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What is Domain Transfer?

* Learning a mapping between two (or more) domains

* Each domain is typically, described by a set of data samples.

* Given X5 and X, learn a mapping f: Xs = X7

Colorization!

Machine Translation?

Source

Proposed system (full)

Une fusillade a eu lieu a
I’aéroport international de Los
Angeles.

A shooting occurred at Los An-
geles International Airport.

Cette controverse croissante au-
tour de I’agence a provoqué
beaucoup de spéculations selon
lesquelles I’incident de ce soir
était le résultat d’une cyber-
opération ciblée.

This growing scandal around the
agency has caused much spec-
ulation about how this incident
was the outcome of a targeted
cyber operation.
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What is Domain Adaptation?

* Learning a mapping between two (or more) domains with labels
* A special case of transfer learning
* Given (X, Ys) and X7, learn a mapping f: Xy — Y7
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General Approaches for Domain Transfer

* Domain (or style) transfer aims to
* Keep content of source data

* Change style to match with target data (or domain)

« General optimizing objective for producing outputs: Lcontent + ALstyle
* Domain transfer research is about designing content & style losses

Algorithmic Intelligence Laboratory *Source: Ulyanov et al. “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016 7



Neural Style Transfer [Gatys et al., 2016]

* Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for
content & style losses

* Goal: Given inputs x. and x,, generate X having content of x,. and style of x,

e Content loss:
* High layer of NN contains (abstract) content information
* Match feature maps of high layers

1
ﬁcontent(mca 27) - 5 Z(lek(mc) o lek(a:))z
i,k

where Filjk denotes feature of [ € {1, ..., L}-th layer, i € {1, ..., H'xW!}
denotes spatial location, and k € {1, ..., Cl} denotes channel
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Neural Style Transfer [Gatys et al., 2016]

* Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for
content & style losses

* Goal: Given inputs x. and x,, generate X having content of x,. and style of x,

* Style loss:
* It has been observed that feature statistics contains style information
* Feature statistics of IPl(z; ) Where

Ziw = (Fjp (), - .. zcl (z)) € R ~ P!(2; z)

* Match features statistics (or underlying p.d.f.) of low layers

Lstyle(Ts, ) = D(P'(2;.5) [P (2; 7))

*D is some function distance, e.g., maximum mean discrepancy (MMD) or moment matching
Algorithmic Intelligence Laboratory



Neural Style Transfer [Gatys et al., 2016]

* Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for
content & style losses

* Goal: Given inputs x. and x,, generate X having content of x,. and style of x,

* Style loss:
* Match features statistics (or underlying p.d.f.) of low layers

Estyle(msa LIJ) — D(]P)l(z7 mS)”IPl(Z; LE))

* For example, one can minimize a Frobenius norm of Gramian matrix G!,
where (i, j)-th element of G' is given by

I _ l ol
Gz'j_ E :Fiijk
k
hence,

— § : l l 2
Estyle(msaw) — (Gz](ms) o Gz](m))
1,J
*Frobenius norm of Gramian matrix identical to minimize MMD with kernel k(x,y) = (xT y)? [Li et al., 2017]
Algorithmic Intelligence Laboratory 10



Neural Style Transfer [Gatys et al., 2016]

* Idea: Use a well pretrained (e.g., by the ImageNet dataset) neural network for
content & style losses

* Goal: Given inputs x. and x,, generate X having content of x,. and style of x,

* Used 4t |ayers for content loss and [1-5]th layers for style loss

I By = Z (GL - AL)Z [total = aEcontent + /Bcstyle Con ent IOSS

* Inference: Solve the following optimization problem (for each (x,, x))

T = II}riIl L content (xca ZU) + )‘['style (3337 37)

Algorithmic Intelligence Laboratory 11



Neural Style Transfer [Gatys et al., 2016]

* Experimental results: Neural Style succeeds in translating styles of images

Algorithmic Intelligence Laboratory
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Fast Neural Style [Johnson et al., 2016]

