
Algorithmic Intelligence Lab

Algorithmic Intelligence Lab

Large Language Models

AI602: Recent Advances in Deep Learning

Lecture 2

Jinwoo Shin

KAIST AI



Algorithmic Intelligence Lab

Impact of ChatGPT
• ChatGPT sets record for fastest-growing user-base service

• 5 days for 1M users and 2 months for 100M users, respectively

Introduction

1



Algorithmic Intelligence Lab

Impact of ChatGPT
• ChatGPT sets record for fastest-growing user-base service
• ChatGPT can generate realistic texts for complex domains

• E.g., New York City School bans ChatGPT amid cheating worries
• E.g., Discussions to use ChatGPT to write academic papers and lists on the authors 

Introduction

2



Algorithmic Intelligence Lab

Impact of ChatGPT
• ChatGPT sets record for fastest-growing user-base service
• ChatGPT can generate realistic texts for complex domains
• ChatGPT can serve as a new effective search engine

• Microsoft announces that ChatGPT will be incorporated on Bing
• Google release Bard, google’s generative search engine, similar to ChatGPT

Introduction

So, what is ChatGPT?

3



Algorithmic Intelligence Lab

What is ChatGPT?
• Ask to ChatGPT itself

Introduction

4



Algorithmic Intelligence Lab

What is ChatGPT?

Introduction

5



Algorithmic Intelligence Lab

What is ChatGPT?
• ChatGPT is a language model that uses a deep neural network architecture called a 

transformer, which allows the model to take into account the full context of the 
input text. It is trained on a large corpus of text data and can generate text by 
predicting the probability distribution over the next token in a sequence.

• (Wikipedia) ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot
developed by OpenAI and launched in November 2022. It is built on top of 
OpenAI's GPT-3 family of large language models and has been fine-tuned using 
both supervised and reinforcement learning techniques.

Introduction

6



Algorithmic Intelligence Lab

Foundation models? 
• Large machine learning (ML) model trained on a vast quantity of data at scale
• It can be adapted to a wide range of downstream tasks

Foundation models for language? 
• Large language models (LLMs) have above characteristics

• Hence, for language, one can consider foundation models ≈ LLMs
• E.g., both GPT-3 & ChatGPT are foundation models for language 

• While ChatGPT is a fine-tuned from GPT-3 

Introduction

7



Algorithmic Intelligence Lab

1. Preliminary
• Important properties of large language models
• Large language models beyond GPT-3 

2. Building Blocks of Large Language Models  
• Prompt-tuning
• Alignment with human values and intendment
• Retrieval augmentation 

3. Recent Advances of Large Language Models 
• Tool use
• Self improvement 
• Test-time compute
• AI agents 

Overview

8



Algorithmic Intelligence Lab

1. Preliminary
• Important properties of large language models
• Large language models beyond GPT-3 

2. Building Blocks of Large Language Models  
• Prompt-tuning
• Alignment with human values and intendment
• Retrieval augmentation 

3. Recent Advances of Large Language Models 
• Tool use
• Self improvement 
• Test time compute
• AI agents 

Overview

9



Algorithmic Intelligence Lab

• GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]

• First very large language models (1B → 175B parameters)
• With this scale-up, new capability of LMs suddenly emerges
• E.g., it can adapt to new tasks via in-context learning without fine-tuning

• In-context learning (i.e., prompting); adapting to task from examples with some context 

(Recap) GPT-3: Language Models are Few-shot Learners

GPT-2

GPT-3

10



Algorithmic Intelligence Lab

• Property #1: Scaling Laws [Kaplan et al., 2020]

• Model size, dataset size, amount compute ↑⟹ Better language modeling
• More interestingly, test loss can be predicted using a power-low

(𝑁: # of parameters, 𝐷: dataset size, 𝐶!"#: computed budget) 

• From these laws, the optimal policy to train foundation model could be inferred 
(𝑁: # of parameters, 𝐵: batch size, 𝑆: number of steps) 

Important Property of Large Language Models

11



Algorithmic Intelligence Lab

• Property #2: In-context Learning (i.e., prompting) [Kaplan et al., 2020]

• Adapting to task with few examples with some context
• E.g., Task description + examples (input & output) + target input

• In-context learning is a unique capability of Foundation models (not small LM)

Important Property of Large Language Models

12

GPT-2



Algorithmic Intelligence Lab

• Property #3: Emergent Abilities [Wei et al., 2022]

• Like in-context learning, some abilities are suddenly emerged
• E.g., few-shot prompting performance is significantly enlarged after certain scale 

Important Property of Large Language Models

13



Algorithmic Intelligence Lab

• Gopher [Rae et al., 2022]

• 280 billion parameters: 80 Transformer layers with 16,384 hidden dimensions
• Model modification: (1) RMSNorm and (2) relative positional encoding

• RMSNorm [Zhang et al., 2019] removes unnecessary scaling term in LayerNorm

• Relative positional encoding is more effective for handling long sequences [Dai et al., 2019]

Large Language Models beyond GPT-3 : Gopher

RMSNorm:

LayerNorm:

Relative Effective Context Length

14



Algorithmic Intelligence Lab

• Gopher [Rae et al., 2022]

• Pre-training on new large text dataset: MassiveText
• Number of tokens in datasets:  2350 B (Gopher) vs 333.7 B (MT-NLG)

• Sampling portion affect to performance → Gopher is much effective on Books like tasks

Large Language Models beyond GPT-3 : Gopher

15



Algorithmic Intelligence Lab

• Gopher [Rae et al., 2022]

• Pre-training on new large text dataset: MassiveText
• Overall, Gopher outperforms the existing SOTA LMs

• Performance improvement compared to the best among {GPT-3, Jurrasic-1, MT-NLG}
• Gopher improves the performance across 100 / 124 tasks 

Large Language Models beyond GPT-3 : Gopher

Results on reading comprehension tasks

16



Algorithmic Intelligence Lab

• Chinchilla [Hoffmann et al., 2022]

• Motivation: current large language models are significantly undertrained
• Due to recent focus on scaling LMs whilst keeping the amount of training data constant 
→ But, performance also critically depends on number of trained tokens [Kaplan et al., 2020]

• Q. Given a FLOPs budget, how should one trade-off model size and the number of tokens?

Large Language Models beyond GPT-3 : Chinchilla

17



Algorithmic Intelligence Lab

• Chinchilla [Hoffmann et al., 2022]

• Motivation: current large language models are significantly undertrained
• Multiple approaches reveal new optimal parameter/training tokens trade-off

• Approach 1. Fix model sizes and vary number of training tokens

• Approach 2. IsoFLOP profiles (i.e., same FLOP by varying the trade-off)
• Approach 3. Fitting a parametric loss function (with multiple models on different trade-off)

Large Language Models beyond GPT-3 : Chinchilla

18



Algorithmic Intelligence Lab

• Chinchilla [Hoffmann et al., 2022]

• Motivation: current large language models are significantly undertrained
• Multiple approaches reveal new optimal parameter/training tokens trade-off

• Previous LLMs follow the previous optimal trade-off 
• Chinchilla follows new optimal by reducing the model size while increasing training tokens

(to keep same total FLOPs) 

Large Language Models beyond GPT-3 : Chinchilla

19



Algorithmic Intelligence Lab

• Chinchilla [Hoffmann et al., 2022]

• Chinchilla significantly outperforms the previous LLMs
• Results on MMLU [Hendrycks et al., 2020] (Massive Multitask Language Understanding)

• MMLU consists of 57 different tasks 
• 7.6% average improvement → (vs Gopher) 51 wins, 2 ties, 4 loses on 57 tasks 

Large Language Models beyond GPT-3 : Chinchilla

20



Algorithmic Intelligence Lab

• Chinchilla [Hoffmann et al., 2022]

• Chinchilla significantly outperforms the previous LLMs
• Results on BIG-bench [Rae et al., 2021]

• BIG-bench consists of 62 different tasks 
• 10.7% average improvement → (vs Gopher) 57 wins, 1tie, 4 loses on 62 tasks 

Large Language Models beyond GPT-3 : Chinchilla

21



Algorithmic Intelligence Lab

• PaLM (Pathways Language Model) [Chowdhery et al., 2022]

