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Introduction

Basic knowledge in machine learning & classic model design are assumed:
(e.g., AI501, Al502, Al601 course)

* Machine Learning
* Problems: classification, regression, etc.
» Optimization: stochastic gradient descent (SGD), regularizations, etc.
» Deep Neural Networks: basic structures, representation learning, etc.

* Classic model designs
* Convolutional Neural Networks (CNNs)
* Basic operations: convolution, spatial pooling, etc.
* Design techniqgues: skip-connection, normalization, etc.
 Some notable models: AlexNet, Inception, ResNet, etc.

* Transformers
* Transformer architecture: token data structure, self-attention, etc.



Overview: Convolutional Neural Networks

Convolutional neural networks have been tremendously successful in practical
applications;
Classification and retrieval [Krizhevsky et al., 2012]
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Overview: Convolutional Neural Networks

Neural networks that use convolution in place of general matrix multiplication
* Sharing parameters across multiple image locations

* Translation equivariant (invariant with pooling) operation

Specialized for processing data that has a known, grid-like topology

* e.g., time-series data (1D grid), image data (2D grid)
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*sources :
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Algorithmic Intelligence Lab



https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Overview: Vision Transformers

Vision transformers with self-attention for 2D spatial data also emerged recently

* Shares parameters across multiple image locations
* However, self-attention adapts different weights per each location
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* Very small inductive-bias towards image data; everything is learned from data!
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Overview: Why do we develop CNN architectures?

Typically, designing a CNN model requires some effort
* There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, ...

* Itis costly to measure the performance of each model and choose the best one

Example: LeNet for handwritten digits recognition [LeCun et al., 1998]
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* However, LeNet is not enough to solve real-world problems in Al domain
* CNNs are typically applied to extremely complicated domains, e.g. raw RGB images
* We need to design a larger model to solve them adequately
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Overview: Why do we develop CNN architectures?

Problem: The larger the network, the more difficult it is to design

1. Optimization difficulty
* When the training loss is degraded
* Deeper networks are typically much harder to optimize
* Related to gradient vanishing and exploding

2. Generalization difficulty
* The training is done well, but the testing error is degraded
* Larger networks are more likely to over-fit, i.e., regularization is necessary

* Good architectures should be scalable that solves both of these problems
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*sources :
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
Algorithmic Intelligence Lab - https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted Data.png/300px-Overfitted Data.png 10




Evolution of CNN Architectures

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

* ImageNet dataset: a large database of visual objects
* ~14M labeled images, 20K classes
* Human labels via Amazon MTurk

 Classification: 1,281,167 images for training / 1,000 categories
e Annually ran from 2010 to 2017, and now hosted by Kaggle
e For details, see [Russakovsky et al., 2015]

Person

Algorithmic Intelligence Lab *source : http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png 11
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Evolution of CNN Architectures

ILSVRC contributed greatly to development of CNN architectures

26.17% SIFT + FVs (2012) Trend on ILSVRC classification top-5 error rates
. * 2" place in 2012
* SIFT + Fisher Vectors
* Non-CNN
VGG-Net (2014)

« 2" place in 2014 Batch Normalization (2015)

* By Oxford Visual Geometry Group * By Google

* 19-layer CNN * Preventing internal covariate shift

15.32% GoogleNet (2014) Residual Network (2016)
) 13.51% * 1%t place in 2014 * 1%t place in 2015
11.74% « 24-layer CNN « By MSRA
’ ° * Memory efficient * > 100 layers CNNs via
¢ identity skip connections
AlexNet (2012)
* 15t place in 2012 o v
* 8-layer CNN ZF-Net (2013) 7.33% .
* GPU acceleration * 3" place in 2013 o 6.66%
for training * By Zeiler & Fergus ) 2.99%
* Dropout and RelU * A variant of AlexNet 4.90% e . 2.25%
3.57% .
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Evolution of CNN Architectures

ILSVRC contributed greatly to development of CNN architectures
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Evolution of CNN Architectures: AlexNet [Krizhevsky et al., 2012]

The first winner to use CNN in ILSVRC, with an astounding improvement

* Top-5 error is largely improved: 25.8% — 15.3%
* The 2" best entry at that time was 26.2%

e 8-layer CNN (5 Conv + 3 FC)
» Utilized 2 GPUs (GTX-580 X 2) for training the network

* Split a single network into 2 parts to distribute them into each GPU
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*source : Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012 14



Evolution of CNN Architectures: ZFNet [Zeiler et al., 2014]

A simple variant of AlexNet, placing the 3¢ in ILSVRC’13 (15.3% — 13.5%)
* Smaller kernel at input: 11 X 11 -7 X 7

e Smaller stride at input: 4 = 2
* The # of hidden filters are doubled

Lessons
1. Design principle: Use smaller kernel, and smaller stride

2. CNN architectures can be very sensitive on hyperparameters

image size 224 110 26 13 13 13 - -
filter size 7 J' 3 ¢ 3
1 w384 1 w384 256
I n256 N N
lstride 2 38‘6 3x3 max 3x3 max C
3x3 max pool[ | contras pool| |contrast pool 4096 4096 class
stride 2 norm. stride 2| |norm. stride 2 units units Softmax
3
N7 " @3 6 256
Input Image % 1 '\2‘56 — =
Layer 1 Layer 2 Layer 3 Layer 4 Layer5 Layer6 Layer7 Output

Algorithmic Intelligence Lab *source : Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014 15



Evolution of CNN Architectures

ILSVRC contributed greatly to development of CNN architectures

26.17% Trend on ILSVRC classification top-5 error rates
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GoogleNet (2014)
13.51% * 1%t place in 2014

11.74% * 24-layer CNN
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Evolution of CNN Architectures: VGGNet and GoogleNet

Networks were getting deeper
* AlexNet: 8 layers
* VGGNet: 19 layers
* GoogleNet: 24 layers

Both focused on parameter efficiency of each block
* Mainly to allow larger networks computable at that time
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*sources :

- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014.
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Evolution of CNN Architectures: VGGNet [Simonyan et al., 2014]

The 2" place in ILSVRC’14 (11.7% — 7.33%)

e Designed using only 3 X 3 kernels for convolutions

Lesson: Stacking multiple 3 X 3 is advantageous than using other kernels

Example: ((3%3)X3) v.s. (7X7)
* Essentially, they get the same receptive field
* ((3%3)%3) have less # parameters ]

+ 3x (Cx((3x3)xC)) = 27¢?
« Cx((7X7)XC) = 49C?
* ((3%3)%3) gives more non-linearities
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Next, GooglLeNet

Algorithmic Intelligence Lab *source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 18



Evolution of CNN Architectures: GoogleNet [Szegedy et al., 2015]

The winner of ILSVRC’14 (11.7% — 6.66%)

* Achieved 12X fewer parameters than AlexNet

. B
Inception module

* Multiple operation paths with different receptive fields cfeme
=

e Each of the outputs are concatenated in filter-wise

« Capturing sparse patterns in a stack of features o
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Algorithmic Intelligence Lab *source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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Evolution of CNN Architectures

ILSVRC contributed greatly to development of CNN architectures

26.17% Trend on ILSVRC classification top-5 error rates

Batch Normalization (2015)
* By Google
* Preventing internal covariate shift

Residual Network (2016)
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Batch normalization [loffe et al., 2015]

Training a deep network well had been a delicate task

* It requires a careful initialization, with adequately low learning rate
* Gradient vanishing: networks containing saturating non-linearity

loffe et al. (2015): Such difficulties are come from internal covariate shift
Motivation: “The cup game analogy”
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e Similar problem happens during training of deep neural networks
* Updates in early layers may shift the inputs of later layers too much

*sources :

- loffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch Normalization.pptx
- https://www.quora.com/Why-does-batch-normalization-help
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Batch normalization [loffe et al., 2015]

Batch normalization (BN) accelerates neural network training by eliminating
internal covariate shift inside the network

Idea: A normalization layer that behaves differently in training and testing

Normalize Affine transform

O,
|
=

Vo?te
Training 1B = 57 2
8 0% Jl25’ - ﬁ Zz(mz — IJJB)2
Testing 1 < Eslus], 0* < ;24Egslog] Trainable

1. During training, input distribution of ¥ only dependsonyand f3

* Training mini-batches are always normalized into mean O, variance 1
2. There is some gap between ts and E[uz] (0125,, resp.)

* Noise injection effect for each mini-batch = Regularization effect

*source : loffe et al., “Batch Normalization: Accelerating Deep
Algorithmic Intelligence Lab Network Training by Reducing Internal Covariate Shift”. ICML 2015 23



Batch normalization [loffe et al., 2015]

Batch normalization (BN) accelerates neural network training by eliminating
internal covariate shift inside the network

* BN allows much higher learning rates, i.e. faster training
* BN stabilizes gradient vanishing on saturating non-linearities

* BN also has its own regularization effect, so that it allows to reduce weight decay,
and to remove dropout layers

* BN makes GooglLeNet much easier to train with great improvements

Model Resolution Crops Models Top-1 error Top-5 error
GooglLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Next, ResNet

*source : loffe et al., “Batch Normalization: Accelerating Deep
Algorithmic Intelligence Lab Network Training by Reducing Internal Covariate Shift”. ICML 2015 24



ResNet [He et al., 2016a]

The winner of ILSVRC’15 (6.66% — 3.57%)

* ResNet is the first architecture succeeded to train >100-layer networks
* Prior works could until ~30 layers, but failed for the larger nets

What was the problem?

* 56-layer net gets higher training error than 20-layers network

* Deeper networks are much harder to optimize even if we use BNs
* It’s not due to overfitting, but optimization difficulty

* Quiz: Why is that?

E | 20-layers 36-layers

20 -

£ S6-layer — —
£ - Y

g 56-layers

20-layer

iter. (led)

Algorithmic Intelligence Lab *source : He et al., “Deep residual learning for image recognition”. CVPR 2016
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ResNet [He et al., 2016a]

The winner of ILSVRC’15 (6.66% — 3.57%)

* ResNet is the first architecture succeeded to train >100-layer networks
* Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
* |t’s not due to overfitting, but optimization difficulty
* Quiz: Why is that?

* If the 56-layer model optimized well, then it must be better than the 20-layer
* There is a trivial solution for the 36-layer: identity

E | 20-layers 36-layers

20 -

£ S6-layer —~ —
= - v

g 56-layers

20-layer

. iter. (1ed)

Algorithmic Intelligence Lab *source : He et al., “Deep residual learning for image recognition”. CVPR 2016 26



ResNet [He et al., 2016a]

Motivation: A non-linear layer may struggle to represent an identity function
* Due to its internal non-linearities, e.g. ReLU
* This may cause the optimization difficulty on large networks

Idea: Reparametrize each layer to make them easy to represent an identity
* When all the weights are set to zero, the layer represents an identity

xl X

weight layer weight layer
l refu F(x) l relu identity
weight layer weight layer X
l relu
H(x) H(x)=F(x)+«x

Algorithmic Intelligence Lab *source : He et al., “Deep residual learning for image recognition”. CVPR 2016 27



ResNet [He et al., 20164a]
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*sources :
- He et al., “Deep residual learning for image recognition”. CVPR 2016
Algorithmic Intelligence Lab - He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016. 28



ResNet [He et al., 2016a]

* ldentity connection resolved a major difficulty on optimizing large networks

Revolution of depth: Training >100-layer network without difficulty
e Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b]

* ResNet also shows good generalization ability as well

28.2

152 layers| Revolution of
A depth

\ 16.4

22 Iayers I ‘ 19 Iayers

357 I

ILSVRC'15 | ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'1l1 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

*sources :
- He et al., “Deep residual learning for image recognition”. CVPR 2016

- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
Algorithmic Intelligence Lab - He et al. "Identity mappings in deep residual networks.", ECCV 2016 29



ResNet oriented architectures

Various architectures now are based on ResNet

ResNet with stochastic depth [Huang et al., 2016]
Wide ResNet [Zagoruyko et al., 2016]

X
ResNet in ResNet [Targ et al., 2016] weigh"glayer
ResNeXt [Xie et al., 2016] F(x) ol dentity

Inception-v4 [Szegedy et al., 2017]
DenseNet [Huang et al., 2017]
Dual Path Network [Chen et al., 2017]

H(x)=F(x)+x

Transition of design paradigm: Optimization = Generalization

People are now less concerned about optimization problems in a model
Instead, they now focus more on its generalization ability
“How well does an architecture generalize as its scale grows?”

