Network Compression

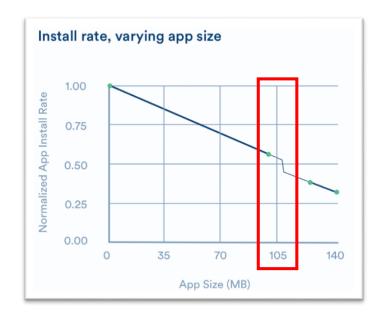
EE807: Recent Advances in Deep Learning
Lecture 16

Slide made by

Jongheon Jeong and Insu Han

KAIST EE

- Deploying deep neural networks (DNNs) has been increasingly difficult
 - Constraints on power consumption, memory usage, inference overhead, ...
- Inference with a large-scale network consumes huge costs
- In mobile apps, such issues become more serious
 - "The dreaded 100MB effect"
- Can we make DNNs to perform inferences more efficiently?



1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

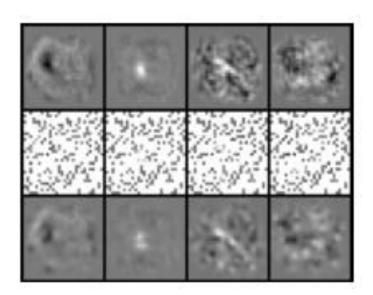
- Deep compression
- Binarized neural networks

4. Summary

Redundancies in Deep Neural Networks [Denil et al., 2013]

- DNNs include a significant number of redundant parameters
- Denil et al. (2013): Predicting > 95% of weights from < 5%
 - A simple kernel ridge regression is sufficient
 - ... without any drop in accuracy!
 - Many of the weights need not be learned at all

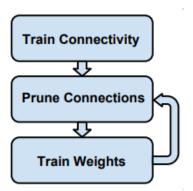
- (a) Original weights
- (b) Randomly selected
- (c) Predicted from (b)



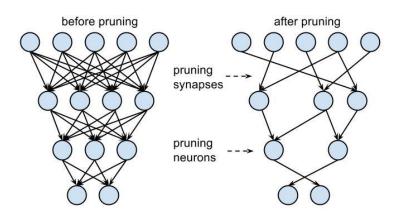
Such redundancy can be exploited via network pruning

Network Pruning

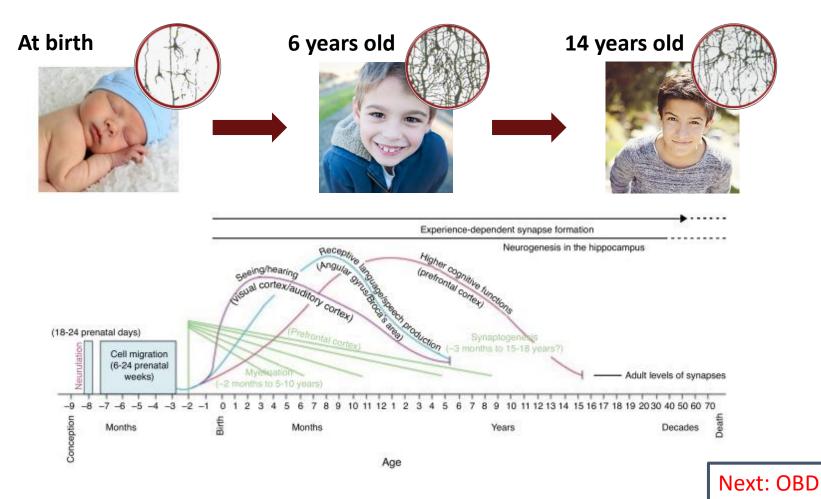
- Determining low-saliency parameters, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - **Train** a deep model until convergence
 - **Delete** "unimportant" connections w.r.t. a certain criteria
 - **Re-train** the network
 - **Iterate** to step 2, or stop



- Defining which connection is unimportant can vary
 - Weight magnitudes (L², L¹, ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]



- Human brains are also using pruning schemes as well
- Synaptic pruning removes redundant synapses in the brain during lifetime



Optimal Brain Damage (OBD) [LeCun et al., 1990]

- Network pruning **perturbs weights W** by **zeroing** some of them
- How the loss L would be changed when \mathbf{W} is perturbed?
- **OBD** approximates L by the 2^{nd} order Taylor series:

$$\delta L \simeq \underbrace{\sum_{i} \frac{\partial L}{\partial w_{i}} \delta w_{i}}_{\text{1st order}} + \underbrace{\frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} L}{\partial w_{i} \partial w_{j}} \delta w_{i} \delta w_{j}}_{\text{2nd order}} + O(||\delta \mathbf{W}||^{3})$$

- **Problem:** Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i=1}$ is usually intractable
 - Requires $O(n^2)$ on # weights
 - Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters $\Rightarrow H$ consists $\approx 3.6 \times 10^{15}$ elements

Optimal Brain Damage (OBD) [LeCun et al., 1990]

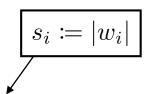
- **Problem:** Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i,j}$ is usually intractable
- Two additional assumptions for tractability
 - **1. Diagonal** approximation: $H = \frac{\partial^2 L}{\partial w_i \partial w_j} = 0$ if $i \neq j$
 - **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_i \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$
 - It only needs $\operatorname{diag}^{i}(H) \coloneqq \left(\frac{\partial^{2} L}{\partial w_{i}^{2}}\right)_{i}$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

Optimal Brain Damage (OBD) [LeCun et al., 1990]

How the loss L would be changed when W is perturbed?

