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Abstract—We consider a problem of how to effectively diffuse
a new product over social networks by incentivizing selfish
users. Traditionally, this problem has been studied in the form
of influence maximization via seeding, where most prior work
assumes that seeded users unconditionally and immediately start
by adopting the new product and they stay at the new product
throughout their lifetime. However, in practice, seeded users often
adjust the degree of their willingness to diffuse, depending on how
much incentive is given. To address such diffusion willingness,
we propose a new incentive model and characterize the speed of
diffusion as the value of a combinatorial optimization. Then, we
apply the characterization to popular network graph topologies
(Erdős-Rényi, planted partition and power law graphs) as well
as general ones, for asymptotically computing the diffusion time
for those graphs. Our analysis shows that the diffusion time
undergoes two levels of order-wise reduction, where the first
and second one are solely contributed by the number of seeded
users, i.e., quantity, and the amount of incentives, i.e., quality,
respectively. In other words, it implies that the best strategy given
budget is (a) first identify the minimum seed set depending on the
underlying graph topology, and (b) then assign largest possible
incentives to users in the set. We believe that our theoretical
results provide useful implications and guidelines for designing
successful advertising strategies in various practical applications.

I. INTRODUCTION

With arise of online social networking services such as
Facebook and Twitter, customers are more actively using their
social network to exchange their opinions about new products.
Simultaneously, companies can easily access corresponding
data on people’s reactions to the new products, which provides
useful insights and opportunities on their marketing strategies.
Motivated by this, the problem of selecting a subset of influen-
tial individuals, called seeding problem, has been extensively
studied in the last decade [1]–[5], where the objective is
to trigger the largest adoption of new products over social
networks by seeding the influential subset, called seed set,
i.e., providing some additional incentive for them to pre-adopt
the new product.

To address the seeding problem, various diffusion models
have been proposed, where we can broadly classify them into
epidemic-based ones, e.g., [2], [6]–[12] and game-based ones,
e.g., [3], [5], [9], [13], [14], [14]–[18] depending on how
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individuals interact with each other. In this paper, we adopt a
game-based model where each individual strategically selects
a product maximizing its utility depending on compatibility
with others under social relationships with some noise. This
model corresponds to a networked coordination game in which
users update their states according to a noisy best-response.
Seeding problem in the game-based diffusion model has been
studied in non-progressive [5] or progressive setup [18].1

But the previous work considers only a “strong” seeding
in the sense that seeded users immediately adopt the new
product, simply by starting at it, and they stay at the new
product throughout their lifetime. However, in practice, seeded
users often adjust the degree of their willingness to diffuse,
depending on how much incentive is given to them. For
example, one will differently behave between when she is
paid $100 and $1000 by a company for advertising it. Hence,
given a limit of seeding budget, the company needs to decide
whether seeding more users with less incentive or less users
with more incentive.

The major goal of this paper is to develop a new variant of
the game-based diffusion model to reflect such a willingness
of seeded users to diffuse the new product as a function of
the given incentive, and then theoretically study how fast or
slow the diffusion occurs, where the diffusion speed can be
significantly different depending on seeding strategy consisting
of not only the selection of seed set but also the amount
of incentive to each seeded user. With the entire budget
being constrained, the seed set selection and the incentive are
coupled since the amount of incentive determines the size of
seed set. Hence we need to strike a good balance between
those two. The main contribution of this paper reveals on how
we should use our given seeding budget between seed set and
incentive, where more detailed summary of our contribution
is provided in what follows:

◦ New model and characterization of diffusion time. We
propose a new game-based model, called incentivized game-
diffusion model, that includes the parameter α, correspond-
ing to the amount of incentive provided for seeded users.
We include this α as an additional payoff gain in the
two-person coordination game whose aggregation over the
neighbors is used as one’s total payoff in the networked
coordination game. This, seemingly a small variant of the
traditional game-based model, incurs technical challenges

1Progressive users refers the ones who are forced to stay at the new
technology once they adopt it, whereas non-progressive users can switch
between the new and the old technologies.



due to the need of jointly considering both progressive and
non-progressive features by users as well as the diffusion
incentive α, all in one framework. Despite these technical
challenges, we combinatorially characterize the diffusion
time which allows us to quantify the diffusion speed for
our control knob (C,α), where C is the seed set and α is
the incentive, as explained next.

◦ Diffusion time for random graphs. To build intuition, we
study seeding strategy in three popular random graphs:
Erdős-Rényi (ER), planted partition (PP), and power law
(PL) graphs, which differ in terms of topological symmetry
and the amount of degree bias. We provide the asymptotic
analysis of the diffusion time as a function of C and α with
C being chosen by topology-dependent seeding algorithms.
Our asymptotic analysis provides the seed set size for each
random graph that is sufficient to achieve an order-wise
reduction of the diffusion time from that without seeding,
i.e., an upper bound of the minimum seed set size for faster
diffusion. In addition, we also obtain the necessary seed
set size for the reduction. Interestingly, this sufficient and
necessary seed set sizes are independent of the incentive α,
where the latter affects only on the amount of reduction.
Furthermore, we also prove that our bounds are tight under
some conditions. Therefore, the diffusion time undergoes a
sharp phase transition between the necessary and sufficient
seed set sizes, and the amount of reduction of diffusion time
is affected by the incentive α.

