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What is Object Detection?

* Goal:Predict both concepts(class) and locations of every object in a scene
* Classification + bounding-box regression (coordinates)
* More complicated than single object classification

person, sheep, dog

o" H n
“Image level” Bounding box level

“Pixel level” “Instance level”

sheep §sheep sheep ' sheep \sheep sheep ¥ sheep!"¥ sheep ' sheep \sheep\'
M W -

(c) Semantic Segmentation (d) Object Instance Segmetation

* One of the most fundamental and challenging problems in computervision
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Object Detection: Challenges

* Accuracy
* Vast range of intraclass variations (a-h)
* Small interclass variations (i)

AN
AL

(e) Clutter, Occlusion - () Blur ~ (g) Motion (¢) Small Interclass Variations: four different categories

aead >

(h) Different instances of the “chair” category

* Efficiency
* Need to localize/recognize all objectinstances with different scales
* Increasing needs on sufficiently high frame rate (towards real-time)
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Object Detection: Overview

* Recent evolution of object detection performance

Turning Point in 2012: Deep Learning Achieved Record Breaking Image Classification Result
Object Detection Results

(20 Categories)
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* Generic object detection performance steadilyincreased since 2012

* Thanks to evolution of deep CNNs

* Similar tendency with ImageNet classification performance

Algorithmic Intelligence Laboratory
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Object Detection: Overview

* Milestones in object detection based on the time of their first arXiv version

GoogLeNet

(Szegedy etal) HD enseNetl
(Lm ot aI) Faster RCNN (Huang et al.)
(Ren et al.) Cascaded RCNN
VGGNet Fast RCNN ResNet RFCN Mask RCNN (Zhaowei et al.)
(Gzrshzck tal.) (Simonyan and Zzssennan)(Gtrshlck) (He et al.) (Dai et al. (Heetal.) L
: I I .
2013 2014 I‘IS 016 IZ-O.17 I 2018
DetcctorNet MultiBox MSC Multibox YOLO SSD YOLO9000 Focal Loss
(Szegedy et al.) (Erhan etal.) (Szegedy et al.) (Redmon et al.) (Liu et al.) (Redmon and Farhadi) (Lin et al.)
SPPNet
(Heetal.)
OverFeat
(Sermanet et al.)
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Object Detection: Overview

* Milestones in object detection based on the time of their first arXiv version

GoogLeNet DenseNet
NIN (Szegedy et al.) H : al
(Tinet ol) Faster RCNN (Hsangiedar)
A (Ren et al.) Cascaded RCNN
RC VGGNet ResNet RFCN Mask RCNN (Zhaowei et al.)
(Girshick et al.) | (Simonyan and Zisserman)(Girshick) (He et al.) (Dai et al. (He et al.) L
L I >
2013 2014 015 016 2017 2018
DetectorNet MultiBox MSC Multibox YOLO SSD YOLO9000 Focal Loss
(Szegedy et al.) (Erhan et al.) (Szegedy et al.) (Redmon et al.) (Liu et al.) (Redmon and Farhadi) (Lin et al.)

OverFeat
(Sermanet et al.)

SPPNet
(Heetal.)

* Region-based detectors
* Two-stage framework

* Region proposals —> Detection (bbox regression + classification)

Region
proposal

Detection

Algorithmic Intelligence Laboratory
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Object Detection: Overview

* Milestones in object detection based on the time of their first arXiv version

GoogLeNet

NIN (Szegedy et al.) (}22832‘: 0
(Lin et al) Faster RCNN g e at e il BN
A (Ren et al.) ASCade
RC VGGNet ResNet RFCN Mask RCNN (Zhaowei et al.)

(Girshick et al.) | (Simonyan and Zisserman)(Girshick)

o
2013 2014 015

(He et al.) (Dai et al. (He et al.) L
I . ! R
016 2017 I 2018

DetectorNet MultiBox MSC Multibox YOLO SSD YOLO9000 Focal Loss
(Szegedy et al.) (Erhan et al.) (Szegedy et al.) (Redmon et al.)|(Liu et al.) (Redmon and Farhadi) (Lin et al.)
SPPNet
(Heetal.)
OverFeat
(Sermanet et al.)

* Single-shot detectors
* Region-proposal-free methods
* Unified, single-stage framework

Single-shot
detectors Next: Region-based

Detectors
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Object Detection: R-CNN [Girshick et al., 2013]

* Region-based Convolutional Network (R-CNN)
* First to explore CNN in object detection
e |ILSVRC detection challenge winner in 2013
* Multi-stage pipeline

* High-level diagrams

Region Proposal
(Selective Search)

...............................

