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• Deep	neural	networks	(DNNs)	can	be	generalized	well when	the	test	samples	
are	from	similar	distribution	(i.e.,	in-distribution)

What	is	Novelty	Detection?
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• Deep	neural	networks	(DNNs)	can	be	generalized	well when	the	test	samples	
are	from	similar	distribution	(i.e.,	in-distribution)

• However,	in	the	real	world,	there	are	many	unknown	and	unseen	samples that	
classifier	can’t	give	a	right	answer

What	is	Novelty	Detection?
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Unseen	sample,	i.e.,	out-of-
distribution	(not	animal)

Unknown	sample Adversarial	samples
[Goodfellow et	al.,	2015]



Algorithmic	Intelligence	Lab

• Novelty	detection
• Given	pre-trained	(deep)	classifier,	
• Detect	whether	a	test	sample	is	from	in-distribution	(i.e.,	training	distribution	by	
classifier)	or	not	(e.g.,	out-of-distribution	/	adversarial	samples)

What	is	Novelty	Detection?
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• Novelty	detection
• Given	pre-trained	(deep)	classifier,	
• Detect	whether	a	test	sample	is	from	in-distribution	(i.e.,	training	distribution	by	
classifier)	or	not	(e.g.,	out-of-distribution	/	adversarial	samples)

• It	can	be	useful	for	many	machine	learning	problems:

What	is	Novelty	Detection?
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Ensemble	learning	
[Lee	et	al.,	2017]

Incremental	learning	
[Rebuff et	al.,	2017]
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• Novelty	detection
• Given	pre-trained	(deep)	classifier,	
• Detect	whether	a	test	sample	is	from	in-distribution	(i.e.,	training	distribution	by	
classifier)	or	not	(e.g.,	out-of-distribution	/	adversarial	samples)

• It	is	also	indispensable	when	deploying	DNNs	in	real-world	systems [Amodei et	
al.,	2016]

What	is	Novelty	Detection?
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• How	to	solve	this	problem?
• Threshold-based	Detector	[Hendrycks et	al.,	2017,	Liang	et	al.,	2018]

What	is	Novelty	Detection?
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• How	to	solve	this	problem?
• Threshold-based	Detector	[Hendrycks et	al.,	2017,	Liang	et	al.,	2018]

What	is	Novelty	Detection?
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How	to	get	confidence	score
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• How	to	solve	this	problem?
• Threshold-based	Detector	[Hendrycks et	al.,	2017,	Liang	et	al.,	2018]

• Utilizing	a	posterior distribution
• 1.	Maximum	value	or	entropy	of	posterior	[Hendrycks et	al.,	2017]

• 2.	Input	and	output	processing	[Liang	et	al.,	2018]

• 3.	Bayesian	inference	[Li	et	al.,	2017]		and	ensemble	of	classifier	[Balaji	et	al.,	2017]

What	is	Novelty	Detection?
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• How	to	solve	this	problem?
• Threshold-based	Detector	[Hendrycks et	al.,	2017,	Liang	et	al.,	2018]

• Utilizing	a	hidden	features	from	DNNs
• 1.	Local	intrinsic	dimensionality	[Ma	et	al.,	2018]

• 2.	Mahalanobis distance	[Lee	et	al.,	2018b]

What	is	Novelty	Detection?
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• Remind	that	classification	is	finding	an	unknown	posterior	distribution,	i.e.,	P(Y|X)

• How	to	model	our	posterior	distribution:	Softmax classifier	with	DNNs

• Where									is	hidden	features	from	DNNs

Utilizing	the	Posterior	Distribution

14
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• Remind	that	classification	is	finding	an	unknown	posterior	distribution,	i.e.,	P(Y|X)

• How	to	model	our	posterior	distribution:	Softmax classifier	with	DNNs

• Where									is	hidden	features	from	DNNs

• Natural	choice	for	confidence	score
• 1.	maximum	value	of	posterior	distribution

• 2.	entropy	of	posterior	distribution

Utilizing	the	Posterior	Distribution
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• Baseline	detector	[Hendrycks et	al.,	2017]
• Confidence	score	=	maximum	value	of	predictive	distribution

Utilizing	the	Posterior	Distribution
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• Baseline	detector	[Hendrycks et	al.,	2017]
• Confidence	score	=	maximum	value	of	predictive	distribution

• Evaluation:	detecting	out-of-distribution
• Assume	that	we	have	classifier	trained	on	MNIST	dataset
• Detecting	out-of-distribution	for	this	classifier

Utilizing	the	Posterior	Distribution
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• Baseline	detector	[Hendrycks et	al.,	2017]
• Confidence	score	=	maximum	value	of	predictive	distribution

• Evaluation:	detecting	out-of-distribution
• TP	=	true	positive	/	FN	=	false	negative	/TN	=	true	negative	/	FP	=	false	positive

Utilizing	the	Posterior	Distribution
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• AUROC	
• Area	under	ROC	curve
• ROC	curve	=	relationship	between	TPR	
and	FPR