◦ Seeding algorithm for general graphs. We also obtain
similar results for general graphs. Note that for ER, PP, and
PL graphs, we perform our analysis using three different
topology-dependent seeding algorithms. By unifying the
intuitions we built in studying such random graphs, we pro-
pose a new topology-adaptive seeding algorithm applicable
to arbitrary graphs, and also establish the corresponding
upper bound on the minimum seed set size required for
the order-wise reduction on the diffusion time. Obtaining
such a result is more challenging compared to the case of
random graphs. To do so, we use coupling techniques on
several random processes and applying the meta-stability
theory to obtain tractable upper and lower bounds on the
diffusion time for general graph.

Our theoretical results for random and general graphs imply
that the best strategy given budget is (a) first identify the
minimum seed set, i.e., quantity, depending on the underlying
graph topology, and (b) then assign largest possible incentives,
i.e., quality, to users in the set. Such theoretical findings are
also demonstrated in our extensive simulations with the dataset
of real-world networks. We believe that our results provide
useful implications and guidelines for designing successful
advertising strategies in various practical applications.

A. Related Work

The diffusion models in literature can be broadly classified
into: epidemic-based ones, e.g., [2], [6]–[12] and game-based
ones, e.g., [9], [13]–[16] depending on how diffusion dynam-

ically occurs. We primarily focus on summarizing the related
work on game-based approaches due to its close similarity to
our work.

We first summarize the work that uses a noisy best-
response. The main focus in the early literature has been on
the convergence of individuals’ decisions to an equilibrium
state. Using the notion of risk dominance (which roughly
means more coordination gain for a new product), [13]–[15]
focused on a simple condition on the structure of the payoff
and the underlying graph topology for the new product to
become widespread. Much later, the authors in [17], [18]
characterized the convergence speed by a combinatorial op-
timization and established the asymptotic orders of diffusion
time (without seeding) under various topologies. It has been
also studied [5] how to accelerate the diffusion by seeding
a subset of individuals, where their focus was developing
“optimal” seeding algorithms for certain structured graphs.
In [19], the authors provide some insights on the tradeoff
between investing resource in improving quality of the product
or marketing the product via studying spread of the product
in a game-based diffusion model.

Other related work based on the game-based diffusion
include those with the pure best-response dynamic. In this
literature, people have mainly focused on finding a minimal
seed set, often referred to as a contagion set, which makes a
“widespread” cascade of rational adoptions of the new product
[3], [9], [20], where this problem is also called target set selec-
tion. Morris [3] focused on providing topological conditions
under which there exists a finite size of contagion set with
growing network size. Kleinberg [9] studied the impact of
progressiveness, i.e., once a user adopts the new product, she
keeps using the adoption, by comparing the contagion sets in
the progressive and non-progressive cases. Ackerman et al.
[20] proposed a randomized algorithm that finds a contagion
set, where an upper bound of the minimal contagion set is
studied.

Our work differs from the above first in the model: In the
papers [5], [18] with seeding under the noisy best-response
dynamics, they assume that the seeding effect is immediate
in the sense that a seeded node is convinced to adopt before
the actual diffusion starts, while our model is more general
in the sense that seeded users may still be strategic and
rational as a function of the given incentive α. This difference
in modeling enables us to address new, practical questions.
In relation to the contagion-set research with the pure best-
response dynamic [3], [20]–[22], a similar goal is taken:
under what condition, efficient diffusion occurs, but due to the
difference in modeling, they focus on the minimum seeding
for the widespread, whereas our interest lies in the minimum
(C,α) for an order-wise reduction of diffusion time.

II. MODEL AND PRELIMINARIES

We consider a social network as an undirected graph G =
(V,E) with |V | = n, where V and E are the sets of nodes and
edges, respectively. Each node i ∈ V represents an individual
(or player) and its state is denoted by xi ∈ {−1,+1}, where



xi = +1 (resp. xi = −1) means that node i adopts the new
product (resp. the old one). Each edge represents a social
relationship between two individuals whose states affect each
other.

A. Networked Coordination Game

Each strategic user in the social network determines her
state by playing a certain kind of game with its neighbors. To
formally discuss, we describe the payoffs of individuals, where
an individual’s payoff is affected by its neighbors’ strategies.
We first consider the well-known two-person coordination
game whose payoff matrix is given by Table I(a), where
an individual can choose one of new or old product, i.e.,
+1 or −1. We make the following natural assumptions on
the payoffs. First, there always exists coordination gain, i.e.,
a > d and b > c. Second, coordination gain becomes
larger for the new technology, i.e., a − d > b − c. For the
convenience of notation, let us define h := a−d−b+c

a−d+b−c and
hi := h|N(i)| where N(i) is the set of node i’s neighbors,
i.e., N(i) = {j ∈ V | (i, j) ∈ E and i 6= j}. Without loss
of generality we use a normalized payoff matrix with h in
Table I(b).

TABLE I: Payoff matrix P (xi, xj) of an unseeded node i

(a) Original

xi xj +1 −1
+1 a c
−1 d b

(b) Normalized

xi xj +1 −1
+1 1 + h 0
−1 0 1− h

We now extend the two-person coordination game to its
networked version as follows: let x = (xi ∈ {−1,+1} : i ∈
V ), and x−i = (xj : j ∈ V \ {i}) denote state of the entire
nodes and state of them except for node i, respectively. Then,
in the n-person game over G, node i’s payoff Pi(xi,x−i)
for state x is simply the aggregate payoff against all of i’s
neighbors, i.e., Pi(xi,x−i) =

∑
j∈N(i) P (xi, xj), where

P (xi, xj) is the payoff from the two-person coordination game
in Table I.

