,4,	a	function	of	inputs	[𝑥4] and	output	𝑦,
• and	input	hidden	states	[ℎ4]

• In	general,	attention	is	a	function	of	key 𝐾,	value 𝑉,	and	query 𝑄
• key [𝑥4]	and	query 𝑦,	defines	weights	𝛼,,4,	which	are	applied	to	value [ℎ4]
• For	sequence	length	𝑇 and	feature	dimension	𝑑,	(𝐾, 𝑉, 𝑄) are	𝑇×𝑑,	𝑇×𝑑,	and	1×𝑑 matrices

• Transformer	use	scaled	dot-product attention

• In	addition,	transformer	use	multi-head	attention,
ensemble of	attentions

17
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Transformer	[Vaswani	et	al.,	2017]	

• Transformer:
• The	final	transformermodel	is	built	upon	the	(multi-head)	attention	blocks

• First,	extract	features	with	self-attention	(see	lower	part	of	the	block)

• Then	decode	feature	with	usual	attention (see	middle	part	of	the	block)

• Since	the	model	don’t	have	a	sequential	structure,
the	authors	give	position	embedding	(some	handcrafted
feature	that	represents	the	location	in	sequence)

18
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Transformer	[Vaswani	et	al.,	2017]	

• Results:	Transformer	architecture	shows	good	performance for	languages

19
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BERT	[Delvin	et	al.,	2018]

• Motivation:
• Many	success	of	CNN	comes	from	ImageNet-pretrained networks
• Can	train	a	universal	encoder for	natural	languages?

• Method:
• BERT	(bidirectional	encoder	representations	from	transformers):	Design	a	neural	
network	based	on	bidirectional	transformer,	and	use	it	as	a	pretraining	model
• Pretrain	with	two	tasks (masked	language	model,	next	sentence	prediction)	

• Use	fixed	BERT	encoder,	and	fine-tune	simple	1-layer	decoder for	each	task

20

Sentence	classification Question	answering
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BERT	[Delvin	et	al.,	2018]

• Results:
• Even	without task-specific	complex	architectures,	BERT	achieves	SOTA	for	11	NLP	
tasks,	including	classification,	question	answering,	tagging,	etc.

21
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Motivation:	
• Computation	of	softmax is	expensive,	especially	for	large	vocabularies

• Hierarchical	softmax	[Mnih	&	Hinton,	2009]:
• Cluster	𝑘 words	into	balanced 𝑘� groups,	which	reduces	the	complexity	to	𝑂( 𝑘� )
• For	hidden	state	ℎ,	word	𝑤,	and	cluster	𝐶 𝑤 ,

• One	can	repeat	clustering	for	subtrees	(i.e.,	build	a	balanced	𝑛-ary tree),	which	
reduces	the	complexity	to	𝑂(log 𝑘)

23*Source:	http://opendatastructures.org/versions/edition-0.1d/ods-java/node40.html
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Limitation	of	prior	works	&	Proposed	idea:
• Cluster	𝑘 words	into	balanced 𝑘� groups,	which	reduces	the	complexity	to	𝑂( 𝑘� )
• One	can	repeat	clustering	for	subtrees,	which	reduces	the	complexity	to	𝑂(log 𝑘)

• However,	putting	all	words	to	the	leaves drop	the	performance	(around	5-10%)
• Instead,	one	can	put	frequent	words	in	front (similar	to	Huffman	coding)

• Put	top	𝒌𝒉 words	(𝑝Q of	frequencies)	and	token	“NEXT-𝒊”	in	the	first	layer,	and
put	𝑘4 words	(𝑝4 of	frequencies)	in	the	next	layers

24
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Limitation	of	prior	works	&	Proposed	idea:
• Put	top	𝒌𝒉 words	(𝑝Q of	frequencies)	and	token	“NEXT-𝒊”	in	the	first	layer,	and
put	𝑘4 words	(𝑝4 of	frequencies)	in	the	next	layers

• Let	𝑔(𝑘, 𝐵) be	the	computation	time	for	𝑘 words	and	batch	size	𝐵
• Then	the	computation	time of	adaptive	softmax	(with	𝐽 clusters)	is

• For	𝑘, 𝐵 larger	than	some	threshold,	one	can	simply	assume	𝑔 𝑘, 𝐵 = 𝑘𝐵 (see	paper	for	details)