*source : He et al., “Deep residual learning for image recognition”. CVPR 2016 30



ResNet oriented architectures

Wide Residual Networks [Zagoruyko et al., 2016]
* Residuals can also work to enlarge the width, not only its depth
» Residual blocks with Xk wider filters
* |Increasing width instead of depth can be more computationally efficient
* GPUs are much better on handling "wide-but-shallow" than "thin-but-deep”
* WRN-50 outperforms ResNet-152

Deep Networks with Stochastic Depth [Huang et al., 2016]
* Randomly drop a subset of layers during training
* Bypassing via identity connections
* Reduces gradient vanishing, and training time as well

*source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University 31



ResNet oriented architectures

256-d out

ResNeXt [Xie et al., 2016]

e Aggregating multiple parallel paths inside a
residual block (“cardinality”)

* Increasing cardinality is more effective than
going deeper or wider

DenseNet [Huang et al. 2017]

* Passing all the previous representation
directly via concatenation of features t

* Strengthens feature propagation and
feature reuse

256-din

Dense Block 1 Dense Block 2 Dense Block 3

V

Source layer (s)
o -4 o™ w

Transition layer 1 Transition layer 2
2 4 & 8 1 12 2 4 6 8 10 12 2 4« 8 & 10 12

Target layer (/) Target layer (/) Target layer (/) Dense Block

Classification layer

Algorithmic Intelligence Lab *source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University 32



ResNet oriented architectures

ResNeXt [Xie et al., 2016]
* Aggregating multiple parallel paths inside a residual block (“cardinality”)

* |Increasing cardinality is more effective than going deeper or wider

DenseNet [Huang et al. 2017]
* Passing all the previous representation directly via concatenation of features

* Strengthens feature propagation and feature reuse

Results on ImageNet

26 @@ ResNet 26 @—@® ResNet
O-0 ResNeXt O0-0 ResNeXt
25 @@ DenseNet (original) 25 @@ DenseNet (original)
R BHE DenseNet (efficient) - BHE DenseNet (efficient)
) 924 DenseNet cosine (efficient) S 94 Ye-% DenseNet cosine (efficient)
= < o) = < yA
S Pl S \
t ¢ ahk\\\ ’;: ¢
Y 23 N @ 23 3
~ \D ~ B0
B 22 . & 22 - G
2Sv i %
DenseNet \“‘\ DenseNet \W‘\\
21 Cosine-264 (k=32) 21 Cosine-264-(k=32)
20 DenseNet Cosine-264 (k=48) g 20 DenseNet Cosine-264 (k=48) °
0 1 2 3 4 B) 6 7 8 9 0 B) 10 15 20 25 30 35
# Parameters x10° # GFLOPs

Algorithmic Intelligence Lab *source : Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University = 33
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Squeeze and Excitation Module [Hu et al., 2018]

Motivation: The deeper the model, the more feature maps are generated
* Many of them might be important for classification task
* Others might redundant or less important

Squeeze and Excitation Network [Hu et al., 2018]

* |t selectively emphasizes informative feature maps and suppress less useful ones via
global information in two steps

* Squeeze step: obtaining global information by shrinking feature maps
* Global average pooling

* Excitation step: recalibrating weights of features by learning channel-wise weights
* MLP of two fully-connected layers

Fe (W)

Fy, () [T ——— T
/ IxIxC xIxC \
H

H Ficale (-,") R

ol

X

C C

Algorithmic Intelligence Lab *source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018 35



Squeeze and Excitation Module [Hu et al., 2018]

Motivation: The deeper the model, the more feature maps are generated
* Many of them might be important for classification task
* Others might redundant or less important

SE block integrates to Inception and ResNet module
* SENet ranked first in the ILSVRC’17 (2.99% — 2.25%)

X X X /‘ X
Inception Inception HX WX C Residual Residual HxWxC
X : Global pooling
Global pooling Ix1xC "l 1x1xC
Inception Module T i < 3
, C
FC 1 1 (' FC l X 1 X —
T xAx= ResNet Module 3 r
. ReLU ¢
C et
ReLU 1x1x— T bxixs
! " FC
1x1xC
FC 1x1xC ]
_ : : Sigmoid Ix1xcC
Sigmoid 1x1xC
Scal
cae HxWxC
Scale HxWxC
HxWxC
X X
SE-Inception Module SE-ResNet Module

Algorithmic Intelligence Lab *source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018 36



Squeeze and Excitation Module [Hu et al., 2018]

Motivation: The deeper the model, the more feature maps are generated

* Many of them might be important for classification task

* Others might redundant or less important

SE block integrates to Inception and ResNet module

* SENet ranked first in the ILSVRC’17 (2.99% — 2.25%)

original re-implementation SENet
top-l err. | top-5err. | top-lerr. | top-5err. | GFLOPs top-1 err. top-5 err. GFLOPs
ResNet-50 [13] 24.7 7.8 24.80 7.48 3.86 23.29(1.51) 6.62(0.86) 3.87
ResNet-101 [13] 23.6 Tl 23.17 6.52 7.58 22.38(0.79) 6.07 0.45) 7.60
ResNet-152 [13] 23.0 6.7 22.42 6.34 11.30 21.57(¢.85) 5.73(0.61) 11.32
ResNeXt-50 [19] 992 - D911 5.90 4.24 21.10(; o1) 5.49(0.41 4.25
ResNeXt-101 [19] 21.2 5.6 21.18 5.57 7.99 20.70(0.48) 5.01(0.56) 8.00
VGG-16 [11] . . 27.02 8.81 15.47 25.22(; g0) 770111 15.48
BN-Inception [6] 25.2 7.82 25.38 7.89 2.03 24.23(1.15) 7.14(9.75) 2.04
Inception-ResNet-v2 [21] 19.97 4.91 20.37 5.21 11.75 19.80(0.57) 4.79(0.42) 11.76

Algorithmic Intelligence Lab

Next, Convolutional Block Attention Module

*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018 37




Convolutional Block Attention Module [Woo et al., 2018]

Motivation: SENet only considers the contribution of feature maps
* |tignores the spatial locality of the object in image
* The spatial location of the object has a vital role in understanding image

Convolutional Block Attention Module (CBAM) [Woo et al., 2018]
* Learning ‘what’ and ‘where’ to attend in the channel and spatial axes respectively
* Channel and Spatial attention modules

Convolutional Block Attention Module

Channel 4 1) _
Input Feature Attention Spatial Refined Feature

Module Attention

— . Module
\o/ B

*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018 38



Convolutional Block Attention Module [Woo et al., 2018]

Motivation: SENet only considers the contribution of feature maps
* |tignores the spatial locality of the object in image
* The spatial location of the object has a vital role in understanding image

Channel attention module: It helps “what” to focus
* Both average-pooling and max-pooling are important
* Max-pooling provides the information of distinctive object features
* Both pooled features share a MLP with two fully-connected layers

f Channel Attention Module \

ﬁ =
< akles \ \ @@_C:annel Attention

Shared MLP M. )

\Input feature F

M. (F) = c(MLP(AvgPool(F)) + MLP(MaxPool(F)))

Algorithmic Intelligence Lab *source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018 39



Convolutional Block Attention Module [Woo et al., 2018]

Motivation: SENet only considers the contribution of feature maps
* |tignores the spatial locality of the object in image

* The spatial location of the object has a vital role in understanding image

Spatial attention module: It helps “where” to focus
e Again, Both average-pooling and max-pooling are important

* |t aggregates channel information of feature maps by using two pooling operations
* Capturing spatial locality via convolution

r/”

\

Channel-refined [MaxPool, AvgPool] Spatial Attention )

feature F

Spatial Attention Module \

conv
-O-

layer

Ms

M;(F) = o(Conv(|AvgPool(F); MaxPool(F)]))

Algorithmic Intelligence Lab

*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018 40



Convolutional Block Attention Module [Woo et al., 2018]

Motivation: SENet only considers the contribution of feature maps

* Itignores the spatial locality of the object in image
* The spatial location of the object has a vital role in understanding image

CBAM module integrated with ResNet outperforms SE module

Toilet tissue

Loudspeaker

ResNet50

ResNet50
+SE

P=0.14643 P=0.77550

ResNet50
+ CBAM

P =0.96340 P =0.19994 P =0.93707

Architecture |Param.|GFLOPs|Top-1 Error (%)|Top-5 Error (%)
ResNet18 [7] 11.69M| 1.814 29.60 10.55
ResNet18 [5] + SE [29] 11.78M| 1.814 29.41 10.22
ResNet18 [5] + CBAM 11.78M| 1.815 29.27 10.09
ResNet34 [5 21.80M| 3.664 26.69 8.60
ResNet34 [5] + SE [25] 21.96M| 3.664 26.13 8.35
ResNet34 [5] + CBAM 21.96M| 3.665 25.99 8.24
ResNet50 |5 25.56M| 3.858 24.56 7.50
ResNet50 [5] + SE [29] 28.09M| 3.860 23.14 6.70
ResNet50 [5] + CBAM 28.09M| 3.864 22.66 6.31
ResNet101 [7] 44.55M| 7.570 23.38 6.88
ResNet101 [5] + SE [25] 49.33M| 7.575 22.35 6.19
ResNet101 [5] + CBAM 49.33M| 7.581 21.51 5.69
WideResNet18 [6] (widen=1.5) 25.88M| 3.866 26.85 8.88
WideResNet18 [6] (widen=1.5) + SE [25](26.07TM| 3.867 26.21 8.47
WideResNet18 [6] (widen=1.5) + CBAM 26.08M| 3.868 26.10 8.43
WideResNet18 [0] (widen—2.0) 15.62M| 6.696 25.63 8.20
WideResNet18 [6] (widen=2.0) + SE [25]|45.97M| 6.696 24.93 7.65
WideResNet18 [6] (widen=2.0) + CBAM|45.97M| 6.697 24.84 7.63
ResNeXt50 [7] (32x4d) 25.03M| 3.768 22.85 6.48
ResNeXt50 [7] (32x4d) + SE [28] 27.56M| 3.771 21.91 6.04
ResNeXt50 [7] (32x4d) + CBAM 27.56M| 3.774 21.92 5.91
ResNeXt101 [7] (32x4d) 44.18M| 7.508 21.54 5.75
ResNeXt101 [7] (32x4d) + SE [25] 48.96M| 7.512 21.17 5.66
ResNeXt101 [7] (32x4d) + CBAM 48.96M| 7.519 21.07 5.59

Grad-CAM visualization

*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Shift in Vision Architectures: Transformer architecture

Success of Transformer in Language: GPT-3
* |n 2020, GPT-3 achieved near-human results in various tasks

* OpenAl even trained a model with 175 billion parameters (350 GB of memory) and
showed near-human performance on various few-shot tasks

*source : https://youtu.be/CSe3 u9P-RM

Algorithmic Intelligence Lab Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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Shift in Vision Architectures: Transformer architecture

What is Transformer?

* Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are
composed of multiple block with self-attention module

( Softmax )

i@
N ( Lin:ar )
x Ty DECODER #2
S t 4
z - :-»( Add & Normalize
) E: E ( Feed Forward ) ( Feed Forward )
(O B P R T ey )
3 E ,*( Add & Normalize )
| ¥ | E i
o~ E ( Feed Forward ) ( Feed Forward ) """ :"( Encoder-Decoder Attention )
=l Ay v — 2 Yee e )
g e Add & Normalize ) »( Add & Normalize )
E ( Self-Attention ) E ( Self-Attention )
S p— 5 T S 3
X1 X2v |
Thinking Machines

Algorithmic Intelligence Lab *source: http:// http://jalammar.github.io/illustrated-transformer 44



Shift in Vision Architectures: Transformer architecture

What is Transformer?

* Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are
composed of multiple block with self-attention module

* The self-attention is a function of query (e.g., “Je”) and key/value (e.g., “”)
* |t shows powerful performances in learning sequential input-output relations

Je suis étudiant </s>
Ji‘* A A 0
attention ----------
vector
attention <=

context
vector

it

Key/value

am a student <s> Je suis étudiant

Algorithmic Intelligence Lab
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Shift in Vision Architectures: Transformer architecture

Attention mechanism can be used for other type of input data, e.g. image

* Self-attention operation scales quadratically with the sequence length

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) 0(1)

Recurrent O(n - d*) O(n) O(n)

Convolutional O(k-n - d?) 0(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Question: How to transform an image to sequence data?

* Dosovitskiy et al. (2021): splits an image into patches

SN
o ——~ O
= i - Iike A ‘~ <A ik =
W W. E Sequence of patch images

*source: [Chen et al. 2020] Generative Pretraining from Pixels, ICML 2020
Algorithmic Intelligence Lab [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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Vision Transformer [Dosovitskiy et al., 2021]

Vision Transformer [Dosovitskiy et al., 2021]
* Splitting an image into fixed-size patches (16x16)
e Linearly embedding each of them
* Adding position embedding & [class] token

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

e - g 0 @)

* Extra learnable
[class] embedding

ST

pewm—— N

Algorithmic Intelligence Lab

*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Linear Projection of Flattened Patches

I I N

Transformer Encoder

2]

Norm

7l

Multi-Head
Attention

5 3

Norm

Embedded
Patches

)
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Vision Transformer [Dosovitskiy et al., 2021]

Vision Transformer [Dosovitskiy et al., 2021]
* Splitting an image into fixed-size patches (16x16)
e Linearly embedding each of them
* Adding position embedding & [class] token

* Dosovitskiy et al. (2021) pre-trains models on larger datasets (14M-300M images)
* Vision Transformer achieves competitive performances compared to CNNs

Input  Attention

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) | |(ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54+0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102 | 99.68 +0.02 99.74+0.00 99.61+0.02 99.63 £0.03 —
VTAB (19 tasks) 77.63+0.23 76.28+046 72.72+0.21 76.29 +1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Vision Transformer CNNs

Algorithmic Intelligence Lab

*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021 48



Vision Transformers

Various architectures now are based on Vision Transformer

1. Modification for patch splitting
* Token-to-Token Vision Transformer [Li et al., 2021]
* Swin Transformer [Liu et al., 2021]

2. Modification for hierarchical structure
* Pooling-based Vision Transformer [Heo et al., 2021]
* Swin Transformer [Liu et al., 2021]

Question: What's a good way to split an image into a sequence of patches?