• Pathways: Distributed learning system of google with TPU [Barham et al., 2022]

• Make it possible to efficiently train tremendous parameters with many TPUs (6144 TPUs)
• 540B parameters (largest): 118 Transformer layers with 18,432 hidden dimensions

• Largest Transformer-based language model in the world

• 780B training tokens: smaller than Chinchilla, but 4x larger FLOPs in total

Large Language Models beyond GPT-3 : PaLM

22



Algorithmic Intelligence Lab

• PaLM (Pathways Language Model) [Chowdhery et al., 2022]

• PaLM shows the better performance compared to previous LLMs 
• Hence, it is now used as a standard in google (e.g., PaLM is backbone of BARD) 

• Results on MMLU

• Results on BIG-Bench

Large Language Models beyond GPT-3 : PaLM

23



Algorithmic Intelligence Lab

• LLaMA (Large Language model Meta AI) [Touvron et al., 2023]

• Open foundation LMs by MetaAI under similar approach with Chinchilla
• Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
• With some architectural modification based on previous works (from GPT-3, PaLM)
• But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)

Large Language Models beyond GPT-3 : LLaMA

24



Algorithmic Intelligence Lab

• LLaMA (Large Language model Meta AI) [Touvron et al., 2023]

• Open foundation LMs by MetaAI under similar approach with Chinchilla
• Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
• With some architectural modification based on previous works (from GPT-3, PaLM)
• But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)

• Comparable performance to Chinchilla
• Better performance on 1) zero-shot common sense reasoning and 2) question & answering

Large Language Models beyond GPT-3 : LLaMA

25



Algorithmic Intelligence Lab

• LLaMA (Large Language model Meta AI) [Touvron et al., 2023]

• Open foundation LMs by MetaAI under similar approach with Chinchilla
• Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
• With some architectural modification based on previous works (from GPT-3, PaLM)
• But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)

• Comparable performance to Chinchilla
• Better performance on 1) zero-shot common sense reasoning and 2) question & answering
• Worse performance on popular benchmark in LLMs (MMLU)

Large Language Models beyond GPT-3 : LLaMA

26



Algorithmic Intelligence Lab

• LLaMA 3, 3.1 [Dubey et al., 2024]

• Current state-of-the-art open-source foundation LMs
• Updated: more pre-training data, 128k context length, 405B parameter sizes

• Consequently, it shows the improved performance compared to other models.

• Opened several variants of models {8B, 70B, 405B}
• 405B model’s performance is comparable to SOTA LLMs such as GPT-4 and Claude3.5.

Large Language Models beyond GPT-3 : LLaMA 3

27



Algorithmic Intelligence Lab

1. Preliminary
• Important properties of large language models
• Large language models beyond GPT-3 

2. Building Blocks of Large Language Models  
• Prompt-tuning
• Alignment with human values and intendment
• Retrieval augmentation 

3. Recent Advances of Large Language Models 
• Tool use
• Self improvement 
• Test-time compute
• AI agents 

Overview

28



Algorithmic Intelligence Lab

Some limitations of foundational language models 
• Sensitivity to input prompt

• E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]

Building Blocks of Large Language Models

29



Algorithmic Intelligence Lab

Some limitations of foundational language models 
• Sensitivity to input prompt

• E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]

• Mis-alignment with human values/intention 
• E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]

Building Blocks of Large Language Models

30



Algorithmic Intelligence Lab

Some limitations of foundational language models 
• Sensitivity to input prompt

• E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]

• Mis-alignment with human values/intention 
• E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]

• Hallucination/Difficulty to incorporate up-to-date knowledge
• Hallucination; non-factual but seemingly plausible generation
• Since they are trained on the fixed training dataset

Building Blocks of Large Language Models

31



Algorithmic Intelligence Lab

Some limitations of foundational language models 
• Sensitivity to input prompt → Prompt tuning

• E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]

• Mis-alignment with human values/intention → Alignment
• E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]

• Hallucination/Difficulty to incorporate up-to-date knowledge → Retrieval augment
• Hallucination; non-factual but seemingly plausible generation
• Since they are trained on the fixed training dataset

Building Blocks of Large Language Models

32



Algorithmic Intelligence Lab

• Chain-of-Thought (CoT) [Wei et al., 2022]

• CoT incorporates an intermediate reasoning step in both training/predictions
• Namely, additionally gathering reasoning part of training samples

• Prediction process could be decomposed into 1) reasoning and 2) answering
• Reasoning: Given examples and target input, generating chain-of-thoughts (CoT) 

about the target input 
• Answering: Conditioned on examples, target input and CoT, generating answer sentence

Building Blocks of Large Language Models: Prompt-tuning

33



Algorithmic Intelligence Lab

• Chain-of-Thought (CoT) [Wei et al., 2022]

• CoT incorporates an intermediate reasoning step in both training/predictions
• Results 

• PaLM is the largest LM by Google similar to GPT-3
• e.g., Significant improvement on Grade-school Math Problems (GSM8K)

Building Blocks of Large Language Models: Prompt-tuning

34



Algorithmic Intelligence Lab

• Chain-of-Thought (CoT) [Wei et al., 2022]

• CoT incorporates an intermediate reasoning step in both training/predictions
• Results 

• PaLM is the largest LM by Google similar to GPT-3
• e.g., Significant improvement on Grade-school Math Problems (GSM8K)
• e.g., Better generalization on task

Building Blocks of Large Language Models: Prompt-tuning

35



Algorithmic Intelligence Lab

• Self-consistency (SC) [Wang et al., 2022]

• New decoding strategy to replace the greedy decoding strategy used in CoT
• 1) Multiple answering by sampling different CoTs → 2) Aggregating answers

Building Blocks of Large Language Models: Prompt-tuning

36



Algorithmic Intelligence Lab

• Self-consistency (SC) [Wang et al., 2022]

• New decoding strategy to replace the greedy decoding strategy used in CoT
• It is a simple modification, but significantly effective on many tasks for CoT

• Arithmetic reasoning  

Building Blocks of Large Language Models: Prompt-tuning

37



Algorithmic Intelligence Lab

• Self-consistency (SC) [Wang et al., 2022]

• New decoding strategy to replace the greedy decoding strategy used in CoT
• It is a simple modification, but significantly effective on many tasks for CoT

• Arithmetic reasoning  
• Commonsense and symbolic reasoning

Building Blocks of Large Language Models: Prompt-tuning

38



Algorithmic Intelligence Lab

• CoT incorporates an intermediate reasoning step in examples
• However, collecting step-by-step answer examples might be costly
• Q. Can we substitute the role of these examples with language instruction? 

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• CoT incorporates an intermediate reasoning step in examples
• However, collecting step-by-step answer examples might be costly
• Q. Can we substitute the role of these examples with language instruction?

• A. Yes [Kozima et al., 2022] 

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• Zero-shot CoT [Kojima et al., 2022]: Two-stage prompting
1. Reasoning extraction: “Q: [X]. A: [T]” (prompt) → [Z]

• [X]: input, [T]: hand-crafted trigger sentence (“Let’s think step by step”), [Z]: generated 
sentence (CoT) 

2. Answer extraction: “Q: [X]. A: [T] [Z] [T’]” → [Z’]
• [T’]: trigger sentence to extract answer (“Therefore, the answer is”), [Z’]: generated 

answer

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• Zero-shot CoT [Kojima et al., 2022]: Experimental results
• Zero-shot reasoning (emergent abilities) 

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• Zero-shot CoT [Kojima et al., 2022]: Experimental results
• Zero-shot reasoning (emergent abilities) 
• Ablation study w.r.t different trigger sentence for generating CoT

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• Zero-shot CoT [Kojima et al., 2022]: Experimental results
• Zero-shot reasoning (emergent abilities) 
• Ablation study w.r.t different trigger sentence for generating CoT
• Component-wise improvement

Building Blocks of Large Language Models: Prompt-tuning



Algorithmic Intelligence Lab

• Tree of Thoughts (ToT) [Yao, Shunyu, et al., 2024]

• Generalize  CoT into form of Tree of thought
• Algorithm to find optimal flow of thought

Building Blocks of Large Language Models: Prompt-tuning

45



Algorithmic Intelligence Lab

• Tree of Thoughts (ToT) [Yao, Shunyu, et al., 2024]

