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Course Information

• Goal: Cover a very partial subset of recent advances in deep learning under 
perspective of foundation models

• Course homepage: http://alinlab.kaist.ac.kr/ai602_2025_spring.html

• Slides are made by students in Algorithmic Intelligence Laboratory

• Reference papers will be uploaded for each class (we have no textbook)

• Zoom link for the class (throughout the semester)
• https://kaist.zoom.us/j/87338649944

• Office hours: Every Monday, 10:15am-11am, after the class (on demand)

http://alinlab.kaist.ac.kr/ai602_2025_spring.html
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Instructor and TAs

• Instructor: Jinwoo Shin 
• Professor, KAIST AI

• Email: jinwoos@kaist.ac.kr

• TA 
• Yisol Choi, yisol.choi@kaist.ac.kr

• Myungkyu Koo, jameskoo0503@kaist.ac.kr

mailto:jinwoos@kaist.ac.kr
mailto:yisol.choi@kaist.ac.kr
mailto:jameskoo0503@kaist.ac.kr
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Prerequisites

• How much backgrounds do I need?
• This course is not an introductory course to deep learning

• I will cover some backgrounds quickly, but not spend too much time

• For example, I will not teach how to use TensorFlow or PyTorch

• Very sorry, but if you worry about this, please drop the class

• For example, I assume all students know the following concepts
• Supervised, unsupervised and reinforcement learning

• Popular neural architectures (e.g., RNN, CNN, LSTM, GNN, ResNet, Transformers)

• Stochastic gradient descent

• Batch normalization

• Overfitting, underfitting and regularization

• Reparameterization tricks

• Popular generative models (e.g., Diffusion models, GAN, VAE)
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(Tentative) Schedule

• Each Lecture X (X>0) would take a day (or often two or more days)
• Between lectures, there would be paper presentations by students
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• We will provide a list of papers in a Google Sheet by 02/28.

• You have to choose a paper

• The chosen paper is used for your presentation and report 

• You cannot choose a paper chosen by another student (first-come-first-serve)

• If you do not choose your paper until 6pm, 03/02, you will be assigned to a 
random paper.

• Presentation (free format)

• Present the paper’s contents, e.g., motivation, problem, contribution, method, 
experiments, etc.

• Your talk would be around 10-15 minutes, i.e., 10-20 slides.

• You do not need to include your own experimental results

• Presentation schedules will be announced on 03/03.

Assignments: 1 Presentation + 1 Report 
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• Report (free format, e.g., use NeurIPS or CVPR format)

• Try to reproduce some results of the paper

• Try to criticize the weakness of the paper. 

• Try to improve the results of the paper

• Due is on 05/31 (send your pdf to TA via email)

• How to criticize the paper? 

• You can criticize the paper upon your reproduced results

• You can criticize the method fails in a different setup/problem, e.g., if some 
assumption does not hold

• You can criticize the method in a way that it is suboptimal, i.e., there is a 
better method for the same problem

• How to improve the paper? 

• Try to resolve one of criticisms you found by your own idea, with supporting 
experimental results

• At least, you can find better hyper-parameters to improve the results

Assignments: 1 Presentation + 1 Report 

7
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Grading Policy

• Presentation 20% + Report 60% + Attendance 20%
• You will be graded by the absolute scores, and not by the relative rankings. You 

will not compete with anybody.

• You should attend at least 70% of classes (otherwise, 0 credit for attendance).

• The attendance score will be calculated as follows:

Attendance Score = 20 * x if x > 0.7 else 0 

x = (# of attended classes / # of total classes)

• For the attendance criteria for online students, one is considered as "attended" if 
his/her zoom access log is more than 50 minutes and your video is on (for showing 
your face). Otherwise, it is considered as "absent". 

