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What is Meta-Learning?

* Definition from Wikipedia:

Meta learning is a subfield of machine learning where automatic learning
algorithms are applied on metadata ..

the main goal is to
use such metadata

to improve the performance of existing learning
algorithms or to learn (induce) the learning algorithm itself,
learning to learn..

* Meta learning = “Learning to learn”

* All kinds of learning algorithms that learns to improve the learning process itself

* Let’s see an example
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What is Meta-Learning?

* An example from CUB-200 dataset: American goldfinch

American goldfinch *®

From Wikipedia, the free encyclopedia

The American goldfinch (Spinus tristis) is a small North American bird in the finch family. It is migratory, ranging from mid-Alberta to North Carolina during the =
breeding season, and from just south of the Canada-United States border to Mexico during the winter, Amerl.ca.n goldfinch

The only finch in its subfamily to undergo a complete molt, the American goldfinch displays sexual dimorphism in its coloration; the male is a vibrant yellow in the
summer and an olive color during the winter, while the female is a dull yellow-brown shade which brightens only slightly during the summer. The male displays
brightly colored plumage during the breeding season to attract a mate.

The American goldfinch is a granivore and adapted for the consumption of seedheads, with a conical beak to remove the seeds and agile feet to grip the stems of
seedheads while feeding. It is a social bird, and will gather in large flocks while feeding and migrating. It may behave territorially during nest construction, but this
aggression is short-lived, Its breeding season is tied to the peak of food supply, beginning in late July, which is relatively late in the year for a finch. This species is
generally monogamous, and produces one brood each year.

Human activity has generally benefited the American goldfinch. It is often found in residential areas, attracted to bird feeders which increase its survival rate in
these areas. Deforestation also creates open meadow areas which are its preferred habitat,

Contents [hide]
1 Taxonomy
2 Description
3 Distribution and habitat

4 Behavior
4.1 Sociality Male American goldfinch in spring
4.2 Breeding plumage
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What is Meta-Learning?

* Which is American goldfinch?

Algorithmic Intelligence Lab * source : http://www.vision.caltech.edu/visipedia/CUB-200.html 6




What is Meta-Learning?

* Which is American goldfinch?

* Humans can quickly learn “unseen” classes with small number of examples
* Since we have learned prior knowledge about visual representations
* This kind of problem is called “1-shot/few-shot” classification problem

* Meta-learning: “Learning to learn” in order to generalize well to unseen tasks

Algorithmic Intelligence Lab * source : http://www.vision.caltech.edu/visipedia/CUB-200.htm| 7




Base Learning vs. Meta-Learning

* Base learning : How to learn a model to classify different classes of birds?

American
goldfinch

Train

European
goldfinch

Test

Hooded
Oriole

* Goal : Learn a mapping f : x — y from input image x to output (label) ¥
* Choose a learner (e.g., a neural network) and learning strategies (e.g., SGD)
* Generally difficult when number of training samples are very small

Choose learning rules
(e.g., hyperparameter, optimization, etc.)

‘ s Learner

Target tasks dataset \

Choose a model appropriate for a target task
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Base Learning vs. Meta-Learning

* In meta-learning, we focus on learning the learning rules
* Consider each dataset as a data sample

* Learn patterns across tasks
* So that the the model can generalize well to possibly “unseen” tasks
Meta-train dataset Meta-test dataset

Train dataset #1: Dogs

Siberian husky Target test dataset : Birds
American
Akita inu goldfinch
European
Idfinch
Utonagan dog golatinc
Hooded
Train dataset #2: Cats Oriole
Siamese cat
Train
Persian cat
Test
Russian blue

Algorithmic Intelligence Lab : * source : https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html 9




Base Learning vs. Meta-Learning

* In meta-learning, we focus on learning the learning rules
* Consider each dataset as a data sample
e Learn patterns across tasks

* So that the the model can generalize well to possibly “unseen” tasks
* “Learning to learn” that works well on any task from the distributions of tasks

Meta-learner trained to improve learner

<Meta-train> /

Meta-Learner

Learner

| ] Trained on task-specific loss
| (e.g., cross entropy for
classification)

Various tasks from p(7)
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Base Learning vs. Meta-Learning