• Generalize  CoT into form of Tree of thought
• Algorithm to find optimal flow of thought

• Decompose thought and find the optimal flow through DFS or BFS

Building Blocks of Large Language Models: Prompt-tuning

46



Algorithmic Intelligence Lab

• Tree of Thoughts (ToT) [Yao, Shunyu, et al., 2024]

• Example of search (BFS)
• 1) A thought generates ‘n’ sub-thought at each step
• 2) though are evaluated and only the best ‘b’ samples are left
• 3) Repeat (1) and (2) and finally obtain the result using the best trajectory

Building Blocks of Large Language Models: Prompt-tuning

47



Algorithmic Intelligence Lab

• Tree of Thoughts (ToT) [Yao, Shunyu, et al., 2024]

• Example of search (BFS)
• 1) A thought generates ‘n’ sub-thought at each step
• 2) thoughts are evaluated and only the best ‘b’ samples are left
• 3) Repeat (1) and (2) and finally obtain the result using the best trajectory

• Each thought is evaluated by LLM
• LLM evaluates whether current thinking can produce the final result as 

sure/likely/impossible

Building Blocks of Large Language Models: Prompt-tuning

48



Algorithmic Intelligence Lab

• Tree of Thoughts (ToT) [Yao, Shunyu, et al., 2024]

• Result: ToT clearly achieves high performance compare with other existing prompt 
tuning techniques (i.g. CoT, CoT-SC )

Building Blocks of Large Language Models: Prompt-tuning

49



Algorithmic Intelligence Lab

• Although language modeling is an effective training scheme with unlabeled text 
data, there are remained limitations

• Zero-shot performance is much worsen that Few-shot performance
• Multi-task generalization via LM is indirectly obtained → Suboptimality
• Also, LLMs can produce undesirable outputs, e.g., socially harmful (abuse/bias)

Building Blocks of Foundational Language Models: Alignment

Results on three open-domain QA tasks [Brown et al., 2020]

argmax
✓

log p(x) =
X

n

p✓(xn|x1, . . . , xn�1)
<latexit sha1_base64="qQXfZHgQ6Od2m35+uzTff0FYx/U=">AAADIXicjVFdaxQxFL0dv2rrx2offQkuhS3UZaYIFkQo+NLHCm5baMqSmU23QzOTIcmUXcb5Nf4T33wTX0rpH6iP+gs8iVNRi2iGSW7OPeckNzetVG5dHJ8vRDdu3rp9Z/Hu0vK9+w8e9h493rW6NpkcZVpps58KK1VeypHLnZL7lZGiSJXcS09e+/zeqTQ21+VbN6/kYSGmZX6UZ8IBGvc4F2bKeCFm44a7Y+lEy19ypaesGvBUq4mdF1iaWbvGXjFu62LclKBUP+mDmUfeYU7adT7Rzq575FnSro17/XgYh8GuB0kX9KkbO7p3RpwmpCmjmgqSVJJDrEiQxXdACcVUATukBphBlIe8pJaWoK3BkmAIoCeYp9gddGiJvfe0QZ3hFIXfQMloFRoNnkHsT2MhXwdnj/7Nuwme/m5zrGnnVQB1dAz0X7or5v/qfC2Ojmgz1JCjpiogvrqsc6nDq/ibs1+qcnCogPl4grxBnAXl1TuzoLGhdv+2IuQvA9Ojfp913Jq++Fuiwcmf7bwe7G4Mk3iYvHne34q7Vi/SE3pKA/TzBW3RNu3QCN4fcNpX+ha9jz5Gn6LPP6jRQqdZod9GdPEd/bS1wg==</latexit><latexit sha1_base64="qQXfZHgQ6Od2m35+uzTff0FYx/U=">AAADIXicjVFdaxQxFL0dv2rrx2offQkuhS3UZaYIFkQo+NLHCm5baMqSmU23QzOTIcmUXcb5Nf4T33wTX0rpH6iP+gs8iVNRi2iGSW7OPeckNzetVG5dHJ8vRDdu3rp9Z/Hu0vK9+w8e9h493rW6NpkcZVpps58KK1VeypHLnZL7lZGiSJXcS09e+/zeqTQ21+VbN6/kYSGmZX6UZ8IBGvc4F2bKeCFm44a7Y+lEy19ypaesGvBUq4mdF1iaWbvGXjFu62LclKBUP+mDmUfeYU7adT7Rzq575FnSro17/XgYh8GuB0kX9KkbO7p3RpwmpCmjmgqSVJJDrEiQxXdACcVUATukBphBlIe8pJaWoK3BkmAIoCeYp9gddGiJvfe0QZ3hFIXfQMloFRoNnkHsT2MhXwdnj/7Nuwme/m5zrGnnVQB1dAz0X7or5v/qfC2Ojmgz1JCjpiogvrqsc6nDq/ibs1+qcnCogPl4grxBnAXl1TuzoLGhdv+2IuQvA9Ojfp913Jq++Fuiwcmf7bwe7G4Mk3iYvHne34q7Vi/SE3pKA/TzBW3RNu3QCN4fcNpX+ha9jz5Gn6LPP6jRQqdZod9GdPEd/bS1wg==</latexit><latexit sha1_base64="qQXfZHgQ6Od2m35+uzTff0FYx/U=">AAADIXicjVFdaxQxFL0dv2rrx2offQkuhS3UZaYIFkQo+NLHCm5baMqSmU23QzOTIcmUXcb5Nf4T33wTX0rpH6iP+gs8iVNRi2iGSW7OPeckNzetVG5dHJ8vRDdu3rp9Z/Hu0vK9+w8e9h493rW6NpkcZVpps58KK1VeypHLnZL7lZGiSJXcS09e+/zeqTQ21+VbN6/kYSGmZX6UZ8IBGvc4F2bKeCFm44a7Y+lEy19ypaesGvBUq4mdF1iaWbvGXjFu62LclKBUP+mDmUfeYU7adT7Rzq575FnSro17/XgYh8GuB0kX9KkbO7p3RpwmpCmjmgqSVJJDrEiQxXdACcVUATukBphBlIe8pJaWoK3BkmAIoCeYp9gddGiJvfe0QZ3hFIXfQMloFRoNnkHsT2MhXwdnj/7Nuwme/m5zrGnnVQB1dAz0X7or5v/qfC2Ojmgz1JCjpiogvrqsc6nDq/ibs1+qcnCogPl4grxBnAXl1TuzoLGhdv+2IuQvA9Ojfp913Jq++Fuiwcmf7bwe7G4Mk3iYvHne34q7Vi/SE3pKA/TzBW3RNu3QCN4fcNpX+ha9jz5Gn6LPP6jRQqdZod9GdPEd/bS1wg==</latexit><latexit sha1_base64="qQXfZHgQ6Od2m35+uzTff0FYx/U=">AAADIXicjVFdaxQxFL0dv2rrx2offQkuhS3UZaYIFkQo+NLHCm5baMqSmU23QzOTIcmUXcb5Nf4T33wTX0rpH6iP+gs8iVNRi2iGSW7OPeckNzetVG5dHJ8vRDdu3rp9Z/Hu0vK9+w8e9h493rW6NpkcZVpps58KK1VeypHLnZL7lZGiSJXcS09e+/zeqTQ21+VbN6/kYSGmZX6UZ8IBGvc4F2bKeCFm44a7Y+lEy19ypaesGvBUq4mdF1iaWbvGXjFu62LclKBUP+mDmUfeYU7adT7Rzq575FnSro17/XgYh8GuB0kX9KkbO7p3RpwmpCmjmgqSVJJDrEiQxXdACcVUATukBphBlIe8pJaWoK3BkmAIoCeYp9gddGiJvfe0QZ3hFIXfQMloFRoNnkHsT2MhXwdnj/7Nuwme/m5zrGnnVQB1dAz0X7or5v/qfC2Ojmgz1JCjpiogvrqsc6nDq/ibs1+qcnCogPl4grxBnAXl1TuzoLGhdv+2IuQvA9Ojfp913Jq++Fuiwcmf7bwe7G4Mk3iYvHne34q7Vi/SE3pKA/TzBW3RNu3QCN4fcNpX+ha9jz5Gn6LPP6jRQqdZod9GdPEd/bS1wg==</latexit>