• Please make sure your face is on your camera

• TAs will record the video to check the attendance

• TAs will also check the list of offline students attended for every class

• When you enter in Zoom session, please set your Zoom-name as "[student ID] 
[Name]" (e.g., 20217018 Junsu Kim)

• Please check your student ID and write your name in English 

• If you are using more than two IDs (e.g., for camera), please identify them 
with identifier ,e.g., (camera) 20217018 Junsu Kim
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Foundation Models for Language
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Recent success in Large Language Models (LLMs) relied on training scaling law [1]

• Train LLM by scaling (i) network size (ii) training samples

• For instance, Llama3 405B was pretrained on 15.6 trillion tokens ≈ 30.84M H100 GPU hours [2,3]

Success of Large Language Models (1): Scaling Law

12

[1] Hoffmann et al., Training Compute-Optimal Large Language Models, NeurIPS 2022
[2] https://huggingface.co/blog/llama31
[3] The Llama 3 Herd of Models

https://huggingface.co/blog/llama31


Another key idea is to use post-training (or alignment)

• Pre-training: Learning knowledge about language 

• Post-training: Learning how to interact with human

Success of Large Language Models (2): Post-training

13

Pre-trained model

Post-trained model



The current method faces three major limitations

• 1. Scaling laws heavily rely on high-quality data, which is running out

• 2. Difficult to tackle complex logical reasoning problems (e.g., math, coding)

• 3. Unlike humans, LLMs have limited performance in sequential decision-making problems

Can Current Method Achieve Human/Super Intelligence?

14



Motivation: Scaling laws heavily rely on high-quality data, which is running out

• + Existing datasets are noisy/redundant

Idea: Generate high-quality synthetic datasets with LLMs 

Synthetic Dataset for Pre/Post-training

15[1] The AI revolution is running out of data. What can researchers do? Nature 2024

⋰
Generate

⋰ Train another LLM



Synthetic datasets can significantly improve the performance

• Rephrasing the existing dataset with effective LLM provides a high-quality dataset [1]

• More careful rephrasing (using a knowledge graph) can significantly improve performance [2]

Synthetic Dataset for Pre/Post-training

16

[1] Rephrasing the Web: A Recipe for Compute & Data-Efficient Language Modeling. COLM 2024
[2] Synthetic continued pretraining, ICLR 2025
[3] AI models collapse when trained on recursively generated data, Nature 2024



Synthetic datasets can significantly improve the performance

• Rephrasing the existing dataset with effective LLM provides a high-quality dataset [1]

• More careful rephrasing (using a knowledge graph) can significantly improve performance [2]

Interesting future direction

• An effective pipeline for generating synthetic datasets [2]

• How to prevent model collapse when recursively training on synthetic dataset [3]

Synthetic Dataset for Pre/Post-training

17

[1] Rephrasing the Web: A Recipe for Compute & Data-Efficient Language Modeling. COLM 2024
[2] Synthetic continued pretraining, ICLR 2025
[3] AI models collapse when trained on recursively generated data, Nature 2024



Motivation: Difficult to tackle complex logical reasoning problems (e.g., math, coding)

Idea: Think (or generate reasoning) before you answer

Test-time Scaling for Complex Logical Reasoning

18
[1] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022
[2] Tree of Thoughts: Deliberate Problem Solving with Large Language Models, NeurIPS 2023

Example of Chain-of-thoughts Variants of Chain-of-thoughts



Test-time scaling: Learning to reason at test-time

• Rather than increasing the compute at train-time, increase the test-time compute

Test-time Scaling for Complex Logical Reasoning

19https://openai.com/index/learning-to-reason-with-llms/

Effectiveness of test-time scaling Comparison with non test-time scaling method (gpt4o)

https://openai.com/index/learning-to-reason-with-llms/


Test-time scaling: Learning to reason at test-time

• Rather than increasing the compute at train-time, increase the test-time compute

How can one increase test-time computation? Mainly, two directions exist.

