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Why Interpretability?

* Recently, deep learning shows superior performance in various tasks

* However, we don’t know yet why they work so well
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 When it fails, it can cause critical issues

Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says The ‘three black teenagers’ search shows
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What is Interpretability?

* Interpretation is the process of giving explanations

@

/ sneeze | U Explainer | sneeze | —
[ LIME X

\ e e | > | [eagahe

\ no fatigue no fatigue

age

Model Data and Prediction Human makes decision

[Ribeiro et al. ‘16]

Explanation

e Situations when ML interpretation can be helped

Safety: We want to make sure the system is making sound decisions
Debugging: We want to understand why a system doesn’t work
Science: We want to understand something new

Legal: We are legally required to provide an explanation

Ethics: We don’t want to discriminate against particular groups
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Examples of Interpretable Model

* Linear model

« Consider y = By + f1x1 + - -+

+ ann

* Question: How much input feature x; contributed to (or affected) output y?

* Answer: (3;

* Decision tree

is sex male?

* Question: How much ‘age’ affected probability of survived? j

 Answer: Don’t know

is age > 9.57 |ﬁ:§urvived_:]

* Instead of per-feature attribution, we know its decision process : \ 013 6%

is sibsp > 2 5?

0.17 61%
* Many interpretable ML approaches provides 4
explanation of the original model in one of two forms (survived)

=

Interpretable
ML method

0.05 2% 0.89 2%

2 I
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Overview of Lecture: Types of Interpretations

* Local explanation
* Explain a single prediction
* e.g. which part of the image affected the prediction most (visual explanation)
* e.g. find a training data most responsible to the prediction (influence function)

* Global explanation
* Describe the entire model behavior
* e.g. generate a synthetic image that maximizes certain output (feature visualization)
* e.g. discover a human-friendly concept related to each neuron (network dissection)
* e.g. find a training data most responsible to the model (influence function)

Train
res5c unit 924 loU=0.293

(c) Grad-CAM ‘Cat’
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Occlusion Map [Zeiler et al., 2014]

* Idea: Mask part of the image with gray patch before feeding to CNN, and

check how much the prediction changes

P(elephant) = 0.95

P(elephant) = 0.75
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Prediction Difference Analysis [Zintgraf et al., 2017]

* Problem: Removing information with gray patch is too heuristic

* Idea: Simulate the absence of a feature by marginalizing the feature

* Goal: The attribution of i-th feature for given image and x and class ¢

p(elx) = plelxy;)

where X\; represents the absence of Z; in x
C’X\z Zp ajz’X\z C‘X\za xz)
* Note that p(x;|x\;) is computatlonally expensive

* Assume Z; is independent of the other features, i.e., p(af¢|X\z-) ~ p(x;)

plclxy;) ~ Zp z;)p(c|x\i, T4)

* The prior probability p(z;) is usuaIIy approximated by the empirical distribution
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Prediction Difference Analysis [Zintgraf et al., 2017]

Idea: Simulate the absence of a feature by marginalizing the feature

plelxyi) = ZP ;i |x\i)p(c|x\i, Ti)

Problem: p(z;|x\;) ~ p(z;) is a very crude approximation
* e.g. apixel’s value is highly dependent on other pixels

Observations
* A pixel depends most strongly on a small neighborhood around it
* The conditional of a pixel given its neighborhood does not depend on the position

For a pixel z; , one can find a patch x; than contains z; and p(z;|x\;) ~ p(z;|X;)

input x

B
B :
Xy
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Prediction Difference Analysis [Zintgraf et al., 2017]

* Results
e Marginal vs. conditional sampling

input marginal conditional

margina conditional

e Different window sizes

african el., 0.63 1 2 3 4 5 10
W $, = g % |9 = g -
(ORI BT oS BT S T R Y 1 TR
§:.L{ 4 "y o A e \; ' & E\'y‘ ." y . :
5 PR } gt 13 .‘ - “?," ’ . 'g." ' '..
3 4 fg 5. \ 1605 . o A
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

« Remember that a sparse linear model is a good explanation model

Example #3 of True Class: () Atreism COCOO ’
Algorithm 1 Algorithm 2
Words that A1 considers important: Predicted: Words that A2 considers important: Predicted:
GoD| . Atheism Posting| . Atheism
mean| Prediction correct: Host| Prediction correct:
anyone| J J
this| by
Koresh| i
through| Nntp

Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp
Lines: 8

Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

* Idea: Local linear approximation

* Explain the entire model is hard, but
a single prediction is easier

* Approximate the model in a local region
around the single prediction by a linear classifier