For Each Rol

C SVM Classifiers

(Pretrained)

Warped H

" Input ~ Region Region Extract

Image Proposals CNN Features

C BB Regressors i
Classification

* source: https://arxiv.org/pdf/1809.02165.pdf

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014 CVPR_paper.htm|
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Object Detection: R-CNN [Girshick et al., 2013]

Region Proposal
(Selective Search)

Image Proposals

e Stage 1: Region proposal
* Find candidate regions that might contain objects
* Use selective search [Uijlings et al., 2013]

R
e

*source: https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
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Object Detection: R-CNN [Girshick et al., 2013]

|
CNN
E
e Stage 2: Fine-tine CNN
* Pre-train CNN (e.g., VGG-16) on ImageNet
* Fine-tune CNN using positive samples (loU > 0.5) U = yeaof Overiap
* |oU: Intersection over union Area of Union

* Classify N+1 classes (N classes + background)

* source: https://arxiv.org/pdf/1809.02165.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014 CVPR_paper.htm|
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Object Detection: R-CNN [Girshick et al., 2013]

RCNN
For Each Rol
CNN
C SVM Classifiers
7 = C BB Regressors
(Pretrained)
Extract _ .
CNN Features Classification

» Stage 3: Classification + bbox regression

e Using CNN features, train N+1 SVMs for each class
for binary classification

* Train bounding box regressors for refinement
(mapping from region proposal P to ground truth G)

Algorithmic Intelligence Laboratory

c‘i(f’)("

P

Bounding box regression example

* source: https://arxiv.org/pdf/1809.02165.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014 CVPR_paper.html
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Object Detection: R-CNN [Girshick et al., 2013]

e Contributions

* (+) First to explore CNN in object detection
* (+) ILSVRC detection challenge winner in 2013

* Limitations

* (-) Slow (need to compute output for every region proposal)
* (-) Complicated multi-stage training scheme

* (-) CNN features are not updated in response to SVMs and bbox regressors

Region Proposal
(Selective Search)

- Input ~ Region
Image Proposals

..................................

Extract
CNN Features

For Each Rol

C SVM Classifiers

(Pretrained)

C BB Regressors i

Classification

* source: https://arxiv.org/pdf/1809.02165.pdf

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014 CVPR_paper.html
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Object Detection: Fast R-CNN [Girshick et al., 2015]

* Fast Region-based Convolutional Network (Fast R-CNN)
* Better performance & Reduce computation time compared to R-CNN
* ROI (Region of interest) pooling layer to output fixed-size features from each region

* Feature mapis calculated only once per eachimage
* In previous R-CNN, need to calculate for all region proposals

* Train softmax classifier + bounding box regressor on top
* Limitation
* (-) Still uses selective search for region proposals to compute ROl features

Region Proposal
(Selective Search) Fast RCNN input
/ For Each Rol
' : MultiClass |
I - Classification E
p OI({)%ID g I:I Bounding Box |
rFpy Feature Maps; Rol Regressor :
. Input Projected Region  Regjon : ; o
Image Extract Features Proposals Veetor Classification o [l

Rol Pooling layer

*source: https://arxiv.org/pdf/1504.08083.pdf
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Object Detection: Faster R-CNN [Shaoqing et al., 2016]

* Faster Region-based Convolutional Network (Faster R-CNN)
* |ILSVRC Detection challenge winner in 2015

* Propose Region Proposal Network (RPN)

* Let CNN do region proposal ( no selective search)
* |Fast R-CNN + RPN = Faster R-CNN

* X34 faster than Fast R-CNN (one of the trained models)

RPN For Each Spatial } }
Location

esssaas

Objectness

E :L] Classification
o
O

2O MultiClass
)l — CONV Classification

Layers

Bounding Box

| = : Regressor
o 4 . Feature Maps: beosesosesssosmenoesannanenend
} %nput Extract Features Fﬁ’;‘? Projected Region Classification
mage P Proposals

*source: https://arxiv.org/pdf/1504.08083.pdf

https://arxiv.org/pdf/1809.02165.pdf
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Object Detection: Faster R-CNN [Shaoqing et al., 2016]

* More details of RPN

Algorithmic Intelligence Laboratory

Resize every input image to have shorter side size of 600

Output k =9 anchor boxes per each 3x3 sliding window in conv5 feature map
« 3 differentscales(128,256,512) x 3 different aspect ratios ( 1:1, 2:1, 1:2)

Use NMS (Non Maximum Suppression) to reduce overlapped boxes

Results in ~2000 bboxes per an image

Train classification + bbox regression on top using anchor boxes as reference

| 2k scores l ‘ 4k coordinates | <mm K anchor boxes

cls layer ‘ t reg layer

| 256-d
t intermediate layer

sliding window
conv feature map

Region Proposal Network (RPN)

*source: https://arxiv.org/pdf/1504.08083.pdf
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From Detection to Segmentation: Mask R-CNN [He et al., 2017]

* Canwe extendtheideasused in detection model to pixel-level segmentation ?
* Mask R-CNN extends Faster R-CNN to solve both detection+segmention

* |dea: Add pathwayto predict object mask in parallel with box detection
* Input: CNN feature maps

* Output: A binary mask (a matrix with 1s on all locations where pixel belongs to the
object and Os elsewhere)

...................................
........................

RP\ » For Each Spatial

i : Location ¥
i [ Objectness | Mask RCNN
: % ‘L) Classification ¢!
|2 |m '
' 8 : Bounding Box §1 pesemeceecsenenecaoeenrecceecoeeacaen
: il Regressor ¢i ! For Each Rol :
/ becentae et N oo STSeSSSSd | Ave MultiClass 4
A ! Pool Classification |
4 ' EEEEEEEE :
E v H Bounding Box §
k! 4 ' Regressor :
v el Rol; Mg 7 :
A Align; l’i’ l‘ﬁ‘ '
ki) — CONV —) — - (] — hion
Sl 7/ Layers 7% 7 :
2 : o 1974 '
4 4 » " " »
V5 lecccccascscascccossasacacancascsanas '
" Input Feature ¥ cature Maps; : :
’ P Extract Features "/ Projected Region Classification
Image aps Proposal
posals