* In meta-learning, we focus on learning the learning rules
* Consider each dataset as a data sample
* Learn patterns across tasks

* So that the the model can generalize well to possibly “unseen” tasks
* “Learning to learn” that works well on any task from the distributions of tasks

Learner learns “unseen” tasks with
help of meta-learning algorithms

<Meta-test>

Meta-Learner
(fixed)

Target task dataset

Algorithmic Intelligence Lab 11



Meta-Learning in More Formal Definition

* Most meta-learning algorithms consist of two levels of learning (or /oops)

* Inner loop: optimizes the base learner (e.g., classifier)
* Parameters 0 : parameters of the base learner
« Objective: Li,(0|¢) (e.g., cross entropy for classification)

Algorithm 1 Common meta-learning algorithm

1: while not done do

2 fort=1,---,7T do

3 Optimize parameters 6 of learner

4: 9(%1) - QF()t) V0 Lo fo Inner |OOp
5: end for
6
7
8:

Optimize meta-parameters ¢
(b < ¢ — V¢£mo
end while
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Meta-Learning in More Formal Definition

* Most meta-learning algorithms consist of two levels of learning (or /oops)
* Inner loop: optimizes the base learner (e.g., classifier)

* Parameters 0 : parameters of the base learner
« Objective: Li,(0|¢) (e.g., cross entropy for classification)

* Outer loop (meta-training loop): optimizes the meta-learner
* Meta-parameters ¢ : parameters to learn the learning rule (e.g., how much to update § )
* Meta-objective L, (0, ¢) : performance of the base learner on the new task
* Meta-optimization: adjusting ¢ so that the inner loop perform well on £y,

Algorithm 1 Common meta-learning algorithm

1: while not done do =
2 fort=1,---,7T do

3 Optimize parameters 6 of learner fy Inner lo op
4: 00D 0% — V) Lio Outer loop
5: end for B
6
7
8:

Optimize meta-parameters ¢
¢ < ¢ — v¢£mo
end while -

Algorithmic Intelligence Lab
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Applications of Meta-Learning

e Recently meta-learning is applied to many areas such as
* Hyperparameter optimization
Neural network architecture search

Reinforcement learning

Learning model initialization

* Overcome difficulties of few-shot learning (e.g., overfitting caused by small # of samples)
Learning optimizers

* Instead of using hand-crafted optimizer (e.g., SGD, ADAM), learning the optimizers

\

In this lecture, we will focus on these two applications
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Learning Good Initialization for Few-Shot Learning

* Few-shot learning tackles limited-data scenario
* One way to overcome the lack of data is initialization

 Common initialization method: pre-train with ImageNet and fine-tune
(+) Generally works very well on various tasks
(-) Not work when one has only a small number of examples (1-shot, 5-shot, etc.)
(-) Cannot be used when target network architectures are different from source model

pre-trained parameters
9,; =0 — OéVgﬁ(@)

(new) test task

* Learning initializations of a network that
* Adapt fast with a small number of examples (few-shot learning)
e Simple and easily generalized to various model architecture and tasks

Algorithmic Intelligence Lab 16



Model-Agnostic Meta-Learning (MAML)

* Key idea
* Train over many tasks, to learn parameter § that transfers well
* Use objective that encourage 0 to fast adapt when fine-tuned with small data
* Assumption: some representations are more transferrable than others

* Model find parameter 6 that would reduce the validation loss on each task
* To do that, find (one or more steps of) fine-tuned parameter from 6 for each task
* And reduce the validation loss at fine-tuned parameter for each task
* Meta-update the 6 to direction that would adapt faster on each new task

— meta-learning

9 ---- learning/adaptation
VL
Vi,
Vﬁl ,,,, '93
* 7 \\
1° 05

Algorithmic Intelligence Lab

17



Model-Agnostic Meta-Learning (MAML)

* Notations and problem set-up

T

Task 7T ={x,y,L(x,y)}

Consider a distribution over tasks p(7)

Model is trained to learn new task 7; ~ p(7T) from only K samples
Loss function for task 7; is L,

Model f is learned by minimizing the test error on new samples from 7;

Meta-train set
(K = 4 samples per class)

"""""""" Train dataset #1: “cat-bird”  |——

-EMEN g

'\___y ________________________ D € J

L7
L7,
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Algorithms

* Consider a model fy parameterized with 6

* Inner-loop

« Adapting model to a new task 7;

Where & is learning rate,

0 =0 —a

VoL (fo)

0

VL,

— meta-learning
---- learning/adaptation

NV L

/
* .