• By	solving	the	optimization	problem	(for	𝑘4 and	𝐽),	the	model	is	3-5x	faster than	
the	original	softmax	(in	practice,	𝐽 = 5 works	well)

25
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Results:	Adaptive	softmax	shows	comparable	results to	the	original	softmax	
(while	much	faster)

26

ppl:	perplexity	(lower	is	better)
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Mixture	of	Softmax	[Yang	et	al.,	2018]

• Motivation:
• Rank of	softmax	layer	is	bounded by	the	feature	dimension	𝑑

• Recall: By	definition	of	softmax

we	have																																																																(which	is	called	logit)

• Let	𝑁 be	number	of	possible	contexts,	and	𝑀 be	vocabulary	size,	then

which	implies	that	softmax	can	represent	at	most	rank	𝒅 (real	𝐀 can	be	larger)

27*Source:	https://www.facebook.com/iclr.cc/videos/2127071060655282/
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Mixture	of	Softmax	[Yang	et	al.,	2018]

• Motivation:
• Rank of	softmax	layer	is	bounded by	the	feature	dimension	𝑑
• Naïvely	increasing	dimension	𝑑 to	vocab	size	𝑀 is	inefficient

• Idea:
• Use	mixture	of	softmaxes (MoS)

• It	is	easily	implemented	by	defining	𝜋\,] and	𝐡\,] as	a	function	of	original	𝐡\

• Note	that	now

is	a	nonlinear	(log-sum-exp)	function	of	𝐡 and	𝐰,	hence	can	represent	high	rank

28
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Mixture	of	Softmax	[Yang	et	al.,	2018]

• Results:	MoS	learns	full	rank (=	vocab	size)	while	softmax	is	bounded	by	𝑑
• Measured	empirical	rank,	collect	every	empirical	contexts	&	outputs

29

MoC:	mixture	of	contexts
(mixture	before softmax)

𝑑 = 400, 280, 280 for
Softmax,	MoC,	MoS,	respectively

Note	that	9981	is	full	rank
as	vocab	size	=	9981
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Mixture	of	Softmax	[Yang	et	al.,	2018]

• Results:	Simply	changing	Softmax	to	MoS	improves the	performance
• By	applying	MoS	to	SOTA	models,	the	authors	achieved	new	SOTA	records

30
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Scheduled	Sampling	[Bengio	et	al.,	2015]

• Motivation:	
• Teacher	forcing [Williams	et	al.,	1989]	is	widely	used	for	sequential	training
• It	use	real previous	token	and	current	state	to	predict	current	output

32
*Source:	https://satopirka.com/2018/02/encoder-decoder%E3%83%A2%E3%83%87%E3%83%AB%E3%81%A8

teacher-forcingscheduled-samplingprofessor-forcing/
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Scheduled	Sampling	[Bengio	et	al.,	2015]

• Motivation:	
• Teacher	forcing [Williams	et	al.,	1989]	is	widely	used	for	sequential	training
• It	use	real previous	token	and	current	state	to	predict	current	output
• However,	the	model	use	predicted token	at	inference	(a.k.a.	exposure	bias)

33
*Source:	https://satopirka.com/2018/02/encoder-decoder%E3%83%A2%E3%83%87%E3%83%AB%E3%81%A8

teacher-forcingscheduled-samplingprofessor-forcing/
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Scheduled	Sampling	[Bengio	et	al.,	2015]

• Motivation:	
• Teacher	forcing [Williams	et	al.,	1989]	is	widely	used	for	sequential	training
• It	use	real previous	token	and	current	state	to	predict	current	output
• However,	the	model	use	predicted token	at	inference	(a.k.a.	exposure	bias)
• Training	with	predicted	token	is	not	trivial,	since	(a)	training	is	unstable,	and	(b)	as	
previous	token	is	changed,	target	also	should	be	changed

• Idea:	Apply	curriculum	learning
• At	beginning,	use	real tokens,	and	slowly	move	to	predicted tokens

34
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Scheduled	Sampling	[Bengio	et	al.,	2015]

• Results:	Scheduled	sampling	improves	baseline for	many	tasks	

35

Image	captioning

Constituency	parsing
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Professor	Forcing	[Lamb	et	al.,	2016]