• 1) Increase the chain-of-thought reasoning compute, i.e., long context (OpenAI O1, DeepSeek-R1)

• 2) Increase the number of samples and verify to choose the best one

Test-time Scaling for Complex Logical Reasoning

20
[1] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
[2] https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute  

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute


Test-time scaling might be the key for safety as well (think more before you answer)

Test-time Scaling for Complex Logical Reasoning

21
[1] Universal and Transferable Adversarial Attacks on Aligned Language Models, arXiv 2023
[2] https://openai.com/index/trading-inference-time-compute-for-adversarial-robustness/

More test-time compute
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https://openai.com/index/trading-inference-time-compute-for-adversarial-robustness/


Limitations and future work

• There is no standard way for test-time scaling (i.e., unknown to the community)

• Test-time scaling is quite compute expensive (e.g., natural language is redundant)

Test-time Scaling for Complex Logical Reasoning

22



Limitations and future work

• There is no standard way for test-time scaling (i.e., unknown to the community)

• Test-time scaling is quite compute expensive (e.g., natural language is redundant)

→ Build an effective test-time scaling framework (e.g., DeepSeek-R1 [1])

→ Build an efficient test-time scaling framework (e.g., continuous latent than words [2])

Test-time Scaling for Complex Logical Reasoning

23
[1] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
[2] Training Large Language Models to Reason in a Continuous Latent Space, arXiv 2024



Humans are capable of making a sequential decision

• For example: “Buy me an airplane ticket from Seoul to New York”

LLM-based Agents

24

Action 1: Enter “Seoul” → Action 2: Enter “New York” → Action 3: Click “Search” → … → Action N: Buy ticket  



Humans are capable of making a sequential decision

• For example: “Buy me an airplane ticket from Seoul to New York”

LLMs have limited performance in sequential decision-making problems

• Even state-of-the-art LLM is still far behind humans (2025/01/25 OpenAI Operator results) [1]

This area is still actively discussing what is the root cause of the low performance

LLM-based Agents

25[1] https://openai.com/index/introducing-operator/

https://openai.com/index/introducing-operator/


One possible reason: LLM struggles with complex inputs (e.g., Webpage)

Developing better explanation tools for LLM agents can largely improve the performance

LLM-based Agents

26
[1] Learning to Contextualize Web Pages for Enhanced Decision Making by LLM Agents, ICLR 2025
[2] OmniParser for Pure Vision Based GUI Agent, arXiv 2024

Contextualize/rephrase the webpage to easier text [1] Add a text explanation of the visual input [2]



Scaling LLMs have shown remarkable performance in multiple domains

• Key designs: Use more high-quality datasets and use larger models

Limitations and future works

• The previous success is hard to continue as i) we are running out of data and ii) human/super-

intelligence is hard to achieve with existing datasets.

• 1) Generate high-quality synthetic dataset using LLM yet avoid model collapse

• 2) Improve effective/efficient test-time scaling methods 

• 3) Improve LLM’s sequential decision-making ability

Summary

27



Foundation Models for Video
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Video Foundation Model

29Source: CVPR 2024 Tutorial Diffusion-based Video Generative Model 
https://drive.google.com/file/d/1aApfSW6nzGe41hBTh-ybcEcKYWpEGIoq/view

Video generative models shown remarkable improvement over the years

• The breakthrough was made by Sora from OpenAI

https://drive.google.com/file/d/1aApfSW6nzGe41hBTh-ybcEcKYWpEGIoq/view


Video Foundation Model

30

Video generative models shown remarkable improvement over the years

• The breakthrough was made by Sora from OpenAI

rockefeller center is overrun by golden retrievers! everywhere you look, 

there are golden retrievers.
Digital art of a young tiger.

