Novelty Detection for Deep Classifiers

EE807: Recent Advances in Deep Learning

Lecture 13

Slide made by

Kimin Lee

KAIST EE

Table of Contents

1. Introduction

- What is novelty detection?
- Overview

2. Utilizing the Posterior Distribution

- Baseline method
- Post-processing method

3. Utilizing the Hidden Features

- Local intrinsic dimensionality
- Mahalanobis distance-based score

Table of Contents

1. Introduction

- What is novelty detection?
- Overview
- 2. Utilizing the Posterior Distribution
 - Baseline method
 - Post-processing method
- 3. Utilizing the Hidden Features
 - Local intrinsic dimensionality
 - Mahalanobis distance-based score

• Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)

• Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)

• However, in the real world, there are many unknown and unseen samples that classifier can't give a right answer

Unseen sample, i.e., out-ofdistribution (not animal)

Unknown sample

 $+.007 \times$

Adversarial samples [Goodfellow et al., 2015]

Novelty detection

- Given pre-trained (deep) classifier,
- Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

Novelty detection

- Given pre-trained (deep) classifier,
- Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

• It can be useful for many machine learning problems:

Ensemble learning [Lee et al., 2017]

Novelty detection

- Given pre-trained (deep) classifier,
- Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

It is also indispensable when deploying DNNs in real-world systems [Amodei et al., 2016]

Secure authentication system

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

[Test sample]

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

- Utilizing a posterior distribution
 - 1. Maximum value or entropy of posterior [Hendrycks et al., 2017]

$$H = \sum_{y} -P(y|\mathbf{x}) \log P(y|\mathbf{x})$$

• 2. Input and output processing [Liang et al., 2018]

$$P(y|\mathbf{x};T) = \frac{\exp(f_y(\mathbf{x})/T)}{\sum_{y'} \exp(f_{y'}(\mathbf{x})/T)}$$

• 3. Bayesian inference [Li et al., 2017] and ensemble of classifier [Balaji et al., 2017]

$$rac{1}{M}\sum_m P(y|\mathbf{x}; heta_m)$$

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

- Utilizing a hidden features from DNNs
 - 1. Local intrinsic dimensionality [Ma et al., 2018]

$$\widehat{\text{LID}}(\mathbf{x}) = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{d_i(\mathbf{x})}{d_k(\mathbf{x})}\right)^{-1}$$

• 2. Mahalanobis distance [Lee et al., 2018b]

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \mu_{c})^{\top} \Sigma^{-1} (f(\mathbf{x}) - \mu_{c})$$

Table of Contents

- 1. Introduction
 - What is novelty detection?
 - Overview

2. Utilizing the Posterior Distribution

- Baseline method
- Post-processing method
- 3. Utilizing the Hidden Features
 - Local intrinsic dimensionality
 - Mahalanobis distance-based score

• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$X \longrightarrow P \longrightarrow Y$$
 Output space

• How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^\top f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^\top f(\mathbf{x}) + b_{c'})}$$

• Where $f(\cdot)$ is hidden features from DNNs

• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$X \longrightarrow P \longrightarrow Y$$
 Output space

• How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^\top f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^\top f(\mathbf{x}) + b_{c'})}$$

- Where $f(\cdot)$ is hidden features from DNNs
- Natural choice for confidence score
 - 1. maximum value of posterior distribution

$$\max_{c} P(y=c|\mathbf{x})$$

• 2. entropy of posterior distribution

$$H = \sum_{y} -P(y|\mathbf{x}) \log P(y|\mathbf{x})$$

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution

[Input]

[Deep classifier]

- **Baseline detector** [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution
 - Assume that we have classifier trained on MNIST dataset ٠
 - Detecting out-of-distribution for this classifier •

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution

[Input]

- Evaluation: detecting out-of-distribution
 - TP = true positive / FN = false negative /TN = true negative / FP = false positive
 - AUROC
 - Area under ROC curve
 - ROC curve = relationship between TPR and FPR
 - AUPR (Area under the Precision-Recall curve)
 - Area under PR curve
 - PR curve = relationship between precision and recall

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution •
 - Image classification (computer vision) ٠