B. Diffusion Dynamics

In this section, we describe the diffusion dynamic, i.e.,
how the new products are dynamically spread over the social
network G over time. We assume that each individual has its
own independent Poisson clock with unit rate, and whenever
the clock ticks, it decides which product to adopt according
to its diffusion dynamics. As will be elaborated shortly, each
individual also updates its state, depending on whether it is
seeded or not. Let C ⊂ V denote the set of seeded nodes,
often called seed set, and we assume that the diffusion starts
after one selects the seed set C. Then, when x is the state
at the moment of node i’s update, node i determines its state
with the following probabilities:

P[si|x] =


logit(h, si, x) if i /∈ C, (1a)
logit(h+ α, si,x) if i ∈ C and xi = −1, (1b)
1+(si) if i ∈ C and xi = +1, (1c)

where we let 1+(s) indicate s = +1, i.e., 1+(s) = 1 if s = +1
and 1+(s) = 0 otherwise, and we define

logit(h, si,x) :=
exp(βsiKi(h,x))

exp(βKi(h,x)) + exp(−βKi(h,x))
, (2)

and Ki(h,x) := hi +
∑
j∈N(i) xj .

An unseeded node i /∈ C changes its state with the
probability in (1a), which can be interpreted as a noisy-version
of the best response dynamics as follows: In the networked
coordination game, for a given state x, the unseeded node i’s
best strategy to maximize its payoff is choosing

sign
(
Pi(+1,x−i)− Pi(−1,x−i)

)
= sign

(
Ki(h,x)

)
,

since Pi(+1,x−i)−Pi(−1,x−i) (i.e., Ki(h,x)) is the payoff
difference between choosing +1 and −1. However, in practice,
people are often affected by many external and internal noise
factors in their decision making. To model such noise, we in-
troduce a small mutation probability that a state is irrationally
chosen, often called noisy best response. We consider logit-
response dynamics [5], [18], [23]–[26] that individuals adopt
a product according to a distribution of the logit form which
allocates larger probability to product delivering larger payoffs.
The parameter β in (2) represents the degree of rationality,
where β =∞ and β = 0 correspond to the best response and
the random response, respectively. We focus on the case of
that users are sufficiently rational, i.e., large β regime.

A seeded node i ∈ C would be incentivized to adopt
the new product with more probability, which is modeled
by two factors: (i) aggressiveness in (1b) and (ii) progres-
siveness in (1c). First, we assume that before adopting the
new product, the seeded node i is provided the additional
payoff α > 0 to choose +1 in the normalized payoff matrix2

as incentive, i.e., the values of Pi(xi, xj) at (+1,+1) and
(+1,−1) become 1 + h + α and α, respectively, then its
noisy best response corresponds to the probability in (1b),
where it selects +1 more aggressively due to the incentive
α > 0, i.e., Pi(+1,x−i) − Pi(−1,x−i) = Ki(h + α,x).
Second, we assume that once the seeded node i accepts the
new product with the incentive, it becomes progressive and it
keeps choosing +1 irrespective of neighbors’ decisions, where
the corresponding dynamics is described in (1c).
Difference from prior work. We note that for β > 0, a seeded
node does not necessarily mean that it immediately adopts
the new product in our model if α < ∞, while most prior
works [2]–[5], [18] in the literature considered the case α =∞
which is a special case of our settings since limα→∞ logit(h+
α,+1,x) = 1. The assumption α <∞ is more realistic than
α = ∞ since even a seeded individual acts strategically in
practice. In addition, the analysis of our model with finite α is
technically more challenging than those in prior work because
by fixing the seeded users at +1 and truncating the diffusion
over the unseeded users only, it is enough to study a single
type of users, either progressive [18] or non-progressive [5],
whereas our model includes a mixture of progressive seeded
users and non-progressive unseeded users.

2In the original payoff matrix, the additional payoff is (a−d+b−c)α
2

> 0.



C. Diffusion Time

Given A = (C,α), the random process according to the
diffusion dynamics can be viewed as a continuous Markov
chain MA with the state space X := {−1,+1}V . All nodes
in the seed set C will stay at +1 once it adopts +1 and other
unadvertised nodes are allowed to oscillate between −1 and
+1 according to the logit dynamics. Hence MA is not time-
reversible but the truncation ofMA on XC := {x ∈ X | xi =
+1 ∀i ∈ C} is time-reversible with the stationary distribution
µA(x):

µA(x) =

{
1
ZC

exp(−βHA(x)) if x ∈ XC
0 otherwise

where ZC :=
∑

x∈XC exp(−βH(x)) and with αi := α|N(i)|,

HA(x) := −
∑

(i,j)∈E

xixj −
∑
i∈V

hixi −
∑
i∈C

αixi. (3)

We note that HA(x), often called potential function, has
a unique minimizer at the state of all +1, denote by +1,
regardless of C and α, if h > 0. This implies that the entire
network would adopt the new product in the long run, where
the diffusion speed depends on the choice of A = (C,α).

Definition of diffusion time. To measure the speed of diffu-
sion, we use the hitting time to +1. Formally, we define a
couple of related concepts. First, a random variable called the
hitting time of our random process under A from an initial
state z ∈ X , and denote it by TA(z):

TA(z) := inf{t ≥ 0 | x(t) = +1,x(0) = z}.
We next define the typical value of the hitting time, called
diffusion time τA(G):

τA(G) := sup
z∈X

inf {t ≥ 0 | P[TA(z) ≥ t] ≤ 1/e} . (4)

This means that with probability more than 1 − 1/e > 1/2,
every node adopts the new product +1 within time τA(G)
from any initial state.

III. MAIN RESULT

We start by providing the characterization of diffusion time
in (4), which enables us to study our main question of under
what conditions of seed set C and incentive α, i.e., A = (C, α)
the diffusion becomes fast or slow for large β.