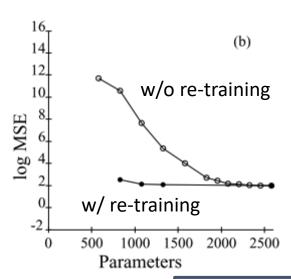
$$L(\delta \mathbf{W}) \simeq \frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} =: \sum_{i} \frac{1}{2} h_{ii} \delta w_{i}^{2}$$

• The **saliency** for each weight $\Rightarrow s_i \coloneqq \frac{1}{2} h_{ii} |w_i|^2$



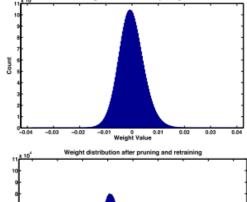
- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered

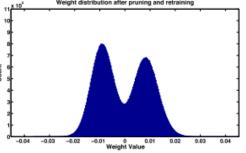




Next: Pruning modern DNNs

- Han et al. (2015): Pruning larger DNNs
 - LeNet, AlexNet, VGG-16, ... on ImageNet
 - Highlights the practical efficiency of pruning
- OBD introduces extra computation on larger models
 - It requires an additional, separated backward pass
- The simple magnitude-based pruning works very well as long as the network is re-trained





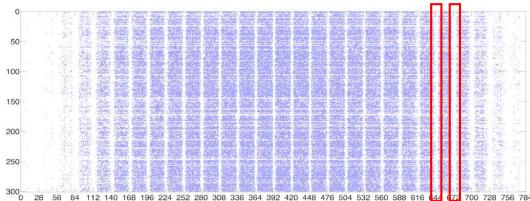
Comparison with other model reduction methods on AlexNet

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
Baseline Caffemodel [26]	42.78%	19.73%	61.0M	1×
Data-free pruning [28]	44.40%	-	39.6M	1.5×
Fastfood-32-AD [29]	41.93%	-	32.8M	$2\times$
Fastfood-16-AD [29]	42.90%	-	16.4M	3.7×
Collins & Kohli [30]	44.40%	-	15.2M	$4\times$
Naive Cut	47.18%	23.23%	13.8M	4.4×
SVD [I2]	44.02%	20.56%	11.9M	$5 \times$
Network Pruning	42.77%	19.67%	6.7M	9×

- Han et al. (2015): Pruning larger DNNs
 - Highlights the practical efficiency of pruning
- The magnitude-based pruning works well as long as the network is re-trained

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12×
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12×
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9×
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13×

Network pruning detects visual attention regions



- The magnitude-based pruning works well as long as the network is re-trained
- Mittal et al. (2018): In fact, pruning criteria are not that important
 - ... as long as the re-training phase exists
- Many strategies cannot even beat random pruning after fine-tuning

Heuristic	25 %	50%	75%
Random	0.650	0.569	0.415
Mean Activation	0.652	0.570	0.409
Entropy	0.641	0.549	0.405
Scaled Entropy	0.637	0.550	0.401
l_1 -norm	0.667	0.593	0.436
APoZ	0.647	0.564	0.422
Sensitivity	0.636	0.543	0.379

Table 1: Comparison of different filter pruning strategies on VGG-16.

Heuristics	#Layers Pruned	25 %	50%	75%
Random	16	0.722	0.683	0.617
l_1 -norm	16	0.714	0.677	0.610
Random	32	0.696	0.637	0.518
l_1 -norm	32	0.691	0.633	0.514

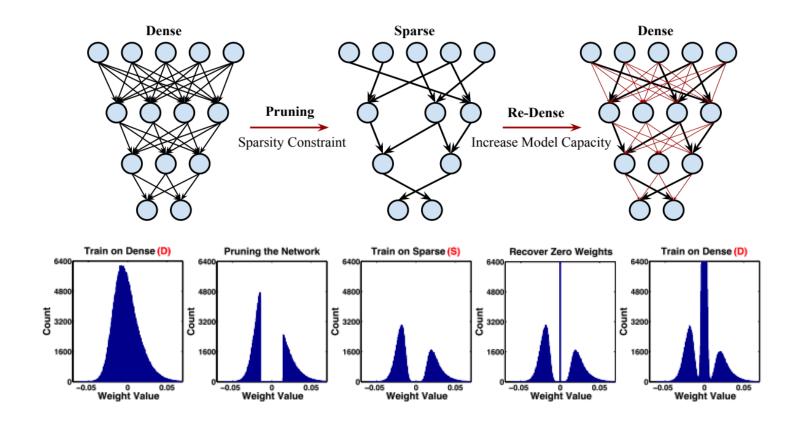
Table 3: Comparison of different filter pruning strategies on ResNet (Top-1 accuracy of unpruned network is 0.745)

