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• Recently,	deep	learning	shows	superior	performance	in	various	tasks

• However,	we	don’t	know	yet	why	they	work	so	well

• When	it	fails,	it	can	cause	critical	issues

Why	Interpretability?
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• Interpretation	is	the	process	of	giving explanations

• Situations	when	ML	interpretation	can	be	helped
• Safety:	We	want	to	make	sure	the	system	is	making	sound	decisions
• Debugging:	We	want	to	understand	why	a	system	doesn’t	work
• Science:	We	want	to	understand	something	new
• Legal:	We	are	legally	required	to	provide	an	explanation
• Ethics:	We	don’t	want	to	discriminate	against	particular	groups

What	is	Interpretability?
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• Linear	model
• Consider
• Question:	How	much	input	feature							contributed	to	(or	affected)	output				?
• Answer:	

• Decision	tree
• Question:	How	much	‘age’	affected	probability	of	survived?
• Answer:	Don’t	know
• Instead	of	per-feature	attribution,	we	know	its	decision	process	

• Many	interpretable	ML	approaches	provides		
explanation	of	the	original	model	in	one	of	two	forms

Examples	of	Interpretable	Model
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• Local	explanation
• Explain	a	single	prediction
• e.g.	which	part	of	the	image	affected	the	prediction	most	(visual	explanation)
• e.g.	find	a	training	data	most	responsible	to	the	prediction	(influence	function)

• Global	explanation
• Describe	the	entire	model	behavior
• e.g.	generate a	synthetic	image	that	maximizes	certain	output	(feature	visualization)
• e.g.	discover	a human-friendly	concept related	to	each	neuron	(network	dissection)
• e.g.	find	a	training	data	most	responsible	to	the	model	(influence	function)

Overview	of	Lecture: Types	of	Interpretations
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Algorithmic	Intelligence	Lab

• Idea:	Mask	part	of	the	image	with	gray	patch	before	feeding	to	CNN,	and
check	how	much	the	prediction	changes

Occlusion	Map	[Zeiler et	al.,	2014]
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• Problem:	Removing	information	with	gray	patch	is	too	heuristic

• Idea:	Simulate	the	absence	of	a	feature	by	marginalizing the	feature	

• Goal:	The	attribution	of	i-th feature	for	given	image	and					and	class	

where									represents	the	absence	of							in	

• Note	that																				is	computationally	expensive

• Assume							is	independent	of	the	other	features,	i.e.,

• The	prior	probability												is	usually	approximated	by	the	empirical	distribution

Prediction	Difference	Analysis	[Zintgraf et	al.,	2017]
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• Idea:	Simulate	the	absence	of	a	feature	by	marginalizing the	feature

• Problem:																																	is	a	very	crude	approximation
• e.g.	a	pixel’s	value	is	highly	dependent	on	other	pixels

• Observations
• A	pixel	depends	most	strongly	on	a	small	neighborhood	around	it
• The	conditional	of	a	pixel	given	its	neighborhood	does	not	depend	on	the	position

• For	a	pixel						,	one	can	find	a	patch							than	contains							and

Prediction	Difference	Analysis	[Zintgraf et	al.,	2017]
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• Results
• Marginal	vs.	conditional	sampling

• Different	window	sizes

Prediction	Difference	Analysis	[Zintgraf et	al.,	2017]
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• Remember	that	a	sparse	linear	model	is	a	good	explanation	model

• Idea:	Local	linear	approximation
• Explain	the	entire	model	is	hard,	but	
a	single	prediction	is	easier

• Approximate	the	model	in	a	local	region
around	the	single	prediction	by	a	linear	classifier

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Illustration	of	the	main	idea

• Overall	Procedure
1. Decompose	original	input	to	interpretable	representation
2. Model	local	region	around	given	input	by	sampling
3. Approximate	original	model	as	a	linear	classifier

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Illustration	of	the	main	idea

• Step	1:	Interpretable	representation
• Understandable	to	humans
• For	text	classification,	a	binary	vector indicating	the	presence	or	absence	of	a	word
• For	image	classification,	a	binary	vector	indicating	the	presence	or	absence	of	a	
contiguous	patch	of	similar	pixels

• :	original	representation		/																							:	its	interpretable	representation

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Illustration	of	the	main	idea

• Step	2:	Model	local	region	around	given	input
• Sample instances	around					by	drawing	nonzero	elements	of																								uniformly	
at	random

• Given	a	perturbed	sample																								,	recover	the	original	representation
• Compute									:	the	prediction	of	model	for	each	perturbed	output