* Motivation: Inference of Neural Style is too slow!
* Namely, one has to solve some optimization per each inference

* Idea: Instead of solving optimization problems, train a neural network f;, which
translates input x, to have the style of x, (style is fixed for a single network)

* Now, inference is a single forward step X = f;/(x.), which is 100x faster than
Neural Style (solving some optimization problems)

* The loss function is identical to Neural Style (defined by a pretrained network)

Style Target E¢,relu1_2 €¢,re1u2_2 €¢,re1u3_3 Ed),relu4_3

style style style style

o ikt bly | s A A AA 'V
: fW : o rrT T rrT 11 e
i = i |
Le | : X I :
1 1
Input | ' : :
image '\ mage Transform Net — || ! Loss Network (VGG-16) b
Fol il T S ————— T U . g ]

ggb,!'evluB_B
Content Target feat
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Fast Neural Style [Johnson et al., 2016]

* Experimental results: Fast Neural Style is often as good as Neural Style

Style Style
The Starry Night, The Muse,
i Pablo Picasso,

1935

Left: original
Middle: Gatys et al., 2016
Right: Johnson et al., 2016

Style

Style
Composition VII,
Wassily
Kandinsky, 1913

Kanagawa, Hokusai,
1829-1832

Algorithmic Intelligence Laboratory 14



Instance Normalization [Ulyanov et al., 2016]

* Motivation: Can we design a better network architecture for domain transfer?

* Idea: Removing the original style of x. would make restyling easier

Style Target €¢,relu1_2 £¢,re1u2_2 €¢,relu3_3 €¢,re1u4_3

style style style style

== === —===-- | Ts H Ab AA AA AA
: fW : I | 1R
I I 1 I
I A E |

£r T
°l / ! ' :
Input | ! : :
mage | Mmage Tfansform Net 7., | | Loss Network (VGG-16) ¢
g(;b,!'e'luB_.?’
Remove style of x, Content Target feat

* More idea: As observed in Neural Style, feature statistics represents the style

* Hence, normalizing feature statistics will remove the original style

*Qriginal motivation of IN was to normalize contrast, but recent studies [Li et al., 2017] suggest the real reason of improvement is normalizing feature statistics

Algorithmic Intelligence Laboratory



Instance Normalization [Ulyanov et al., 2016]

* Motivation: Can we design a better network architecture for domain transfer?

* ldea: normalizing feature statistics to remove the original style
* |n particular, normalize 15t & 2" moments (i.e., mean & variance)

e Similar to batch normalization (BN), but for a single instance

Batch Norm Instance Norm

Algorithmic Intelligence Laboratory

Group Norm

H: height
W: width

C: channel
N: batch size
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Instance Normalization [Ulyanov et al., 2016]

* Motivation: Can we design a better network architecture for domain transfer?
* lIdea: normalizing feature statistics to remove the original style
* |n particular, normalize 15t & 2" moments (i.e., mean & variance)

RHIXWI

l
* Formally, for features Z;x € x R¢ , Instance Normalization (IN) is

IN(zik) = (M) + B

Ok
where
1 H!xW! 1 H!'x W'
_ _ 2
W= T 2 B Ok = Frcgn 2. (i — )
i=1 i=1

* One can also learn affine parameters separately for each domain (CIN [Dumoulin
et al., 2017]) or adaptively from target style y (AdaIN [Huang et al., 2017])

Algorithmic Intelligence Laboratory *Source: Wu et al. “Group Normalization”, ECCV 2018 17



Instance Normalization [Ulyanov et al., 2016]

* Experimental results: Instance Normalization helps for Fast Neural Style

Content Ster NeuraI Style [Gatys et aI 2016]

Fast Neural Style
[Johnson et al., 2016]

baseline + zero padding + zero paddmg + IN

Algorithmic Intelligence Laboratory
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Batch-Instance Normalization [Nam et al., 2018]

* Motivation: Can removing style also improve performance of classification?