A. Characterization of Diffusion Time

Theorem 1: As β → ∞, for given A = (C,α), diffusion
time τA(G) is

τA(G) = exp(2β · ΓA(G) + o(β)).

In the above, ΓA(G) is defined as follows:

ΓA(G) := max
Z⊂V

min
v∈L(V \Z)

max
t≤TC(v)

[HA(Vt ∪ Z)−HA(Z)] (5)

where for a subset S ⊂ V , we define L(S) as the set of all
vertex orderings of S, and HA(S) is

HA(S) := cut(S, V \ S)−
∑
i∈S

hi −
∑

i∈S∩C
αi, (6)

and for an ordering v = (v1, ..., v|v|), we let Vt := {v1, ..., vt}
and TC(v) := min{1 ≤ t ≤ |v| | vt ∈ C} ∪ {|v|}.

The proof is given in Section IV-A. This type of char-
acterization has been made in other related work [5], [17],
[18], where they refer to ΓA(G) as diffusion exponent, which
depends on seed set C, incentive α and graph G. For large β,
it suffices to study this diffusion exponent which is our focus
of this paper. We comment that our characterization of the
diffusion time generalizes the ones in [5], [17] and [18] each
of which is a special case of ours for A = (∅,∞), A = (C,∞)
and A = (V, 0), respectively.

To help the readers with understanding the intuition of
ΓA(G), regard the sequence of subsets S = {S0 =
Z, ..., ST = V } as the path ω = {ω0 = z, ...,ωT = +1}
where St is the set of nodes adopting +1 at ωt so that
HA(ωt) = 2HA(St) + some constant. The main intuition
is as follows: the dynamics of the Markov chain MA has
a tendency to decrease the value of the potential function HA,
but to reach the global minimizer +1 from the initial state z,
it may be necessary to go through the states with high values
of HA. These states create a barrier and the hitting time is
an exponential function of the height along the most probable
path which has the smallest barrier among all paths from z
to +1. The similar interpretation is also given in [17] under
a purely non-progressive setting without seeding, but in our
diffusion model, the aggressiveness of seeded users in (1b) is
captured by the last term of the potential function HA in (5)
and the progressiveness of them in (1c) is captured by TC(v)
in the last max of (5).

Our goal is to understand how a seeding strategy A =
(C,α) affects the speed of diffusion, with particular focus on
the role of each of C and α. In Section III-B, we consider
popular random graphs for each of which we apply a topology-
dependent seed set selection strategy, partially motivated by
the results in [5], and in Section III-C, we consider a general
graph, thus without any topological information a priori, where
we apply a seed set selection strategy that implicitly learns and
exploits its graphical structure.

B. Analysis of Diffusion Exponent: Popular Random Graphs

We describe three popular random graphs which we con-
sider in this paper, and present the seed set selection strategy
applied in each graph, when the seed set size is given by k.

(a) Erdős-Rényi (ER) graph with parameter (n, p) is a random
graph consisting of n nodes where each node pair has an
edge with probability p. As a seed set selection strategy,
we consider a strategy that selects k nodes uniformly at
random, named Random(k).

(b) Planted partition (PP) graph with parameter (n, p, q,α)
is a random graph where total n nodes are divided into m
disjoint clusters {V1, ..., Vm} and each cluster Vl consists
of ωl-fraction of nodes, i.e., |Vl| = ωln and

∑m
l=1 ωl = 1,

where ω1 ≥ ω2... ≥ ωm. Every node pair i, j ∈ V has
an edge with probability p if the nodes are in the same
cluster, i.e., i, j ∈ Vl, and with probability q otherwise. As
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Fig. 1: A graphical summary of Theorems a, b, and c, where constants ξ∗, ξc, and ξd > 0 are defined therein.

a seed set selection strategy, we consider a cluster-based
one, named Cluster(k) that chooses a set C of size k that
is the solution of the following optimization problem:

min
C′:|C′|=k

max
1≤l≤m

[1− h
2

ωl − δl
q

p
− |C

′ ∩ Vl|
n

]
(7)

where δl :=
∑l−1
l′=1ωl′ −

1−h
2 (1− ωl).

(c) Power law (PL) graph with parameter (n, γ) has a power
law degree distribution parameterized by γ ≥ 2, i.e., the
fraction of nodes having degree d is proportional to d−γ .
We consider the PL graph generated by the preferential
attachment with minimum degree 2 as in [27], [28].
As a seed set selection strategy, we consider a degree-
based one, named Degree(k), which chooses k nodes in
decreasing order of their degrees.

We now present Theorem 2 which provides the asymptotic
quantification of the diffusion exponents for three graphs. For
each graph, we have two parts: part (i) provides a lower bound
of the necessary size of seed set for the order-wise reduction of
the diffusion exponent, and part (ii) provides an upper bound
of the sufficient size of seed set for the same reduction. The
proof is given in Section IV-B.

Theorem 2: As n → ∞, for given α ≥ 0 and any small
constant ε > 0, the following events occur almost surely:
(a) Suppose G is an ER graph with np = ω(log n).

(i) For every seed set C such that |C|n ≤
1−h
2 − ε,

ΓA(G) = Θ(n2p).

(ii) If seed set C is selected by Random(k) and |C|n ≥
1−h
2 + ε, then

ΓA(G) =

{
Θ((1− h− α)np) if α ≤ 1− h− ε
0 if α ≥ 1− h+ ε.

(b) Suppose G is a PP graph with (1 − αl)nq ≤ αlnp =
ω(log n) and αmn = Ω(n).
(i) For every C such that |C|n ≤

1−h
2 − ξ∗ − ε,

ΓA(G) = Θ(n2p)

where ξ∗ := m
√

q
p .