*of 0

* We can compute ¢! with one or more gradient descent update steps

Algorithmic Intelligence Lab
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Algorithms

— meta-learning

* Consider a model fy parameterized with 6
---- learning/adaptation

6 that would adapt better than &

e QOuter-loop
* Model parameters are trained by optimizing the performance of fg;

min Y Lr(fe)= > Lt (fH—aVQL’TZ.(fg))
Ti~p(T) Ti~p(T)

* So, the meta-optimization:

%—5V¢9 > Ly(fe)

Ti~p(T)
Where 3 is meta-learning rate

Algorithmic Intelligence Lab
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Meta-Gradients of MAML

 MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

(9/ =0 — CYVQ[,Ti (f@)
IMAML = VGETL-(@/) — (VO’LTi(fH’)) ‘ (VGQ/)
= (Vo L7, (fo)) - (Vo(0 — VLT, (fo)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

Algorithmic Intelligence Lab 21



First Order Approximation of MAML

 MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

9/ =0 — &V@[ﬂ; (f@)
IgMAML = VGETL-(@/) — (V0’£77;(f0')) ‘ (VHH/)
= (Vo L7, (for)) - (Vo(0 —aVoL7,(fo)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

e Use 1%t order approximation

gvamL = VoL (0)) = (Vo L1, (for)) - (Vo0)
= Vo Lr.(for)

* Ignore 2" order terms
* Empirically show similar performance

Algorithmic Intelligence Lab
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MAML

* Inner loop
* One (or more) step of SGD on training loss starting from a meta-learned network

e Quter loop
* Meta-parameters: initial weights of neural network
« Meta-objective Lo : validation loss
* Meta-optimizer: SGD

* Learned model initial parameters adapt fast to new tasks

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
1: randomly initialize ¢

2: while not done do

3:  Sample batch of tasks 7; ~ p(7)

4: forall 7; do

5: Evaluate Vo L7, (fo) with respect to K examples

6 Compute adapte(d 1:2arameterls) with gradientpde— Innerloop [~ Outer loop
scent: 0, = 0 — aVoLT (fo)

7:  end for

8 Update 0 <= 0 — BV 1 1 L7:(for) |

9: end while
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave Y = Asin(wz)
e Where A €[0.1,5.0], w e [0,7], « € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

Algorithmic Intelligence Lab
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave ¥ = Asin(wz)
e Where A €[0.1,5.0], w e [0,7], « € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* MAML regresses well in the region without data (learn periodic nature of sine well)

MAML|K=10 K=5, step size=0.01 [pretrained,|K=10, step size=0.02

- -4

pre-update -+ 1gradstep ==

-6 = 0 -6

10 grad steps —— ground truth 4 4 used for grad pre-update -+ 1gradstep ==+ 10 grad steps
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave ¥ = Asin(wz)
e Where A €[0.1,5.0], w e [0,7], « € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)

e Continue to improve with additional gradient step
* Not overfitted to 6 that only improves after one step
* Learn initialization that amenable to fast adaptation

k-shot regression, k=10

~e— MAML (ours)
- «- pretrained, step=0.02
*- oracle

-

mean squared error

Algorithmic Intelligence Lab ‘ number of gradient Steps
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Experiments on Few-Shot Learning Tasks

e Datasets for few-shot classification task

* Omniglot

TIX T 1 h

* Various characters obtained from 50 alphabets &£ [J A% °T° 1 1
e Consists of 20 samples of 1623 characters Q710> 1 ¥ W
- ITIfcs g o 3

* 1200 meta-training, 423 meta-test classes IEISHD 3 w
I BHava

a0Q@6lP L v

* Mini-Imagenet
* Subset of ImageNet Meta-
* 64 training, 12 validation, 24 test classes b
* For each class one/five samples are used

Meta-
Test
Pmeta-tes

Algorithmic Intelligence Lab * source : Ravi and Larochelle, Optimization as a model for few-shot learning, ICLR 2017; 27