* Vision Transformer splits an image into a fixed grid-shape of non-overlapping patches

4] ek

'
v dul) . 7 N
W w E Sequence of patch images

Algorithmic Intelligence Lab *source : He et al., “Deep residual learning for image recognition”. CVPR 2016 49



Token-to-Token Vision Transformer [Li et al., 2021]

Token-to-Token Vision Transformer [Li et al., 2021]
* (Soft-split) Splitting an image into overlapping patches
* (Re-structurization) Rearranging patch sequences into 2D image shape
* Iterating re-structurization and soft-split before Transformer backbone

Tokens-to-Token module T2T-ViT Backbone

Image
224 x 224

7 Fixed Tokens

7 Unfold +PE

+

cls token

-
N
-
=
QU
>
7
—ry
o
-
3
o
=

Jauuojsuer] 1zl
J9Ae| Jawuoysuel
J9Ae| Jdwuioysueld|

T;
class

Algorithmic Intelligence Lab *source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 50



Token-to-Token Vision Transformer [Li et al., 2021]

Token-to-Token Vision Transformer [Li et al., 2021]

* (Soft-split) Splitting an image into overlapping patches
* (Re-structurization) Rearranging patch sequences into 2D image shape
* Iterating re-structurization and soft-split before Transformer backbone

Image
224 x 224

7

Algorithmic Intelligence Lab

Unfold .
______—’ :

Tokens-to-Token module T2T-ViT Backbone

____________________________________________ — pr o s

! B :

~ i Tokens to Token '

— L :
5 ; 4 ' =
S = 7. 4 B
= o . J w ! g
= 1 i
. "H 7 E
3 B . S
) ' ' 2

Ny ! Ti+| :

J

stepl: re-structurization

step2: soft splitl

next T2T

*source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
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Pooling-based Vision Transformer [Heo et al., 2021]

Pooling-based Vision Transformer [Heo et al., 2021] /
 Design of a hierarchical structure |
* Motivation: ResNet gradually downsamples 22224
the features from the input to the output
* Downsampling via the pooling layer based on /
depth-wise convolution (a) ResNet-50

e Spatial reduction with small parameters

Spatial tokens
/ (14x14)x384
\\
Spatial tokens Spatial tokens \
- \ 224x224
(wxh)xd (w h) g \ x3
—X=)X2 \ Class token
wXxhxd w h \
=% 5x2d z 2 = = = = = =
1x384
Depth-wise N\
Reshape Convolution Reshape \
\ (b) VIT-S/16
—> —> x
\
\\ : b
\\ @7x27)x144 Spatial tokens
\ 1 1
/ ! (14x14)x288 X OxT)x576
\ 1 1
\ ] 1
224x22 ! X
1
— 1xd Fully-connected layer 1x2d S N : 1
D L > I: : Class token :
Y T =
Class token Class token 1x14 . 1x288 ! 1x576
Pooling Pooling

(c) PiT-S

Algorithmic Intelligence Lab *source: [Heo et al. 2021] Rethinking Spatial Dimensions of Vision Transformers , ICCV 2021 52



Swin Transformer [Liu et al., 2021]

Swin Transformer [Liu et al., 2021]

| e

Design of a hierarchical structure
Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
Efficient self-attention computation by using shifted windows scheme
Concatenating 2 x 2 neighboring patches for downsampling operation
Powerful performances in dense prediction tasks

e.g., object detection and semantic segmentation

Shifted window scheme
segmentation . _
classiﬁcation detection ... classification Layer | Layer 1+1

ZZz | i -

;ZZZ?///

LB

WEE{’./' jr%fr{ Z 2 4>< —_— / . 716X
Wi, - o

L R T
(a) Swin Transformer (ours) (b) ViT

A local window to A patch
perform self-attention

Algorithmic Intelligence Lab *source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
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DeiT lll [Touvron et al., 2022]

Question: Do vision transformers need some inductive bias under small data?
* Vision transformers achieved state-of-the-art performances but...
e Required gigantic-scale training with JFT-300M data
e Sub-optimal performance under the ImageNet-scale training
* Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16) | (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 | 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 33.62+0.05 90.54 90.50
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 -
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 -
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61+0.02 99.63 +0.03 -
VTAB (19 tasks) 77.63+023 76.28+046 72.72+0.21 76.29 +1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Algorithmic Intelligence Lab

*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017 54



DeiT lll [Touvron et al., 2022]

Motivation: Do vision transformers need some inductive bias under small data?
* Vision transformers achieved state-of-the-art performances but...

e Required gigantic-scale training with JFT-300M data

e Sub-optimal performance under the ImageNet-scale training

* Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

DeiT lll [Touvron et al., 2022] finds that vanilla vision transformer can outperform

CNNs in ImageNet-scale:

* The problem was in the sub-optimal optimization designs

* LayerScale
* Improved data augmentations
could solve the optimization issues

Check the paper for details!

l

Previous approaches

Ours

Procedure — ViT Steiner DeiT ~ Wightman | ImNet-1k ImNet-21k
Reference [13] etal. [42] [48] etal. [57] Pretrain.  Finetune.
Batch size 4096 4096 1024 2048 2048 2048 2048
Optimizer AdamW AdamW AdamW  LAMB LAMB LAMB LAMB
LR 3.107° 3.1073 1.1073 5.107% 3.107* 3.107% 3.107*
LR decay cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.1 03 0.05 0.02 0.02 0.02 0.02
Warmup epochs 34 34 5 5 5 5 5
Label smoothing & 0.1 0.1 0.1 0.1 0.1
Dropout v v

Stoch. Depth v v v v v 4
Repeated Aug v v v

Gradient Clip. 1.0 1.0 1.0 1.0 1.0 1.0
H. flip v 4 4 v 4 4 4
RRC 4 4 v v v

Rand Augment Adapt. 9/0.5 7/0.5

3 Augment (ours) v v v
LayerScale v v v
Mixup alpha Adapt. 0.8 0.2 0.8

Cutmix alpha 1.0 1.0 1.0 1.0 1.0
Erasing prob. 0.25

ColorJitter 03 03 03
Test crop ratio | 0875 0.875 0.875 095 | 1.0 1.0 1.0
Loss | CE CE CE BCE | BCE CE CE

*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017 55



DeiT lll [Touvron et al., 2022]

Motivation: Do vision transformers need some inductive bias under small data?
* Vision transformers achieved state-of-the-art performances but...
e Required gigantic-scale training with JFT-300M data
e Sub-optimal performance under the ImageNet-scale training
* Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

DeiT lll [Touvron et al., 2022] finds that vanilla vision transformer can outperform
CNNs in ImageNet-scale:

Architecture nb params throughput FLOPs Peak Mem | Top-1 V2 Vision Transformers derivative
6 : 9
(x10°)  (im/s)  (x10°)  (MB) | Acc. Acc. g B3] 87.8 532 154 4695 | 852 746
“Traditional” ConvNets il 1] 1965 a5 70| 863 763
WIn- o R . R o
g'ig;"figg [52] ggg - ggég - gg-i - Swin-L1384 [31] 196.7 100 1039 33456 | 873 770
-152x4t [25] - ’ - : = Vanilla Vision Transformers

EfficientNetV2-51384 [45] 215 874 8.5 4515 | 849 | 745 VAT-B/16 [42 86.6 831 17.6 2078 | 84.0
EfficientNetV2-M1480 [45]  54.1 312 25.0 7127 | 862 | 75.9 ViT_leéT[%i (4] 867 190 55.5 8956 | 855
EfficientNetV2-L1480 [45] 118.5 179 53.0 9540 | 86.8 | 76.9 ViT-L/16 [42] 304.4 277 61.6 3789 | 84.0
EfficientNetV2-XL1512 [45] 208.1 - 94.0 _| 873 ) 77.0 ViT-L /161384 [42] 304.8 67 191.1 12866 | 85.5

Patch-based ConvNets Our Vanilla Vision Transformers
ConvNeXt-B [32] 88.6 563 154 3029 | 8.8 | 75.6 ViT-S 22.0 1891 4.6 987
ConvNeXt-B1384 [32] 88.6 190 45.1 7851 | 86.8 | 76.6 ViT-B 86.6 831 17.6 2078
ConvNeXt-L [32] 197.8 344 34.4 4865 | 86.6 | 76.6 ViT-B1384 86.9 190 55.5 8956
ConvNeXt-L1384 [32] 197.8 115 101 11938 | 875 | 77.7 ViT-L 304.4 277 61.6 3789
ConvNeXt-XL [32] 350.2 241 60.9 6951 | 87.0 | 77.0 VIT-L1384 304.8 67 191.2 12866
ConvNeXt-XL1384 [32] 350.2 80 179.0 16260 | 87.8 | 777 ViTH 632.1 112 L 6984

Algorithmic Intelligence Lab *source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017 56
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* Toward automation of network design

* Flexible architectures

e Observational study on network architectures
* Deep spatial-temporal models
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Toward Automation of Network Design

Although the CNN architecture has evolved greatly, our design principles are still
relying on heuristics

* Smaller kernel and smaller stride, increase cardinality instead of width ...

Recently, there have been works on automatically finding a structure which can
outperform existing human-crafted architectures

1. Search space: Naively searching every model is nearly impossible
2. Searching algorithm: Evaluating each model is very costly, and black-boxed

A sample architecture found in [Brock et al., 2018]

Algorithmic Intelligence Lab *source : Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018 59



Toward Automation of Network Design: NASNet [Zoph et al., 2018]

Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

Motivation: modern architectures are built simply: a repeated modules
* Try not to search the whole model, but only cells modules
* Normal cell and Reduction cell (cell w/ stride 2)

~_ \

=2 r? =2 f:g =
o Q [e) Q o w0
— = a g
3 3 5 3 5 3 -
CIFAR S er—> s > 2 » 5 g » 3
® 0 = o] = 0 o
[0} a) o ) @ x
x x x
= = =
w
= e e ) 3 9 3 ] 9
5 2 g 3 g 3 g e =
ImageNet S22l sr2ler2lsr>ler—>s e >3
® = = 0 = 0 = 0 9
= 0 o ) o ) ) x
o o = o = o =
o — — —
N
> x x
N =2 = =

Algorithmic Intelligence Lab *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 60



Toward Automation of Network Design: NASNet [Zoph et al., 2018]

Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

* Each cell consists of B blocks ~ preoeoe- .

:new hidden Iayer:
L]

* Each block is determined by selecting methods f
. . add
1. Select two hidden states from h;, h;_; or of existing block P
2. Select methods to process for each of the selected states 3x3 conv 2 x2 maxpool
3. Select a method to combine the two states t ‘L
| hidden layer A : | hidden layer B :
* (1) element-wise addition or (2) concatenation e e
Select one Select second Select operation for Select operation for Select method to
, hidden state N hidden state N first hidden state [ | second hidden state [ combine hidden state
\ \ \ \ \
S e e S v 1
— 5 — > R Ly —
\ \ \ \ \
4 4 4
-~ - - - ~

} repeat B times i

Algorithmic Intelligence Lab *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 61



Toward Automation of Network Design: NASNet [Zoph et al., 2018]

Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

* Each cell consists of B blocks
* Example: B =4

sep | [sep sep | |sep sep | [sep sep | [1x3 max| |max 1x7 | [max max| |max sep | |max

Normal Cell Reduction Cell

Algorithmic Intelligence Lab *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 62



Toward Automation of Network Design: NASNet [Zoph et al., 2018]

Designing a good search space is important in architecture searching

* NASNet reduces the search space by incorporating our design principles

* Set of methods to be selected based on their prevalence in the CNN literature

1x3 then 3x1 convolution

3x3 dilated convolution

3x3 max pooling

7x7 max pooling

3x3 convolution

5x5 depthwise-seperable conv

identity

1x7 then 7x1 convolution

3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

Any searching methods can be used
* Random search [Bergstra et al., 2012] could also work
* RL-based search [Zoph et al., 2016] is mainly used in this paper
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Toward Automation of Network Design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

All architecture searches are performed on CIFAR-10
* NASNet-A: State-of-the-art error rates could be achieved
* NASNet-B/C: Extremely parameter-efficient models were also found

model | depth  # params | error rate (%)
DenseNet (L = 40, k = 12) [26] 40 1.0M 5.4
DenseNet(L = 100, k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) [26] 190 25.6M 3.46
Shake-Shake 26 2x32d [18] 26 2.9M 3.55
Shake-Shake 26 2x96d [18] 26 26.2M 2.86
Shake-Shake 26 2x96d + cutout [12] 26 26.2M 2.56
NAS v3 [70] 39 7.1M 447
NAS v3 [70] 39 37.4M 3.65
NASNet-A (6 @ 768) - 3.3M 341
NASNet-A (6 @ 768) + cutout - 3.3M 2.65
NASNet-A (7 @ 2304) - 27.6M 2.97
NASNet-A (7 @ 2304) + cutout - 27.6M 2.40
NASNet-B (4 @ 1152) - 2.6M 3.73
NASNet-C (4 @ 640) - 3.1M 3.59

Algorithmic Intelligence Lab *source : Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018 64



Toward Automation of Network Design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

All architecture searches are performed on CIFAR-10
* NASNet-A: State-of-the-art error rates could be achieved
* NASNet-B/C: Extremely parameter-efficient models were also found

[ add | | add |

(ew0]  [awe] [

4 A 4 Ao
sep | |iden sep | | sep idén avg | |avg sep | | sep
3x3 | | tity 3x3 | | 5x5 tity 3x3 | | 3x3 5x5| [ 3x3

Normal Cell Reduction Cell

NASNet-A
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Toward Automation of Network Design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

All architecture searches are performed on CIFAR-10

Cells found in CIFAR-10 could also transferred well into ImageNet

Model image size ‘ # parameters Mult-Adds | Top 1 Acc. (%) Top S Acc. (%)
Inception V2 [29] 224x224 11.2M 1.94B 74.8 92.2
NASNet-A (5 @ 1538) 299x299 10.9M 2.35B 78.6 94.2
Inception V3 [59] 299x299 23.8M 5.72B 78.0 93.9
Xception [9] 299%299 22.8M 8.38B 79.0 94.5
Inception ResNet V2 [57] 299x299 55.8M 13.2B 80.4 95.3
NASNet-A (7 @ 1920) 299x299 22.6 M 4.93B 80.8 95.3
ResNeXt-101 (64 x 4d) [67]  320x320 83.6M 31.5B 80.9 95.6
PolyNet [68] 331x331 92M 347B 81.3 95.8
DPN-131 [8] 320320 79.5M 32.0B 81.5 95.8
SENet [25] 320x320 145.8M 42.3B 82.7 96.2
NASNet-A (6 @ 4032) 331x331 88.9M 23.8B 82.7 96.2

Algorithmic Intelligence Lab
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Toward Automation of Network Design: NASNet [Zoph et al., 2018]

* The pool of workers consisted of 500 GPUs, processing over 4 days

All architecture searches are performed on CIFAR-10

Cells found in CIFAR-10 could also transferred well into ImageNet
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Toward Automation of Network Design: Principle of Network Scaling

Although Scaling up CNNs is widely used to achieve better generalization, the
process of scaling has never been understood

* The common way is scaling model depth, width, and image resolution

Question: Is there a principled scaling method for better accuracy and efficiency?