*source: https://arxiv.org/pdf/1703.06870.pdf

https://arxiv.org/pdf/1809.02165.pdf
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From Detection to Segmentation: Mask R-CNN [He et al., 2017]

* ROI-Align: Modification on ROl poolinglayer for better pixel-level alignment
* ex) original image size of 128x128, feature map size of 25x25

ROl of 15x15 15 2.93
128 25
Corresponding region in feature map ~2.93x2.93 pixels

ROI-Align

Previous ROI-Pooling layer: round to 3x3 (0.5 pixel difference in the worst case)

e Bilinear interpolation to precisely estimate what would be in 2.93 pixels

* Results in better detection performance

15 x 15 pixel Region of Interest

in the original image . o
Corresponding region in the

Feature Map (2.93 x 2.93)

AP5o  AP75 | AP

1 AP
o RolPool | 23.6
Original Image: 128 x 128 Feature Map: 25 x 25 RoIAlzgn 30.9

46.5 21.6 28.2
51.8 32.1 34.0

+7.3

+53 +10.5 +5.8

*source: https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83 205de4
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Mask R-CNN: Example results on MS COCO dataset
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Object Detection: Cascade R-CNN [Cai et al., 2018]

e Detectorstrained with loU threshold of 0.5 usually produces noisyresults (a)

 How totrain high-quality detectors?

3 A’J"“;'V»M il +

N Y ASTAS
b

(a) Detection of u = 0.5 (b) Detection of u = 0.7

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1712.00726.pdf 22



Object Detection: Cascade R-CNN [Cai et al., 2018]

* Detectorstrained with loU threshold of 0.5 usually produces noisyresults

 How totrain high-quality detectors?
e Simply increasing threshold when training degrades performance:

e Why?
* Due to over-fitting

* Number of positive samples largely decrease with large loU threshold

Algorithmic Intelligence Laboratory

0.6

0.5

04r

02

0.1

Detection Performance

\‘

—u=0.5 (AP=0.349)
u=0.6 (AP=0.354)
—u=0.7 (AP=0.319)

0 \ \ \ \ \ , , ,
05 05 06 065 07 075 08 08 09 095

loU Threshold

*source: https://arxiv.org/pdf/1712.00726.pdf
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Object Detection: Cascade R-CNN [Cai et al., 2018]

* Detectorstrained with loU threshold of 0.5 usually produces noisyresults

 How totrain high-quality detectors?
e Simply increasing threshold when training degrades performance:

e Why?

* Due to over-fitting

Number of positive samples largely decrease with large loU threshold

* Notice that the box regressor always produce better results than original input:

Localization Performance

1
0.95
09 r
085
)
O osf
S 075
o3
5 07 H b
3 baseline
0651 —u=0.5
061 u=0.6
0551 —u=0.7

5 L L L L L L L L L
05 055 06 065 07 075 08 08 09 095 1

Input loU
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ground truth [
bbox proposal [_1

loU: 0.6 loU: 0.85

bbox
regressor

*source: https://arxiv.org/pdf/1712.00726.pdf 24



Object Detection: Cascade R-CNN [Cai et al., 2018]

* Detectorstrained with loU threshold of 0.5 usually produces noisyresults

 How totrain high-quality detectors?
e Simply increasing threshold when training degrades performance:
e Why?
* Due to over-fitting

Number of positive samples largely decrease with large loU threshold
* Notice that the box regressor always produce better results than original input:

* Idea: Using cascade of detectors with increasing loU threshold

1 Localization Performance ground truth D
0ss bbox proposal [_]
09
0.85
3 s loU: 0.6 loU: 0.85
:g- 0.75
a baseline|
065} —u=05 bbox bbox
il u=0.6 regressor regressor
085 —u=0.7

5 L L L L L L L L L
05 055 06 065 07 075 08 08 09 095 1

Input loU

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1712.00726.pdf 25



Object Detection: Cascade R-CNN [Cai et al., 2018]

* Sequence of detectors trained with increasing loU thresholds

* To be sequentially more selective against close false positives

* State-of-the-artresults compared to existing frameworks

Faster R-CNN

Cascade R-CNN

backbone AP APsg  APys | APg AP, APp
YOLOV2 [29] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [25] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [24] ResNet-101 39.1 59.1 423 21.8 42.7 50.2
Faster R-CNN+++ [18]* ResNet-101 34.9 55.7 374 15.6 38.7 50.9
Faster R-CNN w FPN [23] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w FPN+ (ours) | ResNet-101 38.8 61.1 41.9 21.3 41.8 49.8
Faster R-CNN by G-RMI [19] | Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Deformable R-FCN [5]* Aligned-Inception-ResNet | 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [16] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
AttractioNet [11]* VGG16+Wide ResNet 357 534 393 15.6 38.0 52.7
Cascade R-CNN ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Algorithmic Intelligence Laboratory

*source: https://arxiv.org/pdf/1712.00726.pdf
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Object Detection: You Only Look Once (YOLO) [Redmon et al., 2016]

* Predicts boxes & class probabilities with a single network in a single evaluation

e Object detection as single regression problem
* Eachimage divided into XS5 grid cell
B bounding boxes are predicted (regression) with a confidence score

A most likely class is predicted among C classes (per each grid cell)
Final output size: SXSX(BX5 + C)
NMS (Non Maximum Supression): Merge highly overlapped boxes