Source: OpenAI Sora blog (link)

https://openai.com/sora/


Success of text-to-video models are derived from that of text-to-image models:

• Latent Diffusion Model (LDM) [Rombach et al., 2022]

• Compress images/videos into latent space and do generative modeling

Preliminary

31

Latent Diffusion Model framework (Stable Diffusion) 



Success of text-to-video models are derived from that of text-to-image models:

• Latent Diffusion Model (LDM) [Rombach et al., 2022]

• Diffusion Transformer (DiT) [Peebles et al., 2023]

• Transformer architecture with adaptive layer normalization that better scales than U-Net

Preliminary

32

Diffusion Transformer (DiT) architecture



Success of text-to-video models are derived from that of text-to-image models:

• Latent Diffusion Model (LDM) [Rombach et al., 2022]

• Diffusion Transformer (DiT) [Peebles et al., 2023]

• Prompt Upsampling (Dalle-3) [Betker et al., 2023]

• Provide detailed captioning with LLM, reducing noise in image/video captioning dataset

Sora [OpenAI, 2024] first demonstrated impressive results for video generation

• Scaling latent diffusion transformer on joint image and video dataset can generate high-quality video

• After the release of Sora, many open-source and proprietary models were released

Preliminary
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Tencent Hunyuan video [Kong et al., 2024]

• 13B video model with multi-modal LLM (MLLM) + Diffusion backbone (MM-DiT)

• Developed with precise scaling laws for video diffusion transformers [Yin et al., 2024]

Open-source models

34

A person with a computer for a head is writing code 
in front of a computer, in a realistic style.

Left: commonly used T5 encoder
Right: multi-modal LLM for text conditioning



NVIDIA Cosmos-1.0 Diffusion [NVIDIA et al., 2025]

• 7B / 14B video models trained with EDM [Karras et al., 2022] and new tokenizer for fast inference

• Fine-tuned for world model generation (World Foundation Model)

Open-source models

35

A sleek, humanoid robot stands in a vast warehouse filled 
with neatly stacked cardboard boxes on industrial shelves…

Model pipeline for NVIDIA Cosmos-1.0 Diffusion



Meta MovieGen [Polyak et al., 2024] (not open-source, but has technical report)

• 30B model using LLaMa-3 style DiT + LLaMa-3 for prompt upsampling

• Temporal VAE (TVAE) that adapts variable video lengths

Open-source models

36

MovieGen transformer and model parallelizations A fluffy koala bear surfs…



Many video generation products are available through API (but no technical reports)

• Luma AI (DreamMachine, Ray2), RunwayML (Gen-3), Minimax, Kling, Pika, etc.

Proprietary models

37

Luma AI Ray2 RunwayML Gen-3 Alpha

Kling AI



Many video generation products are available through API (but no technical reports)

• Luma AI (DreamMachine, Ray2), RunwayML (Gen-3), Minimax, Kling, Pika, etc.

• Google DeepMind (GDM) Veo 2 is the most advanced model up to date (physics and video quality)

Proprietary models

38

A cinematic shot of a female doctor 
in a dark yellow hazmat suit, 
illuminated by the harsh fluorescent 
light of a laboratory…



Comparison

39



• Frontier video diffusion models share common key designs:

• 3D VAE for video latent compression

• DiT architecture with bidirectional spatial-temporal attention

• joint training on images and videos

• progressive training (increase resolution and temporal length) 

• However, some design choices vary:

• text encoding method: cross-attention vs joint attention, 

• training objective (e.g., diffusion or flow-matching)

• Minor architectural differences

Observations

40



Evaluating video models is very challenging.  

Various benchmarks are proposed for various downstream applications

• High-quality content creation

• Vbench [Huang et al, 2024]: subject consistency, dynamic degree, etc.

• EvalCrafter [Liu et al., 2023]: optical flow, CLIP score, motion quality, etc.

• VideoScore [He et al., 2024]: fine-tuned multimodal LLM to judge video quality

• Video generative model as a simulator

• Do video models follow physical laws?