In-Distribution /	AUROC	AUPR In	AUPR
Out-of-Distribution	/random	random	Out/random
CIFAR-10/SUN	95/50	89/33	97/67
CIFAR-10/Gaussian	97/50	98/49	95/51
CIFAR-10/All	96/50	88/24	98/76
CIFAR-100/SUN	91/50	83/27	96/73
CIFAR-100/Gaussian	88/50	92/43	80/57
CIFAR-100/All	90/50	81/21	96/79
MNIST/Omniglot	96/50	97/52	96/48
MNIST/notMNIST	85/50	86/50	88/50
MNIST/CIFAR-10bw	95/50	95/50	95/50
MNIST/Gaussian	90/50	90/50	91/50
MNIST/Uniform	99/50	99/50	98/50
MNIST/All	91/50	76/20	98/80

Baseline method is better than random detector

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution •
 - Text categorization (NLP) ٠

Dataset	AUROC	AUPR	AUPR
	/random	Succ/random	Err/random
15 Newsgroups	89/50	99/93	42/7.3
Reuters 6	89/50	100/98	35/2.5
Reuters 40	91/50	99/92	45/7.6

- Out-of-distribution ٠
 - 5 Newsgroups for 15 Newsgroups ٠
 - 2 Reuters for Reuters 6 ٠
 - 12 Reuters for 40 Reuters

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

Temperature scaling parameter

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

 $\mathbf{f} = (f_1, \ldots, f_K)$ is final feature vector of deep neural networks

• Relaxing the overconfidence by smoothing the posterior distribution

- **ODIN detector** [Liang et al., 2018] •
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

Input preprocessing ٠

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign} \left(- \bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T) \right),$$
Magnitude of noise \widehat{y} is the predicted label

•

Figure 6: Illustration of effects of the input preprocessing.

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \widehat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\widehat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

• Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign}\left(-\bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T)\right),$$

• Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \widehat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\widehat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign}\left(-\bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T)\right),$$

• Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- How to select hyper-parameters
 - Validation
 - 1000 images from in-distribution (positive)
 - 1000 images from out-of-distribution (negative)

• Experimental results

	Out-of-distribution	FPR (05% TPP)	Detection	AUROC	AUPR	AUPR			
	ualasti	(35 <i>n</i> 11 K) ↓	Lil0i ↓	↑	↑	t ↑			
		Baseline (Hendrycks & Gimpel, 2017) / ODIN							
	TinyImageNet (crop)	34.7/4.3	19.9/4.7	95.3/99.1	96.4/99.1	93.8/99.1			
Damas BC	TinyImageNet (resize)	40.8/7.5	22.9/6.3	94.1/98.5	95.1/98.6	92.4/98.5			
CIEAD 10	LSUN (crop)	39.3/8.7	22.2/6.9	94.8/98.2	96.0/98.5	93.1/97.8			
CIFAR-10	LSUN (resize)	33.6/3.8	19.3/4.4	95.4/99.2	96.4/99.3	94.0/99.2			
	iSUN	37.2/6.3	21.1/5.7	94.8/98.8	95.9/98.9	93.1/98.8			
	Uniform	23.5/0.0	14.3/2.5	96.5/99.9	97.8/100.0	93.0/99.9			
	Gaussian	12.3/0.0	8.7/2.5	97.5/100.0	98.3/100.0	95.9/100.0			
	TinyImageNet (crop)	67.8/17.3	36.4/11.2	83.0/97.1	85.3/97.4	80.8/96.8			
Dense-BC CIFAR-100	TinyImageNet (resize)	82.2/44.3	43.6/24.6	70.4/90.7	71.4/91.4	68.6/90.1			
	LSUN (crop)	69.4/17.6	37.2/11.3	83.7/96.8	86.2/97.1	80.9/96.5			
	LSUN (resize)	83.3/44.0	44.1/24.5	70.6/91.5	72.5/92.4	68.0/90.6			
	iSUN	84.8/49.5	44.7/27.2	69.9/90.1	71.9/91.1	67.0/88.9			
	Uniform	88.3/0.5	46.6/2.8	83.2/99.5	88.1/99.6	73.1/99.0			
	Gaussian	95.4/0.2	50.2/2.6	81.8/99.6	87.6/99.7	70.1/99.1			
	TinyImageNet (crop)	38.9/23.4	21.9/14.2	92.9/94.2	92.5/92.8	91.9/94.7			
	TinyImageNet (resize)	45.6/25.5	25.3/15.2	91.0/92.1	89.7/89.0	89.9/93.6			
WDN_28_10	LSUN (crop)	35.0/21.8	20.0/13.4	94.5/95.9	95.1/95.8	93.1/95.5			
$CIEAP_{10}$	LSUN (resize)	35.0/17.6	20.0/11.3	93.9/95.4	93.8/93.8	92.8/96.1			
CITAR-10	iSUN	40.6/21.3	22.8/13.2	92.5/93.7	91.7/91.2	91.5/94.9			
	Uniform	1.6/0.0	3.3/2.5	99.2/100.0	99.3/100.0	98.9/100.0			
	Gaussian	0.3/0.0	2.6/2.5	99.5/100.0	99.6/100.0	99.3/100.0			
	TinyImageNet (crop)	66.6/43.9	35.8/24.4	82.0/90.8	83.3/91.4	80.2/90.0			
	TinyImageNet (resize)	79.2/55.9	42.1/30.4	72.2/84.0	70.4/82.8	70.8/84.4			
	LSUN (crop)	74.0/39.6	39.5/22.3	80.3/92.0	83.4/92.4	77.0/91.6			
WRN-28-10	LSUN (resize)	82.2/56.5	43.6/30.8	73.9/86.0	75.7/86.2	70.1/84.9			
CIFAR-100	iSUN	82.7/57.3	43.9/31.1	72.8/85.6	74.2/85.9	69.2/84.8			
	Uniform	98.2/0.1	51.6/2.5	84.1/99.1	89.9/99.4	71.0/97.5			
	Gaussian	99.2/1.0	52.1/3.0	84.3/98.5	90.2/99.1	70.9/95.9			