Naively applying IN hurts performance as style contains some useful info.
Idea: use linear combination of BN and IN (learn weight p)

For simplicity, let z(B) and z(") are normalized features of BN and IN, that

B (D

(B) _ Zik — My (1) _ Zik — Mg
kT B 0 Gk T T )
k k

)

and y, o are defined as before (normalize for H' xW!x B with batch size B for BN,
and normalize for H'xW! for IN)

Here, Batch-Instance Normalization (BIN) is

BIN(zi) =7 (p- 25 + (1 - p) - 250) + 5

Algorithmic Intelligence Laboratory
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Batch-Instance Normalization [Nam et al., 2018]

* Motivation: Can removing style also improve performance of classification?
* Naively applying IN hurts performance as style contains some useful info.
* Idea: use linear combination of BN and IN (learn parameter p)

* Batch-Instance Normalization (BIN) is linear combination of BN and IN

BIN(z) =~ (p-a:(B) +(1-p)- CU(I)) + 5

* After training, low layers use IN more, and high layers use BN more

1.0

total
—— |ower layers
middle layers
—e— upper layers

0.8
0.6 1
0.4 -

0.2 1
\.‘\—
0.1 0

0.0

#params (normalized)

2 03 04 05 06 07 08 09 1.0
p values

0.0
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Batch-Instance Normalization [Nam et al., 2018]

* Experimental results: BIN shows better performance than BN

100

90

80

70
// // — BIN
—— BN
/ / —— BN+IN
— IN
50 T / T T

(=2
o
L

Left: train accuracy

| Right:testaccuracy
— BN CIFAR-100 results
BN+IN
— [N

accuracy (%)

wu
(=]
1

accuracy (%)

=y
o
I

w
o

0 20 40 60 8'0 1(')0 150 11’10 léO 0 6'0 8I0 160 1éO 14'10 160
epochs epochs
AlexNet VGG-19 ResNet-56 ResNet-110
BN 50.62 72.29 72.92 74.26
BIN 51.00 72.50 75.05 75.88

Top-1 accuracy
PreResNet-110 WRN-28-10 ResNeXt-29, 8x64d DenseNet-BC (1100, k12)  for CIFAR-100

BN 76.49 80.92 80.50 76.93
BIN 77.84 81.48 81.57 77.80

Algorithmic Intelligence Laboratory *Source: Nam et al. “Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks”, NIPS 2018 21



pix2pix [Isola et al., 2017]

* Motivation: Neural Style shows good performance for artistic styles,
but often fails to generate realistic outputs for more complex domain transfer

* ldea: Use GAN (which known to produce realistic images ) for style loss
* Goal: Given source domain X and target domain X, learn a mapping f: X = X1
* In prior terminology, generate x; with content of x; € X5 and style of X

* Style loss:
* Generator G fools discriminator D which guesses if data is in target domain

Positive examples Negative examples

Real or fake pair? Real or fake pair?

G tries to synthesize fake
images that fool D

ﬁstyle - Ewt [logD(xt)]
+Eqg, [log(1 — D(G(xs)))]

D tries to identify the fakes

Algorithmic Intelligence Laboratory 22



pix2pix [Isola et al., 2017]

* Motivation: Neural Style shows good performance for artistic styles,
but often fails to generate realistic outputs for more complex domain transfer

* ldea: Use GAN (which known to produce realistic images ) for style loss
* Goal: Given source domain X and target domain X, learn a mapping f: X = X1
* In prior terminology, generate x; with content of x; € X5 and style of X

* Content loss:
e Similar to Neural Style, one can use neural network-defined content loss

* However, if we have paired data (xg, x;), we don’t need such a network, but
can simply apply Lq loss

£content — Ems[

|zt — G(2s)]|1]

Algorithmic Intelligence Laboratory 23



pix2pix [Isola et al., 2017]

* Motivation: Neural Style shows good performance for artistic styles,
but often fails to generate realistic outputs for more complex domain transfer