For E.:;Z‘h Grid
MultiClass
Classification

LI

.
Bounding Box
Regressor
Extract FC Classificat
Features Layer assification

Class probability map

*source: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only Look_CVPR_2016_paper.pdf

Algorithmic Intelligence Laboratory https://arxiv.org/pdf/1809.02165. pdf 28



Object Detection: YOLO [Redmon et al., 2016]

* YouOnly Look Once (YOLO)
* (+) See entire image asinput (better catch global context)
* (+) Very Fast
 (-) Difficulty in predicting small objects in groups
* (-) Accuracy trade-off with speed

Model mAP FPS Real Time speed
Fast YOLO 52.7% 155 Yes
YOLO 63.4% 45 Yes
YOLO VGG-16 66.4% 21 No
Fast R-CNN 70.0% 0.5 No
Faster R-CNN VGG-16 = 73.2% 7 No
Faster R-CNN ZF 62.1% 18 No

*source: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You Only Look CVPR_2016 paper.pdf
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Object Detection: Single-shot Multibox Detector (SSD) [Wei et al., 2017]

Goal: As fast as YOLO while beingaccurate as Faster-RCNN

* Keyideas
* Use multi-scale features instead of using single layer
* Use defaultanchorbox per each multi-scale feature grid (similar to RPN)
* Hard negative mining: reduce imbalance between negative and positive samples

-------------------------------------------------

Detecnom For Each Spatial | : Detemuu, For Each Spatial | :

Location : : : Location : :

E MultiClass i H MultiClass i

SSD ‘L Classification § Classification E :

Bounding Box

Regressor

: Boundlng Box | |
‘L] Regressor H

Feature CONV Feature CONV  Feature
Maps Layers Maps Layers Maps

S e

y Input

I Extract Features
mage

] -
Detecting at MultiScale Feature Maps

*source: https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1809.02165.pdf
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Object Detection: Single-shot Multibox Detector (SSD) [Wei et al., 2017]

* Goal:As fast as YOLO while beingaccurate as Faster-RCNN

* Keyideas
* Use multi-scale features instead of using single layer
* Use defaultanchorbox per each multi-scale feature grid (similar to RPN)

* Hard negative mining: reduce imbalance between negative and positive samples

- -- 1
Lo el
S EHI
ol ||!|———I'::
e
R y e LIEL
== loc : A(ex, ey, w, h)
= conf : (ci,¢a, -, ¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1512.02325.pdf 31



Object Detection: Single-shot Multibox Detector (SSD) [Wei et al., 2017]

Prediction source layers from:

e Effect of multi-scale features

mAP

use boundary boxes? |# Boxes
conv4_3 conv’/ conv8_2 conv9_2 convl0_2 convll_2 Yes No

(74 v (74 v v v 74.3 63.4 8732
4 4 (4 (4 4 74.6 63.1 8764
4 4 (4 (4 73.8 68.4 8942
v v (74 70.7 69.2 0864
4 4 64.2 64.4 9025

v 62.4 64.0 8664

* As fast as YOLO, while being more accurate than Faster-RCNN

Method mAP | FPS | batch size | # Boxes | Input resolution
Faster R-CNN (VGG16) | 73.2 7 1 ~ 6000 | ~ 1000 x 600
Fast YOLO 52.7 | 155 1 98 448 x 448
YOLO (VGG16) 66.4 | 21 1 98 448 x 448
SSD300 743 | 46 1 8732 300 x 300
SSD512 76.8 | 19 1 24564 512 x 512
SSD300 743 | 59 8 8732 300 x 300
SSD512 76.8 | 22 8 24564 512 x 512

Performance compared to other detectors

Algorithmic Intelligence Laboratory

*source: https://arxiv.org/pdf/1512.02325.pdf
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Object Detection: YOLOv2 [Redmon et al., 2017]

80
O

L]
Faster R-CNN ggpsqo 0
t o) M

* Focus onimproving accuracy while still being fast

* Modificationson YOLO

e Higher resolution images
Batch Normalization

o }'0[ 0
Resne o l’e
SSD300
Faster R-CNN : o

o o

Fast R-CNN

o

R-CNN
o

YOLO

Final FC layeris removed
New network , multi-scale

Mean Average Precision
~N
S
1

([ ]
D
S

1

) 30 50 100
o Frames Per Second

YOLO YOLOvV2
batch norm? v

hi-res classifier?
convolutional?
anchor boxes?

new network?
dimension priors?
location prediction?
passthrough?
multi-scale?

hi-res detector?
VOC2007 mAP | 63.4 | 658 69.5 69.2 69.6 744 754 76.8

Path from YOLO to YOLOvV2 on VOC2007 dataset.

ANEN
SNENENEN
SNENENENEN

NN N
AN NN
SN NN N NN

R T NN NN

~J

*source: http://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better Faster CVPR_2017_paper.pdf
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Object Detection: YOLOv3 [Redmon et al., 2018]

* YOLOv3: An incremental improvement
* Improve accuracy of YOLOv2 while still being fast
* Better backbone architecture
* K-means clustering to determine bounding box priors (3 different scales)

* Demo
* https://www.youtube.com/watch?v=MPU 2Histivl

v e d™ § N \ \‘ | v 7y i A G 4 < ,\.
LAJJCLL  ACCOLION

starging

VAL A7

_F, -

Algorithmic Intelligence Laboratory
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What is Visual Question Answering?