Table of Contents

- 1. Introduction
 - What is novelty detection?
 - Overview
- 2. Utilizing the Posterior Distribution
 - Baseline method
 - Post-processing method

3. Utilizing the Hidden Features

- Local intrinsic dimensionality
- Mahalanobis distance-based score

Motivation

• Hidden features from DNNs contain meaningful features from training data

• They can be useful for detecting abnormal samples!

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$\operatorname{LID}_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln \left(F((1+\epsilon) \cdot r) / F(r) \right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}, \tag{2}$$

whenever the limit exists.

• Where F is analogous to the volume in equation (1)

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

• LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$\operatorname{LID}_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln\left(F((1+\epsilon) \cdot r)/F(r)\right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)},\tag{2}$$

whenever the limit exists.

- Where F is analogous to the volume in equation (1)
- Estimation of LID [Amsaleg et al., 2015]

$$\widehat{\texttt{LID}}(\mathbf{x}) = -\left(rac{1}{k}\sum_{i=1}^k \log rac{d_i(\mathbf{x})}{d_k(\mathbf{x})}
ight)^{-1}$$

distance between sample and its k-th nearest neighbor

Motivation of LID

• Abnormal sample might be scattered compared to normal samples

• This implies that LID can be useful for detecting abnormal samples!

Motivation of LID

Algorithmic Intelligence Lab

• Abnormal sample might be scattered compared to normal samples

- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]

 $+.007 \times$

• Misclassified examples that are only slightly different from original examples

"panda" 57.7% confidence

"nematode" 8.2% confidence

=

"gibbon" 99.3 % confidence

* This topic will be covered in the next lecture

Motivation of LID

• Abnormal sample might be scattered compared to normal samples

- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]

"gibbon"

"panda"

Algorithmic Intelligence Lab

"panda"

- Adversarial samples (generated by OPT attack [Carlini et al., 2017]) can be distinguis hed using LID
- LIDs from low-level layers are also useful in detection

Main results on detecting adversarial attacks

- Tested method
 - Bayesian uncertainty (BU) and Density estimator (DE) [Feinman et al., 2017]

Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression classifier) among LID, KD, BU, and KD+BU. The AUC score is computed for each attack strategy on each dataset, and the best results are highlighted in **bold**.

Dataset	Feature	FGM	BIM-a	BIM-b	JSMA	Opt
	KD	78.12	98.14	98.61	68.77	95.15
MNIST	BU	32.37	91.55	25.46	88.74	71.30
IVIINIS I	KD+BU	82.43	99.20	98.81	90.12	95.35
	LID	96.89	99.60	99.83	92.24	99.24
CIFAR-10	KD	64.92	68.38	98.70	85.77	91.35
	BU	70.53	81.60	97.32	87.36	91.39
	KD+BU	70.40	81.33	98.90	88.91	93.77
	LID	82.38	82.51	99.78	95.87	98.94
SVHN	KD	70.39	77.18	99.57	86.46	87.41
	BU	86.78	84.07	86.93	91.33	87.13
	KD+BU	86.86	83.63	99.52	93.19	90.66
	LID	97.61	87.55	99.72	95.07	97.60