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Illustration	of	the	main	idea

• Step	3:	Approximate	original	model	as	a	linear	classifier
• Fit	a	linear	classifier																													and	use	it	as	an	explanation	model

• defines	locality	(e.g.																																																								)
• Final	objective

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Results:	Can	be	applied	to	any	model
• Top	3	predictions	of	Inception-v3	for	ImageNet	dataset

• Random	forest	prediction	for	the	20	newsgroups	dataset

Local	Interpretable	Model-agnostic	Explanations	(LIME)	[Ribeiro	et	al.,	2016]
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• Problem:	Perturbation-based	methods	are	too	slow

• Idea:	Use	gradient	of	output	with	respect	to	the	input	as	the	attribution

• Goal:	Find	the	influence	on	the	score	 for	given	image
• Consider	the	linear	score	model	for	class				

where					:	image,													:	the	weight	vector	and	the	bias	of	the	model
• defines	the	importance	of	the	corresponding	pixels	of					for	the	class	

• In	case	of	non-linear/complex	models,	approximate													
by	the	first-order	Taylor	expansion

where

Saliency	Map	[Simonyan et	al.,	2014]
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• Results:	Without	any	additional	annotation,	gradient	can	localize	the	object

Saliency	Map	[Simonyan et	al.,	2014]
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• Problem:	Prediction	score	might	saturate
• For	high	confidence	prediction,
small	perturbation	in	input	does	not
change	the	prediction	value

Integrated	Gradients	[Sundararajan et	al.,	2017]
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• Problem:	Prediction	score	might	saturate
• For	high	confidence	prediction,
small	perturbation	in	input	does	not
change	the	prediction	value

Integrated	Gradients	[Sundararajan et	al.,	2017]
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• Idea:	Compute	all	the	gradients	for	images	from	baseline	to	actual	image

• Construct	a	sequence	of	images	interpolating	
from	a	baseline	(black)	to	the	actual	image

• Average	the	gradients	across	these	images

• is	the	prediction	function	for	the	label
• is	the	intensity	of	ith pixel
• is	the	integrated	gradient	w.r.t.	
the	ith pixel

• Properties
• Sensitivity:	A	variable	changes	output,	then	the	variable	should	get	an	attribution
• Insensitivity:	A	variable	has	no	effect	on	the	output	gets	no	attribution
• Completeness:	

Integrated	Gradients	[Sundararajan et	al.,	2017]
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• Results:	For	high	confidence	predictions,	
integrated	gradients	provide	discriminative	region

Integrated	Gradients	[Sundararajan	et	al.,	2017]
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• Problem:	Gradients	strongly	fluctuate!
• Given	image				,	and	an	image	pixel					,	plots	values	of	
for	a	short	line	segment

• Even				and												are	indistinguishable,	the	partial	derivative	rapidly	fluctuate

• Idea:	Use	a	local	average	of	gradient	values

where	noise	vectors																												are	drawn	i.i.d.	from	a	normal	distribution

SmoothGrad [Smilkov et	al.,	2017]
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• Results:	Simple	noise-adding	method	can	
dramatically	improve	the	quality	of	saliency	map

SmoothGrad [Smilkov et	al.,	2017]
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• Deconvolution	[Zeiler et	al.,	2014]
• Reverse	operation	of	convolution

• Guided	Backpropagation	[Springenberg et	al.,	2015]
• Backpropagate only	positive	gradients	through	each	ReLU

• Both	methods	visualize	the	activations	of	high	layer	neurons	(also	the	prediction)

Other	Backpropagation	Variants
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• Problem:	Many	pixel-level	attribution	methods	insensitive	to	model	parameter	
[Adebayo	et	al.,	2018]	

Grad-CAM	[Selvararaju et	al.,	2017]
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• Idea:	Activation-level	attribution	instead	of	pixel-level	attribution

• Gradient-based	extension	of	CAM	[Zhou	et	al.,	2015]

• Can	be	applied	to	any	CNN	based	model
• Image	classification,	image	captioning	or	visual	question	answering

• Use	GAP	of	gradients instead	of	weights	after	GAP	layer
• :	the	score	for	class			,							:	feature	map	of	the	last	convolutional	layer

Grad-CAM	[Selvararaju et	al.,	2017]
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• Idea:	Activation-level	attribution	instead	of	pixel-level	attribution

• Gradient-based	extension	of	CAM	[Zhou	et	al.,	2015]

• Can	be	applied	to	any	CNN	based	model
• Image	classification,	image	captioning	or	visual	question	answering