- The compressibility of DNNs are NOT due to the specific criterion
 - ... but due to the inherent plasticity of DNNs

Next: Dense-Sparse-Dense

Network Re-wiring: Dense-Sparse-Dense Training Flow

- Network pruning preserves accuracy of the original network
- Han et al. (2017): Re-wiring the pruned connections improves DNNs further
 - "Dense-Sparse-Dense" training flow



Network Re-wiring: Dense-Sparse-Dense Training Flow

- Network pruning preserves accuracy of the original network
- Han et al. (2017): Re-wiring the pruned connections improves DNNs further
 - "Dense-Sparse-Dense" training flow
- Pruning discovers better optimum that the current training cannot find

Neural Network	Domain	Dataset	Type	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.2%	1.2%	4.1%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	22.9%	1.1%	4.6%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8^{2}	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	$33.6\%^{3}$	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% ³	13.4%	1.1%	7.4%

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

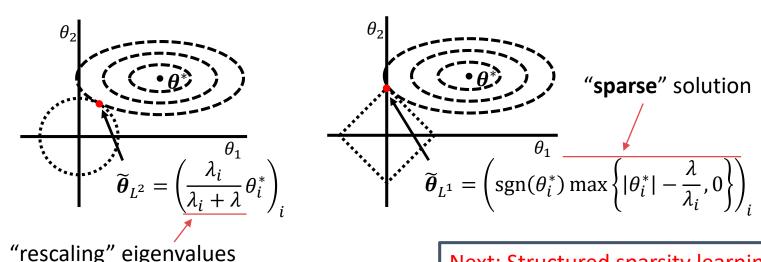
3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

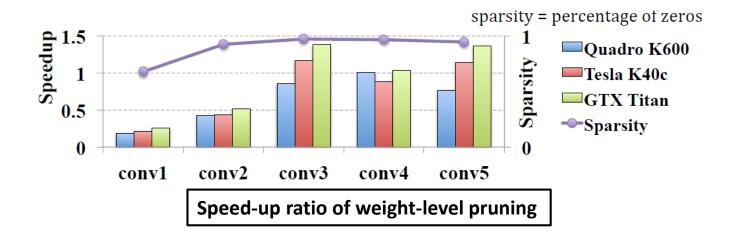
Sparse Network Learning

- The performance of pruning depends on the initial training scheme
 - e.g. Which regularization to use: L^2 or L^1 ?
- Which training scheme will maximize the pruning performance?
 - We still don't know about the optimal points of a DNN
- One prominent way: Sparse network learning
 - Inducing to a sparse solution from training a network
 - Weights with value 0 can safely be removed ⇒ it **does not** require re-training
- **Example**: L^1 -regularization



Next: Structured sparsity learning

- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited



Non-structured sparsity (poor data pattern)

Structured sparsity (regular data pattern)

5× speedup after concatenation of nonzero rows and columns

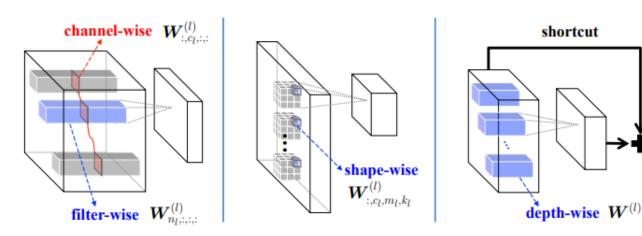
$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Shape-wise sparsity: sparsity: width height $R_g(\mathbf{W}^{(l)}) = \sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|\mathbf{W}^{(l)}_{::c_l,m_l,k_l}\|_2$

Depth-wise sparsity (applicable only for ResNet):

$$R_g(\mathbf{W}^{(l)}) = \|\mathbf{W}^{(l)}\|_2$$



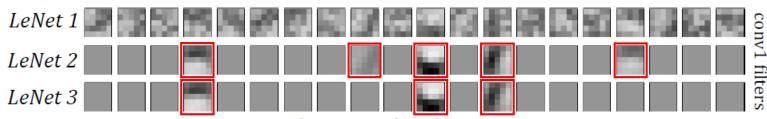
$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in *LeNet*

LeNet #	Error	Filter#§	Channel # §	FLOP §	Speedup §
1 (baseline)	0.9%	20—50	1—20	100%—100%	$1.00 \times -1.00 \times $
2	0.8%	5—19	1—4	25%—7.6%	$1.64 \times -5.23 \times $
3	1.0%	3—12	1—3	15%—3.6%	$1.99 \times -7.44 \times $

[§]In the order of conv1—conv2



Fewer but smoother feature extractors

$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

Shape-wise sparsity:

sparsity: width height $R_g(\mathbf{W}^{(l)}) = \sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|\mathbf{W}^{(l)}_{:,c_l,m_l,k_l}\|_2$