• LID outperforms all baseline methods

• Mahalanobis distance-based confidence score [Lee et al., 2018]

- Mahalanobis distance-based confidence score [Lee et al., 2018]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

- Mahalanobis distance-based confidence score [Lee et al., 2018]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

$$\mathbf{X} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} f(\mathbf{x})$$

$$P(f(\mathbf{x})|y=c)$$

$$= \mathcal{N}(f(\mathbf{x})|\mu_c, \mathbf{\Sigma})$$

- Mahalanobis distance-based confidence score [Lee et al., 2018]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

$$\mathbf{X} \bigoplus \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc f(\mathbf{x})$$
penultimate
$$P\left(f(\mathbf{x}) | y = c\right)$$

$$= \mathcal{N}\left(f(\mathbf{x}) | \mu_{c}, \mathbf{\Sigma}\right)$$

Motivation: connection between softamx and generative classifier (LDA)

$$P_{\theta}(y=c|\mathbf{x}) = \frac{\exp(\mathbf{w}_{c}\mathbf{x}+b_{c})}{\sum_{c'}\exp(\mathbf{w}_{c'}\mathbf{x}+b_{c'})} \sim = P_{\theta}(y=c|\mathbf{x}) = \frac{P_{\theta}(\mathbf{x}|y=c)P_{\theta}(y=c)}{\sum_{c'}P_{\theta}(\mathbf{x}|y=c')P_{\theta}(y=c')} \\ \mathbf{w}_{c} = \mathbf{\Sigma}^{-1}\mu_{c} \quad b_{c} = -0.5\mu_{c}^{T}\mathbf{\Sigma}^{-1}\mu_{c} + \log\pi_{c} \sim = P_{\theta}(\mathbf{x}|y=c) = \mathcal{N}(\mathbf{x}|\mu_{c},\mathbf{\Sigma}), \quad P_{\theta}(y=c) = \frac{\pi_{c}}{\sum_{c'}\pi_{c'}}$$

- Mahalanobis distance-based confidence score [Lee et al., 2018]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

$$\mathbf{X} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} = \mathbf{O} =$$

- The parameters of generative classifier = sample means and covariance
 - Given training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

$$\widehat{\mu}_{c} = \frac{1}{N_{c}} \sum_{i:y_{i}=c} f(\mathbf{x}_{i}), \ \widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{c} \sum_{i:y_{i}=c} \left(f(\mathbf{x}_{i}) - \widehat{\mu}_{c}\right) \left(f(\mathbf{x}_{i}) - \widehat{\mu}_{c}\right)^{\top},$$

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \, \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{c} \right)$$

• Measuring the log of the probability densities of the test sample

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \, \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{c}
ight)$$

- Measuring the log of the probability densities of the test sample
- Intuition

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

• Motivated by ODIN [Liang et al., 2018]

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

• Feature ensemble

$$\mathbf{X} \bigoplus_{f_1(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} f_\ell(\mathbf{x}) \Longrightarrow \begin{bmatrix} P(f_\ell(\mathbf{x}) | y = c) \\ = \mathcal{N}(f_\ell(\mathbf{x}) | \mu_{c,\ell}, \Sigma_\ell) \end{bmatrix}$$

$$\stackrel{\bullet}{\longrightarrow} Fitting Gaussian using features from intermediate layers$$

Utilizing the Hidden Features

Figure 2: AUROC (%) of threshold-based detector using the confidence score in (2) computed at different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection performance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.

$$\mathbf{X} \bigoplus_{f_1(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} P(f_\ell(\mathbf{x})|y=c) = \mathcal{N}(f_\ell(\mathbf{x})|\mu_{c,\ell}, \Sigma_\ell)$$

$$\stackrel{\bullet}{=} \mathcal{N}(f_1(\mathbf{x})|y=c) = \mathcal{N}(f_2(\mathbf{x})|y=c) = \mathcal{N}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2) \xrightarrow{\mathsf{Fitting Gaussian using features from intermediate layers}}$$

• Intuition: low-level feature also can be useful for detecting abnormal samples

Main algorithm

Algorithm 1 Computing the Mahalanobis distance-based confidence score.