Algorithmic Intelligence Lab

(a) Original Image

(b) Explaining Electric guitar
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* |llustration of the main idea

Perturbed Instances | P(tree frog)

e
s ]
"ﬁr ”‘ ~ 0.85
ke Loy -
N 2]
= % ’
Bre * o : ﬂ
Original Image Interpretable - 0.00001
Components Original Image
d / d’ P(tree frog) = 0.54 2 ¢

SN 0.52

* Overall Procedure
1. Decompose original input to interpretable representation
2. Model local region around given input by sampling
3. Approximate original model as a linear classifier

Algorithmic Intelligence Lab

Locally weighted
regression

Explanation
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* |llustration of the main idea

Original Image

r € R?

. e
RS
L2
Rre o

Interpretable

Components

« € {0,117

Perturbed Instances | P(tree frog)

P

A.ﬂ
t 085 Locally weighted
| . ’ regression
0.00001
Original Image
P(tree frog) = 0.54

Explanation

* Step 1: Interpretable representation
e Understandable to humans

* For text classification, a binary vector indicating the presence or absence of a word

* For image classification, a binary vector indicating the presence or absence of a
contiguous patch of similar pixels

« € R? :original representation / 2’ € {0, 1}d/ . its interpretable representation

Algorithmic Intelligence Lab
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* |llustration of the main idea

'& L9
Y T,
Eg’hnds‘g

Original Image Interpretable
Components
z € RY 2’ € {0,1}¢

Original Image
P(tree frog) = 0.54

Perturbed Instances | P(tree frog)

A
0.85

= N
. 0.00001

e Step 2: Model local region around given input
* Sample instances around x by drawing nonzero elements of z’ € {0, 1}d/uniformly

at random

/7

Locally weighted
regression

Explanation

* Given a perturbed sample 2’ € {0, 1}d,, recover the original representation z € R?

« Compute f(z): the prediction of model for each perturbed output

Algorithmic Intelligence Lab
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* |llustration of the main idea

e
y
o\

%5
s
BN

RN e

Original Image Interpretable
Components Original Image
4 P(tree fi =0.54
z € RY ¢’ € {0,1}4 (tree frog)

Perturbed Instances | P(tree frog)

P

A
L]
d 0.85 ’
I]
’ 0.00001
[ ]

Locally weighted
regression

Explanation

* Step 3: Approximate original model as a linear classifier
* Fit a linear classifier g(z’) = w, - 2" and use it as an explanation model

['(faganzc): Z Hx(z)

z,z'€Z

(f(z) — g())?

« II;(2) defines locality (e.g. IT,,(2) = exp(—|z — z||3/0.1))

{(x) = arg gnin L(f, g9, 1z)+Qg)

* Final objective

eG

Algorithmic Intelligence Lab

local fidelity

measure of complexity
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Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]

* Results: Can be applied to any model
* Top 3 predictions of Inception-v3 for ImageNet dataset

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

* Random forest prediction for the 20 newsgroups dataset

Prediction probabilities atheism christian

atheism
christian

Text with highlighted words

From: johnchad@triton.unm il (jchadwic)

Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

ISR - BOSEg- B0 (ricon.unm il

Hello Gang,

[DESE8 B8 been some notes recently asking where to obtain the
DARWIN fish.

This is the same question I [Jlll§ and I [#§l§ not seen an answer on
the

net. If anyone has a contact please post on the net or email me.

Algorithmic Intelligence Lab

18



Table of Contents

1. Introduction
* Why interpretability?
 What is interpretability?
* Overview

2. Visual Explanation
* Perturbation-based methods
e Gradient-based methods

3. Other Approaches
e Visualize features
* Network dissection
* Influence function

Algorithmic Intelligence Lab

19



Saliency Map [Simonyan et al., 2014]

* Problem: Perturbation-based methods are too slow

* Idea: Use gradient of output with respect to the input as the attribution

* Goal: Find the influence on the score S.(1) for given image I
e Consider the linear score model for class ¢

S.(I)=w,I+b,

where [ :image, w,, b. : the weight vector and the bias of the model
* W, defines the importance of the corresponding pixels of I for the class ¢

* In case of non-linear/complex models, approximate S.(1)
by the first-order Taylor expansion

S.(D)~w'I+b
O,
oI |,_;.

where w =

Algorithmic Intelligence Lab 20



Saliency Map [Simonyan et al., 2014]

* Results: Without any additional annotation, gradient can localize the object
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Integrated Gradients [Sundararajan et al., 2017]

f
* Problem: Prediction score might saturate .
* For high confidence prediction, Poir;;[for

L ttribution,
small perturbation in input does not Sradient=0
change the prediction value R

baseline at 0
X

10
Prediction score

08 Already saturated when ov = 0.2

0.6

F': prediction score
F(a'+ alz — ")) precietc
- x : original image
2': baseline image
02
0.0
0.0 0.2 04 0.6 08 10
>
intensity «

Algorithmic Intelligence Lab
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Integrated Gradients [Sundararajan et al., 2017]

f
* Problem: Prediction score might saturate | .