Experiments on Few-Shot Learning Tasks

* Few-shot classification experiments

* Omniglot

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% = -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.74+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 + 0.2%

* Mini-ImageNet

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £+ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £+ 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 +0.77%

60.60 £ 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 +0.92%

Algorithmic Intelligence Lab
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MAML

 MAML outperforms other baselines and generalizes well on unseen tasks

* It is model-agnostic
* No dependency on network architectures
* Can be used for another task not only few-shot learning (e.g., reinforcement learning)
* Easily applicable to many applications

* Many recent works on meta-learning based on MAML
* Learning the learning rate as well [Li, et. al., 2017]
 First-order approximation of MAML [Nichol, et. al., 2018]
* Probabilistic MAML [Finn, et. al., 2018]
* Visual imitation learning [Finn, et. al., 2017]

29



An Extension: Meta-SGD - Learning Initialization and Learning Rates

* MAML uses the same learning rate for all the task

* Meta-SGD improves MAML by
* Learning the learning rates for each task
* Here the learning rates are vector, so that adjust the gradient direction as well

* Inner loop computation becomes: 0’ =6 — oo VL7 (fo)
* Where a is a vector of learning rates

(]
meta-learning 9;
learning / adaptation
0; =0 —-aoVL(0)

Algorithmic Intelligence Lab * source : Li et. al., , Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, 2017; 30



Experimental Results on Few-Shot Regression

e Same few-shot regression experiment settings with MAML
* By learning the hyperparameter (learning rates) Meta-SGD outperforms MAML

6 1 e Ground Truth 6 1
—— MAML
w— Meta-SGD

wess Ground Truth

Figure 3: Left: Meta-SGD vs MAML on 5-shot regression. Both initialization (dotted) and result
after one-step adaptation (solid) are shown. Right: Meta-SGD (10-shot meta-training) performs

better with more training examples in meta-testing.

Table 1: Meta-SGD vs MAML on few-shot regression

Meta-training Models 5-shot testing | 10-shot testing | 20-shot testing
5-shot training MAML 1.13+0.18 0.85+0.14 0.71+0.12
Meta-SGD | 0.90 +£0.16 | 0.63 +0.12 0.50+0.10
10-shot training MAML 1.17£0.16 0.77£0.11 0.56 £ 0.08
Meta-SGD | 0.88+0.14 | 0.53 +0.09 0.35 + 0.06
20-shot training MAML 1.29 £+ 0.20 0.76 £0.12 0.48 £0.08
Meta-SGD | 1.01 £0.17 | 0.54 +0.08 0.31 +0.05

Algorithmic Intelligence Lab
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Experimental Results on Few-Shot Classification

* Omniglot experiments

Table 2: Classification accuracies on Omniglot

S-way Accuracy

20-way Accuracy

1-shot 5-shot 1-shot 5-shot
Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching Nets 98.1% 98.9% 93.8% 98.5%
MAML 98.7 £ 0.4% 99.9 4+ 0.1% 95.8 £ 0.3% 98.9 + 0.2%
Meta-SGD 99.53 +0.26% | 99.93 £ 0.09% | 95.93 +0.38% | 98.97 + 0.19%

* Mini-Imagenet experiments

Table 3: Classification accuracies on Minilmagenet

S-way Accuracy

20-way Accuracy

1-shot

5-shot

1-shot

5-shot

Matching Nets

43.56 £+ 0.84%

55.31 +0.73%

17.31 £ 0.22%

22.69 £ 0.20%

Meta-LSTM

43.44 +0.77%

60.60 + 0.71%

16.70 £ 0.23%

26.06 + 0.25%

MAML

48.70 + 1.84%

63.11 + 0.92%

16.49 + 0.58%

19.29 + 0.29%

Meta-SGD

50.47 + 1.87%

64.03 + 0.94%

17.56 + 0.64%

28.92 + 0.35%

Algorithmic Intelligence Lab

* Meta-SGD outperforms baselines with a large margin
* Especially, it works well with many number of classes (20-way)
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Meta-Learning for Learning Various Learning Rules

* Meta-SGD outperforms MAML in many experiments
* Learning hyperparameter is useful as well