#channels , |
jmm b oo wider oo :
. . deeper

B oo =

H} resolution HxW

"+ higher
i resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling
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Principle of Network Scaling: EfficientNet [Tan et al., 2019]

The state-of-the-art ILSVRC classification in 2019 (top-5 error rate 2.9%)

» EfficientNet uniformly scales network width, depth, and resolution with a set of fixed
scaling coefficients (called “compound scaling”)

Motivation: There exists certain relationship between network width, depth and
image resolution

* Scaling single dimension has a limitation
* Gain diminishes for bigger models.

oo
—

81 81
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* Scaling all together with a fixed ratio
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Principle of Network Scaling: EfficientNet [Tan et al., 2019]

* Compound scaling: Scaling all together with a fixed ratio ¢ in a principled way
e Depthd =a®,a>1
e Widthw =p8%,6>1
e Resolutionr =y?,y >1
* Finding a, B,y under compound constrainta - % - y? = 2
 Why? Such scaling approximately increases total FLOPS by (a - 8% - y2)¢ =~ 29
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Principle of Network Scaling: EfficientNet [Tan et al., 2019]

Having a good baseline network is also critical!
* Multi-objective neural architecture search
* Optimizing both accuracy and FLOPS
* Search space is the same as MnasNet [Tan et al., 2019]
* Mobile-size baseline, called EfficientNet-BO
* Main building block is mobile inverted bottleneck, MBConv
* Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]

Input Block Block Block Block Block Block Block
. —> R > > > > — — output
image 1 2 3 4 5 6 7 P
Prtiiny S __________________________ ] -‘:I:::-\\ Blocks are predefined Skeletons.
_> Layer Ly ce Layer . ! 5.» Layer O Layer _> Search Space Per Block i
! 2 2-N2 in 4-1 4'N4 F4: e ConvOp: dconv, cony, ...
______________________________________ SN e KernelSize: 3x3, 5x5
e SERatio: 0, 0.25, ...
________________________________ e  SkipOp: identity, pool, ...
e FilterSize: F,
SED-GEDG-Gay® - e
-------------------------------- L Contents in blue are searched

MBConv Factorized Hierarchical Search Space
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Principle of Network Scaling: EfficientNet [Tan et al., 2019]

Having a good baseline network is also critical!

* Multi-objective neural architecture search
* Optimizing both accuracy and FLOPS
* Search space is the same as MnasNet [Tan et al., 2019]

* Mobile-size baseline, called EfficientNet-BO
* Main building block is mobile inverted bottleneck, MBConv
* Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]
* DWConv denotes depthwise convolution [Howard et al ., 2017]

Stage Operator Resolution | #Channels | #Layers
[ 74 H; x W; Ci L; Conv1ix1, BN
1 Conv3x3 294 5224 32 1 HxWx3F
2 MBCOIIVI, k3x3 112561512, 16 1 SE (Pooling, FC, Relu,
3 MBConv6, k3x3 112112 24 2 FC, Slgmoid, MUL)
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3 HxWx3F
6 MBConv6, k5x5 14 x 14 112 3 DWConv5x5, BN, Relu
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 75T 320 1 HxWx3F
9 | Convlxl & Pooling & FC | 7x7 1280 1 Conv1x1, BN, Relu

Architecture of EfficientNet-B0 MBConv

*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
Algorithmic Intelligence Lab Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile”, CVPR 2019
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Principle of Network Scaling: EfficientNet [Tan et al., 2019]

From EfficientNet-BO to B7
* EfficientNet-B0O: Baseline model witha = 1.2, = 1.1,y = 1.15
* EfficientNet-B1 to B7: Scaling up EfficientNet-BO with different ¢

Model | Top-1 Acc.  Top-5 Acc. || #Params Ratio-to-EfficientNet || #FLOPs  Ratio-to-EfficientNet
EfficientNet-B0 77.1% 93.3% 5.3M 1x 0.39B 1x
ResNet-50 (He et al., 2016) 76.0% 93.0% 26M 4.9x 4.1B 11x
DenseNet-169 (Huang et al., 2017) 76.2% 93.2% 14M 2.6x 3.5B 8.9x
EfficientNet-B1 79.1% 94.4% 7.8M Ix 0.70B Ix
ResNet-152 (He et al., 2016) 77.8% 93.8% 60M 7.6x 11B 16x
DenseNet-264 (Huang et al., 2017) 77.9% 93.9% 34M 4.3x 6.0B 8.6x
Inception-v3 (Szegedy et al., 2016) 78.8% 94.4% 24M 3.0x 5.7B 8.1x
Xception (Chollet, 2017) 79.0% 94.5% 23M 3.0x 8.4B 12x
EfficientNet-B2 80.1% 94.9 % 9.2M 1x 1.0B 1x
Inception-v4 (Szegedy et al., 2017) 80.0% 95.0% 48M 5.2x 13B 13x
Inception-resnet-v2 (Szegedy et al., 2017) 80.1% 95.1% 56M 6.1x 13B 13x
EfficientNet-B3 81.6% 95.7 % 12M 1x 1.8B 1x
ResNeXt-101 (Xie et al., 2017) 80.9% 95.6% 84M 7.0x 32B 18x
PolyNet (Zhang et al., 2017) 81.3% 95.8% 92M 7.7x 35B 19x
EfficientNet-B4 82.9% 96.4 % 19M 1x 4.2B 1x
SENet (Hu et al., 2018) 82.7% 96.2% 146M Tlxs 42B 10x
NASNet-A (Zoph et al., 2018) 82.7% 96.2% 8OM 4.7x 24B Si7x
AmoebaNet-A (Real et al., 2019) 82.8% 96.1% 8™ 4.6x 23B 5%
PNASNet (Liu et al., 2018) 82.9% 96.2% 86M 4.5x 23B 6.0x
EfficientNet-BS 83.6% 96.7 % 30M 1x 9.9B 1x
AmoebaNet-C (Cubuk et al., 2019) 83.5% 96.5% 155M 52X 41B 4.1x
EfficientNet-B6 | 84.0% 96.8% | 43M Ix | 19B Ix
EfficientNet-B7 84.3% 97.0% 66M 1x 37B 1x
GPipe (Huang et al., 2018) 84.3% 97.0% 55TM 8.4x - -

Algorithmic Intelligence Lab *source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019 73



Principle of Network Scaling: EfficientNet [Tan et al., 2019]

From EfficientNet-B0O to B7

* EfficientNet-B0O: Baseline model witha = 1.2, = 1.1,y = 1.15
* EfficientNet-B1 to B7: Scaling up EfficientNet-BO with different ¢

EfficientNet-B7

EfficientNet-B7 achieves
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Automation of networks at different scales: BigNAS [Yu et al., 2020]

A searched architecture at each scale requires re-training from scratch
* Can we share weights between architecture instances?

* BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)

* A child-network can be evaluated and deployed without re-training!
* How to train such a super-network?

........ N NAS BigNAS

Retrain and deploy

oploy nstan 0
Deploy instantly o
| 0

Super-network

(without retraining)

Distillation [5

Child-networks
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Automation of networks at different scales: BigNAS [Yu et al., 2020]

A searched architecture at each scale requires re-training from scratch
* Can we share weights between architecture instances?

* BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)
* Sandwich Training Rule (each iteration)
* Sample the biggest, smallest, and N random-sized children
* Gradients are averaged between all children

* Inplace Distillation

* Soft labels predicted by the biggest child model supervises all other child
models

AN 4
oioIoIoIoIoIoI:o
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Automation of networks at different scales: BigNAS [Yu et al., 2020]

A searched architecture at each scale requires re-training from scratch
* Can we share weights between architecture instances?

* BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)

* BigNAS sampled at different scale outperforms existing models without re-training
* Training & evaluating BigNAS takes only 1300 TPU-hours (c.f., 60000 GPU-hours in original NAS)

BigNASModel-XL Group Model Family Params FLOPs Top-1
80 , * MobileNetV1 o.sx 1.3M  150M 633
BigNASModel-L
_ MobileNetV2 o.7sx 26M  209M  69.8
BigNASModel-i 200M AutoSlim-MobileNetV2 41IM  207M  73.0
FLOPs MobileNetV3 1.0x 5.4M 219M  75.2
78 MNasNet a: 39M  315M 752
- A Once-For-All 44M  230M  76.0
g BigNASMedel-S = Once-For-All sinetunea 4.4M 230M  76.4
—
376l = BigNASModel-S 4.5M 242M 76.5
)
< - * NASNet & 53M  488M  72.8
o o 00M MobileNetV?2 1.5x 53M  509M 744
o . FLOPs  MobileNetV3 125 81M  350M  76.6
=74 . MNasNet as 52M  403M  76.7
2 ®— BigNASModel EfficientNet so 53M  390M  77.3
> *  EfficientNet BigNASModel-M M  418M  78.9
g MobileNetV3 ig odel- 55 8 8.
-t = MNasiet NaSNet oM oM o0
@  AutoSlim-MobileNetV2 |600M ova : ‘
.  Oneeforal FLOPs  DARTS 49M  595M  73.1
70 nce-ror EfficientNet 51 7.8M 734M  79.2
¢ MobileNetv2 BigNASModel-L 6.4M 586M 79.5
NASNet -
4  MobileNetvl 1000M EfficientNet sz 9.2M 1050M  80.3
o ¢ obileNe FLOPs  BigNASModel-XL 9.5M 1040M  80.9
200 400 600 800 1000

Millions of Multiply-Adds (MFLOPs)
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Toward Automation of Network Design

Architecture searching is still an active research area
* AmoebaNet [Real et al., 2018]
* NAONet [Luo et al., 2018]
* BigNAS [Yu et al., 2020]
* NASVIT [Gong et al., 2022]

» Specifically, NAS for vision transformers is emerging
* Careful NAS design is required due to architectural differences

* e.g., Vision transformers are instable during the early training stage due to the lack
of inductive bias for images

Group Method MPFLOPs Top-1 accuracy (%)
AlphaNet-A0 203 719
200-300 M) NASViT-A0 (ours) 208 78.2
LeViT (Graham et al., 2021) 300 76.6
NASViT-A1 (ours) 309 79.7
300-400 M) AlphaNet-A2 317 79.4
FBNetV3 (Dai et al., 2020) 357 79.6
LeViT 406 78.6
400-500 (M) NASViT-A2 (ours) 421 80.5
AlphaNet-A4 444 80.4
NASViT-A3 (ours) 528 81.0
FBNetV3 557 80.8
500-600 (M) NASViT-A4 (ours) 591 81.4
AlphaNet 596 81.1
LeViT 658 80.0
600 - 1000 (M) NASViT-AS5 (ours) 757 81.8
FBNetV3 762 81.5
AutoFormer* (Chen et al., 2021a) 1,300 74.7
PiT-XS (Heo et al., 2021) 1,400 79.1
VIiTAS-D* (Su et al., 2021) 1,600 76.2
NASVIT (supernet) (ours) 1,881 82.9
> 1000 (M) CVT-13-NAS* (Wu et al., 2021) 4,100 82.2
Swin-Tiny* (Liu et al., 2021) 4,500 81.3
CVT-13* (Wu et al., 2021) 4,500 81.6
T2T-ViT-14* (Yuan et al., 2021a) 5,200 81.5
DeepViT (Zhou et al., 2021) 6,200 82.3

Algorithmic Intelligence Lab *source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018 78
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Dilated and Deformable Convolution

Objects in real-world often contain sophisticated spatial information
* Multiple scales
* lIrregular shapes

Drawbacks: geometric transformations are assumed fixed and known
* Different size and shape of kernels may be required
e But, regular kernels have fixed-size and shape

Scale: Deformation:

Algorithmic Intelligence Lab *source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf 80



Dilated and Deformable Convolution

Objects in real-world often contain sophisticated spatial information
* Multiple scales
* lIrregular shapes

Drawbacks: geometric transformations are assumed fixed and known
* Different size and shape of kernels may be required
e But, regular kernels have fixed-size and shape

7
4

regular convolution 2 layers of regular convolution
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Dilated Convolution [Chen et al., 2017]

Motivation: Images in real-world usually contain multi-scale objects
* Regular convolution has a fixed-size of field of view
* Different size of kernels are required for multi-scale objects
* But, large-size of kernels may increase computational costs

Dilated convolution: Filling with zero values inside of large-size of kernels for
efficient computation

* It can enlarge field-of-view to incorporate multi-scale context

dilation=1 dilation=2 dilation=3

Algorithmic Intelligence Lab *source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019 82



Dilated Convolution [Chen et al., 2017]

Motivation: Images in real-world usually contain multi-scale objects
e Regular convolution has a fixed-size of field of view
» Different size of kernels are required for multi-scale objects
* But, large-size of kernels may increase computational costs

* Example: Dilated convolution in semantic segmentation

Small R;splution /.’ . /./
T !