Input: Test sample x, weights of logistic regression detector α_{ℓ} , noise ε and parameters of Gaussian distributions $\{\widehat{\mu}_{\ell,c}, \widehat{\Sigma}_{\ell} : \forall \ell, c\}$

Initialize score vectors: $\mathbf{M}(\mathbf{x}) = [M_{\ell} : \forall \ell]$ for each layer $\ell \in 1, ..., L$ do Find the closest class: $\hat{c} = \arg \min_c (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})$ Add small noise to test sample: $\hat{\mathbf{x}} = \mathbf{x} - \varepsilon \operatorname{sign} \left(\bigtriangledown (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c}) \right)$ Computing confidence score: $M_{\ell} = \max_c - (f_{\ell}(\hat{\mathbf{x}}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\hat{\mathbf{x}}) - \hat{\mu}_{\ell,c})$ end for return Confidence score for test sample $\sum_{\ell} \alpha_{\ell} M_{\ell}$

- Remark that
 - We combine the confidence scores from multiple layers using weighted ensemble

$$\sum_{\ell} \alpha^{\ell} M^{\ell}$$

• Ensemble weights are selected by utilizing the validation set

- Experimental results on detecting out-of-distribution
 - Contribution by each technique

Method	Feature ensemble	Input pre-processing	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
Baseline [13]	-	-	32.47	89.88	85.06	85.40	93.96
ODIN [21]	-	-	86.55	96.65	91.08	92.54	98.52
	-	-	54.51	93.92	89.13	91.56	95.95
Mahalanobis	-	\checkmark	92.26	98.30	93.72	96.01	99.28
(ours)	\checkmark	-	91.45	98.37	93.55	96.43	99.35
	\checkmark	\checkmark	96.42	99.14	95.75	98.26	99.60

Baseline [13]: maximum value of posterior distribution ODIN [21]: maximum value of posterior distribution after post-processing Ours: the proposed Mahalanobis distance-based score