• PhyGenBench [Meng et al., 2024]: 27 physical laws 160 prompts 

• WorldSimBench [Qin et al., 2024]: video quality + interactive evaluation (video-to-action)

Evaluation

41



GDM Genie 2: generating unlimited diverse training environments for general agents

• Video generation with action controls, long horizon memory, diverse environments, 3D structures

Towards General World Model

42



Scaling video diffusion models can generate high-quality videos from image or text

• Key designs: Latent space, Diffusion Transformer, Joint image-video training

• Many frontier labs have made their own video models (open-source / proprietary)

Limitations and future works

• Computational cost for training & inference

• Lack of evaluation benchmarks (what are the goals of video generative models?)

• Towards general world model

• Action encoded video generation (e.g., Genie 2)

• How to make video models to understand physics?

Summary

43



Foundation Models for Robotics

44



LLM / VLM has shown remarkable success as a generalist foundation model in vision a

nd language domain.

Introduction: Robot Foundation Model

45



Credit: https://www.physicalintelligence.company/blog/pi0

Introduction: Robot Foundation Model

Can we build robot foundation model? 

• Control any robot to perform any task



Credit:https://www.figure.ai/news/helix

Introduction: Robot Foundation Model

Can we build robot foundation model? 

• Control any robot to perform any task



Introduction: Robot Foundation Model

Recent approaches 

• Modular approach: leverage vision / language foundation model as a high-level planner 

• Monolithic approach: train end-to-end vision-language-action model from VLM / LLM



Introduction: Robot Foundation Model

Recent approaches 

• Modular approach: leverage vision / language foundation model as a high-level plan

ner 

• Monolithic approach: train end-to-end vision-language-action model from VLM / LLM



Credit: https://say-can.github.io/

Vision Language Model as a High-Level Planner

LLM can be used as a high-level planner

• SayCan [Ahn et al., 2022]



Credit: https://research.google/blog/unipi-learning-universal-policies-via-text-guided-video-generation/

Vision Language Model as a High-Level Planner

Image / Video generative model can be used a high-level planner 

• UniPI [Du et al., 2023], SuSIE [Black et al., 2023]



Credit: https://say-can.github.io/

Vision Language Model as a High-Level Planner

Vision / Language foundation model as a high-level planner often generates invalid sub

goals because it is not trained on robotic tasks.



Credit: https://say-can.github.io/

Vision Language Model as a High-Level Planner

To understand underlying dynamics, how about training large models using robotics d

ata, which outputs low-level action?



Credit: https://say-can.github.io/

Vision Language Model as a High-Level Planner

To understand underlying dynamics, how about training large models using robotics d

ata, which outputs low-level action?

Recent approaches 

• Modular approach: leverage vision / language foundation model as a high-level planner 

• Monolithic approach: train end-to-end vision-language-action model from VLM / LLM



Credit:

Vision-Language-Action Model

Fine-tune VLM to output low-level actions using robot data 

• RT-2 [Brohan et al., 2023]



Credit: https://octo-models.github.io/

Vision-Language-Action Model

Octo [Ghosh et al., 2024] suggest modular design to support multiple embodiments.



Credit: https://octo-models.github.io/

Vision-Language-Action Model

Octo [Ghosh et al., 2024] proposes shared Transformer backbone and embodiment spe

cific action heads.



Credit: https://www.physicalintelligence.company/blog/pi0

Vision-Language-Action Model

Compared to Octo, Pi-0 [Black et al., 2024] leveraged VLM pre-trained using internet dat

a and flow-matching action model for fast inference.



Credit: https://www.physicalintelligence.company/blog/pi0

Vision-Language-Action Model

Pi-0 [Black et al., 2024] showed promising results as a generalist robotics model.



Summary

Building robot foundation model is emerging research topic

• Leverage VLM / LLM as a high-level planner 

• Train Vision-Language Action (VLA) model 

Limitations 

• Dataset size for robotics is still too small 

• Zero-shot capability is still limited. 

• Fine-tuning is needed to solve complex tasks or new embodiments. 

• Lots of components are under-explored 

• e.g., robotics data curation, action tokenizer
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