L7 - L7

Image Dilated Convolution Image

Algorithmic Intelligence Lab *source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019 83



Deformable Convolution [Dai et al., 2017]

Motivation: Shape of objects in the real world are usually irregular
* Different shape of kernels are required for irregular objects
* Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture
irregular shape of objects

* Adding offset field to generate irregular sampling locations

el
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= o @ @ @ ®
® < ©
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el
regular deformed scale & aspect ratio rotation

Different types of sampling locations
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Deformable Convolution [Dai et al., 2017]

Motivation: Shape of objects in the real world are usually irregular
* Different shape of kernels are required for irregular objects
* Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture
irregular shape of objects

* Adding offset field to generate irregular sampling locations

2N
/ Regular convolution
f NI v(po) = Y w(pn)-x(po+ pn)
a___>'\ N Pad pPrnER
AR Deformable convolution
conv /./ offsets
y y(po) Z W(pn) - X(Po + Pn + Apn)
STz ao offsetﬁeld PnE

e _ where Apy, is generated by a sibling branch of
regular convolution (offset field)

input feature map output feature map
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Deformable Convolution [Dai et al., 2017]

Motivation: Shape of objects in the real world are usually irregular
* Different shape of kernels are required for irregular objects
* Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture
irregular shape of objects

* Adding offset field to generate irregular sampling locations

77 4 57 o
(a) standard convolution (b) deformable convolution
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Deformable Convolution [Dai et al., 2017]

Motivation: Shape of objects in the real world are usually irregular
* Different shape of kernels are required for irregular objects
e Regular convolution has a fixed-shape of kernel

Learned offsets in the deformable convolution layers are highly adaptive to the
image content

* Different size and shape of kernels for multiple objects

Visualizations of sampling locations

Algorithmic Intelligence Lab *source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017 87



Deformable Transformers [Zhu et al., 2021]

Motivation: Make image patches in vision transformers deformable!

Square patches in the vision transformers could be too restrictive for localization
(e.g., object detection, segmentation)

* Deformable DETR [Zhu et al., 2020] additionally learns the offset of pixels in a patch
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Deformable Transformers [Zhu et al., 2021]

Motivation: Make image patches in vision transformers deformable!

Square patches in the vision transformers could be too restrictive for localization
(e.g., object detection, segmentation)

* Deformable DETR [Zhu et al., 2021] additionally learns the offset of pixels in a patch
* Self-attention is regularized around the localization of objects

high

low

Algorithmic Intelligence Lab *source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017 89



Adaptive Patches for Transformers [Liang et al et al., 2022]

Motivation: Not all patches are equivalently important

Some image patches could contain redundant and less important information
* EVIT [Liang et al., 2022], ATS [Fayyaz et al., 2022] merges these patches
* Less important patches (e.g., background) are identified at each attention layer
* Attention & value-norms are used as importance scores
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Adaptive Patches for Transformers [Liang et al et al., 2022]

Motivation: Not all patches are equivalently important

Some image patches could contain redundant and less important information
* EVIT [Liang et al., 2022], ATS [Fayyaz et al., 2022] merges these patches

» ATS [Fayyaz et al., 2022] achieves the comparable accuracy at 37% reduced
computations (GFLOPs) than DeiT
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ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

ResNet improved generalization by revolution of depth

Quiz: But, does it fully explain why deep ResNets generalize well?

Increasing depth does not always mean better generalization
* Naive CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]
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ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of
a single ultra-deep network

e Each module in a ResNet receives a mixture of 2™ 1 different distributions

Y3 = Yo + f3(y2)

= |y1 +f2(y1]] + f3(ly1 + f2(y1)

= |yo+f1(yoi+f2 vo + f1(yo))] + f3(ly0+f1(y0 + falyo + f1(y0)))

Building block

Skip
connection

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Algorithmic Intelligence Lab *source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016 94



ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of
a single ultra-deep network

* Deleting a module in ResNet has a minimal effect on performance
« Similar effect as removing 2"~ 1 paths out of 2": still 2! paths alive!

Test error when dropping any single block
from residual network vs. VGG on CIFAR-10

l 0 _______ y . O O O O  ————————————————————

o — residual network v2, 110 layers

5 VGG network, 15 layers

5 0.8 residual network baseline

c VGG network baseline

o

B 0f-mm e e e m e e e ————————-————————————— -
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. . 0.0
(a) Deleting f2 from unraveled view 0 10 20 30 40 50

dropped layer index

Next, visualizing loss functions in CNN
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Visualizing the loss landscape of neural nets [Li et al., 2018]

Trainability of neural nets is highly dependent on network architecture

* However, the effect of each choice on the underlying loss surface is unclear
* Why are we able to minimize highly non-convex neural loss?
* Why do the resulting minima generalize?

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

fla, B) = L(0" + ad + Bn)

Local minima Random directions

e § and n are sampled from a random Gaussian distribution
* To remove some scaling effect, 6 and n are normalized filter-wise

5i
0ij w1105 5]

04,5 ~

it" layer, j*! filter
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Visualizing the loss landscape of neural nets [Li et al., 2018]

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

(a) without skip connections (b) with skip connections

ResNet-56

Algorithmic Intelligence Lab *source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018 97



Visualizing the loss landscape of neural nets [Li et al., 2018]

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

(a) 110 layers, no skip connections (b) DenseNet, 121 layers

Algorithmic Intelligence Lab *source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018 98



Visualizing the loss landscape of neural nets [Li et al., 2018]

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

ResNet, no shortcuts = sharp minima

~1.00 ~1.00 ~1.00
-1.00 -0.75 -050 -025 000 025 0.50 0.75 1.00 -1.00 -0.75 -0.50 -025 0.00 025 0.50 0.75 1.00 -100 -0.75 -0.50 -025 0.00 025 030 0.7s 1.00

(d) ResNet-20-noshort, 8.18% (e) ResNet-56-noshort, 13.31% (f) ResNet-110-noshort, 16.44%

ResNet = flat minima

-~1.0

-0.75 \/\ ————7 5, /]
R 2\, C TN (¢ C A
0 -] 1,00 4= - — - e

-1.00 -075 -050 -025 000 025 050 075 100 00 025 050 075 100 -100 075 -050 -025 000 025 030 075 100

(a) ResNet-20, 7.37% (b) ResNet-56, 5.89% (c) ResNet-110, 5.79%
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Visualizing the loss landscape of neural nets [Li et al., 2018]

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Wide-ResNet lead the network toward more flat minimizer
* WideResNet-56 with width-multiplier k = 1,2,4,8
* |ncreased width flatten the minimizer in ResNet

N NS =

S \|!

@ k=1,580%

T k=2.501% () k=4,434% = (d) k=8 393%

WRN-56, no shortcuts

rrrrrrrrrr

T@k=11331%  ®Hk=21026% (9 k=4,969% () k=8870%

Next, minimum energy paths in CNNs

Algorithmic Intelligence Lab *source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018 100



Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

Draxler et al. (2018) analyzes minimum energy paths [Jonsson et al., 1998]
between two local minima 6; and 6, of a given model:

p(0;,02)" = argmin max L(6)
path p: 61 —02 \ 0€P

- They found a path 8; — 68, with almost zero barrier
* A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures
* e.g. ResNet, DenseNet

Linear interpolation

* Minima of a loss of deep neural networks
are perhaps on a single connected manifold

~— Linear
QOur Path

Our path

Position on Path

DenseNet-40-12

Algorithmic Intelligence Lab *source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018 101



Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

For a given model with two local minima 64 and 68,, they applied AutoNEB

[Kolsbjerg et al., 2016] to find a minimum e

* A state-of the-art for connecting minima from molecular statistical mechanics

* The deeper and wider an architecture,
the lower are the saddles between minima

* They essentially vanish for current-day
deep architectures

* The test accuracy is also preserved
* CIFAR-10: < +0.5%
* CIFAR-100: < +2.2%

Algorithmic Intelligence Lab *source : Draxler et al
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Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

* The deeper and wider an architecture, the lower are the barriers

* They essentially vanish for current-day deep architectures

Why do this phenomenon happen?
* Parameter redundancy may help to flatten the neural loss

Lowest saddle has 25% error.

Minimum A

Extra neuron “unlocks” flat path.

Algorithmic Intelligence Lab *source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018 103



Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]

Raghu et al. (2021) analyzes representation similarity in transformer layers:
* ViT tends to have uniform representation over different layers
* All layers in ViT show much greater similarity than ResNet
* In ResNet, similarity is divided into different (lower/higher) stages

* ViT and ResNet features are similar in lower stages, but significantly different in
higher stages

ViT-L/16 vs R50
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. . _ep_ e . . . . Layers R50 . .
Cosine similarity of representations in layers  Cosine similarity of representations in layers
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Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]

Raghu et al. (2021) analyzes representation similarity in transformer layers:

* VIiT tends to have uniform representation over different layers
* All layers in ViT show much greater similarity than ResNet

* In ResNet, similarity is divided into different (lower/higher) stages

* This is mainly due to stronger skip-connection in ViT

o izl

Ifiz)

: norm ratio of z; (skip-connection) and f; (MLP or Self-Attention)

* The skip-connection in ViT is even stronger in deeper layers

1z

I fi(z)l
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Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]

Raghu et al. (2021) analyzes representation similarity in transformer layers:
* VIiT tends to have uniform representation over different layers
e All layers in ViT show much greater similarity than ResNet

* In ResNet, similarity is divided into different (lower/higher) stages

* This is mainly due to stronger skip-connection in ViT
. —Hfllzl_l)” : norm ratio of z; (skip-connection) and f; (MLP or Self-Attention)
L\“1

* The skip-connection in ViT is even stronger in deeper layers

* When skip-connection removed at a middle-block (e.g., i = 7) the cosine
similarity of ViT becomes similar to that of ResNets

Remove Skip-Connection at Block 7

Layers R50

0 10 20 30 40 50

. . . . ! . 40 60 80 100 120
Cosine similarity over the layers

Cosine similarity over the layers
(ViT with skip-connection removed ati = 7)

(ResNet)
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How do vision transformers work? [Park et al., 2022]

Park et al. (2022) analyzes frequency domain of vision transformer layers:
* Self-attention layer keeps high-frequency information
* MLPs variants (e.g., CNNs, MLP in transformers) act as high-pass filters
* However, self-attention tend to act as low-pass filters

* ViT deals with both high- and low-frequency information
(while CNNs simply pass high-frequency information)
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How do vision transformers work? [Park et al., 2022]

Park et al. (2022) analyzes frequency domain of vision transformer layers:
* Self-attention layer keeps high-frequency information
* MLPs variants (e.g., CNNs, MLP in transformers) act as high-pass filters
* However, self-attention tend to act as low-pass filters

* Processing both low- and high-frequency information contributes to robustness
against high-frequency noises in ViT vs. ResNet

* Frequency-specific noise with Gaussian noise 8 and Fourier transform F

Lica = X+ F1 (.7'—(5) O, Mf) frequency mask

ResNet ViT
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Overview: Deep Spatial-Temporal Models

Deep spatial-temporal model as an extension of spatial models

* 3D convolutional neural networks and video vision transformers

3D Convolutional Neural Networks

Video Action Recognition [Karpathy et al., 2014]
AR [

arorumming | appravoine | aprvinccream | arraneingriowers | aucTionine

BIKING THROUGH SNOW INDING BRUSHPAINTING |  CANOEING ORKAYAKING | COUNTRYLINEDANCING | FEEDING FISH

JOGGING MAKING TEA MOWINGLAWN |  SCRAMBLINGEGGS | TAPPINGPEN

*source: https://towardsdatascience.com/downloading-the-kinetics-dataset-for-human-action-recognition-in-deep-learning-500c3d50f776
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Overview: Deep Spatial-Temporal Models

Problem: The curse of dimensionality
* Spatial-temporal data is high-dimensional (e.g., channels X height X width X time)
* Brute-force extension of spatial models is often intractable

* Data sub-sampling & approximated network architectures are typically employed:
* How to fuse information from spatial cue (appearance) and temporal cue (motion)
* Long-range modeling

Good models should be computationally scalable (e.g., linear complexity to temporal dimension) and
should deal with information fusion & long-range modeling problems
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*source : https://towardsdatascience.com/a-comprehensive-introdt

Evolution of CNN Architectures for Video: 3D CNNs

e Raw video data structure
* Video is a 3D tensor with 2 spatial and 1 time axes

* How to learn good representation for video?
* 3D CNN directly extends convolution with cuboid (3D) kernel

w

Video Tensor

2D convolution

Q

3D convolution in video data
3D convolution

* Some early works employed 3D CNNs for video, however:
* 3D-Conv [Jietal., 2012] and C3D [Tran et al., 2015]
* Their performances were unsatisfactory due to optimization difficulty of 3D CNNs
* Can we leverage pre-trained representation for images? i.e., transfer learning
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Evolution of CNN Architectures for Video: 3D CNNs

* Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* Adapting a pre-trained 2D CNN model for 3D CNN
* |3D utilizes the Inception architecture
* |nstead of training from scratch, 13D leverages ImageNet-pretraining

* Weight inflating technique for initializing 3D kernels with 2D kernels
1. Extend a dimension by stacking existing 2D kernel

2. Divide weights by the stack length to ensure the same output scale

Algorithmic Intelligence Lab

3x3x3
Pretrained 3x3
Copy x3
Devide Weights by 1/3
3x1x1
Pretrained 1x1
retrained 1x Copy 3
Devide Weights by 1/3

*source : https://chacha95.github.io/2019-07-04-VideoUnderstanding3/
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Evolution of CNN Architectures for Video: 3D CNNs

* Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* 3D Convolutional feature map learned by 13D
* Top row: the 3D filter trained with 13D networks
e Bottom row: the original 2D filter from Inception

e 3D kernel sliced at each time resembles geometric patterns of the 2D filter
* Representation of 2D CNN is effectively transferred to 3D
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MWW e Original 2D filters from Inception
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ANSDENGY SNV S0 1" i SES ITHel 02 1t «b SEED e SNEhsawm
HENCEEEE EEVZEANEN EEG=ANEE NLe-=TENE (N "FEND D EfZPEEE ERSfENEER
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13D RGB filters time
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Evolution of CNN Architectures for Video: 3D CNNs

* Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* 13D beats hand-craft video representations (e.g., optical flow) by a large margin

Transferring the architecture of 2D CNN models is the key idea

ResNet3D [Hara et al., 2018]
* Residual connections for 3D CNN
* Transfers ResNet [He et al., 2016] architecture to 3D CNN

ResNeXt for 3D [Chen et al., 2018]
* Multi-Fiber Networks for Video Recognition
* Translates the multiple parallel path to 3D CNN

STCNet [Diba et al., 2018]
* Spatio-Temporal Channel correlation networks
* Translates the Sequeeze-and-Excitation mechanism to 3D CNN
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Evolution of CNN Architectures for Video: Efficient 3D CNNs

* Executing 3D CNNs is computationally expensive

* |3D [Carreira and Zisserman, 2017] demands computation burden comparable to
the state-of-the-art transformer models (100+ GFLOPs)

* Aline of research pursuing efficient 3D CNN architectures

* Factorization of 3D kernel
* A 3D CNN kernel of size (PXMXN) can be factorized to two convolutions;
e Aspatial 2D kernel (1XMXN) and a temporal 1D kernel (PX1Xx1)

* R2+1D [Tran et al., 2018] and P3D [Qiu et al., 2017] directly adopts this idea to
largely save FLOPs

* Application of channel-wise separated convolutions

* CSN [Tran et al., 2019] shows the efficacy of separating channel interactions and
spatiotemporal interactions

* State-of-the-art performance is achieved with X3 less computations than 13D
[Carreira and Zisserman, 2017]
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]
e ViViT is a pure transformer framework for video classification
* Tubelet embedding (3D extension of ViT)
- Extract non-overlapping, spatial-temporal tubes from input volume
- Linearly project them into R¢
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention
1. Joint Spatio-temporal attention

- Simply forwards all pairwise interactions between all spatio-temporal tokens through
transformer encoder

- Unlike CNN, it can model long-range interactions across the video from the 15t layer
- Requires quadratic complexity, O((ny, - n,,* n¢)?), with number of tokens
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention

2. Factorized encoder

Spatial encoder models interactions between tokens from the same temporal index
Temporal encoder models interactions between tokens from different temporal indices
Requires more transformer layers (i.e., more parameters) than the joint design

But less complexity, O((ny - n,,)? + n?)
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* The factorized encoder design shows the best accuracy-to-FLOPs ratio

* However, the joint-design performs better and requires smaller number of

parameters.

* |Instead of factorizing the model, can we design approximate attention for both
performance and FLOPs efficiency?

Method Topl Top5 Views TFLOPs
blVNet [19] 73.5 91.2 - -
STM [33] 73.7 91.6 - -
TEA [42] 76.1 925 10x 3 2.10
w8 B FLOPs Params Runtime TSM-ResNeXt-101 [43] 76.3 - - -
(X109) (X 106) (IIlS) I3D NL [75] 71.7 93.3 10 x 3 10.77
CorrNet-101 [70] 79.2 - 10 x 3 6.72
Model 1: Spatio—temporal 80.0 43.1 455.2 88.9 58.9 1p-CSN-152[ ) 79.2 93.8 10 X 3 3.27
Model 2: Fact. encoder 78.8 43.7 284.4 115.1 17.4 LGD-3D R101 [51] 79.4 94.4 _ _
Model 3: Fact. self-attention 77.4 39.1 372.3 117.3 31.7 SlowFast R101-NL [21] 79.8 939 10X 3 7.02
Model 4: Fact. dot product 76.3 39.5 277.1 88.9 22.9 X3D-XXL [20] 804 946 10x3 5.82
Model 2: Ave. pool baseline  75.8  38.8  283.9 86.7 17.3 TimeSformer-L [4] 80.7 947 1x3 7.14
ViViT-L/16x2 FE 80.6 927 1x1 3.98
ViViT-L/16x2 FE 817 938 1x3 11.94

Comparison between model variants

Algorithmic Intelligence Lab

Kinetics-400 dataset benchmark
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Transformers for spatial-temporal data : Approximated Attentions

Brute-force joint spatial-temporal attention is intractable for transformers
* Due to the quadratic complexity with respect to inputs
* This motivates the development of more efficient attention scheme
* Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]
* Video Swin Transformer [Liu et al., 2021]

10

-=-Joint Space-Time
-©-Divided Space-Time

-&-Joint Space-Time
-©-Divided Space-Time

Out of memory

Out of memory

TFLOPs
on

32 64 96
# of Input frames

0 ‘ ‘ ‘ 0
224 336 448 560 8
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Video classification cost in TFLOPs
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Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

* Proposes divided space-time attention

* Instead of exhaustively comparing all pairs of patches (i.e., joint space-time attention),
it separately applies temporal attention and spatial attention one after the other

* Temporal attention

* Each patch (blue) is compared only with the patches at the same spatial location in
other frames (green)

* Initialized to zero (so that function as identity mapping in early training stages)
* Spatial attention
* Each patch (blue) is compared only with the patches within the same frame (red)

* Designs may look similar to ViViT (model 3) in a big picture, however, implementation
details differ including 1) time— then—space att., 2) zero initializations for temporal layers

I EA
ADSn

I EA 21

Joint Space-Time Divided Space-Time
Attention (ST) Attention (T+S)
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Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

* Divided space-time attention leads to dramatic computational savings with
respect to spatial resolution/video length

* OQOutperforms SOTA models while requiring less computational complexity
* O(S%T) + O(ST?) instead of O(S%T?)

Method Top-1 Top-5 TFLOPs

R(2+1)D (Tran et al., 2018) 720 90.0 17.5

bLVNet (Fan et al., 2019) 73,5 912 0.84

3 ot SpaseTime Uy ———— TSM (Lin et al., 2019) 747 N/A N/A

-©-Divided Space-Time S3D-G (Xie et al., 2018) 747 934 N/A

L2 Out of memory 18 Oct-I3D+NL (Chen et al., 2019) 75.7 N/A 0.84
g g 5 Out ot memeny D3D (Stroud et al., 2020) 759 N/A N/A 3D CNNs

=1 = I3D+NL (Wang et al., 2018b) 777 933 10.8

ip-CSN-152 (Tran et al., 2019) 77.8 92.8 32

0, ‘ ‘ 0 ‘ CorrNet (Wang et al., 2020a) 792 N/A 6.7

B el Crop () ® etimputiames LGD-3D-101 (Qiuetal,2019) 794 944  N/A

SlowFast (Feichtenhofer et al., 2019b) 79.8 93.9 7.0
X3D-XXL (Feichtenhofer, 2020) 80.4 94.6 5.8

TimeSformer 78.0 93.7 0.59 .
TimeSformer-HR 79.7 94.4 5.11 TimeSformer
TimeSformer-L 80.7 94.7 7.14

Kinetics-400 dataset benchmark
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Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]
* Recall: Swin Transformer [Liu et al., 2021]
* Design of a hierarchical structure
» Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
» Efficient self-attention computation by using shifted windows scheme
* Concatenating 2 x 2 neighboring patches for downsampling operation
* Powerful performances in dense prediction tasks
e.g., object detection and semantic segmentation

segmentation Shifted window scheme

classlﬁcatlon detection ... classification

ol

//////// // / —

Wz
Yo A
(a) Swin Transformer (ours) (b) ViT

Layer | Layer I+1

A local window to A patch
perform self-attention

Algorithmic Intelligence Lab *source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 124



Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]
* Invideos, pixels that are closer to each other in spatiotemporal distance are more
likely to be correlated (i.e., spatiotemporal locality)
* Thus, local attention computation well approximates spatiotemporal self-attention
* Video Swin Transformer is a spatial-temporal adaptation of Swin Transformer

i.e., extension from spatial locality to spatial-temporal locality

. b
3D local window to
perform self-attention
A tbken
3D tokens: T'XH’XW’ = 8x8x8 , ~ Layerl+1
# window: 2X2X2=8 # window: 3X3x3=27

Window size: PXMXM = 4x4x4

*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 125
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Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]

e Qutperforms SOTA 3D CNN models while requiring smaller computation costs for

inference

* Also outperforms SOTA transformer-based models while requiring half less

computational costs

Algorithmic Intelligence Lab

Method Pretrain Top-1 Top-5 | Views | FLOPs Param
R(2+1)D [37] - 720 900 | 10x1 75 61.8
13D [6] ImageNet-1K | 72.1 90.3 - 108 25.0
NL I3D-101 [40] ImageNet-1K | 77.7 93.3 | 10x3 359 61.8
ip-CSN-152 [36] - 77.8 928 | 10x3 109 32.8
CorrNet-101 [39] - 79.2 - 10x3 224 -
SlowFast R101+NL [13] - 79.8 939 | 10x3 234 59.9
X3D-XXL [12] - 804 946 | 10x3 144 20.3
MVIT-B, 32x3 [10] - 802 944 | 1x5 170 36.6
MVIT-B, 64x3 [10] - 812 951 | 3x3 455 36.6
TimeSformer-L [3] ImageNet-21K | 80.7 94.7 1x3 2380 1214
ViT-B-VTN [29] ImageNet-21K | 786 937 | 1x1 4218 11.04
ViViT-L/16x2 [1] ImageNet-21K | 80.6 947 | 4x3 1446  310.8
ViViT-L/16x2 320 [1] ImageNet-21K | 81.3 947 | 4x3 3992 3108
ip-CSN-152 [36] IG-65M 825 953 |[10x3 109 32.8
ViViT-L/16x2 [1] JFT-300M 82.8 955 | 4x3 1446  310.8
ViViT-L/16x2 320 [1] JFT-300M 835 955 | 4x3 3992 310.8
ViViT-H/16x2 [1] JFT-300M 84.8 958 | 4x3 8316  647.5
Swin-T ImageNet-1K | 78.8  93.6 | 4x3 88 28.2
Swin-S ImageNet-1K | 80.6 945 | 4x3 166 49.8
Swin-B ImageNet-1K | 80.6 94.6 | 4x3 282 88.1
Swin-B ImageNet-21K | 82.7 955 | 4x3 282 88.1
Swin-L ImageNet-21K | 83.1 959 | 4x3 604 197.0
Swin-L (3841) ImageNet-21K | 84.6 96.5 | 4x3 2107  200.0
Swin-L (3841) ImageNet-21K | 84.9 96.7 | 10x5 | 2107  200.0

*source: [Liu et al.

2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 126

3D CNNs

Transformer-
based models

Ours



Transformers for spatial-temporal data : Approximated Attentions - X-ViT

X-VIT [Bulat et al., 2021]
* Space-time mixing attention—O(TSz) complexity
* The following architectural changes in X-ViT reduce the full quadratic complexity
0(T?52) to the proposed O(TS?)
1. Restricting attentions within a temporal window of [t — t,,,t + t,,] for each q;,
- The complexity becomes O(T(2t,, + 1)252%)
2. Instead of individual space-time keys, the time compression f is applied such that
a single attention is considered over time with ks £ f([ks’,t—twi e ks’,t+tw])
3. Instead of general affine transforms, “shift trick” is employed as the implementatio
n of f to further save computations:
* Givenakey kg 4 € R¢, split its channels into (2t,, + 1) segments, then pick t
he t, € [1, ZtW + 1]th index to form the final kS, - The complexity becomes O(T (2t,,+ 1)52)

Can be disregarded as 2t,, + 1 is a small constant

kS’,tlzl XY X) kS’,tIZZL—W'I'l kS, . . .
u | ! || | | |
u ] —_ d-dimension
— — : (a) Full space-time atten- (b) Spatial-only attention: (c) TimeSformer [3]: (d) Ours: O(T'S 2)
— — tion: O(T2S5?) o(TS?) O(T*S +TS?)
— — H *Red is the query vector X-ViT
- - * is the key vector that the query vector attends to

t'=1 t'=21t=3 t'=2t,+1
The shift trick in X-ViT
A|g0 rith m ic Inte”igence I-a b *source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021127



Transformers for spatial-temporal data : Approximated Attentions - X-ViT

X-VIT [Bulat et al., 2021]

* Achieves comparable performance to SOTA models while requiring significantly
lower computational complexity

- X-ViT (16-frames, 850 GFLOPs) achieves performance comparable to heavy-weight variants
of TimeSformer (96-frames, 7140 GFLOPs) and ViViT (32 frames, 4340 GFLOPs)

* Allows for an efficient approximation of local space-time attention at no extra cost

Method Top-1 Top-5 #Frames Views Params FLOPs (x107%)
bLVNet [14] 735 912 24 x 2 3x3 25M 840
STM [19] 737 916 16 - 24M -
TEA [25] 76.1 92.5 16 10x3 25.6M 2,100
TSM R50 [26] 74.7 - 16 10x3 25.6M 650
I3D NL [44] 777 933 128 10x 3 - 10,800
CorrNet-101 [40] 79.2 - 32 10 x 3 - 6,700
ip-CSN-152 [38] 792 938 8 10x 3 - 3,270
LGD-3D R101 [31] 794 944 16 - - -
SlowFast 8x8 R101+NL [16]  78.7  93.5 8 10x 3 - 3,480
SlowFast 16x8 R101+NL [16] 79.8 939 16 10x 3 - 7,020
X3D-XXL [15] 804 946 - 10x3 20.3M 5,823
TimeSformer-L [3] 80.7 947 96 1x3 121M 7,140
ViViT-L/16x2 [1] 80.6 947 32 4x3 312M 17,352
X-ViT (Ours) 78.5 937 8 1x3 92M 425
X-ViT (Ours) 794 939 8 2x3 92M 850
X-ViT (Ours) 80.2 947 16 1x3 92M 850
X-ViT (Ours) 80.7 94.7 16 2x3 92M 1700