50



Algorithmic Intelligence Lab

• FLAN [Wei et al., 2022]

• Intuition: NLP tasks can be described via natural language instructions
• E.g., “Is the sentiment of this movie review positive or negative?”
• It offers a natural and intuitive way for adapting LM to any task 

• Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
• Remark. Very similar approach is also proposed by other group: T0 [Sanh et al., 2022]

Building Blocks of Foundational Language Models: Alignment

51



Algorithmic Intelligence Lab

• FLAN [Wei et al., 2022]

• Intuition: NLP tasks can be described via natural language instructions
• E.g., “Is the sentiment of this movie review positive or negative?”
• It offers a natural and intuitive way for adapting LM to any task 

• Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
• To increase the diversity, multiple instructions are constructed for each task
• Model output is given as text → each class is mapped to corresponding text

Building Blocks of Foundational Language Models: Alignment

Different instructions (i.e., templates) for given example in NLI task

52



Algorithmic Intelligence Lab

• FLAN [Wei et al., 2022]

• Method: fine-tuning with instructions instead of prompts, i.e., instruction-tuning
• For multi-task generalization, LM is trained with many tasks simultaneously

• There might be an implicit learning with similar task
• To truly measure unseen generalization, relevant tasks are removed when it’s evaluated
• E.g., measure zero-shot on ANLI → remove other 6 NLI datasets for fine-tuning

Building Blocks of Foundational Language Models: Alignment

53



Algorithmic Intelligence Lab

• FLAN [Wei et al., 2022]

• FLAN significantly improves the zero-shot performance on many tasks
• Fine-tuned from LaMDA-PT 137B (Google’s LLM before PaLM)

Building Blocks of Foundational Language Models: Alignment

54



Algorithmic Intelligence Lab

• FLAN [Wei et al., 2022]

• FLAN significantly improves the zero-shot performance on many tasks
• Followings are crucial components for improvement:

1. Number of given instructions during instruction tuning
2. Number of model parameters 
3. Specific ways for giving instructions

• Dd

• Also, FLAN is generalizable with few-shot adaptation

Building Blocks of Foundational Language Models: Alignment

55



Algorithmic Intelligence Lab

• FLAN-PaLM [Chung et al., 2022]

• Scaling up in many aspects, compared to the original FLAN
• Model size: 137B (LaMDA) → 540B (PaLM)
• Number of fine-tuning datasets: 62 datasets → 473 datasets (including CoT datasets) 

Building Blocks of Foundational Language Models: Alignment

56



Algorithmic Intelligence Lab

• FLAN-PaLM [Chung et al., 2022]

• Along with recent techniques of LLMs, it shows significantly improved results
• Chain-of-thought

• It also unlocks the zero-shot reasoning

Building Blocks of Foundational Language Models: Alignment

57

Performance on MMLU Evaluation on multiple benchmarks, e.g., BBH: Big-bench)



Algorithmic Intelligence Lab

• InstructGPT [Ouyang et al., 2022]

• Motivation: Making language models bigger does not inherently make them better 
at following a user’s intent
• e.g., language models can generate untruthful, toxic, or simply not helpful outputs

• Key idea: Aligning language models with user intent by fine-tuning them 
via Reinforcement Learning with Human Feedback (RLHF)

Building Blocks of Foundational Language Models: Alignment

58



Algorithmic Intelligence Lab

• InstructGPT [Ouyang et al., 2022]

• Motivation: Making language models bigger does not inherently make them better 
at following a user’s intent
• e.g., language models can generate untruthful, toxic, or simply not helpful outputs

• Key idea: Aligning language models with user intent by fine-tuning them 
via Reinforcement Learning with Human Feedback (RLHF)

Building Blocks of Foundational Language Models: Alignment

59



Algorithmic Intelligence Lab

• Method of InstructGPT [Ouyang et al., 2022]

1. Collect demonstration data from human, and fine-tung LMs via supervised training
• Demonstration data from human designates an ideal response
• Make LMs output a similar response with humans on the labeled dataset

Building Blocks of Foundational Language Models: Alignment

60



Algorithmic Intelligence Lab

• Method of InstructGPT [Ouyang et al., 2022]

2. Collect comparison data, and train a reward model
• Fine-grained evaluation (comparison) by human is conducted on pair-wise comparison
• Then, another LM, reward model, is trained to mimic such human’s evaluation

• E.g., Preferred sentence by human → High reward 

Building Blocks of Foundational Language Models: Alignment

model’s outputs

61



Algorithmic Intelligence Lab

• Method of InstructGPT [Ouyang et al., 2022]

3. Fine-tuning LMs against the reward model using reinforcement learning
• With new training data, fine-tuning LMs to maximize the reward from reward model
• For better fine-tuning, the recent state-of-the-art RL algorithms is used (PPO)

Building Blocks of Foundational Language Models: Alignment

62



Algorithmic Intelligence Lab

• Results with InstructGPT [Ouyang et al., 2022]

• (left) Evaluation on how well outputs from InstructGPT follow user instructions
• By having labelers compare its outputs to those from GPT-3
• InstructGPT is significantly preferred to both the supervised fine-tuning and GPT-3 models

• (right) Safety measurements
• Compared to GPT-3, InstructGPT produces fewer imitative falsehoods (TruthfulQA) 

and are less toxic (RealToxicity)
• InstructGPT makes up hallucinates less often, and generates more appropriate outputs
• Also, InstructGPT is preferred than other similar state-of-the-art LMs, FLAN and T0

Building Blocks of Foundational Language Models: Alignment

63



Algorithmic Intelligence Lab

• ChatGPT
• Official paper is still unavailable yet.. 
• However, there are some hints in the official blog post of ChatGPT by OpenAI

• Dataset: Dialogue dataset
• Method: InstructGPT

Building Blocks of Foundational Language Models: Alignment

64



Algorithmic Intelligence Lab

• Dialogue dataset
• Key idea: training data highly affects to the output of language model
• Example: Codex [Chen et al., 2021]

• Codex is a GPT language model fine-tuned on publicly available code from GitHub
• It generates standalone Python functions from docstrings

• 159 GB of unique Python files under 1 MB are used for training
• Codex is evaluated on HumanEval dataset

• It is consisted of 164 hand-written problems for measuring functional correctness
• 70.2% of HumanEval is solved with 100 samples per problem

Building Blocks of Foundational Language Models: Alignment

Ex 1) Find the decimal part of the number Ex 2) Find only positive numbers in the list.

65



Algorithmic Intelligence Lab

• Dialogue dataset
• Key idea: training data highly affects to the output of language model
• Example: DIALOGPT [Zhang et al., 2020]

• Same architecture and scale with GPT-2, but trained on dialogue dataset
• Response generation in conversation can be formulated as language modeling
• Dialogue history is used as prompt (start of sequence or condition)
• With this simple modification, language model can work as dialogue system

Building Blocks of Foundational Language Models: Alignment

66



Algorithmic Intelligence Lab

• Dialogue dataset
• Dialogue dataset becomes a key component for recent dialogue system
• BlenderBot3 by MetaAI [Shuster et al., 2022]

• Initialized with 175B parameter transformer (OPT by MetaAI)
• Focusing on better search from internet or history for response generation 

• LaMDA by Google [Thoppilan et al., 2022]
• Up to 137B parameters, pre-trained on 1.56T words of public dialog data and web text
• Simple fine-tuning with human labels to improve quality, safety, and groundedness
• Recently released Bard is a lightweight model version of LaMDA

Building Blocks of Foundational Language Models: Alignment

67



Algorithmic Intelligence Lab

• LLaMA2 [Touvron et al., 2023]

• Following the recipe of InstructGPT, Meta also release LLaMA2 Chat
• LLaMA2 Chat is fine-tuned LLaMA2 using RLHF and Chat datasets

• LLaMA2 Chat shows the best performance among chat variants from open LLMs

Building Blocks of Foundational Language Models: Alignment

68



Algorithmic Intelligence Lab

• DPO [Rafailov, Rafael, et al., 2024]

• Motivation: 
• RLHF is an online learning process that needs a lot of computing cost.
• RLHF pipeline is considerably more complex than supervised learning