* ldea: Use GAN (which known to produce realistic images ) for style loss
* Goal: Given source domain X and target domain X, learn a mapping f: X = X1
* In prior terminology, generate x; with content of x; € X5 and style of X

* In addition, pix2pix propose novel architectures

» Skip-connection generator (e.g., U-Net [Ronneberger et al., 2015])

Encoder-decoder U-Net

Algorithmic Intelligence Laboratory *Source: https://www.groundai.com/project/patch-based-image-inpainting-with-generative-adversarial-networks/ 24



https://www.groundai.com/project/patch-based-image-inpainting-with-generative-adversarial-networks/

pix2pix [Isola et al., 2017]

* Motivation: Neural Style shows good performance for artistic styles,
but often fails to generate realistic outputs for more complex domain transfer

* ldea: Use GAN (which known to produce realistic images ) for style loss
* Goal: Given source domain X and target domain X, learn a mapping f: X = X1
* In prior terminology, generate x; with content of x; € X5 and style of X

* Pros & Cons (between GAN-based methods and Neural Style):

(+) Generates realistic images (neural style is mostly for artistic styles)
* (+) Does not rely on a pretrained network (can be applied to non-images)

(+) Theoretically sound (neural style relies on feature statistics heuristic)

(-) Need a dataset of target style, not a single data

(-) Training is less stable (alternative optimization)

25



pix2pix [Isola et al., 2017]

* Experimental results: pix2pix can do more complex domain transfer

Labels to Street Scene Labels to Facade BW to Color

input oput input output

Photo

ik

Edges to
$EN

\

output

_Ground truth
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CycleGAN [Zhu et al., 2017a]

* Motivation: pix2pix requires paired data of two domains in training (for
content = L, loss). Can we extend it to unpaired (unsupervised setting)?

* |dea: data translated from source domain to target domain, and translated back
to source domain from target domain should be identical to the original image

X Y

cycle-consistency |, ..
loss ’

* Content loss:

* For source—target generator G¢r and target—source generator Gy,
give cycle-consistency loss, that

»Ccontent — Ems[

s = Grs(Gsr(zs))ll1]

*There are other methods, e.g., isometry constraints [Benaim et al., 2017] or complexity constraints [Galanti et al., 2018] too

Algorithmic Intelligence Laboratory
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CycleGAN [Zhu et al., 20173]

* Experimental results

__Monet < Photos ' Zebras  Horses ' Summer _ Winter

horse —» zebra

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Photograph Van Gogh Cezanne

Algorithmic Intelligence Laboratory 28



CycleGAN [Zhu et al., 20173]

* Results (Failure cases & Solutions)
* CycleGAN suffers from false positive/negative problems

Input

* To relax this issue, one can use
segmentation [Liang et al., 2017] or
predicted attention [Mejjati et al., 2018]
to hardly mask instances

e Or train additional segmentors to provide
shape-consistency loss [Zhang et al., 2018]

¥ |
<« Adversarial loss S CrossEntroy
Rec. A € |
Input 0ss
P A Output
< Shape-consistency loss

Se CrossEntroy
loss

*Source: Mejjati et al. “Unsupervised Attention-guided Image to Image Translation”, NIPS 2018
Zhang et al. “Translating and Segmenting Multimodal Medical Volumes with Cycle- and Shape-Consistency Generative Adversarial Network”, CVPR 2018 29



StarGAN [Choi et al., 2018]

* Motivation: Can we extend domain transfer to multi-domain settings?
* Idea: Provide domain conditional vector ¢ (one-hot encoded) as input

* For translation, give target domain vector, and for reconstruction, give original
domain vector, hence comes back to the original image

e Discriminator classifies domain in addition to real/fake

| Depth-wise concatenation l

. . Original .

t |

! )

f_—J

. ) Reconstructed Real / Fak Domain
Target domain Input image — image = b classification