Algorithmic Intelligence Lab *source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurlPS 2021 128



Transformers for spatial-temporal data : Unified transformer-CNN model

3D convolutions vs. Vision Transformers
* 3D convolutions
* Pro: Can capture detailed local spatiotemporal features to suppress local redundancy
* Con: Inefficient to capture global (long-range) dependency due to limited receptive field
* Vision Transformers

* Pro: Can capture global (long-range) dependency by self-attention mechanism

* Con: Inefficient to encode spatiotemporal feature in shallow layers (local redundancy) and
requires explicit position embedding (which could be sub-optimal for videos)

Integrating merits of both, a unified model has been proposed

Input

Frames

- Vision transformer learns local repre
sentations with redundant global at
tention

- This wastes large computation to en
code only very local spatiotemporal

Layer3 representations

Temporal

Attention Time
—= —— — —a = Q a Q —

Layer3
Output
Feature

Layer3
Spatial
Attention

Visualizations of TimeSformer [Bertasius et al., 2021]
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Lietal., 2022]
* Dynamic Position Embedding (DPE)
* Instead of explicit position embedding, dynamic position embedding (DPE) is used:

DPE(in) = DWCODV(Xin)
* DPE dynamically integrates 3D position information into all tokens

e DWConv is a simple 3D depth-wise convolution with zero paddings
- Shared parameters & locality of convolution tackles permutation-invariance
- In CPE, zero paddings help tokens on the borders be aware of their absolute positions
- That is, all tokens progressively encode their position information via querying their neighbor

64><TxHxW 128><T><H><W 320><TxHxW 512xT><H><W
BXTXHXW, 2°37%% 258%%8 2516716 2%32%32 ¢

ZXZXT 2pLIS
821 ‘TXZXT
ZXZXT apLos
952 ‘ZTXZX1
ZXZX1 9pLag
ZIS‘ZXTXT

D4 ‘[00d8AY

Y XyXZ 3pLas
Y9 YX¥XE

FFN

X {Norm ]—-[Linear }C'ELU{ Linear ]—-ﬁyi

VanY

Algorithmic Intelligence Lab *source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022 130



Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Multi-Head Relation Aggregator (MHRA)
1) Local MHRA (for shallow layers)

- Aim for shallow layers is to learn detailed video representation from local
spatiotemporal context to reduce redundancy

- Design token affinity to be local learnable parameter matrix, which depends only on
relative 3D position between tokens

- RA learns local spatiotemporal affinity between one anchor token X; and other
tokens in the small tube Q¢*"*®

Alcdl (X, X)) = al7?, where j € QL

saxx Iy W 128x LxE W s2oxix B W s12xLx L W
IXTXHXW XXX XXXy X3%X16% 16 2%32%32 ¢

ZXZXT 3pLIg
821 TXTXT
ZXZXT1apLng
9SZ ‘TXTXT
ZXZX19pLng
ZISTXTIXT

YXyXZ 3PS
$9 ‘PXYXE
D4 ‘[00d8AY

FFN

X {Norm ]—-[Linear }C'ELU{ Linear ]—-ﬁyi

VanY
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

Algorithmic Intelligence Lab

UniFormer [Liet al., 2022]

* Multi-Head Relation Aggregator (MHRA)
2) Global MHRA (for deep layers)

- Aim for deep layers is to capture long-term token dependency in global video clip
- Design token affinity via comparing content similarity among all tokens in global view

eQn (Xz)TKn (XJ)

lobal
A7 (Xi, X;) = eQn(Xi)T Kn(X;/)

JEQTxHxW

- Xj can be any token in global 3D tube Qrypxw
- Qn(9) and K,,(+) are two different linear transformations

64><TxHxW 128><T><H><W 320><TxHxW 512><T><H><W
BXTXHXW, 2°37%% 258%%8 2516716 2%32%32 ¢

YXyXZ 3PS
$9 ‘PXYXE
ZXZXT 2pLIS
821 ‘TXZXT
ZXZXT apLos
952 ‘ZTXZX1
ZXZX1 9pLag
ZIS‘ZXTXT
D4 ‘[00d8AY

FFN

vk
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=
[2)
=1
5=
(=]
=
|
=
o
0
=1
N

*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Lietal., 2022]
* Uniformer outperforms existing models with much fewer computational cost
* Achieves a preferable balance between computation and accuracy

Method Pretrain | #Frame GFLOPs Top-?sv’i‘op- 5 Top-?sv%op- 5
TSN(Wang et al., 2016) IN-1K 16x1x1 66 19.9 47.3 30.0 60.5
TSM(Lin et al., 2019) IN-1K 16x1x1 66 47.2 77.1 - -
GST(Luo & Yuille, 2019) IN-1K 16x1x1 59 48.6 77.9 62.6 879
MSNet(Kwon et al., 2020) IN-1K 16x1x1 101 52.1 82.3 64.7 89.4
CT-Net(Li et al., 2021a) IN-1K 16x1x1 75 52.5 80.9 64.5 89.3
CT-Netgy(Li et al., 2021a) IN-1K 8+12+16+24 | 280 56.6 83.9 67.8 91.1
TDN(Wang et al., 2020b) IN-1K 16x1x1 72 53.9 82.1 65.3 89.5
TDNEg n(Wang et al., 2020b) IN-1K 8+16 198 56.8 84.1 68.2 91.6
TimeSformer-HR(Bertasius et al., 2021) | IN-21K | 16x3x1 5109 - - 62.5 -
X-ViT(Bulat et al., 2021) IN-21K | 32x3x1 1270 - - 65.4 90.7
Mformer-L(Patrick et al., 2021) K400 32x3x1 3555 - - 68.1 91.2
ViViT-L(Arnab et al., 2021) K400 16x3x4 11892 - - 654 89.8
MViT-B,64 x 3(Fan et al., 2021) K400 64x1x3 1365 - - 67.7 90.9
MViT-B-24,32 x3(Fan et al., 2021) K600 32x1x3 708 - - 68.7 91.5
Swin-B(Liu et al., 2021b) K400 32x3x1 963 - - 69.6 92.7
Our UniFormer-S K400 16x1x1 42 53.8 81.9 63.5 88.5
Our UniFormer-S K600 16x1x1 42 54.4 81.8 65.0 89.3
Our UniFormer-S K400 16x3x1 1125 57/ 84.9 67.7 914
Our UniFormer-S K600 16x3x1 125 57.6 84.9 69.4 92.1
Our UniFormer-B K400 16x3x1 290 59.1 86.2 70.4 92.8
Our UniFormer-B K600 16x3x1 290 58.8 86.5 70.2 93.0
Our UniFormer-B K400 B32>8>dl 7117/ 60.9 87.3 71.2 92.8
Our UniFormer-B K600 B2pEPdl 7 61.0 87.6 71.2 92.8

Algorithmic Intelligence Lab *source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022 133
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General Patch-based Architectures: MLP architectures

Question: Is the success of Vision Transformers due to
1. the powerful Transformer architecture?
2. using patches as the input representation?

Vision Transformer (ViT)

MLP
Head
Transformer Encoder
A 4 A A A A A A A
et DD 60 @) &) &
* Extra learnable 1
[class] embedding [ Linear I‘O]CCUOH of Flattened Patches

Algorithmic Intelligence Lab *source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021 136



General Patch-based Architectures: MLP architectures

* Tolstikhin et al. (2021) suggests MLP module as an alternative of self-attention module
* ForagivenImagel,

Z = MLP(Norm(Y)) +Y

= o(Norm(Y)W )W, +Y MLP

Y = SelfAttn(Norm(X)) + X Attention q

X = InputEmbed(I)

Algorithmic Intelligence Lab
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Z = MLP(Norm(Y)) +Y
= o(Norm(Y)W )W, +Y

Y = MLP(Norm(X)) + X

X = InputEmbed(I)

MLP architectures

*source : [Yu et al., 2021] MetaFormer is Actually What You Need for Vision, arxiv 2021
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General Patch-based Architectures: MLP-Mixer [Tolstikhin et al., 2021]

MLP-Mixer [Tolstikhin et al., 2021]
* Replacing the self-attention into MLP layers
* Removing position embedding & [class] token
* Mixing spatial & channel dimension separately

== m e e e e e e e e e e e e e e e e e e e e e e e e E e E e e e e e e e e e e m - — - = -
I Skip-connections Skip-connections Mixer Layer I
: Channels i l :
: . Patches = < [
: = v 2 —( MLP 1 }—» = |
z & £ —{ MLP1 }—» /TN Z

I 5 s \L A5 —{( MLP1 }—p ) :
1 2 s O L (MLP1 }—p 2 [
I = a |
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = o = = = = = J

A

Class !

|

|

|
Fully- ted ! r- == - T TN
[ uycolnnece] i | M P|
[ Global Average Pooling i I !
! 1 Fully-connected 1
} 1 [ 1
N x (Mixer Layer) s [ p—— I
| |
| |
' Per- patch Fully connected I Fully-connected !
~ ! Dl l oL b ?L . 4 !

R . D’
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General Patch-based Architectures: MLP-Mixer [Tolstikhin et al., 2021]

MLP-Mixer [Tolstikhin et al., 2021]
* Replacing the self-attention into MLP layers

* Removing position embedding & [class] token
* Mixing spatial & channel dimension separately

* MLP-Mixer shows competitive performances compared to Vision Transformers

ImNet RealL AvgS VTAB-lk  Throughput TPUvV3
top-1  top-1  top-1 19 tasks  1mg/sec/core  core-days
Pre-trained on ImageNet-21k (public)
e HaloNet [51] 85.8 — — — 120 0.10k
® Mixer-L/16 84.15 87.86 9391 74.95 105 0.41k
e ViT-L/16 [14] 85.30 88.62 94.39 72.72 32 0.18k
BiT-R152x4 [22] 85.39 - 94.04 70.64 26 0.94k
Pre-trained on JFT-300M (proprietary)
NFNet-F4+ [7] 89.2 — — — 46 1.86k
e Mixer-H/14 8794 90.18 95.71 75.33 40 1.01k
BiT-R152x4 [22] 87.54 90.54 95.33 76.29 26 9.90k
e ViT-H/14 [14] 88.55 90.72 9597 77.63 15 2.30k

Algorithmic Intelligence Lab
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General Patch-based Architectures: MetaFormers

* MetaFormers [Yu et al, 2022] reveals that patch-based architecture with any token-
mixing method can work well

* For example, replacing self-attention with sophisticated average pooling (PoolFormer)
allows light-weight model in terms of both computations and # parameters

84 Accuracy vs. MACs vs. Model Size

E’\i PoolFormer

> DeiT

g 82- O O ResmLp

5 O O RsB-ResNet O

9]

< g0 ©

r.' ©o

o

Q N I N T s s

D Model Size

% o

3 76 ° -

g 0O 20M 40M 80M

§ _ 0 5 10 15 20 25

MetaFormer Transformer MLP-like model PoolFormer MACs (G)

(General Arch.) (e.g. DeiT) (e.g. ResMLP) (Ours)
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General Patch-based Architectures: MetaFormers

* MetaFormers [Yu et al, 2022] reveals that patch-based architecture with any token-
mixing method can work well

* For example, replacing self-attention with sophisticated average pooling (PoolFormer)
allows light-weight model in terms of both computations and # parameters

* Sophisticated design of token-mixing is important such as pooling sizes
* Mixing different strategies (e.g., pooling + attention) is also effective

Stage | #Tokens Layer Specification S12 | S 21:‘0[);1;(;“[1;1-3 3 | M8
Patch Patch Size 7 X 7, stride 4
Embedding | Embed. Dim. 64 [ 96 Ablation Variant Params (M) MACs (G) Top-1 (%)
U % T | poolFormer | Fo0ling Size 3 x 3, stride 1 Baseline None (PoolFormer-S12) 119 18 772
Block MLP Ratio 4 Pooling — 1dentity mapping 1.9 1.8 /4.3
# Block 2 | 4 | 6 I 6 | 8 Pooling — Global random matrix* (extra 21M frozen parameters) 11.9 33 75.8
Patch Patch Size 3 X 3, stride 2 Token mixers Pooling — Depthwise Convolution [9, 38] 119 1.8 78.1
Embedding |Embed. Dim. 128 I 192 Pooling size 3 — 5 11.9 1.8 772
2 |Ex %W Pooling Size 3 x 3, stride 1 Pooling size 3 — 7 119 18 77.1
PoolFormer . . .
Block MLP Ratio 4 Pooling size 3 — 9 11.9 1.8 76.8
# Block 24]6][6]8 Modified Layer Normalization' — Layer Normalization [ ] 1.9 L8 76.5
Patch Patch Size 3 x 3, stride 2 Normalization Modified Layer Normalization! — Batch Normalization [28] 119 1.8 76.4
Embedding |Embed. Dim. 320 I 384 Modified Layer Normalization' — None 11.9 1.8 46.1
3 |Ex % Pooling Size 3 x 3, stride 1 . GELU [25] — ReLU [4] 11.9 1.8 76.4
16 7 16 | PoolFormer \—s iatio 2 Activation GELU [—> ]SiLU [18] o 11.9 1.8 772
Block # Block 6 [12]18] 18 24 Other components | Residual connection [257 — None 11.9 1.8 0.1
Patch Patch Size 3 x 3, stride 2 P Channel MLP — None 2.5 0.2 5.7
Embedding [Fnbed Dim [ 512 178 (ool Fonl P oot ol P g ATt
H W i i i . 00l Pool, Pool, Pooll — [Pool. Pool, Attention, Attention
#1827 52 | poolFormer P"M‘;‘;f‘ gR:tf Sx3 :mde 1 Hybrid Stages F(poo1,Pool, Pool, Pool] — [Pool, Pool, Pool, SpatialFC] 11.9 18 715
Block # Block ) P 6 6 3 [Pool, Pool, Pool, Pool] — [Pool, Pool, SpatialFC, SpatialFC] 12.2 1.9 779
Parameters (M) 11.9121.4|30.8(56.1|73.4
MAC:s (G) 1834|5088 |11.6

Algorithmic Intelligence Lab *source : [Yu et al., 2022] MetaFormer is Actually What You Need for Vision, arxiv 2021 141



General Patch-based Architectures: ConvNext

* ConvNext [Liu et al, 2022] reveals that introducing X-former (e.g., transformers)
architectural characteristic to CNNs is effective

* Patch-based input projection
* Inthe input layer of ResNet, a 7x7 convolution is applied (overlapping patches)
* |Invision transformers, a more aggressive strategy is used:
e Alinear transform of patch as tokens (i.e., non-overlapping convolution)

* Wide feed-forward MLP

* Note that FFN in ViT is effectively 1X1 convolution with 4 X channel width as the input
* Design principle is opposite to that of ResNet (i.e., the bottleneck block)

ResNet Block ConvNeXt Block
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General Patch-based Architectures: ConvNext

* ConvNext [Liu et al, 2022] reveals that introducing X-former (e.g., transformers)

architectural characteristic to CNNs is effective

e There are various design transfers from X-former to CNN in ConvNext

(refer to the paper for details)

e Simply transferring design principles from X-former to CNNs could make them outperfor

m vision transformers

Algorithmic Intelligence Lab

image

model .
size

#param

. FLOP

s throughput IN-1K
(image / s) top-1 acc.