* Visual Question Answering (VQA)

* Given an image and a question related to the image,

* Answer the question

Who is wearing glasses?
man woman

yes

Ay ..;
VRl o Y

TR

)
[ ',, :

Algorithmic Intelligence Laboratory

Where is the child sitting?
fridge arms

A IS

2 1

*source: https://arxiv.org/pdf/1612.00837.pdf
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What is Visual Question Answering?

* Visual Question Answering (VQA)
* Given an image and a question related to the image,
* Answer the question

e Challenges

* Need to understand the question
* What kind of question? (e.g., yes/no, counting, comparison, ...)

* Need to understand objects in the given image
* Object’s attributes (e.g., color, shape, ...)
* Relation between objects (e.g., larger/smaller, left/right, ...)

* Need to connect the question and image
* Relation between words in question and objects in image

Algorithmic Intelligence Laboratory
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CLEVR: A Benchmark Dataset for VQA

* CLEVR [Johnsonetal., 2017] is a syntheticdiagnosticdataset for language and

visual reasoning

» Attributes (color, shape, size) and positions of objects are randomly generated
* Types of questions are counting, comparison, attribute identification, and so on.

* To answer, understanding natural languages and visual reasoning are required

* Example:

left of

Q) What size is the|cylinder|that is

brown metal thing that is

left of the|big sphere?

*source: https://cs.stanford.edu/people/jcjohns/clevr/
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How to generate questions?

* Questionsin CLEVR are generated as functional programs
1. Build a structure using pre-defined functions
2. Generate the corresponding natural language question

CLEVR function catalog

value ==—p

. Filter <attr> —p Objects
objects =——p

objects ==—p [FAnd
objects =——p 0L

. Exist > yes/no
—N —_—
objects Count number
object ==—=p| Query <attr> )= value

value =—p

Equal = yes/no
value ——p

number = SEqual
number == LeSS/More

object —>—> objects

value e=—p
object =——p

objects =—p —> object

*source: https://cs.stanford.edu/people/jcjohns/clevr/

—p yes/no

Relate ——p objects

Algorithmic Intelligence Laboratory
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Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* |dea

* Functional programs say how to understand/answer the question

* Recover the functional program from the question using RNN
* Build a neural network based on the structure of the program

Question: Are there more cubes than yellow things? Answer: Yes

; || greater Classifier
things—> LSIM > LS;'M > S han E
yellow—>| LSTM | =/ LSTM |—»| count | |EXeCUtiON
} ! Engine
than—>| LSTM | > LSTM |—»| eoter | greater_than |
* * [yellow] Module
cubes—> LSTM | > LSTM |—%| <ScEnE> [ couat || count | Networks
A v filter || filter
more — LSTM | [ LSTM —»>| count color || shape
[yellow] [cube] _
* * filter 4‘ /)
there— LSTM | (| LSTM —| shape
* * [cube] / CNN \
Are —» LSTM | =»| LSTM |—» <SCENE>
P G t Predicted
rogram wenerator Program

»
»

Recover
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*source: https://arxiv.org/pdf/1705.03633.pdf 41



Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* Neural Network Module

 Each NN module corresponds to one
function in CLEVR catalog

* Each module receives inputs from CNN’s
features or outputs of other modules

Algorithmic Intelligence Laboratory

CNN
feature

Count
module

CNN
feature

Greater

— ) module

Execution Engine
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Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* Neural Network Module

CNN : Count
 Each NN module corresponds to one feature module ‘
function in CLEVR catalog
Greater
* Each module receives inputs from CNN’s 5! module —>
features or outputs of other modules CNN
feature

Execution Engine

Question: Are there more cubes than yellow thi

: te
* Program Generator (PG) things — LSIM > LSIM —>
. EG outputs a sequence of modules yellow— LSTM | I+ LSTM —»| count
given a question 5 ¥ cirear
* The sequence is a prefix representation than—= LSTM | || LSTM [—>| color
} { [yellow]
.—|
cubes—* LSTM | -»| LSTM —»| <SCENE>
* PG canbe trained using ground-truth 4 Y
programs for questions more ——* LSIM —> LSIM —»| count
* CLEVR has 700k tion-program pair filter
as 700k question-program pairs o [ STM | o/ LSTM |—> shape
4 Y et
Are —» LSTM | | LSTM [—%| <SCENE>
Predicted

Program Generator p,oram

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1705.03633.pdf 43



Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* Execution Engine (EE)
* A combination of modules represents a neural network

, _ Classifier
* CNNis a pre-trained network A
* EE can be trained when the structure is fixed Execution
Engine
greater_than
A A
* TrainingPhases - count count
1. Train Program Generator _ A A
) ) ) ) i filter filter
2. Train Execution Engine with fixed PG color shape
3. Jointly fine-tune PG and EE via REINFORCE algorithm [yellowl || [cube]
* PG is a policy network * t
* The accuracy of EE is a reward / CNN \

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1705.03633.pdf 44



Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* Changing modules affect visual attention and prediction of Execution Engine

Q: What shape is the. .. ...purple thing? ...blue thing? ...red thing right of ...red thing left of
the blue thing? the blue thing?