* For high confidence prediction, Pt?ifgftc_)r
small perturbation in input does not Sradient=0
change the prediction value R

baseline at 0
X

10
Average pixel gradient
(normalized) o

0.6 . .

OF (z' + a(z — ') F': prediction score
e o1 x : original image

2': baseline image

02

0.0
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Integrated Gradients [Sundararajan et al., 2017]

* Idea: Compute all the gradients for images from baseline to actual image

* Construct a sequence of images interpolating
from a baseline (black) to the actual image

Uniformly scale
from baseline to
input image

* Average the gradients across these images

1 / /
OF —
a=0 Ox;
» I is the prediction function for the label Baseline

(all zeros)

* ; is the intensity of ith pixel

« IG;(z) is the integrated gradient w.r.t.
the ith pixel

(e =0.3)

(=0)

* Properties
* Sensitivity: A variable changes output, then the variable should get an attribution

* Insensitivity: A variable has no effect on the output gets no attribution
« Completeness: > ., 1G;(z) = F(z) — F(2')

Algorithmic Intelligence Lab
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Integrated Gradients [Sundararajan et al., 2017]

* Results: For high confidence predictions,
integrated gradients provide discriminative region

Original image Top label and score Integrated gradients Gradients at image

Top label: reflex camera

Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus

Score: 0.997033




SmoothGrad [Smilkov et al., 2017]

* Problem: Gradients strongly fluctuate!

e Given image x, and an image pixel x;, plots values of max
for a short line segment x + te

C

(x + te)

? 8337,

0.10
0.08
0.06
0.04
0.02
0.00

-0.02

0S,. [0z (x + te)

-0.04

-0.06

-0.08
00 02 04 06 08 10

t

* Evenz and x + € are indistinguishable, the partial derivative rapidly fluctuate

* Idea: Use a local average of gradient values

N
SG(z) = N « - ox (@ + i)

1=

where noise vectors g; ~ N (0, 02) are drawn i.i.d. from a normal distribution

Algorithmic Intelligence Lab
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SmoothGrad [Smilkov et al., 2017]

* Results: Simple noise-adding method can
dramatically improve the quality of saliency map

Gradient Gradient x Image

Vanilla Integrated Guided BackProp | SmoothGrad

Vanilla Integrated Guided BackProp |SmoothGrad

drilling platform

High Impact
hognose snake great white shark

night snake

lorikeet

Low Impact
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Other Backpropagation Variants

* Deconvolution [Zeiler et al., 2014]
* Reverse operation of convolution

* Guided Backpropagation [Springenberg et al., 2015]
* Backpropagate only positive gradients through each RelLU

e Both methods visualize the activations of high layer neurons (also the prediction)

RelLU
a) Forward pass 1o | b) 1|15 1|0
; LI DT PR A R L |
Input image * —{ ¢ P T | Forward pass 2 [s[7] = [2]0
Feature map | 3124 0]z
Backward pass
Reconstructed _ [— e I I K ! T.1- T3
image R’ 0|2 | Backward pass: -
| backpropagation 6J0]o0 613
____________________ | 0[-1]3 2 |1
C) o I+1 l ! |
activation: fiT =relu(f;) = max(f;,0) | 0ol3]o0 2|3
. ) o fout Backward pass:
backpropagation: Ré = (ff >0) - Riﬂa where R = afz+1 : “deconvnet” sjojt| < |6]S3
fi 2|03 2 |1
|
decommer: = R |
' | Backward pass: 0jo0jo 2]3
guided . Ré _ (fz‘l > 0)- . Rl+1 | guided . 6|0J0)| «<— |6]|-3
backpropagation: ! backpropagation | 5| 5| 3 2 |1
|
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Grad-CAM [Selvararaju et al., 2017]

* Problem: Many pixel-level attribution methods insensitive to model parameter
[Adebayo et al., 2018]