* Indicate simple hyperparameter learning also gives benefit

* In many meta-learning methods meta-networks learn also:

* |Optimizer parameters: Learning rates, momentum, or optimizer itself

* Metric space for data distribution similarity comparison

* Weights of loss for each sample for handling data imbalance

* And many other learning rules

Algorithmic Intelligence Lab

Next, learning optimizers
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2. Types of Meta-Learning

* Learning optimizers

Algorithmic Intelligence Lab

34



Optimizers for Learning DNNs

* Learning DNNs is an optimization problem
0* = arg mein L(0)

« L be a task-specific objective (e.g., cross-entropy for classification)
* 0 be parameters of a neural network

* How to find the optimal 8" which minimize L ?
* The parameters are updated iteratively by taking gradient

9t+1 = 975 — nyﬁ(@t)

* DNNs are often trained via “hand-designed” gradient-based optimizers

* e.g., Nesterov momentum [Nesterov, 1983], Adagrad [Duchi et al., 2011],
RMSProp [Tieleman and Hinton, 2012], ADAM [Kingma and Ba, 2015]

35



An Example of Optimizers: SGD with Momentum

* Update rules of SGD with momentum:

Or41 = 0r — my me = pmg—1 + YV L(0)

where y is a learning rate and ¢ is a momentum

* Unroll the update steps

Parameters 6 Gradients Optimizer Updates

(90 > Vgﬁ((go) ™Mo = ’)/VQ,C(QQ) > AHO = —My
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 01 + Aby 2 Vo L(02) smo = pmy +yVeL(02) " Ay = —myg

Algorithmic Intelligence Lab



An Example of Optimizers: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
me = Prme—1 + (1 — B1)VeL(6;)
vy = Bovs_1 + (1 — B2)(VeL(6))?

where y is a learning rate and 3, 5, are decay rates for the moments

Briy = 6, —

~

* Unroll the update steps

—My

NG

Parameters 6 Gradients
(90 > VQE(Q())
01 = 0y + Aby " VoL(01)
05 = 0 + A6y > V@E(Qg)

Algorithmic Intelligence Lab
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Optimizer Updates
|mo = (1= 51)VeL(0o) A0 = ——my
vo = (1= B2)(VeL(6p))* 0
mi = Bimg + (1 - 51)VQ£(91) JAO; = —iml
v1 = Pavg + (1 — 52)(V9£(91))2 o
mz = Pimy+ (1= F1)VeL(2) | g — 7
va = Bovy + (1 — 2)(VeL(62))” ”




Learning Optimizers for Learning DNNs

No Free Lunch Theorem [Wolpert and Macready, 1997]
No algorithm is able to do better than a random strategy in expectation

* Drawbacks of these hand-designed optimizers (or update rules)
* Potentially poor performance on some problems

» Difficult to hand-craft the optimizer for every specific class of functions to
optimize

* Solution: Learning an optimizer in an automatic way [Andrychowicz et al., 2016]
* Explicitly model optimizers using recurrent neural networks (RNNs)

et—l—l — 9t + g¢(v£(9t)a ht) ht — f¢(V£(0t), ht—l)

Outputs of RNN Inputs  Hidden states

e Cast an optimizer design as a learning problem

6" = argmin £(6r(0))

where 6;(¢) are the T-step updated parameters given the RNN optimizer ¢

Algorithmic Intelligence Lab 38



Recall: SGD with Momentum

* Update rules of SGD with momentum:

9t+1 = 9t — My

my = UMi—1 + ’YV@E(et)

where y is a learning rate and ¢ is a momentum

Inputs V.L(6,) Hidden states m; Outputs A6,
Parameters 6 Gradients Optimizer Updates
(90 N Vgﬁ((go) » 1y — ’)/Vgﬁ(eo) » AHO — —1My
01 = 0y + Aby " VoL (01) sm1 = umo + YVeL(01) "AO = —my
0o = 601 + Aby " VoL (02) smo = umy +yVeL(02) " Ay = —mg

Algorithmic Intelligence Lab
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Recall: ADAM

e Update rules of ADAM [Kingma and Ba, 2015]:
Y my = Bimy—1 + (1 — 81)VeL(6;)

9t+1 — 9t — — =M

VUt vy = Bovi—1 + (1 — B2)(VoL(6y))?