- Experimental results on detecting out-of-distribution
 - Main results

In dist	Val	idation on OOD sam	ples	Valida	tion on adversarial sa	amples	
(model) OC	DD TNR at TPR 95%	AUROC	Detection acc.	TNR at TPR 95%	AUROC	Detection acc.	
(moder)	Baseline [13]	/ ODIN [21] / Maha	lanobis (ours)	Baseline [13] / ODIN [21] / Mahalanobis (ours)			
CIEAD 10 SV	HN 40.4 / 77.0 / 91.2	89.9 / 94.6 / 98.2	83.2 / 88.1 / 93.5	40.4 / 49.3 / 79.1	89.9 / 89.8 / 94.6	83.2 / 81.7 / 88.9	
(DenseNet) TinyIm	hageNet 59.4 / 92.5 / 95.3	94.1 / 98.5 / 99.0	88.5 / 94.0 / 95.3	59.4 / 92.5 / 94.1	94.1 / 98.5 / 98.4	88.5 / 93.9 / 94.6	
(Denservet) LS	UN 66.9 / 96.2 / 97.5	95.5 / 99.2 / 99.3	90.2 / 95.6 / 96.5	66.9 / 96.2 / 96.9	95.5 / 99.2 / 99.1	90.2 / 95.6 / 96.1	
CIEAD 100 SV	HN 26.2 / 56.8 / 82.1	82.6 / 92.5 / 97.2	75.5 / 86.0 / 91.4	26.2 / 39.5 / 50.8	82.6 / 88.2 / 90.7	75.5 / 80.7 / 83.8	
(Dense Net) TinyIm	nageNet 17.3 / 43.1 / 86.6	71.6 / 85.5 / 97.3	65.7 / 77.3 / 92.0	17.3 / 43.1 / 86.3	71.6 / 85.3 / 97.3	65.7 / 77.2 / 91.5	
(Denserver) LS	UN 16.4 / 41.5 / 91.2	70.8 / 85.8 / 97.8	65.0 / 77.5 / 93.8	16.4 / 41.5 / 89.6	70.8 / 85.7 / 97.8	65.0 / 77.4 / 93.1	
CIFA	AR-10 69.1 / 69.1 / 97.9	91.8 / 91.8 / 99.1	86.5 / 86.5 / 96.5	69.1 / 53.0 / 91.1	91.8 / 82.0 / 97.4	86.5 / 76.4 / 93.7	
(Dense Net) TinyIm	nageNet 79.7 / 84.0 / 99.9	94.8 / 95.1 / 99.9	90.2 / 90.3 / 99.0	79.7 / 74.4 / 99.7	94.8 / 90.7 / 99.7	90.2 / 85.3 / 98.6	
(Denservet) LS	UN 77.1 / 81.2 / 99.9	94.1 / 94.5 / 99.9	89.2 / 89.2 / 99.3	77.1 / 73.4 / 99.9	94.1 / 90.5 / 99.9	89.2 / 84.8 / 99.1	
CIEAD 10 SV	HN 32.2 / 81.9 / 97.4	89.9 / 95.8 / 99.2	85.1 / 89.1 / 96.2	32.2 / 40.4 / 87.8	89.9 / 86.5 / 97.7	85.1 / 77.8 / 92.6	
(DecNet) TinyIm	hageNet 44.1 / 71.9 / 97.8	91.0 / 93.9 / 99.5	84.9 / 86.3 / 96.8	44.1 / 69.5 / 97.1	91.0 / 93.8 / 99.4	84.9 / 85.9 / 96.3	
(Resided) LS	UN 45.1 / 73.8 / 99.3	91.1 / 94.1 / 99.8	85.3 / 86.6 / 98.2	45.1 / 70.1 / 98.8	91.1 / 93.7 / 99.7	85.3 / 85.7 / 97.5	
CIEAD 100 SV	HN 19.9 / 68.1 / 92.5	79.3 / 92.1 / 98.5	73.2 / 85.1 / 93.9	19.9 / 18.3 / 80.1	79.3 / 72.0 / 96.2	73.2 / 66.7 / 90.3	
(DecNet) TinyIm	nageNet 20.2 / 49.3 / 90.9	77.1 / 87.6 / 98.2	70.8 / 80.0 / 93.4	20.2 / 46.5 / 88.0	77.1 / 86.8 / 96.5	70.8 / 78.9 / 91.9	
(Resider) LS	UN 18.4 / 45.3 / 91.9	75.6 / 85.0 / 98.3	69.8 / 77.8 / 93.9	18.4 / 43.2 / 85.1	75.6 / 84.4 / 95.4	69.8 / 77.0 / 91.0	
CIFA	R-10 78.3 / 78.3 / 98.6	92.9 / 92.9 / 99.3	90.1 / 90.1 / 97.0	78.3 / 78.3 / 96.0	92.9 / 92.9 / 98.3	90.1 / 90.1 / 95.6	
(DecNet) TinyIm	nageNet 79.1 / 79.1 / 99.9	93.5 / 93.5 / 99.9	90.4 / 90.4 / 99.1	79.1 / 79.1 / 99.3	93.5 / 93.5 / 99.3	90.4 / 90.4 / 98.9	
(Resider) LS	ŪN 74.5 / 74.5 / 99.9	91.5 / 91.5 / 99.9	88.9 / 88.9 / 99.5	74.5 / 74.5 / 99.9	91.5 / 91.5 / 99.9	88.9 / 88.9 / 99.5	

- For all cases, ours outperforms ODIN and baseline method
- Validation consists of 1K data from each in- and out-of-distribution pair
- Validation consists of 1K data from each in- and corresponding FGSM data
 - No information about out-of-distribution

- Experimental results on detecting adversarial attacks
 - Main results

Madal	Dataset	Saara	Detection of known attack				Detection of unknown attack			
(model)	Score	FGSM	BIM	DeepFool	CW	FGSM (seen)	BIM	DeepFool	CW	
		KD+PU [7]	84.30	98.08	77.23	74.92	84.30	75.69	76.95	72.48
	CIFAR-10	LID [22]	98.48	100.0	83.36	79.23	98.48	99.50	68.96	65.85
		Mahalanobis (ours)	99.97	100.0	83.73	85.28	99.97	99.5 7	83.58	84.18
		KD+PU [7]	68.24	84.80	67.60	47.80	68.24	14.91	67.58	52.08
DenseNet	CIFAR-100	LID [22]	99.67	99.88	88.37	68.52	99.67	52.38	86.95	64.98
		Mahalanobis (ours)	99.89	100.0	91.47	80.31	99.89	100.0	90.24	76.38
-	SVHN	KD+PU [7]	89.57	98.33	90.94	90.20	89.57	92.08	91.05	90.22
		LID [22]	99.48	99.37	93.42	93.75	99.48	98.50	88.60	84.90
		Mahalanobis (ours)	99.91	99.95	96.36	96.19	99.91	99.82	94.43	95.07
	CIFAR-10	KD+PU [7]	84.67	99.66	80.92	70.38	84.67	82.37	80.85	70.41
		LID [22]	99.77	99.88	88.94	80.74	99.77	98.65	87.48	73.12
		Mahalanobis (ours)	99.99	99.99	94.21	93.33	99.99	99.95	93.58	92.58
		KD+PU [7]	73.41	90.55	78.41	67.32	73.41	50.36	78.85	67.36
ResNet	CIFAR-100	LID [22]	99.01	99.8 0	88.88	74.96	99.01	36.46	87.06	69.83
-		Mahalanobis (ours)	99.85	99.48	93.84	86.24	99.85	99.16	60.25	82.87
		KD+PU [7]	86.76	96.16	91.45	84.22	86.76	93.38	91.44	84.37
	SVHN	LID [22]	97.18	96.39	95.88	86.81	97.18	93.45	93.05	71.92
		Mahalanobis (ours)	99.24	99.40	97.17	91.06	99.24	99.10	95.60	86.09