* PG + EE outperforms existing baselines

Compare Integer Query Compare
Method | Exist Count | Equal Less More | Size Color Mat. Shape | Size Color Mat. Shape | Overall

Q-type mode | 50.2 34.6 | 514 51.6 505 |[50.1 13.4 508 335 |[50.3 525 502 518 | 421

LSTM | 61.8 425 | 63.0 732 71.7 |[499 122 50.8 332 |50.5 525 49.7 518 | 47.0

CNN+LSTM | 68.2 47.8 | 60.8 743 725|625 224 599 509 |56.5 53.0 538 555 | 543
CNN+LSTM+SA [46] | 684 57.5 | 56.8 749 682 [90.1 833 89.8 87.6 |52.1 555 49.7 509 | 69.8
CNN+LSTM+SA+MLP | 77.9 59.7 | 60.3 83.7 76.7 {854 73.1 845 80.7 [723 71.2 70.1 69.7 | 732
Human' [19]] 96.6 86.7 | 79.0 87.0 91.0 |97.0 950 940 940 |940 98.0 960 96.0 | 92.6
Ours-strong (700K prog.) | 97.1 92.7 | 98.0 99.0 98.9 988 984 98.1 973 998 985 989 984 | 96.9
Ours-semi (18K prog.) | 95.3 90.1 | 939 97.1 97.6 |98.1 97.1 97.7 96.6 990 97.6 98.0 973 | 954
Ours-semi (9K prog.) | 89.7 79.7 | 852 76.1 779 |948 933 93.1 892 |97.8 945 96.6 95.1 88.6

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1705.03633.pdf 45




Inferring and Executing Programs for Visual Reasoning [Johnson et al., 2017]

* Limitations
* Require an assumption about questions, functional programs
* i.e., require strong prior knowledge
* Require additional supervision (program-question pairs) for training PG

* Simple, but effective approaches for existing architectures without strong
priors

* Modulating visual processing by language: MODERN, FiLM
* Relational reasoning: Relation Network

Algorithmic Intelligence Laboratory
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A Simple Neural Network Module for Relational Reasoning [Santoro et al., 2017]

* Motivation
* The ability to reason about relations between objects is crucial
* Many architectures do not focus explicitly on relational reasoning

* Relation Networks (RN)

RN(O) = fs | > 90(0s,0;)
0]

* 0 ={04,...,0,,} and o; is i-th object’s representation (e.g., CNN features)
* f4 and gg are arbitrary functions (e.g., MLP)

» Strength: (1) RNs learn to infer relations (2) RNs are data efficient (3) RNs operate
on a set of objects
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A Simple Neural Network Module for Relational Reasoning [Santoro et al., 2017]

* RN-augmented CNN

Final CNN feature maps RN
I I
[ | I I
e, Object pair
object I — with question  J0-MLP
I I
Cony < o-p [ | — W Jo-mLp

B_,

What size is the cylinder
that is left of the brown
metal thing that is left
of the big sphere?

» what size is ... sphere

bep [ IEEIDT —> DN

Element-wise
sum

I
LSTM

* Eachpixel in final CNN features represents an object
* RN is conditioned on question embeddings (e.g., RNN hidden vectors)

Algorithmic Intelligence Laboratory

*source: https://arxiv.org/pdf/1706.01427.pdf
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A Simple Neural Network Module for Relational Reasoning [Santoro et al., 2017]

* RNs significantly outperformsother baselines on relational tasks

compare numbers

1.0

B Human
g 0.757 ) CNN+LSTM+RN
3 031 = EEE CNN+LSTM+SA
< 0.25 - @ CNN+LSTM
0.0 - [ LST™M
overall count exist more less equal £33 Q-type baseline
than than
query attribute compare attribute
1
1.0 4
3 0.75-
o
8 0.5 -
g 0.25 A
0.0 -
query uery query query compare compare compare compare
size shape material color size shape material color
\ J \ J
Non-relational tasks Relational tasks

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1706.01427.pdf 50



Modulating Early Visual Processing by Language [de Vries et al., 2017]

* Motivation
* Prior works use features obtained from pre-trained CNNs

* However, depending on linguistic inputs (questions), the visual processing (CNN
layers) should be changed

* How to modulate visual processing based on linguistic inputs?

yes no

A
Fusion Block Fusion Block
1 [ | 3 3
| atte;tion — | attention |€=—
ResNet ResNet
-
LSTM - LSTM
Is the umbrella Is the umbrella
upside down? upside down?
Previous approach MODERN (this paper)

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1707.00683.pdf 51



Modulating Early Visual Processing by Language [de Vries et al., 2017]

e Conditional Batch Normalization (CBN)
* CBN modulates affine parametersin BN using embedding vectors from LSTM

BN(zly, 8) = BN(z]y + Ay, 8 + AB)
where (A7, AB) = MLP(LSTM(question))

ReLU(.) ReLU(.)
4 4
BN (Fic,, |vi, BY) BN(Fy., Iy +Av{, BY + AB)) [
4~ A
MLP
4
Fic.. Fic, LSTM
........... 7
. question

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1707.00683.pdf 52



Modulating Early Visual Processing by Language [de Vries et al., 2017]

e Conditional Batch Normalization (CBN)
* CBN modulates affine parametersin BN using embedding vectors from LSTM

BN(zly, 8) = BN(z]y + Ay, 8 + AB)
where (A7, AB) = MLP(LSTM(question))

pm— ‘
7x7x2048 Block »

4 | ReLl}(.\) I 4

Stage4 ’(":D
Block;,

Block, ( BN(x) led mLp |
Stage3 ° | convy(x)-1*1 I

| Block 1
> ReLU(x) |
BN(x) e MLP e

conv,(x)-3*3 |

|

I

|

| ReLU(x) |
I

|

ResNet

shorcut

Stage2

Stagel

convl BN(x) e MLP e
’ convy(x)—-1*%1 |
Image - 224x224x3 f

—— 1
.