Table 2: Results after learning filter shapes in *LeNet*

LeNet#	Error	Filter size §	Channel #	FLOP	Speedup
1 (baseline)	0.9%	25—500	1—20	100%—100%	1.00×—1.00×
4	0.8%	21—41	1—2	8.4%—8.2%	2.33×—6.93×
5	1.0%	7—14	1—1	1.4%—2.8%	5.19×—10.82×

[§] The sizes of filters after removing zero shape fibers, in the order of conv1—conv2

Learned shapes of conv1 filters:

LeNet 1 LeNet 4

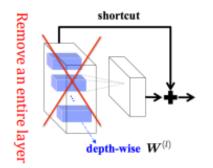
LeNet 5

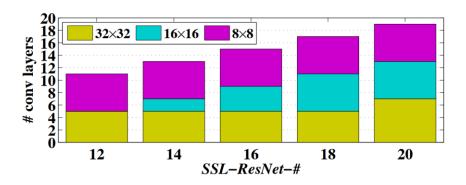
$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• **Depth-wise** sparsity: $R_g(\mathbf{W}^{(l)}) = \|\mathbf{W}^{(l)}\|_2$

ResNet-20/32: baseline with 20/32 layers SSL-ResNet-#: Ours with # layers after learning depth of ResNet-20

	# layers	error	# layers	error
ResNet	20	8.82%	32	7.51%
SSL-ResNet	14	8.54%	18	7.40%





Next: Sparsification via variational dropout

- Variational dropout (VD) allows to learn the dropout rates separately
- Unlike dropout, VD imposes noises on weights θ :

$$w_i := \theta_i \cdot \xi_i, \quad \text{where} \quad p_{\alpha_i}(\xi_i) = \mathcal{N}(1, \alpha_i)$$

- A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
- $\mathbf{w} = (w_i)_i$ is adapted to data in Bayesian sense by optimizing $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}$
- Re-parametrization trick allows w to be learned via minibatch-based gradient estimation methods [Kingma & Welling, 2013]
 - α and θ can be optimized separated from noises

$$w_i = \theta_i + (\theta_i \sqrt{\alpha_i}) \cdot \varepsilon_i, \quad \text{where} \quad \varepsilon_i \sim \mathcal{N}(0, 1)$$

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

• VD imposes noises on weights θ :

$$w_i := \theta_i \cdot \xi_i, \quad \text{where} \quad p_{\alpha_i}(\xi_i) = \mathcal{N}(1, \underline{\alpha_i})$$

- The original VD set a constraint $\alpha_i \leq 1$ for technical reasons
 - It corresponds to $p \le 0.5$ in binary dropout

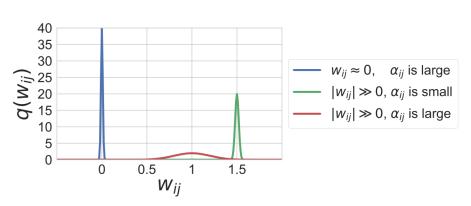
Q. What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?

- $p(w_i) = \theta_i \cdot p(\xi_i) = \mathcal{N}(\theta_i, \alpha_i \theta_i^2)$
- w_i will be completely random as $\alpha_i \to \infty$
- Such w_i will **corrupt** the expected log likelihood
- ... except that $\theta_i \to 0$ as well!

$$\theta_{ij} \to 0, \quad \alpha_{ij}\theta_{ij}^2 \to 0$$

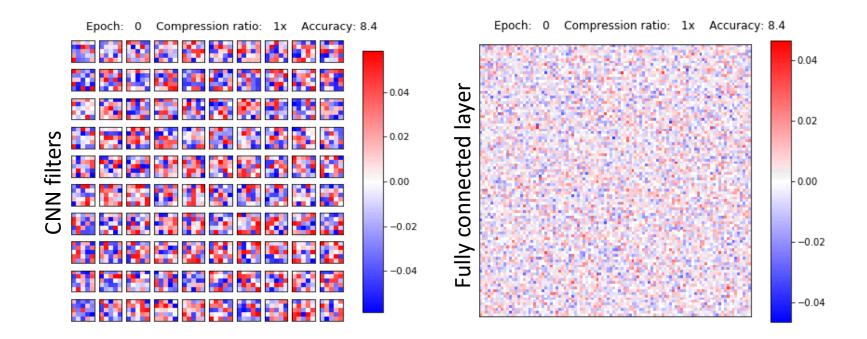
$$\downarrow \downarrow$$

$$q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) \to \mathcal{N}(w_{ij} \mid 0, 0) = \delta(w_{ij})$$



Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

- **Q.** What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?
 - It will **corrupt** the expected log likelihood except that $\theta_i \to 0$ as well
- Molchanov et al. (2017): Extending VD for $\alpha_i > 1 \Rightarrow$ Super sparse solutions
 - Weights with $\log \alpha > 3$ are pruned away during training



Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

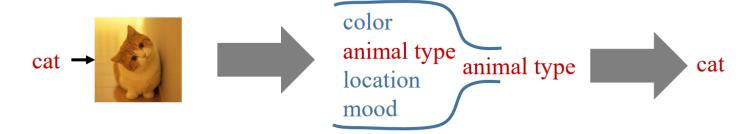
- **Q.** What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?
 - It will **corrupt** the expected log likelihood except that $\theta_i \to 0$ as well
- Molchanov et al. (2017): Extending VD for $\alpha_i > 1 \Rightarrow$ Super sparse solutions
 - Weights with $\log \alpha > 3$ are pruned away during training

Network	Method	Error %	Sparsity per Layer %	$\frac{ \mathbf{W} }{ \mathbf{W}_{\neq 0} }$	 [
	Original	1.64		1	
	Pruning	1.59	92.0 - 91.0 - 74.0	12	[Han et al., 2015]
LeNet-300-100	DNS	1.99	98.2 - 98.2 - 94.5	56	
	SWS	1.94		23	
(ours)	Sparse VD	1.92	98.9 - 97.2 - 62.0	68	
	Original	0.80		1	
	Pruning	0.77	34 - 88 - 92.0 - 81	12	[Han et al., 2015]
LeNet-5-Caffe	DNS	0.91	86 - 97 - 99.3 - 96	111	
	SWS	0.97		200	
(ours)	Sparse VD	0.75	67 - 98 - 99.8 - 95	280	_

Next: Variational information bottleneck

Motivation: Markov chain interpretation of DNN [Tishby & Zaslavsky, 2015]

$$egin{aligned} m{y}
ightarrow m{x} = m{h}_0
ightarrow m{h}_1
ightarrow \cdots
ightarrow m{h}_{l-1}
ightarrow m{h}_i
ightarrow \cdots
ightarrow m{h}_L
ightarrow m{\hat{y}} \ p(m{h}_i | m{h}_{l-1}) & ext{Approximate } p(m{y} | m{h}_L) \ ext{via tractable } p(\hat{m{y}} | m{h}_L) \end{aligned}$$



- **1.** Maximize $I(h_i; y)$ for high-accuracy prediction
- 2. Minimize $I(h_i; h_{i-1})$ for compression \Rightarrow "information bottleneck"
- Layer-wise losses become:

$$\mathcal{L}_i = \gamma_i I(m{h}_i; m{h}_{i-1}) - I(m{h}_i; m{y})$$

The relative strength of bottleneck

Variational Information Bottleneck [Dai et al., 2018]

- Layer-wise losses become $\mathcal{L}_i = \gamma_i I(m{h}_i; m{h}_{i-1}) I(m{h}_i; m{y})$
- **Problem**: Computing $I(\cdot;\cdot)$ is usually intractable
- Instead, we minimize variational upper bound of it

$$\mathcal{L}_i \leq \tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}[\mathrm{KL}(p(\boldsymbol{h}_i|\boldsymbol{h}_{i-1})||q(\boldsymbol{h}_i))] - \mathbb{E}[\log q(\boldsymbol{y}|\boldsymbol{h}_L)]$$
 variational approx. of $p(\boldsymbol{h}_i)$ variational approx. of $p(\boldsymbol{y}|\boldsymbol{h}_L)$
$$\begin{cases} \mathbf{multinomal} \text{ for classification } \\ \mathbf{Gaussian} \text{ for regression} \end{cases}$$

Variational Information Bottleneck (VIB) model

$$p(\boldsymbol{h}_i|\boldsymbol{h}_{i-1})\coloneqq f_i(\boldsymbol{h}_{i-1})\odot\mathcal{N}(\boldsymbol{h}_i|\boldsymbol{\mu}_i,\operatorname{diag}(\boldsymbol{\sigma}_i^2))$$

$$q(\boldsymbol{h}_i)\coloneqq\mathcal{N}(\boldsymbol{h}_i|\boldsymbol{0},\operatorname{diag}(\boldsymbol{\xi}_i))$$

$$q(\boldsymbol{h}_i)\coloneqq\mathcal{N}(\boldsymbol{h}_i|\boldsymbol{0},\operatorname{diag}(\boldsymbol{\xi}_i))$$
 Reparametrization trick
$$\text{[Kingma \& Welling, 2013]}$$

$$q(\boldsymbol{h}_i)\coloneqq\mathcal{N}(\boldsymbol{h}_i|\boldsymbol{0},\operatorname{diag}(\boldsymbol{\xi}_i))$$

Variational Information Bottleneck [Dai et al., 2018]

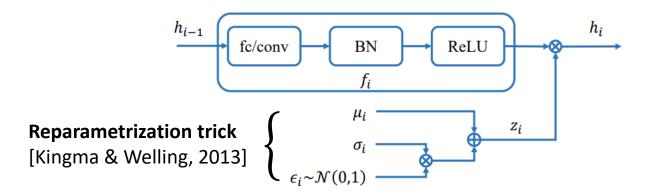
ullet We minimize variational upper bound of \mathcal{L}_i

$$\mathcal{L}_i \leq \tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}[\mathrm{KL}(p(\boldsymbol{h}_i|\boldsymbol{h}_{i-1})||q(\boldsymbol{h}_i))] - \mathbb{E}[\log q(\boldsymbol{y}|\boldsymbol{h}_L)]$$