• Key idea: 
• Let’s learn preference directly from offline dataset

• Implement the model’s implicit reward using LLM logit
• Directly optimize this using cross entropy loss

Building Blocks of Foundational Language Models: Alignment

69



Algorithmic Intelligence Lab

• DPO [Rafailov, Rafael, et al., 2024]
• Experiment Result: 

• Work better than PPO (i.g. InstructGPT) at sentiment generation, summarization task

• In single turn dialogue tuning, it is more effective than SFT (i.e. preference-FT)

Building Blocks of Foundational Language Models: Alignment

70



Algorithmic Intelligence Lab

• DeepSeek-R1 and DeepSeek-R1-Zero [DeepSeek-AI, et al., 2025]
• Key Idea:

• GRPO: Efficient and stable RL optimization method - without value model.
• Rule-based Reward Score: Uses an accuracy-based verifiable reward to mitigate reward 

hacking and reduce the complexity introduced by reward models.
• Self-evolution Process in DeepSeek-R1-Zero: 

• Self-evolved reasoning capabilities without any supervised data.
• Aha Moment 

• The model spontaneously learns to invest additional reasoning time by reflecting 
upon and refining its initial problem-solving approach.

Building Blocks of Foundational Language Models: Alignment

71



Algorithmic Intelligence Lab

• DeepSeek-R1-Zero [DeepSeek-AI, et al., 2025]
• Performance: 

• RL empowers DeepSeek-R1-Zero to attain robust reasoning capabilities without the nee
d for any supervised fine-tuning data.

Building Blocks of Foundational Language Models: Alignment

72



Algorithmic Intelligence Lab

• DeepSeek-R1-Zero [DeepSeek-AI, et al., 2025]
• Performance: 

• RL empowers DeepSeek-R1-Zero to attain robust reasoning capabilities without the nee
d for any supervised fine-tuning data.

• Advantages: Autonomously achieves advanced reasoning without supervised data, 
reducing dependence on costly annotations.

• Disadvantages: Less suitable for non-reasoning tasks (e.g., writing, role-playing) 
and occasionally produces reasoning outputs with reduced readability.

Building Blocks of Foundational Language Models: Alignment

73



Algorithmic Intelligence Lab

• DeepSeek R1 [DeepSeek-AI, et al., 2025]
• Training pipeline expanded from DeepSeek-R1-Zero:

1. Cold Start: 
• To prevent the early unstable phase of RL from base model, collect a small amount 

of long CoT data to finetune the model as the initial RL actor.
2. Reasoning-oriented RL

• Self-evolving RL training like DeepSeek-R1-Zero.
3. Rejection Sampling and Supervised Finetuning

• Collect SFT from data from the resulting checkpoint of (2).
• This stage incorporate data from other domain to enhance the model’s capabilities 

in writing, role-playing, and other general-purpose tasks.
4. Reinforcement Learning for all Scenarios

• Secondary reinforcement learning stage aimed at improving the model’s helpfulnes
s and harmlessness.

• Utilizes rule-based reward + neural reward models.

Building Blocks of Foundational Language Models: Alignment

74



Algorithmic Intelligence Lab

• DeepSeek R1 [DeepSeek-AI, et al., 2025]
• Training pipeline expanded from DeepSeek-R1-Zero:

1. Cold Start: 
• To prevent the early unstable phase of RL from base model, collect a small amount 

of long CoT data to finetune the model as the initial RL actor.
2. Reasoning-oriented RL

• Self-evolving RL training like DeepSeek-R1-Zero.
3. Rejection Sampling and Supervised Finetuning

• Collect SFT from data from the resulting checkpoint of (2).
• This stage incorporate data from other domain to enhance the model’s capabilities 

in writing, role-playing, and other general-purpose tasks.
4. Reinforcement Learning for all Scenarios

• Secondary reinforcement learning stage aimed at improving the model’s helpfulnes
s and harmlessness.

• Utilizes rule-based reward + neural reward models.

Building Blocks of Foundational Language Models: Alignment

75



Algorithmic Intelligence Lab

• DeepSeek R1 [DeepSeek-AI, et al., 2025]
• Training pipeline expanded from DeepSeek-R1-Zero:

1. Cold Start: 
• To prevent the early unstable phase of RL from base model, collect a small amount 

of long CoT data to finetune the model as the initial RL actor.
2. Reasoning-oriented RL

• Self-evolving RL training like DeepSeek-R1-Zero.
3. Rejection Sampling and Supervised Finetuning

• Collect SFT from data from the resulting checkpoint of (2).
• This stage incorporate data from other domain to enhance the model’s capabilities 

in writing, role-playing, and other general-purpose tasks.
4. Reinforcement Learning for all Scenarios

• Secondary reinforcement learning stage aimed at improving the model’s helpfulnes
s and harmlessness.

• Utilizes rule-based reward + neural reward models.

Building Blocks of Foundational Language Models: Alignment

76



Algorithmic Intelligence Lab

• DeepSeek R1 [DeepSeek-AI, et al., 2025]
• Training pipeline expanded from DeepSeek-R1-Zero:

1. Cold Start: 
• To prevent the early unstable phase of RL from base model, collect a small amount 

of long CoT data to finetune the model as the initial RL actor.
2. Reasoning-oriented RL

• Self-evolving RL training like DeepSeek-R1-Zero.
3. Rejection Sampling and Supervised Finetuning

• Collect SFT from data from the resulting checkpoint of (2).
• This stage incorporate data from other domain to enhance the model’s capabilities 

in writing, role-playing, and other general-purpose tasks.
4. Reinforcement Learning for all Scenarios

• Secondary reinforcement learning stage aimed at improving the model’s helpfulnes
s and harmlessness.

• Utilizes rule-based reward + neural reward models.

Building Blocks of Foundational Language Models: Alignment

77



Algorithmic Intelligence Lab

• DeepSeek R1 [DeepSeek-AI, et al., 2025]
• Performance:

• DeepSeek-R1 demonstrates superior reasoning, instruction-following through extensive 
reinforcement learning, outperforming previous models.

Building Blocks of Foundational Language Models: Alignment

78



Algorithmic Intelligence Lab

• But, LLMs often suffer from some limitations
• Non-factual but seemingly plausible generation, i.e., hallucinations
• Difficulty in integrating up-to-date knowledge

Building Blocks of Foundational Language Models: Retrieval Augment

79

Failure case due to limited knowledgeChatGPT attempts to summarize a non-existent article (dummy URL)



Algorithmic Intelligence Lab

• Retrieval is promising solution by incorporating relevant knowledge 
• E.g., Retrieval-and-read is popular framework to improve QA systems

• Retrieval: find query-relevant documents from external knowledge
• Read: using both question and retrieved passages, answer to question 

Building Blocks of Foundational Language Models: Retrieval Augment

80

Illustration of retriever-and-read system for ODQA[1]

[1] https://lilianweng.github.io/posts/2020-10-29-odqa/



Algorithmic Intelligence Lab

• Retrieval is promising solution by incorporating relevant knowledge 
• E.g., Retrieval-and-read is popular framework to improve QA systems
• Similar idea is also known to be effective to improve LLMs

Building Blocks of Foundational Language Models: Retrieval Augment

81

Illustration of REtrieval-augmented Language Model (REALM)



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• REALM takes input 𝑥 and learn distribution 𝑝(𝑦|𝑥) over possible output 𝑦
• Key idea. REALM decomposes 𝑝(𝑦|𝑥) into two steps:

• Retrieve: given an input 𝑥, retrieve possibly helpful documents 𝑧, i.e., 𝑝(𝑧|𝑥)
• Predict: with both 𝑥 and 𝑧, generate output 𝑦, i.e., 𝑝(𝑦|𝑧, 𝑥)
• Overall likelihood modeling could be formulated as 

Building Blocks of Foundational Language Models: Retrieval Augment

82



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• REALM takes input 𝑥 and learn distribution 𝑝(𝑦|𝑥) over possible output 𝑦
• Key idea. REALM decomposes 𝑝(𝑦|𝑥) into two steps
• Pre-training: masked language modeling, fine-tuning: open-domain QA

Building Blocks of Foundational Language Models: Retrieval Augment

83

Illustration of pre-training (left) and fine-tuning (right)



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Key component: neural knowledge retrieve that models 𝑝(𝑧|𝑥)
• Here, retriever is defined using a dense inner product model:

• For embedding function, BERT is used:   

• All learnable parameters (Transformer, projection layer 𝑊) are denoted by 𝜃

Building Blocks of Foundational Language Models: Retrieval Augment

84



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Key component: Knowledge-augmented Encoder that models 𝑝(𝑦|𝑧, 𝑥)
• Simply, retrieved passage 𝑧 are concatenated with input 𝑥
• For example, masked language modeling for pre-training: 

• For fine-tuning to solve QA, model is trained to match span, i.e., find start/end indices

• All learnable parameters (another Transformer, projection layer 𝑊) are denoted by 𝜙

Building Blocks of Foundational Language Models: Retrieval Augment

85



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Challenge: summation over all documents 

• Solution. Approximation with top-k documents (highest 𝑝(𝑧|𝑥))
• But, naïve calculation of 𝑝(𝑧|𝑥) for all documents is costly.. 