(ii) If seed set C is selected by Cluster(k) and |C|
n ≥

1−h
2 − ξc + ε, then

ΓA(G) =

{
Θ((1− h− α)np) if α ≤ 1− h− ε
0 if α ≥ 1− h+ ε

where ξc := (1−h)2
2

q
p .

(c) Suppose G is a PL graph with γ > 1 and dmin = 2.
(i) If C = ∅, i.e., |C| = 0, then for small enough h ≥ 0,

ΓA(G) = Ω(n)3.

(ii) If seed set C is selected by Degree(k) and |C|
n ≥

1− ξd + ε, then

ΓA(G) =

{
O
(

(1− h− α)n
1
γ

)
if α ≤ 1− h− ε

0 if α ≥ 1− h+ ε

where ξd := 1
2γ(ζ(γ)−1) with ζ(γ) :=

∑∞
d=1

1
dγ .

In Figure 1, we graphically summarize the above theorem
which shows a phase transition of the diffusion exponent in an
interval of the seed set size for each graph. For example, in ER
graphs, any seed set C cannot reduce the order of the diffusion
exponent if |C|n ≤

1−h
2 − ε. But we can reduce the order with

seed set C such that |C|n ≥
1−h
2 +ε. Hence, in ER graphs, the

phase transition from Θ(n2p) to Θ((1− h− α)np) occurs in[(
1−h
2 − ε

)
n,
(
1−h
2 + ε

)
n
]
, of which the minimum value is

a lower bound on necessary size and the maximum one is an
upper bound on sufficient size for the phase transition.

Seed set size first and then incentive. We first focus on the
interpretation of Theorem 2(a) for ER graphs, where analogous
interpretation also works for PP and PL graphs. In ER graphs,
it is not possible to reduce the order of the diffusion exponent
by any seed set even with α =∞, if the size of seed set does
not exceed a certain threshold, i.e., |C| < 1−h

2 n. In other
words, it is necessary to have a seed set of size more than
1−h
2 n for the order-wise reduction while having large α is not

3This diffusion exponent without seeding in PL graphs was studied in [17].



necessary, i.e., we need to secure a certain number of seeds
first instead of high incentive. However, once the size of seed
set even slightly exceeds the threshold, i.e., |C| > 1−h

2 n, there
is a phase transition of the diffusion exponent from Θ(n2p)
to Θ((1 − h − α)np) where only incentive α can reduce the
order of the diffusion exponent. This implies that after the
phase transition, it is more efficient to increase the incentive
than to increase the seed set size. We note that α = 1 − h
makes the diffusion extremely fast, i.e., ΓA(G) = 0, since
1 − h is nothing but the minimum of additional payoff that
makes a seeded user’s best response to be adopting the new
product regardless of its neighbors’ choice.

Selection of seed set. As we explained in the above, The-
orem 2(a) shows a sharp phase transition of the diffusion
exponent at the threshold of the seed size in ER graphs, where
due to the symmetric connectivity, any arbitrary choice of
seed set C can have such phase transition at |C|n = 1−h

2 .
Such narrow gap between the necessary and the sufficient sizes
implies the efficiency of Random(k) for ER graphs, which is
also shown in [5]. In Theorems 2(b) and 2(c), we also obtain
similar phase transitions between 1−h

2 − ξ∗ <
|C|
n < 1−h

2 − ξc
for PP graphs and 0 < |C|

n < 1 − ξd for PL graphs. The
phase transition in PP graphs and PL graphs become sharp as
the one in ER graphs when the fraction of the inter-cluster
edges decreases, i.e., q

p → 0 for PP graphs and the degree
distribution becomes more skewed, i.e., γ → ∞. Different
from ER graphs, for PP and PL graphs, in order to have a phase
transition, we need to carefully select seeds depending on the
network topology: Cluster(k) for PP graphs and Degree(k)
for PL graphs.

We note that Cluster(k) is analogous to that in [5], but
we improve the previous one for a tighter phase transition,
in terms of that using the previous one, |C| = 1−h

2 n is
necessary to reduce the order of the diffusion exponent, i.e.,
Cluster(k) saves budget ξcn for the same purpose, where the
improvement is made by the second term in (7). The intuition
behind Cluster(k) with (7) is collecting more seeds from
larger clusters but with some balance between the fraction
of seeds in each cluster since a larger cluster has higher
1−h
2 ωl − δl qp l. The PL graph is generated by the preferential

attachment mechanism, i.e., the more connected node has more
likely to receive new links. Thus connectivity is concentrated
in a small number of high-degree nodes like hubs connecting
other low-degree nodes. Thus it is very natural to seed the
high degree nodes as Degree(k) does.

C. Analysis of Diffusion Exponent: General Graphs

In the previous section, we studied popular random graphs
and the corresponding seeding algorithms, i.e., the arbitrary
(or random) seeding for ER graphs, the cluster-based seeding
for PP graphs, and the degree-based seeding for PL graphs.
To tolerate topology-sensitive performances of seeding algo-
rithms, we propose a new one, called General(k), working
for arbitrary graphs, which is inspired by those in the previous
sections.

Algorithm 1: General(k)

Input: Graph G = (V,E) and seed budget k
Output: Seed set C

1 Start with V0 ← V .
2 for t = 1, 2, ..., n− k do
3 Set Wt−1 ← {i ∈ Vt−1 | 1−h

2 |N(i)| ≤ |N(i)∩Vt−1|}
4 if Wt−1 6= ∅ then
5 Pick node it from Wt−1 such that

it ∈ arg maxi∈Wt−1

1−h
2 |N(i)|

|N(i)∩Vt−1|(|N(i)∩Vt−1|+1)

6 else
7 Pick node it from Vt−1 such that

it ∈ arg maxi∈Vt−1

1−h
2 |N(i)|

|N(i)∩Vt−1|(|N(i)∩Vt−1|+1)

8 end
9 Update Vt ← Vt−1 \ {it}.