Final variational objective function (VIBNet):

$$\tilde{\mathcal{L}} = \underbrace{\sum_{i=1}^{L} \gamma_i \sum_{j} \log \left(1 + \frac{\mu_{ij}^2}{\sigma_{ij}^2} \right)}_{\text{regularization}} - \underbrace{\frac{\mu_{ij}^2}{L \cdot \mathbb{E}[\log q(\boldsymbol{y}|\boldsymbol{h}_L)]}_{\text{data-fit}}}_{\text{data-fit}}$$

- Pruning criteria: $\alpha_{ij}\coloneqq \frac{\mu_{ij}^2}{\sigma_{ij}^2}\to 0$
 - Neurons with low value of α_{ij} 's are pruned after training



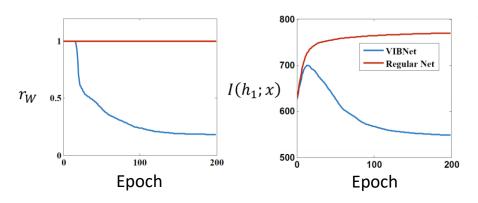
Variational Information Bottleneck [Dai et al., 2018]

VIBNet outperforms various methods by large margins

- $r_W(\%)$: ratio of # parameters
- $r_N(\%)$: ratio of memory footprint

Method	$r_W(\%)$	$r_N(\%)$	error(%)	Pruned Model
VD	25.28	58.95	1.8	512-114-72
BC-GNJ	10.76	32.85	1.8	278-98-13
BC-GHS	10.55	34.71	1.8	311-86-14
L0	26.02	45.02	1.4	219-214-100
L0-sep	10.01	32.69	1.8	266-88-33
DN	23.05	57.94	1.8	542-83-61
VIBNet	3.59	16.98	1.6	97-71-33

Table 1. Compression results on MNIST using LeNet-300-100.



After fine-tuning

				`
Method	$r_W(\%)$	FLOP(Mil)	$r_N(\%)$	error(%)
BC-GNJ	6.57	141.5	81.68	8.6
BC-GHS	5.40	121.9	74.82	9.0
VIBNet	5.30	70.63	49.57	8.8 (8.5)
PF	35.99	206.3	83.97	6.6
SBP	7.01	136.0	80.72	7.5
SBPa	5.78	99.20	66.46	9.0
VIBNet	5.45	86.82	57.86	6.5 (6.1)
NS-Single	11.50	195.5	-	6.2
NS-Best	8.60	147.0	-	5.9
VIBNet	5.79	116.0	59.60	6.2 (5.8)

Table 3. Compression results on CIFAR10 using VGG-16.

Method	$r_W(\%)$	FLOP(Mil)	$r_N(\%)$	error(%)
RNP	-	160	-	38.0
VIBNet	22.75	133.6	59.80	37.6 (37.4)
NS-Single	24.90	250.5	-	26.5
NS-Best	20.80	214.8	-	26.0
VIBNet	15.08	203.1	73.80	25.9 (25.7)

Table 4. Compression results on CIFAR100 using VGG-16.

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

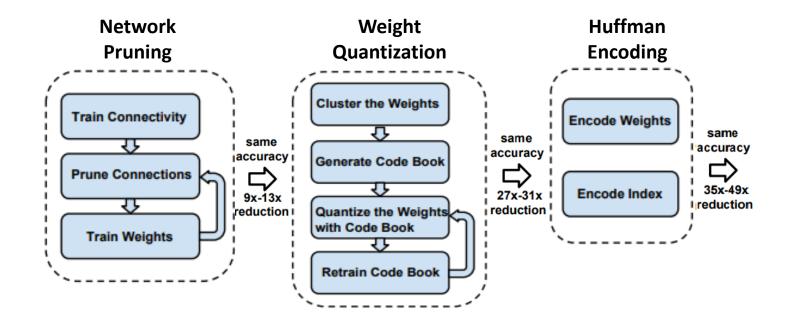
- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

- Quantizing weights can further compress the pruned networks
 - Weights are clustered into discrete values
 - The network is represented only with several centroid values
- Han et al. (2015): Pruning DNNs ⇒ 9x-13x reduction
- Han et al. (2016): Pruning + Quantization + Huffman ⇒ 35x-49x reduction