• To mitigate this cost, Maximum Inner Product Search (MIPS) algorithm is used
• MIPS find the approximate top k documents using sub-linear space and running time
• There are several MIPS algorithms → it is orthogonal to this paper (skipped)

Building Blocks of Foundational Language Models: Retrieval Augment

86



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Challenge: summation over all documents 

• Solution. Approximation with top-k documents (highest 𝑝(𝑧|𝑥))
• To mitigate this cost, Maximum Inner Product Search (MIPS) algorithm is used
• For MIPS, pre-computing documents’ embedding is required

• Then, if we update retriever 𝜃, these embeddings become inconsistent with current 𝜃
• Trick. During every several hundred steps, using same embeddings then update 

Building Blocks of Foundational Language Models: Retrieval Augment

87



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Experiments on Open-domain QA benchmarks
• With retrieval augmentation, REALM significantly outperforms much large LM 
• Compared to other retrieval augmentations, REALM’s end-to-end way is mostly effective

Building Blocks of Foundational Language Models: Retrieval Augment

88



Algorithmic Intelligence Lab

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

• Qualitative examples
• (a) BERT fails to fill the masked region __ 
• (c) REAML shows improved accuracy by augmenting retrieved passages 
• (b) If golden passage that answer is exactly given, REALM successfully fill that

Building Blocks of Foundational Language Models: Retrieval Augment

89



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]

• Unlike REALM, ATLAS leverages pre-trained models for retriever and language model
• While REALM also utilized BERT, it is not pre-trained for retrieval
• In contrast, ATLAS directly use pre-trained retrieval model

Building Blocks of Foundational Language Models: Retrieval Augment

90



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]: Retrieval → Contriever [Izacard et al., 2021]

• Goal: measure relevance 𝑠(𝑞, 𝑑) between query 𝑞 and document 𝑑
• 𝑓! is modeled by neural network, e.g., BERT

• Key Idea: Unsupervised training via contrastive learning
• 𝑘": positive document, 𝑘#: negative documents 

• Construct positive pairs by randomly cropping common document 
• For negative pairs, previous batches are used 

as same as MoCo [He et al., 2020]

Building Blocks of Foundational Language Models: Retrieval Augment

91



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]: Language model → Fusion-in-Decoder (FiD) [Izacard et al., 2021]

• Goal: efficiently incorporating retrieved documents with pre-trained LM
• Naively appending N documents is very costly due to quadratic nature of Transformer
• Here, for LM, Transformer encoder-decoder based one is considered, e.g., T5 [Raffel et al., 2019]

• Key Idea: separately encoding documents, then fusing at decoder
• Naïve appending: (𝑁 ∗ 𝐿)$ → FiD: 𝑁 ∗ 𝐿$

• Also, FiD shows outperforming performance in open-domain QA (w/ pre-trained retriever)

Building Blocks of Foundational Language Models: Retrieval Augment

92



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]: Training objective
• Then, Atlas jointly trains Contriever and FiD, similar to REALM

• Remark. Same decomposition is considered, but different retrieval modeling 𝑝(𝑧|𝑥)

• Retrieval modeling: Leave-one-out Perplexity Distillation (LOOP)
• Idea: how much worse the prediction, when removing one of top-k documents

• With LOOP, both Contriver and FiD are fine-tuned using masked language modeling
• They are further fine-tuned to solve specific downstream task, e.g., Open-domain QA

Building Blocks of Foundational Language Models: Retrieval Augment

93



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]: Experiments
• Comparison to state-of-the-art on question answering

• Remark. GPT-3, Gopher, Chinchilla uses prompting, but ATLAS uses fine-tuning for few-shot
• ATALS outperforms both LLMs without retrieval and existing retrieval-augmented LMs

Building Blocks of Foundational Language Models: Retrieval Augment

94



Algorithmic Intelligence Lab

• ATLAS [Izacard et al., 2022]: Experiments
• Comparison to state-of-the-art on MMLU (57 tasks)

• Remark. GPT-3, Gopher, Chinchilla uses prompting, but ATLAS uses fine-tuning for few-shot
• For 5-shot setup, ATLAS outperforms GPT-3 with 16 times smaller parameters
• With full training, ATLAS even can outperform stronger LLMs such as Gopher

Building Blocks of Foundational Language Models: Retrieval Augment

95



Algorithmic Intelligence Lab

1. Preliminary
• Important properties of large language models
• Large language models beyond GPT-3 

2. Building Blocks of Large Language Models  
• Prompt-tuning
• Alignment with human values and intendment
• Retrieval augmentation 

3. Recent Advances of Large Language Models 
• Tool use
• Self improvement 
• Test-time compute
• AI agents 

Overview

96



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]

• Motivation: natural language might be not optimal way to solve given task
• E.g., mathematical reasoning → do LLMs really know how to add/multiplication?

Recent Advances of Large Language Models: Tool-use

97



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]

• Motivation: natural language might be not optimal way to solve given task
• Solution: let LLMs utilize the external tool for given task, e.g., calculator or python

• Idea: generating both language rationale (similar to CoT) and python code together
• Then, final answer is obtained by executing codes (language part will be #comment)

Recent Advances of Large Language Models: Tool-use

98



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]

• Motivation: natural language might be not optimal way to solve given task
• Solution: let LLMs utilize the external tool for given task, e.g., calculator or python
• More examples of prompt

• Mathematical reasoning 

• Symbolic reasoning: Colored objects

Recent Advances of Large Language Models: Tool-use

99



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]: Experiments
• Solve rate (%) on mathematical reasoning tasks 

• Solve rate (%) on symbolic reasoning tasks 

Recent Advances of Large Language Models: Tool-use

100



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]: Experiments
• Ablation studies

• Including language rationale as comment is positive for accuracy (blue > yellow)
• Naming variable with relevant functionality is very important (blue > green)

• Generalization with different sizes and LLMs (on GSM8K)

Recent Advances of Large Language Models: Tool-use

101



Algorithmic Intelligence Lab

• PAL [Gao et al., 2023]: Applications
• This feature is closely related with ChatGPT’s plugin

• Similar intuition with PAL while it’s not open (from instruction-tuning or prompting)

Recent Advances of Large Language Models: Tool-use

102



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]

• More interestingly, foundation model can give feedback and refine itself
• i.e., both feedback & refine are conducted from foundation model with different prompt

Recent Advances of Large Language Models: Self-feedback

103



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]

• More interestingly, foundation model can give feedback and refine itself
• Example: code optimization (single iteration)

1. Initial generation  

Recent Advances of Large Language Models: Self-feedback

104

Input: 

Output: 



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]

• More interestingly, foundation model can give feedback and refine itself
• Example: code optimization (single iteration)

2. Feedback

Recent Advances of Large Language Models: Self-feedback

105

Input: 

Output: 



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]

• More interestingly, foundation model can give feedback and refine itself
• Example: code optimization (single iteration)

3. Refinement

Recent Advances of Large Language Models: Self-feedback

106

Input: 

Output: 

⋮



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]: Experiments
• Overall results

• This framework is well generalized across different LLMs 
• Remark. For each task, specific metric is used, e.g., accuracy or human preference

• Iteration-wise score improvement

Recent Advances of Large Language Models: Self-feedback

107



Algorithmic Intelligence Lab

• Self-refine [Madaan et al., 2023]: Application 

• MCT Self-Refine [zhang et al., 2024]

• Amplify LLM’s mathematical reasoning ability by constructing MonteCarlo search tr
ee through iterative process of Selection, self-refine, self-evaluation, and Backpropa
gation.