• AUPR	(Area	under	the	Precision-Recall	curve)
• Area	under	PR	curve
• PR	curve	=	relationship	between	precision	and	recall
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• Baseline	detector	[Hendrycks et	al.,	2017]
• Confidence	score	=	maximum	value	of	predictive	distribution

• Evaluation:	detecting	out-of-distribution
• Image	classification	(computer	vision)

Utilizing	the	Posterior	Distribution
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• Baseline	detector	[Hendrycks et	al.,	2017]
• Confidence	score	=	maximum	value	of	predictive	distribution

• Evaluation:	detecting	out-of-distribution
• Text	categorization	(NLP)

• Out-of-distribution
• 5	Newsgroups	for	15	Newsgroups	
• 2	Reuters	for	Reuters	6
• 12	Reuters	for	40	Reuters

Utilizing	the	Posterior	Distribution
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• ODIN	detector	[Liang	et	al.,	2018]
• Calibrating	the	posterior	distribution	using	post-processing

• Two	techniques
• Temperature	scaling

• Relaxing	the	overconfidence	by	smoothing	the	posterior	distribution

Utilizing	the	Posterior	Distribution
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• ODIN	detector	[Liang	et	al.,	2018]
• Calibrating	the	posterior	distribution	using	post-processing

• Two	techniques
• Temperature	scaling

• Input	preprocessing

Utilizing	the	Posterior	Distribution
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• ODIN	detector	[Liang	et	al.,	2018]
• Calibrating	the	posterior	distribution	using	post-processing

• Two	techniques
• Temperature	scaling

• Input	preprocessing

• Using	two	methods,	the	authors	define	confidence	score	as	follows:

Utilizing	the	Posterior	Distribution
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• ODIN	detector	[Liang	et	al.,	2018]
• Calibrating	the	posterior	distribution	using	post-processing

• Two	techniques
• Temperature	scaling

• Input	preprocessing

• Using	two	methods,	the	authors	define	confidence	score	as	follows:

• How	to	select	hyper-parameters
• Validation

• 1000	images	from	in-distribution	(positive)
• 1000	images	from	out-of-distribution	(negative)

Utilizing	the	Posterior	Distribution
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• Experimental	results	

Utilizing	the	Posterior	Distribution
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• Motivation
• Hidden	features	from	DNNs	contain	meaningful	features	from	training	data

• They	can	be	useful	for	detecting	abnormal	samples!

Utilizing	the	Hidden	Features
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• Local	Intrinsic	Dimensionality	(LID)	[Ma	et	al.,	2018]
• Expansion	dimension

• Rate	of	growth	in	the	number	of	data	encountered	as	the	distance	from	the	re
ference	sample	increases	(𝑉 is	volume)

Utilizing	the	Hidden	Features
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• Local	Intrinsic	Dimensionality	(LID)	[Ma	et	al.,	2018]
• Expansion	dimension

• Rate	of	growth	in	the	number	of	data	encountered	as	the	distance	from	the	re
ference	sample	increases	(𝑉 is	volume)

• LID	=	expansion	dimension	in	the	statistical	setting

• Where	𝐹 is	analogous	to	the	volume	in	equation	(1)

Utilizing	the	Hidden	Features
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• Local	Intrinsic	Dimensionality	(LID)	[Ma	et	al.,	2018]
• Expansion	dimension

• Rate	of	growth	in	the	number	of	data	encountered	as	the	distance	from	the	re
ference	sample	increases	(𝑉 is	volume)

• LID	=	expansion	dimension	in	the	statistical	setting

• Where	𝐹 is	analogous	to	the	volume	in	equation	(1)
• Estimation	of	LID	[Amsaleg et	al.,	2015]

Utilizing	the	Hidden	Features
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• Motivation	of	LID
• Abnormal	sample	might	be	scattered	compared	to	normal	samples

• This	implies	that	LID	can	be	useful	for	detecting	abnormal	samples!

Utilizing	the	Hidden	Features
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• Motivation	of	LID
• Abnormal	sample	might	be	scattered	compared	to	normal	samples

• This	implies	that	LID	can	be	useful	for	detecting	abnormal	samples!

• Evaluation:	detecting	adversarial	samples	[Szegedy,	et	al.,	2013]
• Misclassified	examples	that	are	only	slightly	different	from	original	examples

Utilizing	the	Hidden	Features

32
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• Motivation	of	LID
• Abnormal	sample	might	be	scattered	compared	to	normal	samples

• This	implies	that	LID	can	be	useful	for	detecting	abnormal	samples!