where y is a learning rate and 3, 5, are decay rates for the moments

Inputs V.L(6,) Hidden states m;, v, Outputs A,
Parameters 6 Gradients Optimizer Updates
mo = (1 — B1)VeL(6o) Y
90 > VQE(Q()) > 0 > Aeo = —\/?mo
vo = (1 — B82)(VeL(6)) 0
— + (1 — VoLl (6 Y
01 = 0o + Aby 2 VoLl(01) T = o (1= Ve 1)2 B0 = —\/77711
v1 = Bavg + (1 — 82)(VeL(01)) !
mo = Bimq + (1 — VoLl(6 Y
By = ) + A —{ VoL (0o)H—b frmy + (1= B1)Vs <2>2 :Aﬁgz—\—ﬁmQ
ve = Bav1 + (1 — B2)(VeL(02)) °
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RNN Optimizer

* Update rules based on a RNN f, g4 parameterized by ¢

9,5_|_1 = Ht + g¢(V[,(9t), ht)

ht = f¢(V£((9t); ht—l)

* Inner-loop: update the parameters 0 via the optimizer for T times

Parameters 6 Gradients Optimizer Updates

(90 » VQL(QO) > ho — f¢(V£(90), O) > Aeo = g¢(V£(90), ho)
01 = 6y + A6y > V9£(6’1) »hi = f¢(V£(91), ho) » A0 = g¢(V£(91), hl)
0, = 60y + AO;—> VQE(QQ) »ho = f¢(V£(92), hl) » AOy = g¢(V£(92), hg)

Algorithmic Intelligence Lab
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Objective for Learning RNN Optimizer

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
ﬁmeta(¢) = Z wtﬁ(et) where w; weights for each time-step
t=1

Parameters 6 Gradients Optimizer Updates
% [0 L0 —lT0 = F2(VL(80), 0)— A0 = g0 (VL (60), o)

L L(0g + Aby)
0y = 0o + Do VoL (01) {1 = f2(VL(01), ho) {201 = g0 (VL(G1), )

L L0, + Ab,)
0y — 0, + A0 —] Vo L(02) T2 = Fo(VL(82), ha) = Abs = g5 (VL(8), )

Algorithmic Intelligence Lab
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Learning RNN Optimizer by Gradient Descent

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
ﬁmeta(¢) = Z wtﬁ(et) where w; weights for each time-step
t=1

* Outer-loop: minimize L,0t5(¢®) using gradient descent on ¢
* For simplicity, assume Vg Vo L(8;) = 0 (then, only requires first-order gradients)

Parameters 6 Gradients Optimizer Updates
0o VoL(00) > ho = f5(VL(6y),0) A8y = go(VL(Ao), ho)
....... E(QO + AHO)

01 = 0y + Abg|  [VoL(01)|xc|hn = f5(VLO1), o)l A8 = g4 (VL(1), 1)

backprop “{ L(01 + Ab)

Oy = 01 4+ Ab1| | VL(02) X\ ha = f3(VL(O2), h1) | Ab2 = g4(VL(02), h2)
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Architecture of RNN Optimizer

* A challenge is optimizing (at least) tens of thousands of parameters
e Computationally not feasible with fully connected RNN architecture

e Use LSTM optimizer which operates coordinate-wise on the parameters

* By considering coordinate-wise optimizer
* Able to use small network for optimizer

* Share optimizer parameters across different parameters of the model
* Input: gradient for single coordinate and the hidden state
* Qutput: update for corresponding model parameter
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Effectiveness of a Learned Optimizer

* Learning models for

e Quadratic functions ,
L(0) = X0 —yll5

* Optimizer is trained by optimizing random functions from this family
* Tested on newly sampled functions from the same distribution

* Neural network on MINIST dataset
* Trained for 100 steps with MLP (1 hidden layer of 20 units, using a sigmoid function)

e Outperform baseline optimizers
* Also perform well beyond the meta-trained steps (> 100 steps)

Quadratics MNIST MNIST, 200 steps

Loss

S
e 2
v L KL P
.
~“we™,

IS D R S P NS
NuW»\V\AA\»-~\-»~«f~v«4~v*va

120 140 160 180 200
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Generalization of a Learned Optimizer