• They showed that they can enhance mathematical reasoning  ability even for the s
mall model (LLaMa3-8B)

Recent Advances of Large Language Models: Self-Refine

108



Algorithmic Intelligence Lab

• MCT Self-Refine [zhang et al., 2024]

• MonteCarlo Tree Seach
• Initialization: A root node is established using either a naive model-generated answer 

and a dummy response (e.g., ’I don’t know.’) 
• Selection: Selects the highest-valued node based on value function Q for further 

exploration and refinement using a greedy strategy. 
• Self-Refine: The selected answer a undergoes optimization using the Self-Refine 

framework (Madaan et al., 2023). 
• Self-Evaluation: The refined answer is scored to sample a reward value and compute its 

Q value. This involves model self-reward feedback and constraints such as strict scoring 
standards and suppression of perfect scores to ensure reliability and fairness in scoring. 

• Backpropagation: The value of the refined answer is propagated backward to its parent 
node and other related nodes to update the tree’s value information. If the Q value of 
any child node changes, the parent node’s Q is updated. 

• UCT update: After the Q values of all nodes are updated, we identify a collection C of 
candidate nodes for further expansion or Selection, then use the UCT update formula to 
update the UCT values of all nodes for the next Selection stage. 

Recent Advances of Large Language Models: Self-Refine

109



Algorithmic Intelligence Lab

• MCT Self-Refine [zhang et al., 2024]: Experiments
• GSM Benchmark and MATH Benchmark

• MCTSr algorithm’s potential in academic and problem-solving contexts.

Recent Advances of Large Language Models: Self-Refine

110



Algorithmic Intelligence Lab

• MCT Self-Refine [zhang et al., 2024]: Experiments
• Olympiad level Benchmarks

• Comparison with SOTA closed LLMs
• MCTSr can effectively enhance the mathematical reasoning capabilities of small-paramet

er open-sourece models, like LLaMa-3, to a comparable level.

Recent Advances of Large Language Models: Self-Refine

111



Algorithmic Intelligence Lab

• Limitations of traditional training method
• As the model size grow and training data becomes scarce

• Limited performance gain as scale increase

• Test time computing
• Invest more computing cost in inference to find the answer
• More effective than using training alone
• Generally using reasoning

Recent Advances of Large Language Models: Test Time compute

112

Openai o1 trained use test time computing
comparison of performace versus 

computing cost of training and inference



Algorithmic Intelligence Lab

• Test time Search Algorithm
• There are various search algorithm such as Best-of-N, Beam Search, and DVTS
• Unlike Outcome reward model (ORM) that evaluate only the final result 
• Process reward model (PRM) are necessary for these search

Recent Advances of Large Language Models: Test Time compute

113



Algorithmic Intelligence Lab

• Let’s Verify Step by Step [Lightman, Hunter, et al.., 2023]

• Key idea: 
• Let’s have humans evaluate the model’s response step by step
• Training Process reward model base on the evaluation

Recent Advances of Large Language Models: Test Time compute

114



Algorithmic Intelligence Lab

• Let’s Verify Step by Step [Lightman, Hunter, et al.., 2023]

• Result
• Applying Best-of-N search strategy in Math benchmark
• Achieves performance that significantly exceeds traditional  method

Recent Advances of Large Language Models: Test Time compute

115



Algorithmic Intelligence Lab

• Math-Shepherd [Wang, Peiyi, et al. 2023]

• Problem: 
• Process labeling is more difficult and voluminous than outcome labeling
• Too expensive for humans to label everything

• Key idea: 
• Use the Mote Carlo algorithm
• Compute the probability of future correct answer for the process

Recent Advances of Large Language Models: Test Time compute

116



Algorithmic Intelligence Lab

• Math-Shepherd [Wang, Peiyi, et al. 2023]

• Method
1. Generate initial sentence
2. Each process generated a new N-th sentence
3. Labeling

1. Hard labeling: If any of the generated sub sentence are correct, the probability is set to 1
2. Soft labeling: Use the probability of correct answer in the sub-sentence

Recent Advances of Large Language Models: Test Time compute

117



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]

• Then, what if we simulate human behavior using LLMs?
• Using the history of each human as prompt and allowing actions on environment (Sims)   

Recent Advances of Large Language Models: AI Agents

120



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]

• Then, what if we simulate human behavior using LLMs?
• Using the history of each human as prompt and allowing actions on environment (Sims)   

Recent Advances of Large Language Models: AI Agents

121



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]

• Then, what if we simulate human behavior using LLMs?
• Interestingly, each character powered by LLMs show many different behavior 

depending on given characteristics similar to human 

Recent Advances of Large Language Models: AI Agents

122



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Overview
• Goal: interaction with other agents and react to changes in environment
• Method: agent architecture combining LLMs with novel mechanisms such that 

synthesizing/retrieving relevant information to condition LLMs’ output
• Key feature: Memory stream

Recent Advances of Large Language Models: AI Agents

123



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Memory/Retrieval
• Target challenge. Not all experience is essential & limited context window of LLMs
• Solution: retrieving relevant experience from memory stream of observations

• Observation; event directly perceived by agent (time stamp + language description)

Recent Advances of Large Language Models: AI Agents

124



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Memory/Retrieval
• Target challenge. Not all experience is essential & limited context window of LLMs
• Solution: retrieving relevant experience from memory stream

• Retrieval; consider three features (recency, importance, relevance) 
• Recency: recently happened event has a higher weight 

Recent Advances of Large Language Models: AI Agents

125



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Memory/Retrieval 
• Target challenge. Not all experience is essential & limited context window of LLMs
• Solution: retrieving relevant experience from memory stream

• Retrieval; consider three features (recency, importance, relevance) 
• Importance: rareness of events regardless of given context

Recent Advances of Large Language Models: AI Agents

126



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Reflection
• Target challenge. Retrieval is not enough to describe overall status of agent 
• Solution: high-level summarization regarding current status of agent

• E.g., Agent named Klaus Mueller is highly dedicated to research 

Recent Advances of Large Language Models: AI Agents

127



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Reflection
• Target challenge. Retrieval is not enough to describe overall status of agent 
• Solution: high-level summarization regarding current status of agent
• Step 1. Prompting to obtain questions to gather high-level information of agent

• Used prompt: “Given only the information above (100 recent records), what are 3 most s
alient high- level questions we can answer about the subjects in the statements?” 

• Example responses: “What topic is Klaus Mueller passionate about?” 
& “What is the relationship between Klaus Mueller and Maria Lopez?”

Recent Advances of Large Language Models: AI Agents

128



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Reflection
• Target challenge. Retrieval is not enough to describe overall status of agent 
• Solution: high-level summarization regarding current status of agent
• Step 2. Gather relevant information for question, then prompting to extract status

• Query: “What topic is Klaus Mueller passionate about?” (query)
• Prompt

• Response: “Klaus Mueller is dedicated to his research on gentrification 
(because of 1, 2, 8, 15)”

Recent Advances of Large Language Models: AI Agents

129

retrieved information 



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Planning and Reacting 
• Target challenge. Ensuring that sequence of actions is coherent and believable
• Solution: Top-down and then recursively generate more detailed plans

• First, generating overall plans of whole day from agent’s summary description
• Input prompt:

• Output: “1) wake up and complete the morning routine at 8:00 am, 2) go to Oak Hill Coll
ege to take classes starting 10:00 am, [. . . ], 5) work on his new music composition from 
1:00 pm to 5:00 pm, 6) have dinner at 5:30 pm, 7) finish school assignments and go to b
ed by 11:00 pm”

Recent Advances of Large Language Models: AI Agents

130



Algorithmic Intelligence Lab

• Generative agents [Park et al., 2023]: Technical Details – Planning and Reacting 
• Target challenge. Ensuring that sequence of actions is coherent and believable
• Solution: Top-down and then recursively generate more detailed plans

• Then, creating finer-grained actions (day → hours → 5-15 minute chunks)
• Input prompt: “work on his new music composition from 1:00 pm to 5:00 pm”
• Output: “1:00 pm: start by brainstorming some ideas for his music composition [...] 4:00 

pm: take a quick break and recharge his creative energy before reviewing and polishing h
is composition.”