• Use	GAP	of	gradients instead	of	weights	after	GAP	layer
• :	the	score	for	class			,							:	feature	map	of	the	last	convolutional	layer

• Typically,	the	conv	activation	has	low-resolution	→ low	resolution	explanation

• Less	affected	by	CNN	architecture	prior	→more	sensitive	to	model	parameter

Grad-CAM	[Selvararaju et	al.,	2017]
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• Results
• CAM	vs.	Saliency	map

• Examples	of	localization	(green:	ground	truth	/	red:	predicted)

Class	Activation	Map	(CAM)	[Zhou	et	al.,	2015]

32



Algorithmic	Intelligence	Lab

• Results:	focus	on	right	place	without	any	attention	module
• Visual	explanations	for	captioning

Grad-CAM	[Selvararaju et	al.,	2017]
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• Results:	can	discriminate	different	objects
• Visual	explanations	for	VQA

Grad-CAM	[Selvararaju et	al.,	2017]
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Algorithmic	Intelligence	Lab

• Goal:	Generate	a	synthetic	image	that	maximally	activates	a	neuron
• So	far,	we	have	focused	on	finding	which	part	of	an	input	that	a	neuron	(or	output)	
responds	to

• Can	observe	the	models	behavior	when	classify	image	to	certain	class

• Idea:	Solve	the	following	optimization

• Initialized	image	to	zeros
• Forward	image	to	compute	current	class	scores
• Backprop to	get	gradient	of	neuron	value	w.r.t.	image	pixels
• Make	a	small	update	to	the	image

• Results:	Different	aspects	of	class	appearance	are	captured

Visualizing	CNN	Features	[Simonyan et	al.,	2014]
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• Goal:	Interpreting	deep	visual	representation	and	quantifying	their	interpretability

• Idea:	Network	dissection
1. Identify	a	broad	set	of	human-labeled	visual	concepts
2. Gather	hidden	variables’	response	to	known	concepts
3. Quantify	alignment	of	hidden	variable	– concept	pairs

• Step	1:	Use	the	broadly	and	densely	labeled	(Broden)	dataset
• Gather	images	from	various	dataset
• Total	63,305	pixel-level	annotated	images,	1,197	visual	concepts

Network	Dissection	[Bau et	al.,	2017]
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• Step	2:	Gather	hidden	variables’	response
• For	every	input	image					in	the	Broden dataset,	

collect	the	activation	map														of	every	convolutional	unit	
• Define	the	binary	segmentation	
• :	scaled	up	activation	map	of													(same	size	as	the	image)
• :	some	threshold	value

• Step	3:	Scoring	unit	interpretability
• The	score	of	unit					for	concept					is	reported	as	a	dataset-wide	IoU score

• :	ground	truth	mask	of	image					for	concept	

Network	Dissection	[Bau et	al.,	2017]
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• Results: Object	detector	emerges	even	when	the	model	trained	on	scene	dataset
• High-scored	(interpretable)	convolutional	units

Network	Dissection	[Bau et	al.,	2017]
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• Results
• Dissection	report	(AlexNet /	trained	on	places	365)

Network	Dissection	[Bau et	al.,	2017]
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• Goal:	Identify	most	responsible	training	point	for	a	given	prediction
• Retraining	the	model	can	be	prohibitively	expensive!

• Idea:	Find																																																					using	influence	function

• Training	points																				are	given
• The	empirical	risk	minimizer	is	given	by	

• Measure	influence	of																on	parameter					to	approximate

• Influence	function	

where						:	an	estimator,											:	distribution

Influence	Function	[Koh et	al.,	2017]
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• Approximate										in	terms	of	perturbation

where

• From	a	classic	result	[Cook	et	al.,	1982],	

• Influence	of					on	the	loss	function	at

• Helpful	images	implies	negative	influence	on	the	loss	function

Influence	Function	[Koh et	al.,	2017]
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• Results
• Understanding	model	behavior	(discriminate	fish	vs.	dog)

• Helpful	images	implies	negative	influence	on	loss	function
• For	Inception	network,	most	helpful	image	was	actually	a	dog

Influence	Function	[Koh et	al.,	2017]
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• Interpretability	method	is	about	giving	explanation	to	human
• Form	of	explanation is	various

• In	this	lecture,	we	covered	some	of	interpretability	methods
• Visual	explanation	(saliency	map	/	class	activation	map)
• Network	dissection
• Influence	function

• There	are	still	many	research	directions
• Lots	of	interpretability	methods	not	covered	in	this	slide

Conclusion
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