• Evaluation:	detecting	adversarial	samples	[Szegedy,	et	al.,	2013]

Utilizing	the	Hidden	Features
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• Empirical	justification

• Adversarial	samples	(generated	by	OPT	attack	[Carlini et	al.,	2017])	can	be	distinguis
hed	using	LID

• LIDs	from	low-level	layers	are	also	useful	in	detection

Utilizing	the	Hidden	Features
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• Main	results	on	detecting	adversarial	attacks
• Tested	method

• Bayesian	uncertainty	(BU)	and	Density	estimator	(DE)	[Feinman et	al.,	2017]

• LID	outperforms	all	baseline	methods

Utilizing	the	Hidden	Features
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• Mahalanobis distance-based	confidence	score	[Lee	et	al.,	2018]

Utilizing	the	Hidden	Features
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• Mahalanobis distance-based	confidence	score	[Lee	et	al.,	2018]
• Given	pre-trained	Softmax classifier	with	DNNs

Utilizing	the	Hidden	Features
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• Mahalanobis distance-based	confidence	score	[Lee	et	al.,	2018]
• Given	pre-trained	Softmax classifier	with	DNNs

• Inducing	a	generative	classifier	on	hidden	feature	space

Utilizing	the	Hidden	Features
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• Mahalanobis distance-based	confidence	score	[Lee	et	al.,	2018]
• Given	pre-trained	Softmax classifier	with	DNNs

• Inducing	a	generative	classifier	on	hidden	feature	space

• Motivation:	connection	between softamx and	generative	classifier	(LDA)

Utilizing	the	Hidden	Features
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• Mahalanobis distance-based	confidence	score	[Lee	et	al.,	2018]
• Given	pre-trained	Softmax classifier	with	DNNs

• Inducing	a	generative	classifier	on	hidden	feature	space

• The	parameters	of	generative	classifier	=	sample	means	and	covariance
• Given	training	data	

Utilizing	the	Hidden	Features
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• Using	generative	classifier,	we	define	new	confidence	score:

• Measuring	the	log	of	the	probability	densities	of	the	test	sample

Utilizing	the	Hidden	Features
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• Using	generative	classifier,	we	define	new	confidence	score:

• Measuring	the	log	of	the	probability	densities	of	the	test	sample

• Intuition

Utilizing	the	Hidden	Features
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• Using	generative	classifier,	we	define	new	confidence	score:

• Measuring	the	log	of	the	probability	densities	of	the	test	sample

• Boosting	the	performance
• Input	pre-processing

• Motivated	by	ODIN	[Liang	et	al.,	2018]

Utilizing	the	Hidden	Features
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• Using	generative	classifier,	we	define	new	confidence	score:

• Measuring	the	log	of	the	probability	densities	of	the	test	sample

• Boosting	the	performance
• Input	pre-processing

• Feature	ensemble

Utilizing	the	Hidden	Features
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• Using	generative	classifier,	we	define	new	confidence	score:

• Measuring	the	log	of	the	probability	densities	of	the	test	sample

• Boosting	the	performance
• Input	pre-processing

• Feature	ensemble

• Intuition:	low-level	feature	also	can	be	useful	for	detecting	abnormal	samples

Utilizing	the	Hidden	Features
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• Main	algorithm

• Remark	that	
• We	combine	the	confidence	scores	from	multiple	layers	using	weighted	ensemble

• Ensemble	weights	are	selected	by	utilizing	the	validation	set

Utilizing	the	Hidden	Features

46



Algorithmic	Intelligence	Lab

• Experimental	results	on	detecting	out-of-distribution
• Contribution	by	each	technique

Utilizing	the	Hidden	Features
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Baseline	[13]:	maximum	value	of	posterior	distribution
ODIN	[21]:	maximum	value	of	posterior	distribution	after	post-processing
Ours:	the	proposed	Mahalanobis distance-based	score
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• Experimental	results	on	detecting	out-of-distribution
• Main	results

• For	all	cases,	ours	outperforms	ODIN	and	baseline	method
• Validation	consists	of	1K	data	from	each	in- and	out-of-distribution	pair
• Validation	consists	of	1K	data	from	each	in- and	corresponding	FGSM	data

• No	information	about	out-of-distribution

Utilizing	the	Hidden	Features
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• Experimental	results	on	detecting	adversarial	attacks
• Main	results

• For	all	tested	cases,	our	method	outperforms	LID	and	KD	estimator
• For	unseen	attacks,	our	method	is	still	working	well

• FGSM	samples	denoted	by	“seen”	are	used	for	validation

Utilizing	the	Hidden	Features
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• In	this	lecture,	we	cover	various	methods	for	detecting	abnormal	samples	like	o
ut-of-distribution	and	adversarial	samples
• Posterior	distribution-based	methods
• Hidden	feature-based	methods

• There	are	also	training	methods	for	obtaining	more	calibrated	scores
• Ensemble	of	classifier	[Balaji	et	al.,	2017]
• Bayesian	deep	models	[Li	et	al.,	2017]
• Calibration	loss	with	GAN	[Lee	et	al.,	2018a]

• Such	methods	can	be	useful	for	many	machine	learning	applications
• Active	learning	[Gal	et	al.,	2017]
• Incremental	learning	[Rebuff et	al.,	2017]
• Ensemble	learning	[Lee	et	al.,	2017]
• Network	calibration	[Guo	et	al.,	2017]

Summary
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