LSTM

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1707.00683.pdf 53



Modulating Early Visual Processing by Language [de Vries et al., 2017]

* Feature-wise Linear Modulation (FiLM) [Perez et al., 2018]
* Affine transformation of features instead of modulate affine parameters in BN

FiLM(z|y,8) =vx+ 8 where (7, ) = f(question)

Answer: Yes
Are —»| GRU |
there —»| GRU |
~ | ResBlock N | cmnTTTTTIII , »
more —»| GRU | | % :' <%><— :
cubes—»| GRU ; RelLU U
' Pa ; Bic ¥
than —| GRU P s Fim
: : 1 =
: : —=
yellow—> : : BN -
> ' 1
4+ .2 | ResBlock 2 : :
things—s| GRU | |~ 3 : Conv :
— 7| ResBlock1 |-+ : :
Linear |— ; :
F i,c

activation

I:]I_{_ ?

*source: https://arxiv.org/pdf/1709.07871.pdf 54
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Modulating Early Visual Processing by Language [de Vries et al., 2017]

* FiLM also changes visual attention dependingon questions

...red thing right of the ...red thing left of the
blue thing? A: sphere blue thing? A: cube

* Performance of FiLM on CLEVR (MODERN paper do not use CLEVR dataset)

Q: What shape is the... ...purple thing? A: cube  ...blue thing? A: sphere

Compare Query Compare

Model ‘ Overall ‘ Count  Exist Numbers Attribute  Attribute
Human (Johnson et al. 2017b) | 926 | 86.7 96.6 86.5 05.0 96.0
Q-type baseline (Johnson et al. 2017b) 41.8 34.6 50.2 51.0 36.0 51.3
LSTM (Johnson et al. 2017b) 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM (Johnson et al. 2017b) 52.3 43.7 65.2 67.1 49.3 53.0
CNN+LSTM+SA (Santoro et al. 2017) 76.6 64.4 82.7 77.4 82.6 75.4
N2NMN#* (Hu et al. 2017) 83.7 68.5 85.7 84.9 90.0 88.7
PG+EE (9K prog.)* (Johnson et al. 2017b) 88.6 79.7 89.7 79.1 02.6 96.0
PG+EE (700K prog.)* (Johnson et al. 2017b) 96.9 092.7 97.1 98.7 08.1 08.9
CNN+LSTM+RN7{ (Santoro et al. 2017) 05.5 90.1 97.8 03.6 97.9 97.1
CNN+GRU+FiLM 97.7 94.3 99.1 06.8 99.1 99.1
CNN+GRU+FiLM1{ 97.6 94.3 99.3 034 99.3 99.3

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1709.07871.pdf 55



Modulating Early Visual Processing by Language [de Vries et al., 2017]

* T-SNE plots of (y, 8) of the first/last FiLM layers

* The FiLM parameters cluster by low-level reasoning in the first layer,
and high-level reasoning in the last layer

First FiLM Parameters Last FiLM Parameters

@ ° - exist

- less_than

- greater_than

- count

- query_material

- query_size

- query_color

- query_shape

- equal_color

- equal_integer
10 - equal_shape

« 11 - equal_size

« 12 - equal_material

c
O 0O ~NO O b WN = O

About materials of objects About query-type question

Algorithmic Intelligence Laboratory *source: https://arxiv.org/pdf/1709.07871.pdf 56
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

e Limitations of previous works
* Module networks require strong supervision about structures, and they are not

end-to-end differentiable
* Augmented CNN approaches do not have ability for relational reasoning

Relation Network provides only one-step reasoning between objects

* Memory-Attention-Composition (MAC) networks

* Itis fully differentiable neural networks
* |t provides explicit and expressive reasoning via memory/attention mechanisms

A" % (2) MAC Recurrent Network (p cells)

control
Control == Control ==» Control ==» Control —>cp reasoning operation

Memory =——» Memory =——» Memory =—» Memory =——p memory
P Intermediate result

I (1) Input Unit (3) Output Unit l

A 4

classifier

knowledge base | question g

I | ] 2
uestion
ow, ew, .. iew, 9 1
- 1,772 " 7S words
“what is the material of the large object Answer
“metal”

KHlde that is both behind the
and in front of the blue cylinder?”

*source: https://arxiv.org/pdf/1803.03067.pdf
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

* Firststep (Input Unit)
* Retrieve knowledge base (CNN features) from pre-trained CNN
* Retrieve a question embedding and contextual word embeddings using BiLSTM

> question embedding

Knowledge
Base L1 1 L] L1 L contextualwords

Whatshapeis the purplething
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

* Main component: MAC cell

(MAC cell

>

I
Control

v

q
[ &

.

|

g
M1 —| Read Write
KB m,

) ’

G

\- —— //\
-~ - - —_——A A (2) MAC Recurrent Network (p cells)
control

Control =—» Control =—» Control == Control —»cp reasoning operation

memory

Memory =—» Memory =——» Memory =——» Memory _’mpl # i
ntermediate result

/7
/7 .
, T (1) Input Unit

knowledge base

KHxWxd

* Each MAC cell treats onereasoningstep

e Each cell consists of 3 components:
* Control Unit decides which words in question should be focused

* Read Unit retrieves information from knowledge base using control unit
* Write Unit updates memory using retrieved information and control unit

(3) Output Unit l

question q > | classifier
I ) I 2
=7 | question
ow, :CW2: ;CW, i l
“what is the material of the large object Answer
“metal”

that is both behind the
and in front of the blue cylinder?”