• In addition, these plans could be updated with reacting
• As the environment is updated in real-time

Recent Advances of Large Language Models: AI Agents

131



Algorithmic Intelligence Lab

• Foundation models in language recently shows tremendous success
• It is often called large language models (LLMs)
• By increasing scale, LLMs obtain intriguing properties such as in-context learning

• But, LLMs still have some limitations and they can be mitigated by
• Carefully designing input prompt
• Or fine-tuning LLMs to impose alignment
• Or incorporating external knowledge via retrieval

• Also, recent LLMs show more interesting capability such as 
• Tool-use 
• Self-feedback
• Test-time compute
• AI agents

Summary

132



Algorithmic Intelligence Lab

[Brown et al., 2020] “Language Models are Few-Shot Learners.” NeurIPS 2020
Link: https://arxiv.org/abs/2005.14165

[Kaplan et al., 2020] “Scaling Laws for Neural Language Models.” arXiv preprint
Link: https://arxiv.org/abs/2001.08361

[Wei et al., 2022] “Emergent Abilities of Large Language Models.” TMLR 2022
Link: https://arxiv.org/abs/2206.07682

[Rae et al., 2021] “Scaling Language Models: Methods, Analysis & Insights from Training Gopher.” arXiv preprint
Link: https://arxiv.org/abs/2112.11446

[Hoffmann et al., 2022] “Training Compute-Optimal Large Language Models.” arXiv preprint
Link: https://arxiv.org/abs/2203.15556

[Chowdhery et al., 2022] “PaLM: Scaling Language Modeling with Pathways.” arXiv preprint
Link: https://arxiv.org/abs/2204.02311

[Barham et al., 2022] “PATHWAYS: Asynchronous Distributed Dataflow for ML., MLSys 2022
Link: https://arxiv.org/abs/2203.12533

[Touvron et al., 2023] “LLaMA: Open and Efficient Foundation Language Models.” arXiv preprint
Link: https://arxiv.org/abs/2302.13971

[Touvron et al., 2023] “Llama 2: Open Foundation and Fine-Tuned Chat Models.” arXiv preprint
Link: https://arxiv.org/abs/2307.09288

[Zhao et al., 2021] “Calibrate Before Use: Improving Few-Shot Performance of Language Models.” ICML 2021
Link: https://arxiv.org/pdf/2102.09690

[Ouyang et al., 2022] “Training Language Models to Follow Instructions with Human Feedback” NeurIPS 2022
Link: https://arxiv.org/abs/2203.02155

References

133

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2203.12533
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/pdf/2102.09690
https://arxiv.org/abs/2203.02155


Algorithmic Intelligence Lab

[Wei et al., 2022] “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models” NeurIPS 2022
Link: https://arxiv.org/abs/2201.11903

[Wang et al., 2023] “Self-Consistency Improves Chain of Thought Reasoning in Language Models” ICLR 2023
Link: https://arxiv.org/abs/2203.11171

[Kozima et al., 2022] “Large Language Models are Zero-Shot Reasoners” NeurIPS 2022
Link: https://arxiv.org/abs/2205.11916

[Wei et al., 2022] “Finetuned Language Models Are Zero-Shot Learners” ICLR 2022
Link: https://arxiv.org/abs/2109.01652

[Chung et al., 2022] “Scaling Instruction-Finetuned Language Models” arXiv preprint
Link: https://arxiv.org/abs/2210.11416

[Zhang et al., 2022] “DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation” ACL 2020
Link: https://arxiv.org/abs/1911.00536

[Shuster et al., 2022] “BlenderBot 3: a deployed conversational agent that continually learns to responsibly 
engage” arXiv preprint
Link: https://arxiv.org/abs/2208.03188

[Thoppilan et al., 2022] “LaMDA: Language Models for Dialog Applications” arXiv preprint
Link: https://arxiv.org/abs/2201.08239

[Guu et al., 2020] “REALM: Retrieval-Augmented Language Model Pre-Training” ICML 2020
Link: https://arxiv.org/pdf/2002.08909

[Izacard et al., 2022] “Atlas: Few-shot Learning with Retrieval Augmented Language Models” TMLR 2022
Link: https://arxiv.org/pdf/2208.03299

References

134

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/1911.00536
https://arxiv.org/abs/2208.03188
https://arxiv.org/abs/2201.08239
https://arxiv.org/pdf/2002.08909
https://arxiv.org/pdf/2208.03299


Algorithmic Intelligence Lab

[Izacard et al., 2021] “Unsupervised Dense Information Retrieval with Contrastive Learning” TMLR
Link: https://arxiv.org/abs/2112.09118

[He et al., 2020] “Momentum Contrast for Unsupervised Visual Representation Learning” CVPR 2020
Link: https://arxiv.org/abs/1911.05722

[Izacard et al., 2020] “Leveraging Passage Retrieval with Generative Models for Open Domain Question 
Answering” EACL 2021
Link: https://arxiv.org/pdf/2007.01282

[Raffel et al., 2019] “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer” JMLR
Link: https://arxiv.org/abs/1910.10683

[Lazaridou et al., 2022] “Internet-augmented Language Models through Few-shot Prompting for Open-domain 
Question Answering” Deepmind
Link: https://arxiv.org/pdf/2203.05115

[Shi et al., 2023] “REPLUG: Retrieval-Augmented Black-Box Language Models” EMNLP 2023 Findings
Link: https://arxiv.org/pdf/2301.12652

[Gao et al., 2023] “PAL: Program-aided Language Models.” ICML 2023
Link: https://arxiv.org/abs/2211.10435

[Madaan et al., 2023] “SELF-REFINE: Iterative Refinement with Self-Feedback.” NeurIPS 2023
Link: https://arxiv.org/abs/2303.17651

[Zhang et al., 2024] “Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with 
LLaMa-3 8B: A Technical Report”
Link: https://arxiv.org/abs/2406.07394

[Yang et al., 2024] “Large Language Models as Optimizers.” ICLR 2024
Link: https://arxiv.org/abs/2309.03409

References

135

https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/1911.05722
https://arxiv.org/pdf/2007.01282
https://arxiv.org/abs/1910.10683
https://arxiv.org/pdf/2203.05115
https://arxiv.org/pdf/2301.12652
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2309.03409


Algorithmic Intelligence Lab

[Lightman, Hunter, et al. 2023] "Let's verify step by step." The Twelfth International Conference on Learning 
Representations. 2023.

Link: https://arxiv.org/abs/2305.20050

[Wang, Peiyi, et al. 2023] "Math-shepherd: Verify and reinforce llms step-by-step without human annotations." arXiv
preprint arXiv:2312.08935 (2023).

Link: https://arxiv.org/abs/2312.08935

[Yuan, Lifan, et al. 2024] "Free process rewards without process labels." arXiv preprint arXiv:2412.01981 (2024).

Link: https://arxiv.org/abs/2412.01981

[Park et al., 2023] “Generative Agents: Interactive Simulacra of Human Behavior.” UIST 2023
Link: https://arxiv.org/abs/2304.03442

[Huang et al., 2023] “Benchmarking Large Language Models As AI Research Agents.” ICLR 2024 Submitted
Link: https://arxiv.org/abs/2310.03302

[Yao, Shunyu, et al] “Tree of thoughts: Deliberate problem solving with large language models.” Neurips 2024
Link: https://arxiv.org/abs/2305.10601

[Rafailov, Rafael, et al] “Direct preference optimization: Your language model is secretly a reward model.” Neurips 2024
Link: https://arxiv.org/abs/2305.18290

[Dubey, et al] “The Llama 3 Herd of Models” Meta Team Technical Report
Link: https://arxiv.org/abs/2407.21783

[Team DeepSeek et al., 2025] “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning” 
arXiv 2025

Link: https://arxiv.org/abs/2501.12948

References

136

https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2407.21783