Depth-wise concatenation

* This idea also can be applied to multi-modal settings (e.g., BicycleGAN [Zhu et al.,
2017b], AugCGAN [Almahairi et al., 2018]) by using random vector z

* In this case, one should maximize mutual information between G(x,, z) and z to

avoid mode collapse, i.e., single output with regardless of z
Algorithmic Intelligence Laboratory 30



StarGAN [Choi et al., 2018]

* Experimental results

Input Blond hair Gender Age Pale skin Input

L 2 Q|

1 - W W

Algorithmic Intelligence Laboratory 31



MUNIT [Huang et al., 2018]

* Motivation: Can we do multi-modal domain transfer?
* |dea: Disentangle content & style, and restyle with random style
* To this end, train a content encoder E-: x = ¢ and a style encoder Es: x — s
 Also, train a decoder D: (c,s) » x

* In addition to the original reconstruction (= cycle-consistency) loss (Fig a),
use cross-domain reconstruction loss (Fig b)

* Atinference, one can apply arbitrary style (randomly sampled) to the given content

L1 L2 L1 T2
| I K> : : =
| I 8 8
: : S DA YA
s1. , €& ¢ | S s1. . e & . 8
! I = | : | | : g
| I g l : I I : I8
| I A I : I I : | a
o N | I I |
I T2 | T2-1 | Tis2
| L i domain 1 content X l I I I "§
| loss auto encoders c features X images | | | | g
. GAN i domain 2 style /\ Gaussian I I I | =
. loss auto encoders features prior §1 62 61 §2
(a) Within-domain reconstruction (b) Cross-domain translation
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MUNIT [Huang et al., 2018]

* Experimental results

(a) house cats — big cats (b) big cats — house cats

1z K .

house cats — dogs (d) dogs — house cats

(f) ﬁdogs — b

Algorithmic Intelligence Laboratory 33



vid2vid [Wang et al., 2018]

 Motivation: Can we extend domain transfer to video translation?

* |ssue: In video generation, one should consider temporal coherence, that
successive images should be smoothly varied

* |dea: design an additional recurrent structure in a model
 Train a sequential generator G: (X1.441, V1:t) 7 Vi+1

* In addition to image discriminator Dy, train a video discriminator D, which
compares the real sequences and generated sequences

» Caveat: We need paired source/target sequences for this approach

Sequential Generator Multi-scale Discriminators
Image Discriminator Video Discriminator

*Source: https://www.youtube.com/watch?v=GrP_aOSXt5U 34
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vid2vid [Wang et al., 2018]

* Results

e https://www.youtube.com/watch?v=GrP aOSXt5U

Algorithmic Intelligence Laboratory
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Recycle-GAN [Bansal et al., 2018]

* Motivation: Can we extend domain transfer to unpaired video translation?
* Problem: We don’t have real target sequences

* Idea: Train prediction models Py: x1.t » X¢11, Py: Vit P Vesa

{(xi, yi)} : {y1s}
(a). Pix2Pix (b). Cycle-GAN (c). Recycle-GAN

...........................................................................................................................................................................................................................

Algorithmic Intelligence Laboratory
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Recycle-GAN [Bansal et al., 2018]

* Motivation: Can we extend domain transfer to unpaired video translation?

* lIdea: Train prediction models Py: X1.t & Xt11, Py Y1t 2 Vet

* |In addition to GAN loss and cycle-consistency loss, use

Recurrent loss (for training Py, Py):

Erecurrent(PX) = Z“mt—l—l — PX(mlit)Hz
t

Recycle loss (for training Gy, Gy, using Py, Py):

{y1:s} Erecycle (GX, GY, PX)
o S bt — = Z |zt11 — Gx (Py (Gy(x1:4))) ||2
t

Algorithmic Intelligence Laboratory 37



Recycle-GAN [Bansal et al., 2018]

* Results
e https://www.youtube.com/watch?v=UXjWWYy6iTVo

;:. > -

f . .