* Generalization to different architecture models
e Learn LSTM optimizer for MNIST dataset
* With 1 hidden layers (20 units) of sigmoid activation MLP
* Test generalization ability of a LSTM optimizer for
» Different number of hidden units (20 = 40)
» Different number of hidden layers (1 2 2)
 Different activation functions (Sigmoid = ReLU)

* When learning dynamics are similar, the learned optimizer is generalized well
» Different activation function significantly changes the problems to solve

MNIST, 40 units MNIST, 2 layers MNIST, RelLU
A === ADAM S— ,
"\\;\ === RMSprop \‘ ‘\‘
‘\\\‘\s\ === SGD \. \\.\
, 10° - WS === NAG ] L
\ ~e
§ “?\'\‘t‘\
'\_'S: . ~ Ty
-~ ‘~;—:‘L .;.
20 40 60 80 100 20 40 60 80 100

Steps
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Generalization of a Learned Optimizer

* Generalization to different datasets
* Learn LSTM optimizer on CIFAR-10
* Test on subset of CIFAR-10 (CIFAR-5 and CIFAR-2)

* Learn much faster than baseline optimizers
* Even for different (but similar) dataset
e Without additional tuning of the learned optimizer

CIFAR-10 ) CIFAR-5 CIFAR-2

=== ADAM
=== RMSprop
=== SGD

=== NAG

= LSTM
= LSTM-sub

Loss

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Step
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An Extension: Hierarchical RNN Optimizer

* Previous works have have difficulties in:
* Large problems (e.g., large scale architecture, large number of steps)
* Generalizing for various tasks

* To tackle these, hierarchical RNN is proposed [Wichrowska et al., 2017]

| b > GlobalRNN aggregates global information

l ﬁék—\ from all of TensorRNNs
LTensor RNN Tensor RNN

mém J\l TensorRNN aggregates local information
0] [102),)[10:1a) (102 1021 from a subset of ParameterRNNs

Parameter RNNs

Inputs Outputs

TensorRNN and GlobalRNN allow
Seata gradrts, ——>| PTG | vpameancion | ParameterRNNSs to have few hidden units
i ,

* |t generalizes to train Inception/ResNet on ImageNet for thousands of steps
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Summary

Meta-learning is a study about learning the learning rules
* Make learner perform better without hand-crafted learning rules

Learning model initialization
* Learning initialization that transfer well with small number of samples

Learning optimizers
* Optimize the problem faster and better
* In the distribution of the problem that optimizers are meta-trained

It is applied for many other fields as well
* Hyperparameter optimization
* Neural network architecture search
* Reinforcement learning
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Meta-Learning

» Meta-learning differs from base-learning in the scope of the level of adaptation
* Instead of focusing on learning a specific task, learn the learning rule

Considering dataset as a data sample Do, = {D: .., Dioi izt N
Learn patterns across tasks 7
Consider distribution of tasks p(7T)

e Learning to learn that works well on a task from the distribution

* Generalization for new tasks (not only new data samples) from the same distribution

* Examples

Learning optimizer itself that works well for specific class of problems
* |Instead of using hand-crafted optimizer (e.g., SGD)
Learning metric that works well for the purpose of a comparison
* Instead of using some hand-designed metric to compare two samples
Learning initializations that is effective on a specific task (e.g., few-shot learning)
* |Instead of pre-defined model initialization (e.g., pre-trained weights on ImageNet)
Detail algorithms of those examples are in later slides
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Model-Agnostic Meta-Learning (MAML)

* Key idea
* Train over many tasks, to learn parameter 6 that transfers
* Use objective that encourage § to be fast adapt when fine-tuned with small data
* Assumption: some representations are more transferrable than others

* Problem set-up for few-shot learning
* Task 7 = {x,y, L(x,¥)}
* During meta-train
« Consider a distribution over tasks P(7)
« Model is trained to learn new task 7; ~ p(T) from only K samples
* Loss function for task 7; is L
* Model f islearned by considering how the test error on new samples from 7;
* The test error of f is used as the training error of the meta-learning
* During meta-test
« New tasks are sampled from p(7)
* Model f is trained for new task with K samples
* Measure model’s performance (i.e., measure meta-performance)
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