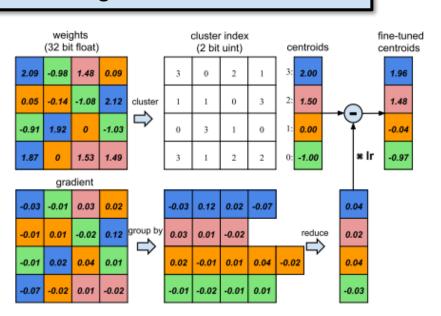


- Quantizing weights can further compress the pruned networks
 - Weights are clustered into discrete values
 - The network is represented only with several centroid values
 - 1. Train a deep model until convergence
 - **2.** Find *k* clusters that minimizes within-cluster sum of squares (WCSS):

$$\operatorname{argmin}_C \sum_{i=1}^k \sum_{w \in c_i} |w - c_i|^2$$

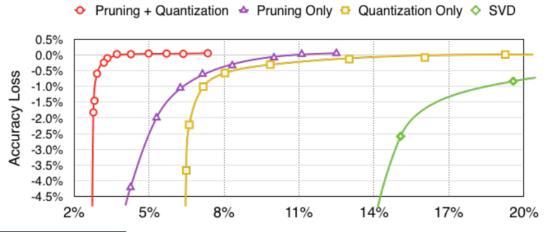
- **3.** Quantize with the cluster C via weight sharing
- **4. Fine-tune** the network with the shared weights
- In the **fine-tuning** phase, gradients in each cluster are **aggregated**:

$$\frac{\partial \mathcal{L}}{\partial C_k} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \frac{\partial W_{ij}}{\partial C_k}$$
$$= \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \mathbf{1}(W_{ij} \in C_k)$$



• **Deep compression** reduces the model size significantly

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy (%)	Compressed Accuracy (%)
LeNet-300	1070KB —	→ 27KB	40x	98.36 —	→ 98.42
LeNet-5	1720KB —	→ 44KB	39x	99.20 —	→ 99.26
AlexNet	240MB —	→ 6.9MB	35x	80.27 —	→ 80.30
VGGNet	550MB —	→ 11.3MB	49x	88.68 —	→ 89.09
GoogLeNet	28MB —	→ 2.8MB	10x	88.90 —	→ 88.92
SqueezeNet	4.8MB —	→ 0.47MB	10x	80.32 —	→ 80.35

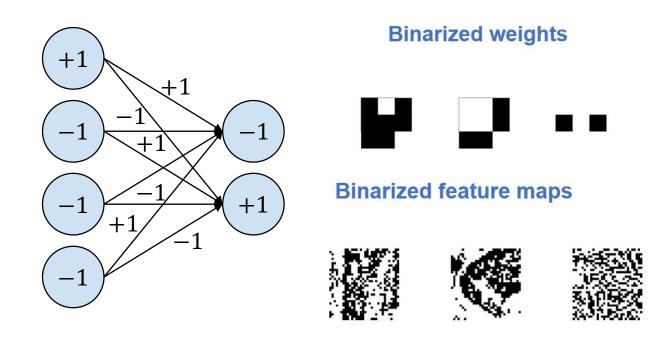


Next: Binarized neural networks

Model Size Ratio after Compression

^{*}source : Han et al., "Deep Compression - Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

- Neural networks can be even **binarized** (**+1** or **-1**)
 - DNNs trained to use binary weights and binary activations
- Expensive **32-bit MAC** (Multiply-**AC**cumulate) ⇒ Cheap **1-bit XNOR-Count**
 - "MAC == XNOR-Count": when the weights and activations are ± 1 # 1s in bits



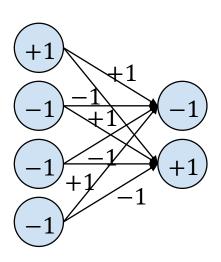
Binarized Neural Networks [Hubara et al., 2016]

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by **stochastic gradient descent**
- Binarization $(W_r \to W_b)$ occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = \operatorname{sign}(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_h}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!

$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \mathbf{1}_{|W_r| \le 1}$$

$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \mathbf{1}_{|a_r| \le 1}$$

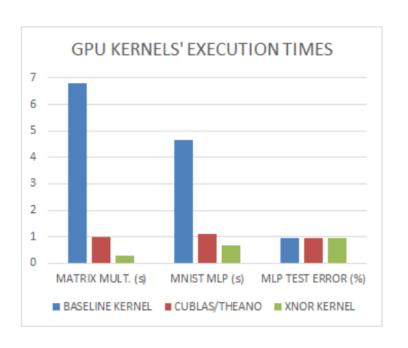
- Cancelling gradients for better performance
 - When the value is too large



Binarized Neural Networks [Hubara et al., 2016]

- Neural networks can be even **binarized** (**+1** or **-1**)
 - DNNs trained to use binary weights and binary activations
- BNN yields 32x less memory compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically
- 23x faster on kernel execution times
 - BNN allows us to use XNOR kernels
 - **3.4x** faster than cuBLAS

Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1 pJ
16bit Floating Point	1.1pJ	0.4 pJ
32tbit Floating Point	3.7pJ	0.9 pJ



- Neural networks can be even binarized (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- **BNN** achieves comparable error rates over existing DNNs

Data set	MNIST	SVHN	CIFAR-10				
Binarized activations+weights, during training and test							
BNN (Torch7)	1.40%	2.53%	10.15%				
BNN (Theano)	0.96%	2.80%	11.40%				
Committee Machines' Array (Baldassi et al., 2015)	1.35%	-	-				
Binarized weights, during training and test							
BinaryConnect (Courbariaux et al., 2015)	$1.29\pm 0.08\%$	2.30%	9.90%				
Binarized activations+weights, during test							
EBP (Cheng et al., 2015)	$2.2 \pm 0.1\%$	-	-				
Bitwise DNNs (Kim & Smaragdis, 2016)	1.33%	-	-				
Ternary weights, binary activations, during test							
(Hwang & Sung, 2014)	1.45%	-	-				
No binarization (standard results)							
Maxout Networks (Goodfellow et al.)	0.94%	2.47%	11.68%				
Network in Network (Lin et al.)	-	2.35%	10.41%				
Gated pooling (Lee et al., 2015)	-	1.69%	7.62%				