• Motivation:
• Scheduled	sampling	(SS)	is	known	to	optimize	wrong	objective [Huszár	et	al.,	2015]

• Idea:
• Make	features	of	predicted tokens	be	similar	to	the	features	of	true tokens
• To	this	end,	train	a	discriminator classifies	features	of	true/predicted	tokens

• Teacher	forcing: use	real	tokens	/	Free	running: use	predicted	tokens

36
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Professor	Forcing	[Lamb	et	al.,	2016]

• Results:
• Professor	forcing	improves	the	generalization performance,	especially	for	the
long	sequences (test	samples	are	much	longer	than	training	samples)

37

NLL	for	MNIST
generation

Human	evaluation
for	handwriting
generation
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MIXER	[Ranzato	et	al.,	2016]

• Motivation:
• Prior	works	use	word-level objectives	(e.g.,	cross-entropy)	for	training,	but	use	
sequence-level objectives	(e.g.,	BLEU	[Papineni	et	al.,	2002])	for	evaluation

• Idea:	Directly	optimizemodel	with	sequence-level objective	(e.g.,	BLEU)
• Q.	How	to	backprop	(usually	not	differentiable)	sequence-level	objective?

• Sequence	generation	is	a	kind	of	RL	problem
• state:	hidden	state,	action:	output,	policy:	generation	algorithm

• Sequence-level	objective	is	the	reward of	current	algorithm
• Hence,	one	can	use	policy	gradient (e.g.,	REINFORCE)	algorithm

• However,	the	gradient	estimator	of	REINFORCE	has	high	variance
• To	reduce	variance,	MIXER	(mixed	incremental	cross-entropy	reinforce)	use
MLE	for	first	𝑇′ steps	and	REINFOCE	for	next	𝑇 − 𝑇′ steps	(𝑇′ goes	to	zero)
• Cf.	One	can	also	use	other	variance	reduction	techniques,	e.g.,	actor-critic	[Bahdanau	et	al.,	2017]

39
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MIXER	[Ranzato	et	al.,	2016]

• Results:
• MIXER shows	better	performance than	other	baselines

• XENT	(=	cross	entropy):	another	name	of	maximum	likelihood	estimation	(MLE)
• DAD	(=	data	as	demonstrator):	another	name	of	scheduled	sampling
• E2D	(=	end-to-end	backprop):	use	top-K	vector	as	input	(approx.	beam	search)

40
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SeqGAN	[Yu	et	al.,	2017]

• Motivation:
• RL-based	method	still	relies	on	handcrafted	objective (e.g.,	BLEU)
• Instead,	one	can	use	GAN	loss to	generate	realistic	sequences
• However,	it	is	not	trivial	to	apply	GAN	for	natural	languages,	since	data	is	discrete
(hence	not	differentiable)	and	sequence (hence	need	new	architecture)

• Idea:	Backprop	discriminator’s	output	with	policy	gradient
• Similar	to	actor-critic;	only	difference	is	now	the	reward	is	discriminator’s	output
• Use	LSTM-generator	and	CNN	(or	Bi-LSTM)-discriminator	architectures

41
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SeqGAN	[Yu	et	al.,	2017]

• Results:
• SeqGAN shows	better	performance	than	prior	methods

42

Synthetic	generation
(follow	the	oracle)

Chinese	poem	generation Obama	speech	generation
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UNMT	[Artetxe	et	al.,	2018]

• Motivation:
• Can	train	neural	machine	translationmodels	in	unsupervised way?

• Idea:	Apply	the	idea	of	domain	transfer	in	Lecture	12
• Combine	two	losses:	reconstruction loss	and	cycle-consistency loss

• Recall: Cycle-consistency	loss	forces	twice cross-domain	generated	(e.g.,	L1→L2→L1)	data	to	
become	the	original	data

44*Source:	Lample	et	al.	“Unsupervised	Machine	Translation	Using	Monolingual	Corpora	Only”,	ICLR	2018.