Cascading randomization

.. c
Original Image o * from top to bottom layers
g — Q =< Q Q Q
S ° X X X % X
T . N " ?, ?, ?,
u_><_| ° 2 2 o 8 3 8 8 3 3 8 3 g| g| £| g| £|
T o | | I | I I ' | | | I kel o o kel kel
£ 2 K o K 3 ® K ? 3 ? 3 K < < < < <
®2° 5 X 2 x X X X X X X X x & & & & &z
o ° =& £ £ £ £ € S € S £ £ £ 13) 13) o 13) 13)
R T S R R R AT s
) 1 % e = . g2 i
Gradient Cll : ; o
5 & !
Gradient-SG ‘:? *‘j? e Sy N
Gradient® Input Lk
. r A e -l il .l W P O
Guided = __i?e _.fb ,me ‘We w _me ,iee ,ne ‘m ® ®R o ® ® O ® ® ® "

7

Back-propagation

.'.'I.'l ..‘. " .I l' Q -

Guided GradCAM

N ,/ T J ,J / \ ‘/ -/
o | Tl S RN T ;
. B e 2 S e S, S T % s e &
Integrated Gradients &85 i o v o R e e £
® K L e #
- o s - e o RS B*b ..‘;'3: 33 P "“: AR
Integrated Gradients-SG ~ #.7 °% <« ° & @ < | %) b
' p St ., 52 4 " % o S e B
e ot ' i
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Grad-CAM [Selvararaju et al., 2017]

Idea: Activation-level attribution instead of pixel-level attribution
Gradient-based extension of CAM [Zhou et al., 2015]

Can be applied to any CNN based model
* Image classification, image captioning or visual question answering

Use GAP of gradients instead of weights after GAP layer
* y°: the score for class ¢, A¥: feature map of the last convolutional layer

af = oW c = ReLU |} aga*
k — OAF Grad—CAM — D€ Q
1,7 () k
> |
T Tiger Cat
Grad-CAM
y
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Grad-CAM [Selvararaju et al., 2017]

Idea: Activation-level attribution instead of pixel-level attribution
Gradient-based extension of CAM [Zhou et al., 2015]

Can be applied to any CNN based model
* Image classification, image captioning or visual question answering

Use GAP of gradients instead of weights after GAP layer
* y°: the score for class ¢, A¥: feature map of the last convolutional layer

c Oy°
X = Z OAF. E}rad—CAM = ReLU (Z @iAk>
7 2

1,7

Typically, the conv activation has low-resolution — low resolution explanation

Less affected by CNN architecture prior = more sensitive to model parameter

Algorithmic Intelligence Lab
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Class Activation Map (CAM) [Zhou et al., 2015]

* Results
* CAM vs. Saliency map

GoogLeNet-GAP  VGG-GAP AlexNet-GAP GoogLeNet Backpro AlexNet Backpro GoogLeNet

* Examples of localization (green: ground truth / red: predicted)

grasshopperssuwppes

Aé?_ 43!'

Algorithmic Intelligence Lab
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Grad-CAM [Selvararaju et al., 2017]

* Results: focus on right place without any attention module
* Visual explanations for captioning

Guided Backprop Grad-CAM Guided Grad-CAM

A horse is standing in a field with a fence in the background

Algorithmic Intelligence Lab
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Grad-CAM [Selvararaju et al., 2017]

* Results: can discriminate different objects
* Visual explanations for VQA

What animal is in this picture? (left) Answer: dog / (right) Answer: cat

-

What color is the hydrant? (left) Answer: yellow / (right) Answer: green

Algorithmic Intelligence Lab 34
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Visualizing CNN Features [Simonyan et al., 2014]

e Goal: Generate a synthetic image that maximally activates a neuron

* So far, we have focused on finding which part of an input that a neuron (or output)
responds to

* Can observe the models behavior when classify image to certain class

* Idea: Solve the following optimization
argmax So(I) — A|1]3
Initialized image to zeros

Forward image to compute current class scores

Backprop to get gradient of neuron value w.r.t. image pixels
Make a small update to the image

* Results: Different aspects of class appearance are captured

dumbbell cup dalmatian goose ostrich

Algorithmic Intelligence Lab
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Network Dissection [Bau et al., 2017]

* Goal: Interpreting deep visual representation and quantifying their interpretability

* Idea: Network dissection
1. Identify a broad set of human-labeled visual concepts
2. Gather hidden variables’ response to known concepts
3. Quantify alignment of hidden variable — concept pairs

* Step 1: Use the broadly and densely labeled (Broden) dataset
* Gather images from various dataset
* Total 63,305 pixel-level annotated images, 1,197 visual concepts

street (scene) flower (object)

Table 1. Statistics of each label type included in the data set. ceachoar (pat)