* Multiple MAC cells can be recurrentlyapplied

* j.e., multiple reasoning steps

Algorithmic Intelligence Laboratory

*source: https://arxiv.org/pdf/1803.03067.pdf
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

e Control Unit (CU) in MAC cell

(MAC cell h ( ‘ \
N sy . previous Control Unit (CU)
€ ] » Control "¢ control Do cq
) Cia - el h control
= Wb /0\ Wb G
a q; u S
| . — question attention
Mi1 E_{ Read Write m; softmax +
M1 CW,..CW, v;ilegrl;te:
contextual \(c1) (c2) g )

words

\ - *source: https://arxiv.org/pdf/1803.03067.pdf

e Control Unit decides which words in question should be focused

* ¢;: control stateatstepi is weighted sum of contextual word embeddings
* Compute attention using question embedding and previous control state

weighted sum

compute
| —p  (;: control

g: question embedding
C;_1: previous control |

contextual words
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

e Read Unit (RU) in MAC cell

control

* Read Unit (RU) in MAC cell (<
(Read Unit (RU) h
revious j
p retrieved
memory . .
— information
my, n
 —
* Read Unit retrieves information from knowledge base using control unit attention
* m;: memory state at step i is weighted sum of knowledge base knowledge
+ Compute attention using current control state and previous memory state base
Ki,w
K(,” (r2) (r3) )

*source: https://arxiv.org/pdf/1803.03067.pdf

* Read Unit retrievesinformationfrom knowledge base using control unit

* m;: memory stateatstep i isweighted sum of knowledge base
* Compute attention using current control state and previous memory state

Knowledge compute - weighted sum . . .
Base —_— —r—>  1;: retrieved information

m;_,: previous memory

¢;: current control KB
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

e Write Unit (WU) in MAC cell

(MAC cell

v

N

T
Control

\.

i

i
Mia ~+ Read :
KB m.,

@
\i/

|

Write ’

J

control
G

( Write Unit (WU) A
‘ retr/eveq i Glg
information
fi - Wb m’ N
- prev l/l [I
m, > ™
previous L gate
memory
\( wl) (w2) (w3) )

memory
m;
S

*source: https://arxiv.org/pdf/1803.03067.pdf

e Write Unit updates memory usingretrieved informationand controlunit

* WU uses self-attention, i.e., use previous memory statesmq,m,, ..., mj_q
* This provides non-sequential reasoning processes

« WU uses memory gate,i.e., m; = gm;_1 + (1 — g)m;
* Dynamically decide how much information should be updated

Algorithmic Intelligence Laboratory
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

* Last step (Output Unit) =Ll
R . . question
Use the question embedding and q ) o I
last memory state memory _|_,
m, RelLU Softmax

123456
how

many [l | |
objects

are

either

small [l
objects
behind

the

e Attention maps produced by MAC network
tiny

metal = - - .
cylinder |
o N
metallic |
cubes [ . ’
in -
front % D
Of + + + + i
the [ ]
large
green .
metal , A
object 1

*source: https://arxiv.org/pdf/1803.03067.pdf
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Compositional Attention Networks for Machine Reasoning [Hudson et al., 2018]

* The state-of-the-art performance on CLEVR dataset

Model

Human (Johnson et al., 2017b)
Q-type baseline (Johnson et al., 2017b)
LSTM (Johnson et al., 2017b)
CNN+LSTM (Johnson et al., 2017b)
CNN+LSTM+SA+MLP (Johnson et al., 2017a)
N2NMN* (ilu_et al., 2017)

" PG+EE (9K prog.)* (Johnson et al., 2017b) I
PG+EE (18K prog.)* (Johnson et al., 2017b) |
PG+EE (700K prog.)* (Johnson et al. \2017b‘|

I
I
I
| CNN+LSTM+RN ¥ (Santoro et al., 2017) I
I
I
I

CNN+GRU+FiLM #Perez etal., 2017)
CNN+GRU+FILM? (Perez et al.Hzm 7)
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CLEVR
Overall
92.6
41.8
46.8
52.3
73.2
83.7
88.6
95.4
96.9
95.5
97.7
97.6

98.9

Count

86.7
34.6
41.7
43.7
59.7
68.5
79.7
90.1
92.7
90.1
94.3
943

97.1

Exist

96.6
50.2
61.1
65.2
77.9
85.7
89.7
97.3
97.1
97.8
99.1
99.3

99.5

Compare
Numbers
86.5
51.0
69.8
67.1
75.1
84.9
79.1
96.5
98.7
93.6
96.8
934

99.1

Query
Attribute
95.0
36.0
36.8
49.3
80.9
90.0
92.6
97.4
98.1
97.9
99.1
99.3

99.5

= = == =

oo oo o o

*source: https://arxiv.org/pdf/1803.03067.pdf

Compare
Attribute
96.0
51.3
51.8
53.0
70.8
88.7
96.0
98.0
98.9
97.1
99.1
99.3

99.5

Humans

Humans

before FT after FT

27.5
37.7
50.4

54.0

56.6

574

36.5
43.2
57.6

66.6

75.9

81.5

1 Covered in this lecture
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