10 end
11 Output C ← Vn−k

The formal description of the proposed algorithm is in
Algorithm 1, where its running time is O(n2). It iteratively
narrows down from V of size n to output C of size k, by
greedily removing node it that has (nearly) minimal influence
to Vt, i.e., |N(it)∩Vt−1| at each iteration (see line 5). One can
observe that for seed size k ≥ ( 1−h

2 n − ξc)n, the algorithm
is identical to the cluster-based algorithm for PP graphs and
for seed size k ≥ (1 − ξd)n, its output C is identical to
the degree-based algorithm for PL graphs. Namely, one can
restate Theorem 2 under General(k) while maintaining the
same upper and lower bounds on the necessary size and the
sufficient size. Furthermore, for general graphs, we establish
an upper bound on the sufficient size to reduce the diffusion
exponent at certain order in the following theorem whose proof
is provided in the extended version of this paper [29].

Theorem 3: For graph G = (V,E), define

κ :=
∑
i∈V

⌈
1−h
2 |N(i)|

⌉
|N(i)|+ 1

. (8)

If seed set C is selected by General(k) and |C| ≥ κ, then for
given α ≥ 0 and any small constant ε > 0,

ΓA(G;C) =

{
O((1− h− α)dmax) if α ≤ 1− h− ε
0 if α ≥ 1− h+ ε

where dmax = maxi∈V |N(i)|.
It is not hard to check that κ matches the upper bound on

the sufficient size for ER graphs in Theorem 2(a) and it is
slightly larger than the one for PP graphs in Theorem 2(a).
We note that a node i’s best response is the new product if
the fraction of neighbors adopting the new product is larger

than d
1−h
2 |N(i)|e
|N(i)|+1 . Then the value of κ in (8) is the summation

of the lower bound on the fraction for every node.

IV. PROOF OF THEOREM

A. Proof of Theorem 1
We first construct a time-reversible Markov chain M′A

based on the non-reversible chain MA. In M′A, an unseeded



node i /∈ C has the same probability of the one in (1a) but
a seeded node i ∈ C has a positive probability to go back to
−1 from +1, to guarantee the time-reversibility, as described
in the following:

P[si|x] =


logit(h+ α, si,x) if xi = −1

exp(−ββ′)logit(h+ α, si,x) if xi = +1

+ (1− exp(−ββ′))1+(si).

As β → ∞, the transition probability in M′A with β′ > 0
converges to that in MA thus the diffusion time τ ′A of
M′A would also converge to τA. We formally obtain the
convergence of τ ′A to τA with sufficiently large β′ in the
following lemma whose proof is provided in the extended
version of this paper [29].

Lemma 1: Suppose β′ ≥ 8n2. Then, as β → ∞, τ ′A
converges to τA.

Thus, we now focus on the characterization of τ ′A(G). To
do so, for x,y ∈ X such that x and y are same except a
node i, i.e., xj = yj for all j 6= i and xi = −yi, we write the
stationary distribution µ′A(x) and the transition rate p′A(x,y)
of M′A as µ′A(x) = exp(−βH ′A(x) + o(β)) and p′A(x,y) =
exp(−βV ′A(x,y) + o(β)) where

H ′A(x) := HA(x)− β′
∑
i∈C

1+(xi),

V ′A(x,y) :=

{
[HA(y)−HA(x)]+ if i /∈ C
[HA(y)−HA(x)]+ + β′1+(xi) if i ∈ C,

and for x ∈ R, [x]+ := max{x, 0}. These expressions of
µ′A and p′A allow us to apply the hitting time analysis of the
Freidlin-Wentzell chain, provided in Chapter 6 [30], for the
time-reversible chainM′A and we obtain the following lemma
as a corollary of Theorem 6.38 therein.

Lemma 2: As β → ∞, τ ′A = exp(βΓ′A + o(β)) where
Γ′A(G) is

min
ω:−1→+1

max
t′<|ω|

max
t′≤t<|ω|

[H ′A(ωt)+V ′A(ωt,ωt+1)−H ′A(ωt′)].

(9)

Here the min runs over every possible path ω from −1 to
+1 such that for 0 ≤ t < |ω|, ωt and ωt+1 are same except
a node’s state.

Thus it is enough to show that for sufficiently large β′ ≥
8n2 ≥ 4 maxx∈S HA(x),

Γ′A(G) = 2ΓA(G). (10)

Recalling that for z ∈ S and Z ⊂ V such that Z = {i ∈
V | zi = +1}, HA(ωt) = 2HA(St) + some constant, we can
rewrite ΓA(G) in (5) as follows:

2ΓA(G) = max
z 6=+1

min
ω:[z→+1]V

max
t≤TC(ω)

[HA(ωt)−HA(z)] (11)

where for a subset S ⊂ V , we let [z → +1]S denote the
set of every possible path ω from z to +1 such that for all
i ∈ S and 0 ≤ t′ ≤ t < |ω|, ωt,i = +1 if ωt′,i = +1 and
we let TC(ω) := min{1 ≤ t < |ω| | ∃i ∈ C s.t. ωt−1,i =
−1 and ωt,i = +1} ∪ {|ω|}.