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

Summary

- Broad economic viability requires energy efficient AI [Welling, 2018]
 - "Energy efficiency of a brain is 100x better than current hardware"
 - "Al algorithms will be measured by the amount of intelligence per kWh"
- Network pruning and re-wiring
 - A simple but effective way to compress DNNs
 - Allow us to find better optimum that the current training cannot
- Sparse network learning
 - Which training scheme will maximize the pruning performance?
 - It has gained significant attention recently
- Various other techniques have been also proposed
 - Weight quantization
 - Anytime/adaptive networks [Huang et al., 2018]
 - ...

References

• [LeCun, 1987] Lecun, Y. (1987). PhD thesis: Modeles connexionnistes de l'apprentissage (connectionist learning models).

Link: https://nyuscholars.nyu.edu/en/publications/phd-thesis-modeles-connexionnistes-de-lapprentissage-connectionis

- [LeCun et al., 1990] LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in neural information processing systems (pp. 598-605).
 - Link: http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
- [Bengio et al., 2013] Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.
 - Link: https://arxiv.org/abs/1308.3432
- [Denil et al., 2013] Denil, M., Shakibi, B., Dinh, L., & De Freitas, N. (2013). Predicting parameters in deep learning. In Advances in neural information processing systems (pp. 2148-2156).
 - Link: http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning
- [Kingma & Welling, 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.
 - Link: https://arxiv.org/abs/1312.6114
- [Han et al., 2015] Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances in neural information processing systems (pp. 1135-1143).
 - Link: http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
- [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583).

Link: http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick

References

- [Leisman et al., 2015] Leisman, G., Mualem, R., & Mughrabi, S. K. (2015). The neurological development of the child with the educational enrichment in mind. Psicología Educativa, 21(2), 79-96. Link: https://www.sciencedirect.com/science/article/pii/S1135755X15000226
- [Tishby & Zaslavsky, 2015] Tishby, N., & Zaslavsky, N. (2015, April). Deep learning and the information bottleneck principle. In Information Theory Workshop (ITW), 2015 IEEE (pp. 1-5). IEEE.
 Link: https://ieeexplore.ieee.org/abstract/document/7133169
- [Han et al., 2016] Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In International Conference on Learning Representations. Link: https://arxiv.org/abs/1510.00149
- [Hu et al., 2016] Hu, H., Peng, R., Tai, Y. W., & Tang, C. K. (2016). Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250. Link: https://arxiv.org/abs/1607.03250
- [Hubara et al., 2016] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In Advances in neural information processing systems (pp. 4107-4115). Link: http://papers.nips.cc/paper/6573-binarized-neural-networks
- [Molchanov et al., 2016] Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440. Link: https://arxiv.org/abs/1611.06440
- [Wen et al., 2016] Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural networks. In Advances in Neural Information Processing Systems (pp. 2074-2082). Link: http://papers.nips.cc/paper/6503-learning-structured-sparsity-in-deep-neural-networks
- [Han et al., 2017] Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S., ... & Catanzaro, B. (2017). Dsd: Dense-sparse-dense training for deep neural networks. In International Conference on Learning Representations. Link: https://openreview.net/forum?id=HyoST 9xl

References

- [Luo et al., 2017] Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the IEEE International Conference on Computer Vision (pp. 5058-5066). Link: http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet_A_Filter_ICCV_2017_paper.html
- [Molchanov et al., 2017] Molchanov, D., Ashukha, A. & Vetrov, D.. (2017). Variational Dropout Sparsifies Deep Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:2498-2507 Link: http://proceedings.mlr.press/v70/molchanov17a.html
- [Dai et al., 2018] Dai, B., Zhu, C., Guo, B. & Wipf, D.. (2018). Compressing Neural Networks using the Variational Information Bottleneck. Proceedings of the 35th International Conference on Machine Learning, in PMLR 80:1135-1144

Link: http://proceedings.mlr.press/v80/dai18d.html

• [Huang et al., 2018] Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., & Weinberger, K. Q. (2018). Multi-scale dense networks for resource efficient image classification. In International Conference on Learning Representations

Link: https://openreview.net/forum?id=Hk2almxAb

- [Mittal et al., 2018] Mittal, D., Bhardwaj, S., Khapra, M. M., & Ravindran, B. (2018, March). Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 848-857). IEEE.
 - Link: https://www.computer.org/csdl/proceedings/wacv/2018/4886/00/488601a848-abs.html
- [Welling, 2018] Welling, M. (2018). Intelligence per Kilowatthour. Link: https://icml.cc/Conferences/2018/Schedule?showEvent=1866