km’ * i
=

f— A ‘\ y

Input Cycle-GAN Recycle-GAN
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https://www.youtube.com/watch?v=UXjWWy6iTVo&feature=youtu.be
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» Target data augmentation
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General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
e H ’E 8 i
TARGET ‘1 8 ? SI . , f
1 A

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:
* Source/target feature matching: Make features of X and X be similar
* Target data augmentation: Generate target data (X7, Y1) using domain transfer

Algorithmic Intelligence Laboratory *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 40



General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [ s T
TARGET ‘1 8 ? SI kv
1 12\

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:
* Source/target feature matching: Make features of X and X be similar

Algorithmic Intelligence Laboratory *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 41



Domain adversarial neural network (DANN) [Ganin et al., 2015]

* Goal: Make features of source data X and target data Xt be similar

* lIdea: Train discriminator D which classifies domain label, and adversarially train
network to fool discriminator fail to distinguish source/target feature

* To this end, gradient from domain classifier is reversely applied for the network

oL,

50, Closs L,
|f‘> E class label y
J

Y
label predictor Gy (-;6,)

domain classifier G4(-;6,)

A
4 \

-~

J soanyeaj

feature extractor G¢(-;60y)

0 a7
0,

forwardprop  backprop (and produced derivatives)

|:> Q) domain label d

Algorithmic Intelligence Laboratory
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Adversarial discriminative domain adaptation (ADDA) [Tzeng et al., 2017]

* Goal: Make features of source data X and target data Xt be similar
* |Instead, one can alternatively update discriminator, similar to GAN scheme
* Also, one can train separate feature extractors for source/target domain

V_Pre-training ] _Adversarial Adaptation Testing

[ source images

source images T
+ labels - , Source | )
! CNN ! targetimage ~.__
V== . 1 S
- ¢ class - |, domain | Target ! : class
label | | target images | label y CNN | label

Classifier
Classifier

Lo--
Target e -

CNN
v, v,

* Itis less stable for train, but shows better performance than gradient reversal

I |

Discriminator

MNIST — USPS USPS — MNIST SVHN — MINIST
Method /1712E8 | OIS ) IO0ISES /| 7| > REED? MBS /1712
Source only 0.752 £ 0.016 0.571 £0.017 0.601 £ 0.011
Gradient reversal 0.771 £0.018 0.730 £ 0.020 0.739 [16]
Domain confusion 0.791 &+ 0.005 0.665 £ 0.033 0.681 = 0.003
CoGAN 0.912 + 0.008 0.891 + 0.008 did not converge
ADDA (Ours) 0.894 4 0.002 0.901 4 0.008 0.760 £ 0.018
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Domain Separation Network (DSN) [Bousmalis et al., 2016]

* Motivation: Is it rational to exactly match features for source/target data?
* |dea: Consider style of each domain in addition to the shared content
« To this end, train shared content encoder E and private style encoders E, EX

» Classifier ignores styles but only use shared content as an input

Private Target Encoder E;’)(x") .

h,w @hared Decoder: D(E.(x) + E,,(x))\
Xt _.@_.@_’_Ij _______ ; ]
~ Lgifference — | = — X | -ﬁrecon
Shared Encoder F5,.(X) — D @ @ x
<t _.@_.@ﬁh:., - LR
| {H|-o-g-{x] ==
S | i [
«° *@“@*“jz-::ﬂ — o
) [r— ;ence Classifier G(E.(x*))
Private Source Encoder £, (x*) w G ¥
|- - |57
|- -6
| L
Model MNIST to | Synth Digits to | SVHN to | Synth Signs to
MNIST-M | SVHN MNIST GTSRB
[ Source-only [56.6(52.2) | 86.7 (86.7) | 59.2(549) | 85.1(19.0) |
CORAL [26] 57.7 85.2 63.1 86.9
MMD (29, 17] 76.9 88.0 71.1 91.1
DANN [8] 77.4 (76.6) | 90.3 (91.0) 70.7 (73.8) | 92.9 (88.6)
DSN w/ MMD (ours) | 80.5 885 722 92.6
DSN w/ DANN (ours) | 83.2 91.2 82.7 93.1
| Target-only | 98.7 | 924 | 99.5 | 99.8 |

Algorithmic Intelligence Laboratory
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Residual Transfer Network (RTN) [Long et al., 2016]

* Motivation: Is it rational to exactly match classifiers for source/target data?