To show (10), we will rewrite the optimization in (9) as the
one in (11). Suppose ω /∈ [−1→ +1]C . Then there exists s
such that ωs,i = +1 and ωs+1,i = −1. Thus it follows that

max
t′<|ω|

max
t′≤t<|ω|

[H ′A(ωt) + V ′A(ωt,ωt+1)−H ′A(ωt′)]

≥ V ′A(ωs,ωs+1) ≥ β′,

which implies that we can reduce the search space of the min
in (9) to [−1→ +1]C when β′ is sufficiently large.

Suppose ω ∈ [−1→ +1]C and there exists T < |ω| such
that for some i ∈ C, ωT−1,i = −1 and ωT,i = +1. Then for
all t, t′ such that t′ ≤ T < t, it follows that

H ′A(ωt) + V ′A(ωt,ωt+1)−H ′A(ωt′)

= HA(ωt) + [HA(ωt+1)−HA(ωt)]+ −HA(ωt′)

− β′
∑
i∈C

(1+(ωt,i)− 1+(ωt′,i))

which is less than − 1
2β
′ since 1+(ωt,i) − 1+(ωt′,i) ≥ 1 and

β′ ≥ 4 maxx∈S HA(x). Thus, for sufficiently large β′, we can
reduce the search space of the last max in (9) and we obtain

Γ′A(G) = min
ω:[−1→+1]C

max
t′<|ω|

max
t′≤t<TC(ω)

[HA(ωt)−HA(ωt′)]

where TC(ω) := min{1 ≤ t < |ω| | ∃i ∈ C s.t. ωt−1,i =
−1 and ωt,i = +1} ∪ {|ω|}. Furthermore, we can reduce the
search space of the min from [−1→ +1]C to [−1→ +1]V
by similar argument with the submodularity of HA(S) used
for the proof of Theorem 2 in [17]. This completes the proof.

B. Proof of Theorem 2

To prove Theorems 2(a)-(c) for different graphs and seed
selections, we will use the following upper and lower bounds
on ΓA(G), whose proof is presented in the extended version
of this paper [29].

Theorem 4 (Exponent Bound): For given G and seed set C,
we define Γ(C) as follows:

Γ(C) := max
C⊂Z⊂V

min
v∈L(V \Z)

max
1≤t≤|v|

[H(Vt ∪ Z)−H(Z)] . (12)

where for a subset S ⊂ V , H(S) is the value of HA(S) with
α = 0. Then, for A = (C,α), if follows that

max

{
Γ(C), min

i∈V
(1− h− α)|N(i)|

}
≤ ΓA(G) ≤ max

{
Γ(C), max

i∈C
(1− h− α)|N(i)|

} (13)

(14)

However, handling Γ(C) directly in the above theorem is
hard in general. So, we establish the following key lemmas
that provide criteria to check if Γ(C) is large or small, i.e.,
Γ(C) ≥ δ or Γ(C) = 0, where the proofs are provided in the
extended version of this paper [29].

Lemma 3: Consider graph G = (V,E) and seed set C.
Suppose that for a given k such that |V \C| ≤ k ≤ |V |, there
exists a constant δ > 0 such that for every subset S ⊂ V \ C
with |S| = k,

(1− h) · cut(S, V \ S)− 2 · cut(S,C)− 2h · edge(S)

= H(S ∪ C)−H(C) ≥ δ, (15)



where edge(S) is the number of edges between nodes in S,
i.e., edge(S) = |{(i, j) ∈ E | i, j ∈ S}|. Then we have
Γ(C) ≥ 2δ.

Lemma 4: Consider graph G = (V,E) and seed set C.
Suppose there exists a sequence s of nodes in V \C such that
for all t = 1, ..., |V \ C|,
(1− h)|N(st)| − 2|N(st) ∩ St−1| = H(St)−H(St−1) ≤ 0

(16)
where St = C ∪ {s1, ..., st}. Then we have Γ(C) = 0.

1) Proof of Theorem 2(a): Recalling ER graph G = (V,E)
in Theorem 2(a), we note that ε2np = ω(log n). Using the
Chernoff inequality and the union bound, it follows that

P

[⋂
i∈V

[∣∣|N(i)| − np
∣∣ ≤ ε

2
np
]]
≥ 1−O(n exp(−ε2np)),(17)

where the last term converges to 1 as n→∞ due to ε2np =
ω(log n). Then for large n, it follows that |N(i)| = Θ(np) and
Γ(G;C) = O(n2p) due to (12) with H(S) ≤ (1 + 2h)|E| =
Θ(n2p). Then using the above observations and Theorem 4,
the proof is completed if the following events occur with high
probability:

Γ(C) =

{
Ω(n2p) if |C|n ≤

1−h
2 − ε, (18)

0 if |C|n ≥
1−h
2 + ε. (19)

Due to space limitation, we provide the proofs of (18) and (19)
without details which are provided in the extended version of
this paper [29]. Suppose |C|n ≤ 1−h

2 − ε. Then, using the
Chernoff inequality and the union bound, it is not hard to
check that for every S ⊂ V \ C such that |S|n = ε

2 , the
values of cut(S, V \ S), cut(S,C), and edge(S) concentrates
at ε

2

(
1− ε

2

)
n2p, ε

2

(
1−h
2 − ε

)
n2p, and ε2

8 n
2p, respectively,

as n → ∞, so that H(S ∪ C) − H(C) ≥ ε2

8 n
2p with high

probability. With Lemma 3, this completes the proof of (18).
Suppose |C|n ≥

1−h
2 + ε. Then, using the Chernoff bound

and the union bound, it is not hard to check that for every
node i ∈ V \ C, (1 − h)|N(i)| − 2|N(i) ∩ C| ≤ − ε2np with
high probability. With Lemma 4, this completes the proofs of
(19) and Theorem 2(a).