- For all tested cases, our method outperforms LID and KD estimator
- For unseen attacks, our method is still working well
 - FGSM samples denoted by "seen" are used for validation

Summary

- In this lecture, we cover various methods for detecting abnormal samples like o ut-of-distribution and adversarial samples
 - Posterior distribution-based methods
 - Hidden feature-based methods
- There are also training methods for obtaining more calibrated scores
 - Ensemble of classifier [Balaji et al., 2017]
 - Bayesian deep models [Li et al., 2017]
 - Calibration loss with GAN [Lee et al., 2018a]
- Such methods can be useful for many machine learning applications
 - Active learning [Gal et al., 2017]
 - Incremental learning [Rebuff et al., 2017]
 - Ensemble learning [Lee et al., 2017]
 - Network calibration [Guo et al., 2017]

References

[Hendrycks et al., 2017] A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017. <u>https://arxiv.org/abs/1610.02136</u>

[Ma et al., 2018] Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. In ICLR, 2018. https://openreview.net/pdf?id=B1gJ1L2aW

[Feinman et al., 2017] Detecting adversarial samples from artifacts. *arXiv preprint arXiv:1703.00410*, 2017. https://arxiv.org/abs/1703.00410

[Lee, et al., 2018a] Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, In ICLR, 2018. https://arxiv.org/abs/1711.09325

[Lee, et al., 2018b] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, In NIPS, 2018. <u>https://arxiv.org/abs/1807.03888</u>

[Liang, et al., 2018] Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018. <u>https://arxiv.org/abs/1706.02690</u>

[Goodfellow et al., 2015] Explaining and harnessing adversarial examples. In ICLR, 2015. https://arxiv.org/pdf/1412.6572.pdf

[Amodei, et al., 2016] Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016. https://arxiv.org/abs/1606.06565

[Guo et al., 2017] On Calibration of Modern Neural Networks. In ICML, 2017. https://arxiv.org/abs/1706.04599

[Lee et al., 2017] Confident Multiple Choice Learning. In ICML, 2017. https://arxiv.org/abs/1706.03475

[Balaji et al., 2017] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, In NIPS, 2017. https://arxiv.org/pdf/1612.01474.pdf

References

[Rebuff et al., 2017] iCaRL: Incremental Classifier and Representation Learning. In CVPR, 2017. https://arxiv.org/pdf/1611.07725.pdf

[Huang et al., 2017] Densely connected convolutional networks, In CVPR, 2017. https://arxiv.org/abs/1608.06993

[Zagoruyko et al., 2016] Wide residual networks, In BMVC 2016. https://arxiv.org/pdf/1605.07146.pdf

[Amsaleg et al., 2015] Estimating local intrinsic dimensionality. In SIGKDD, 2015. http://mistis.inrialpes.fr/~girard/Fichiers/p29-amsaleg.pdf

[Szegedy et al., 2013] Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013. https://arxiv.org/abs/1312.6199

[Li et al., 2017] Dropout Inference in Bayesian Neural Networks with Alpha-divergences, In ICML, 2017. https://arxiv.org/abs/1703.02914

[Gal et al., 2017] Deep Bayesian Active Learning with Image Data, In ICML, 2017. https://arxiv.org/abs/1703.02910

[Carlini et al., 2017] Towards evaluating the robustness of neural networks. In *IEEE SP, 2017.* <u>https://arxiv.org/abs/1608.04644</u>