Category | Classes Sources Avg sample
scene 468 ADE [43] 38
object 584 ADE [43], Pascal-Context [19] 491
part 234 ADE [43], Pascal-Part [6] 854 metal (material)
material 32 OpenSurfaces [4] 1,703 '
texture 47 DTD [7] 140 j y -
color 11 Generated 59,250 a5 2 Q
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Network Dissection [Bau et al., 2017]

* Step 2: Gather hidden variables’ response

* For every input image X in the Broden dataset,
collect the activation map Ay (x) of every convolutional unit k

* Define the binary segmentation M} (x) = 1{Sk(x) > T} }
* Sk(x) :scaled up activation map of Ax(x)(same size as the image)
* T} :some threshold value

* Step 3: Scoring unit interpretability

* The score of unit k for concept ¢ is reported as a dataset-wide loU score
2 [ Mi(x) N Le(x)|
D [ M (%) U Le(x)|

): ground truth mask of image x for concept ¢

IoUy . =

38



Network Dissection [Bau et al., 2017]

* Results: Object detector emerges even when the model trained on scene dataset
* High-scored (interpretable) convolutional units

conv5 unit 79  car (object) loU=0.13

conv5 unit 144 mountain (object) loU=0.13
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Network Dissection [Bau et al., 2017]

* Results

* Dissection report (AlexNet / trained on places 365)

Histogram of Object Detectors

1 0 I | I | I | | I I I I T I I | I I I I | I T I I | I I | | T I I | I T I I | | I
q‘lajomber of Unique Detectors
5
-object
90t Bpart . \
Escene (’65%329%?}5\“%9\\0%0 e(so%(o'b%a‘\a%oo 50%‘%\@%0%%\0%%@%% %‘6‘?\()\%0\ NN \ngx ((o
80| [CImaterial|| «\“6
70l [ texture ||
DCO|OI‘ Histogram of Part Detectors 5 Histogram of Scene Detectors
60 i T T T T T T T T T T T T T T T T T T
50+
. A X
9 Nola Q“OQ 5‘(\0 \)(\\. 3 Al o\)\ 6 e
30+
Histogram of Texture Detectors
20 - 5 T I | I | | T T | I | | | [ | T T | I
Wﬂﬂﬂ
0 mmmml—ll—lﬁﬁﬁﬁﬁﬁﬁmﬁﬁﬁﬁﬁ
0 &Y Y e® N N
ex@’ed ‘“e oje <°°§6 *\Zf o« g‘; 00 '66%62 j’t\“ % eo““\ed * “ie%“? a3 0 «\0\66@\66 S
1 °

(PN
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Influence Function [Koh et al., 2017]

Goal: Identify most responsible training point for a given prediction
* Retraining the model can be prohibitively expensive!

e Idea: Find 0_, = arg min = Z L(z;,0) using influence function
0cO N
z2iFz
* Training points z1,--- , 2, are given
* The empirical risk minimizer is given by 6 = arg min — ZL %, 0)
6o n

Measure influence of L(z,0) on parameter 0 to approximate 0_.

Influence function
(T = lim T(tG + (1 —t)F) — T(F)

t—0+ t

where T':an estimator, F,G': distribution

Algorithmic Intelligence Lab
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Influence Function [Koh et al., 2017]

* Approximate 0_, interms of perturbation €

. 1db .
0, ~0— =222 h 0., = — Y L(z
e . where 2 argr@rélélnz (2,6

* From a classic result [Cook et al., 1982],

dé. .
de

_ g1 )
e=0

Zup,pa,ra,ms (Z) —

* |Influence of 2 on the loss function at 2test
dL(Ztes‘m ée,z)

Z-up,loss (Z, Ztest) —

de
e=0
~ — db
= VoL(2test, 0) T —==
0 (Zt t ) de o

= _VQL(ztesta é)THé_lv9L(Za é)

* Helpful images implies negative influence on the loss function

Algorithmic Intelligence Lab
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Influence Function [Koh et al., 2017]

* Results
* Understanding model behavior (discriminate fish vs. dog)
* Helpful images implies negative influence on loss function
* For Inception network, most helpful image was actually a dog

Inception RBF SVM

Helpful train
dog image
(Inception)

Test image

Helpful images

Algorithmic Intelligence Lab
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Conclusion

* Interpretability method is about giving explanation to human
* Form of explanation is various

* In this lecture, we covered some of interpretability methods
* Visual explanation (saliency map / class activation map)
* Network dissection
* Influence function

* There are still many research directions
* Lots of interpretability methods not covered in this slide

44
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