2) Proof of Theorem 2(b): Due to space limitation, we
provide a sketch of the proof with q = 0. The rigorous
proof with q > 0 is provided in the extended version of
this paper [29]. Suppose q = 0, i.e., the PP graph G is m-
disjoint ER graphs, {G1 = (V1, E1), ..., Gm = (Vm, Em)}.
Let Cl := Vl ∩ C. Then, from Lemma 4.3 in [5], it follows
that

Γ(G;C) = max
l=1,...,m

Γ(Gl;Cl). (20)

If |C|n ≤
1−h
2 − ε, there must exist l′ such that C

n ≤
1−h
2 −

εωm, i.e., from Theorem 2(a), Γ(Gl′ ;Cl′) = Θ(n2p). Using
(20), this completes the proof of part (i) in Theorem 2(b).
In addition, if |C|n ≤ 1−h

2 − ε and seed set C is selected
by Cluster(k), i.e., C is the solution of (7), then for all l,
C
n ≥

1−h
2 +εωm, i.e., from Theorem 2(a), Γ(Gl;Cl) = Θ((1−

h−α)np). Using (20), this completes the proof of part (ii) in
Theorem 2(b).

(a) PPfacebook graph (b) PLfacebook graph

Fig. 2: (a) PPfacebook [31]: 4039 nodes and 88234 edges
and (b) PLfacebook [32]: 1899 nodes and 13838 edges

3) Proof of Theorem 2(c): Let S be the subset of nodes
with degree two. Then for large n, the fraction of S is |S|n =

1
2γ(ζ(γ)−1) . Hence the seed set C selected by Degree(k)

with k ≥ (1 − ξd)n, includes all nodes with degree three or
more, i.e., V \ C ⊂ S. Since G is connected, there exists
a linear ordering s of S such that for all t = 1, ..., |S|,
|N(st)∩St| ≥ 1, where St = C ∪{s1, ..., st−1}. This implies
that the linear ordering s satisfies (16). Thus Lemma 4 with
(16) shows Γ(C) = 0. We note that the maximum degree
of G is O(n1/γ), since the number of nodes with degree
ω(n1/γ) is nf(n1/γ) = o(n(n1/γ)−γ) = o(1). Thus the proof
of Theorem 2(c) is completed by Theorem 4 with Γ(C) = 0
and dmax = O(n1/γ).

V. NUMERICAL RESULTS

In this section, we provide simulation results based on some
real social networks that demonstrate our theoretical findings.

Setup. We use two data set of the social network among
Facebook users, represented as two undirected graphs, where
each node corresponds to a Facebook account and each edge
represents Friend Lists of Facebook. We name the graph from
[31] PPfacebook, and the graph from [32] PLfacebook,
whose graphical presentations are given in Figures 2(a) and
2(b), respectively. As hinted from the names of two graphs
and Figure 2, a clustering structure is more observed in
PPfacebook, whereas a skewed degree distribution (which
turns out to be a power law) is prominent in PLfacebook.4

We choose β = 10 for the degree of rationality and use
h = 0.5 for the payoff difference between the new and old
products. We estimate the hitting time to +1 for General(k)
with varying seed set size k and diverse incentive α in each of
PPfacebook and PLfacebook, where our results are averaged
over 100 random samples.

Results. We plot the diffusion times in PPfacebook and
PLfacebook in Figures 3(a) and 3(b), respectively, where
for brevity, we omit the results with α > 0.5 since the
curve doesn’t change much for α > 0.5. As we analyzed
in Section III, if the seed set size is less than a certain

4Our calculation reveals that the clustering coefficients of PPfacebook and
PLfacebook are 0.617 and 0.1385, respectively, and the degree distributions
of those two graphs are fit into power law distributions with exponent γ =
1.18 and 1.344, respectively.
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(a) Diffusion time in PPfacebook

α = 0.47

α = 0.48

α = 0.49

α ≥ 0.50

D
if

fu
s
io

n
 T

im
e
 τ

0

50

100

150

200

Seed Set Size k

0 500 1000 1500

(b) Diffusion time in PLfacebook

Fig. 3: Diffusion time in PPfacebook and PLfacebook for
α = 0.5, 0.49, 0.48, 0.47 with varying seed size

value, which is 190 and 30 in PPfacebook and PLfacebook,
respectively, the diffusion time is not reduced by increasing
incentive α more than 0.5, while if the seed set size is suffi-
ciently large, the diffusion time is dramatically decreased by a
slight increment of incentive α from 0.47 to 0.5. Comparing
Figures 3(a) and 3(b), the diffusion time reduction by incentive
α in PPfacebook is more significant than the reduction in
PLfacebook. Such topology-dependent impact of incentive
α is analogous to our analysis of the diffusion exponents
in PP and PL graphs, each of which is Θ((1 − h − α)np)
and O((1 − h − α)n1/γ), respectively, where n � n1/γ . We
comment that the above tendencies are similarly observed with
different choice of parameters β and h, which are omitted due
to space limitation.

VI. CONCLUSION

We model an important feature of seeded users who adjust
the degree of their willingness to diffusion depending on how
much incentive is given. In our model, our main question
is how many seeds, i.e., quantity, and how much incentive,
i.e., quality, are necessary and sufficient for accelerating the
diffusion significantly. We found the phase transition of the
diffusion time between the necessary and sufficient seed set
sizes. Our results imply that after seeding a certain number
of individuals, it is better to give more incentives to already
selected seeded people instead of making efforts on seeding
new ones.
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