Model	architecture	(L1/L2:	language	1,	2)

reconstruction

cross-domain	generation
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UNMT	[Artetxe	et	al.,	2018]

• Results:	UNMT	produces	good translation	results

45

BPE	(byte	pair	encoding),
a	preprocessing	method
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Conclusion

• Deep	learning	is	widely	used	for	natural	language	processing	(NLP)
• RNN	and	CNN	were	popular	in	2014-2017
• Recently,	self-attention	based	methods	are	widely	used

• Many	new	ideas	are	proposed	to	solve	language	problems
• New	architectures	(e.g.,	self-attention,	softmax)
• New	training	methods	(e.g.,	loss,	algorithm,	unsupervised)

• Research	for	natural	languages	are	now	just	began
• Deep	learning	(especially	GAN)	is	not	widely	used	in	NLP	as	computer	vision
• Transformer	and	BERT	are	just	published	in	2017-2018
• There	are	still	many	research	opportunities	in	NLP

46
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Transformer	[Vaswani	et	al.,	2017]	

• Method:
• (Scaled	dot-product)	attention is	given	by

• Use	multi-head	attention (i.e.,	ensemble	of	attentions)

• The	final	transformermodel	is	built	upon	the	attention	blocks

• First,	extract	features	with	self-attention

• Then	decode	feature	with	usual	attention

• Since	the	model	don’t	have	a	sequential	structure,
the	authors	give	position	embedding	(some	handcrafted
feature	that	represents	the	location	in	sequence)
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Limitation	of	prior	works	&	Proposed	idea:
• Put	top	𝒌𝒉 words	(𝑝Q of	frequencies)	and	a	token	“NEXT”	in	the	first	layer,	and
put	𝑘, = 𝑘 − 𝑘Q words	(𝑝, = 1 − 𝑝Q of	frequencies)	in	the	next	layer

• Let	𝑔(𝑘, 𝐵) be	a	computation	time	for	𝑘 vocabularies	and	batch	size	𝐵
• Then	the	computation	time of	the	proposed	method	is

• Here,	𝑔(𝑘, 𝐵) is	a	threshold	function (due	to	the	initial	setup	of	GPU)
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Adaptive	Softmax	[Grave	et	al.,	2017]

• Limitation	of	prior	works	&	Proposed	idea:
• The	computation	time of	the	proposed	method	is

• Hence,	give	a	constraint that	𝑘𝐵 ≥ 𝑘l𝐵l (for	efficient	usage	for	GPU)

• Also,	extend	the	model	to	multi-cluster setting	(with	𝐽 clusters):

• By	solving	the	optimization	problem	(for	𝑘4 and	𝐽),	the	model	is	3-5x	faster than	
the	original	softmax	(in	practice,	𝐽 = 5 shows	good	computation/performance		trade-off)
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Professor	Forcing	[Lamb	et	al.,	2016]

• Motivation:
• Scheduled	sampling	(SS)	is	known	to	optimize	wrong	objective [Huszár	et	al.,	2015]

• Let	𝑃 and	𝑄 be	data	and	model	distribution,	respectively
• Assume	length	2	sequence	𝑥$𝑥n,	and	let	𝜖 be	the	ratio	of	real	sample

• Then	the	objective of	scheduled	sampling	is

• If	𝜖 = 1,	it	is	usual	MLE	objective,	but	as	𝜖 → 0,	it	pushes	the	conditional	
distribution	𝑄pq|ps to	the	marginal	distribution	𝑃pq instead	of	𝑃pq|ps

• Hence,	the	factorized	𝑄∗ = 𝑃ps𝑃pq can	minimize	the	objective
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More	Methods	for	Discrete	GAN

• Gumbel-Softmax	(a.k.a.	concrete	distribution):
• Gradient	estimator	of	REINFORCE	has	high	variance
• One	can	apply	reparameterization	trick…	but	how	for	discrete variables?

• One	can	use	Gumbel-softmax	trick [Jang	et	al.,	2017];	[Maddison	et	al.,	2017]	to	
achieve	a	biased	but	low	variance gradient	estimator

• One	can	also	get	unbiased estimator	using	Gumbel-softmax	estimator	as	a	control	
variate	for	REINFORCE,	called	REBAR [Tucker	et	al.,	2017]

• Discrete	GAN	is	still	an	active	research	area
• BSGAN	[Hjelm	et	al.,	2018],	ARAE	[Zhao	et	al.,	2018],	etc.
• However,	GAN	is	not	popular for	sequences	(natural	languages)	as	images	yet
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