* Idea: Define source classifier as a residual function of target classifier

X

Xarge fs(x) = fr(z) + Af(x)

l —— l IAf(2)|| < |fr(z)] = |fs(z)]

(i.e. AlexNet, ResNet, etc.)

e S * To ensure that f; learns structure of target domain, minimize
=2 Layer entropy for target data, which is popular method for semi-
supervised learning [Grandvalet & Bengio, 2004]

* Hence, in addition to (supervised) classification loss L and

et feature matching loss D (X, X1) (e.g., GAN loss), use
(unsupervised) entropy loss H on target dataset

Residual
Layers

=
L= Eazs [L(fS(ms)a ys)] + ’YE:ct [H(fT(xt))] + )‘D(XSa XT)

ysource ytarget

Algorithmic Intell  *Source: https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Unsupervised Domain Adaptation with Residual Transfer Networks 45
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Domain Randomization [Tobin et al., 2017]

* Motivation: Source/target feature matching can be viewed as disentangling
content and style (remove style of each domain but only keep common content)

* Idea: In simulation-to-real (sim2real) setting, we can disentangle content by
domain augmentation

e Train NN on simulations with randomly generated styles
= style sums up, and only content remains

Algorithmic Intelligence Laboratory
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Domain Randomization [Tobin et al., 2017]

* Results

| ,‘Vle FROM THE‘nROBOT S CAMERA

\ %hﬁc

Algorithmic Intelligence Laboratory


https://blog.openai.com/generalizing-from-simulation/

General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [ s T
TARGET ‘1 8 ? SI kv
1 12\

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:

* Target data augmentation: Generate target data (X7, Y1) using domain transfer

Algorithmic Intelligence Laboratory *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 48



SimGAN [Shrivastava et al., 2017]

* ldea: Generate target data with domain transfer model G: Xg —» X7

* Given source data (x,, y;) and transfer model G, we can generate labeled target
data (x;, y{) = (G(xs),ys), and use it to train target network

e Popular application is augmenting real images from synthetic images

Synthetic

l ’ - .-
- -- il
|

Refined

| e

Unlabeled Real Images

Simulated images

Training data % of images within d
Synthetic Data 69.7
Refined Synthetic Data 72.4
Real Data 74.5
Synthetic Data 3x 71.7
Refined Synthetic Data 3x 83.3

Algorithmic Intelligence Lab *Source: Shrivastava et al. “Learning from Simulated and Unsupervised Images through Adversarial Training”, CVPR 2017 49



CyCADA [Hoffman et al., 2018]

* Motivation: Bridging gap between two approaches: source/target feature
matching and target data augmentation?

 Combine ADDA (feature matching via GAN) and CycleGAN (domain transfer)

target data Reconstructed Source Image ource Prediction Source Label
augmentation K" &
(CycleGAN) i G; ¢

Semantic
Consistency

Source Image Source|Image Stylized as Target

- -
Source image (GTA5S) Adapted source image (Ours) Target image (CityScapes)
Algorithmic Intelligence Laboratory

source/target
@ feature matching

feat

Target Image

Pixel accuracy on target
Source-only: 54.0%
Adapted (ours): 83.6%
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Conclusion

 Domain transfer is about generating data match with given content and style
* Hence, we should design two losses: content loss and style loss

 Domain adaptation is about transferring knowledge for different domains
* To match source/target features, we apply adversarial or randomization schemes
* We can also apply domain transfer algorithms to generate target data

* The research is still ongoing
* Dozens of papers exist.
e Lots of variants not covered in this slide
* There would be many interesting research directions
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