ImageNet-1K trained models

e RegNetY-16G [54] 2242 84M 16.0G  334.7 82.9
e EffNet-B7 [71] 600> 66M 37.0G  55.1 84.3
e EffNetV2-L [72] 480% 120M 53.0G  83.7 85.7
DeiT-S [73] 2247 22M 46G 9785 79.8
DeiT-B [73] 2242 87M 17.6G  302.1 81.8
Swin-T 2247 28M 45G 7579 81.3
e ConvNeXt-T 2242 29M 4.5G 7747 82.1
Swin-S 2242 50M 877G  436.7 83.0
e ConvNeXt-S 2242 50M 877G  447.1 83.1
Swin-B 224% 88M 154G  286.6 83.5
e ConvNeXt-B 2242 89M 154G  292.1 83.8
Swin-B 3842 88M 47.1G  85.1 84.5
e ConvNeXt-B 3842 89M 45.0G  95.7 85.1
e ConvNeXt-L 2242 198M 344G  146.8 84.3
e ConvNeXt-L 3842 198M 101.0G  50.4 85.5
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New design paradigms

* VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
* Grid (and sequence) of image patches can be views a s a special case of graph

* VisionGNN represents images as a graph (V, E) with image patch as nodes (V) and learnable
edges (E)

L ue=
ala

(a) Grid structure. (b) Sequence structure. (b) Graph structure.
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New design paradigms

* VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
* Grid (and sequence) of image patches can be views a s a special case of graph

* VisionGNN represents images as a graph (V, E) with image patch as nodes (V) and learnable
edges (E)

* For modeling graph-based representation, a new graph model base-on Graph Convolution
Networks is proposed

* Graph Convolution Networks

* Graph convolutional operation aggregates value of the node features of neighbors
(Note that there is no ordering between nodes)

I /79 T
W \ g, — F(ga W)
[S élzg ) / ar = Update(Aggregate(g, Wagg)a Wupdate)’
N/ N\ /"N (
RKIXIXT o—=—)
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New design paradigms

* VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?

* Grid (and sequence) of image patches can be views a s a special case of graph
* VisionGNN represents images as a graph (V, E) with image patch as nodes (V) and learnable

edges (E)

* VisionGNN can outperform vision transformers and CNNs

Model | Resolution | Params (M) | FLOPs(B) | Top-1 | Top-5
® ResMLP-S12 conv3x3 [50] 224 x224 16.7 32 77.0 -
& ConvMixer-768/32 [52] 224 x224 21.1 20.9 80.2 -
® ConvMixer-1536/20 [52] 224 x224 51.6 514 814 -
ViT-B/16 [9] 384x384 86.4 55.5 77.9 -
DeiT-Ti [51] 224 %224 5.7 1.3 72.2 91.1
DeiT-S [51] 224 x224 22.1 4.6 79.8 95.0
DeiT-B [51] 224 x224 86.4 17.6 81.8 95.7
ResMLP-S24 [50] 224 x224 30 6.0 79.4 94.5
ResMLP-B24 [50] 224 x224 116 23.0 81.0 95.0
Mixer-B/16 [49] 224 %224 59 11.7 76.4 -
% ViG-Ti (ours) 224 x224 7.1 1.3 73.9 92.0
% ViG-S (ours) 224 %224 22.7 4.5 80.4 95.2
% ViG-B (ours) 224 %224 86.8 17.7 82.3 95.9
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New design paradigms

* VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
* Grid (and sequence) of image patches can be views a s a special case of graph

* VisionGNN represents images as a graph (V, E) with image patch as nodes (V) and learnable

edges (E)

* More importantly, the graph structure naturally provides interpretability in the hidden

layers

* Earlier blocks connects low-level features (e.g., colors) and local features

* Later blocks connect semantically-related (e.g., same category) features

Algorithmic Intelligence Lab

(a) Input image.
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(b) Graph connection in the 1st block.
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(c) Graph connection in the 12th block.
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New design paradigms

* VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
* Grid (and sequence) of image patches can be views a s a special case of graph

* VisionGNN represents images as a graph (V, E) with image patch as nodes (V) and learnable
edges (E)

* More importantly, the graph structure naturally provides interpretability in the hidden
layers

* Earlier blocks connects low-level features (e.g., colors) and local features
* Later blocks connect semantically-related (e.g., same category) features

* However, nodes are still regular-shaped in VisionGNN
* Can we make more flexible model?
* Treating each pixel as a node which will result in too many nodes (>10K)
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New design paradigms

* Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?

* Context Clusters view an image as a set of unorganized points and extract features via
simplified clustering algorithm

* npoints P € R™4 are clustered using SuperPixel method
* SuperPixel SLIC [Achanta et al., 2013]

* Forinputs, nis the number of all pixels, however, an initial 4 X4 convolution

projects them to feature space, reducing # points to 1"—6

* For clustering c centers are evenly proposed, and each point is assigned to the
nearest center (feature cosine similarity is used as the distance metric)

* After clustering, each cluster can have variable number of points (even 0 is possible)

IO
g azsém 5

Fc
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New design paradigms

* Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?

* Context Clusters view an image as a set of unorganized points and extract features via
simplified clustering algorithm

* Assuming a cluster has m points, aggregation and dispatching are done within the cluster
* The cosine similarity s € R between m points and the cluster center is used as weights:

* Feature aggregation (g)
* (note that v; is MLP projection of each point p; and «, 8 are learnable scalars)

=1

5= ¢

(Vc as Z sig (as; + B) * v,-) , st., C=1+ Z sig (as; + B) .
i=1 i=1

* Feature dispatching

p; = pi + FC(sig (as; + B) * g) .
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New design paradigms

* Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?

* Context Clusters view an image as a set of unorganized points and extract features via
simplified clustering algorithm

* Assuming a cluster has m points, aggregation and dispatching are done within the cluster
* Finally, additional MLP block is applied for channel-wise mixing in each point

1
1
)

MLP

_—_—_—_IV—_—_—__‘

)

MLP block ‘

(
i
1

Context Cluster
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New design paradigms

* Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
* Context Clusters view an image as a set of unorganized points and extract features via
simplified clustering algorithm

* Assuming a cluster has m points, aggregation and dispatching are done within the cluster
* Finally, additional MLP block is applied for channel-wise mixing in each point

* To save the computation, some stages of Points Reducer is applied
* Reducing is simply done by regular convolution operations (e.g., 4X4) over the spatial grid

~ Stage1 €y ~ Stage 2 ~ Stage3 5 Stage 4
{ \ N\ \ N\ \ N \ )
i i S o 1 S
Image Points Set: | & 5 = 5 = s 5 3
r=m g @ g 7 g 173 g 7
L n | = 2 v = 2 v < = @ = = @
AR A NECE: s b 9% bl 9% bl ©%
[ = e > M | - =) » X = - =3 M M ] - e —>
L ‘EM. 2] 5 E‘ » 5 A » 5 I~ @ 5 I~
Wi 2|2 E|l&R E|ER E|2"
g T = = = = =] = = =
W'/ b =) =) =) o =) =) =) =)
e 2 A Q A Q e~ & ~ &)
J \ J J \ J \ \. J J \ J
XN XN, XN3 XNy
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New design paradigms

* Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?

* Context Clusters view an image as a set of unorganized points and extract features via
simplified clustering algorithm

* CoC can outperform CNNs and Transformers
* More importantly, CoC shows clustering with the semantics in image

Method Param. GFLOPs Top-1 lLroughputs
(images/s)
# ResMLP-12 (Touvron et al., 2021a) 15.0 3.0 76.6 511.4
# ResMLP-24 (Touvron et al., 2021a) 30.0 6.0 79.4 509.7
a, * ResMLP-36 (Touvron et al., 2021a) 45.0 8.9 79.7 452.9 N
E + MLP-Mixer-B/16 (Tolstikhin et al., 2021) 59.0 12.7 76.4 400.8 © g
4 MLP-Mixer-L/16 (Tolstikhin et al., 2021) 207.0 44.8 71.8 125.2 5 g
& gMLP-Ti (Liu et al., 2021a) 6.0 14 72.3 511.6 EE
# gMLP-S (Liu et al., 2021a) 20.0 4.5 79.6 509.4 g
¢ ViT-B/16 (Dosovitskiy et al., 2020) 86.0 55.5 779 292.0
= ¢ ViT-L/16 (Dosovitskiy et al., 2020) 307 190.7 76.5 92.8 2
& ¢ PVT-Tiny (Wang et al., 2021) 13.2 1.9 75.1 - &
S ¢ PVT-Small (Wang et al., 2021) 24.5 3.8 79.8 - g g
g ¢ T2T-ViT-7 (Yuan et al., 2021a) 43 1.1 71.7 - 8
¢ DeiT-Tiny/16 (Touvron et al., 2021b) 5.7 13 72.2 523.8 i)
¢ DeiT-Small/16 (Touvron et al., 2021b) 22.1 4.6 79.8 521.3
= ResNet18 (He et al., 2016) 12 1.8 69.8 584.9 =8
8 ResNet50 (He et al., 2016) 26 4.1 79.8 524.8 s g
% ConvMixer-512/16 (Trockman et al., 2022) 54 - 73.8 - Q ?:0 :
Z ConvMixer-1024/12 (Trockman et al., 2022) 14.6 - 77.8 - o % 3
=2 ConvMixer-768/32 (Trockman et al., 2022) 21.1 - 80.16 1429 )
g ¢ Context-Cluster-Ti (ours) 53 1.0 71.8 518.4
% ¥ Context-Cluster-Tit (ours) 53 1.0 71.7 510.8
5 ¥ Context-Cluster-Small (ours) 14.0 2.6 71.5 513.0
¥ Context-Cluster-Medium (ours) 27.9 55 81.0 325.2
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New design paradigms

* RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
* Deep networks (left) are built on the Information Bottleneck
* Layers close to the input contain more low-level information
* Features close to the output are rich in semantics

* However, downstream tasks may suffer if the learned features are over-compressed
e.g., Transfer learning for object detection

Input >
l l l i —, Non-Reversible
Connection
e ~—~ Reversible
*~ Connection
Low Level
Input— — — Output oo C
— Semantlc
Layer1 Layer2 Layer3 Layer N | F > Output
Col 1 Col 2 Col 3 Col4 Col N
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New design paradigms

* RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
* Deep networks (left) are built on the Information Bottleneck
* Layers close to the input contain more low-level information
* Features close to the output are rich in semantics

* Instead, RevCol suggests a design where information in the earlier layer could be
(approximately) restored with information in the later layers

* Then, how is the network designed?

I >
nput l l l l l — Non-Reversible

Connection

~—~ Reversible
*~ Connection

Low Level
Input— - — oo —> — Output Z o e, C

— Semantlc
Layer1 Layer2 Layer3 Layer N | * F > Output

Col 1 C012 Col3 Col 4 Col N
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New design paradigms

* RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
* Inspired by invertible neural networks in Normalizing Flow, reversible operations are defined:

e tisthe depthindex, F; is the layer at t, y is a simple channel-wise scaling

* Specifically, the output x; is the weighted sum of x;_,,, and non-linear transform of

intermediate states x;_q, ...,
* Note that the operation is invertible

* Any deep networks can implement F; (e.g., ConvNext is employed)

Forward : x; = Fy(zi_1,%¢—2, ...,

, |
Inverse : x¢—m = [xs — Fy(x4—1,Tt—2, ...,

Algorithmic Intelligence Lab
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New design paradigms

* RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
* Inspired by invertible neural networks in Normalizing Flow, reversible operations are defined:
e tisthe depthindex, F; is the layer at t, y is a simple channel-wise scaling

* Despite the restrictive design, ConvNext with RevCol is comparable to the vanilla model
* More importantly, transfer learning is improved in object detection

Image ParamsFLOPs Top-1

Model Size. (M) (G) Acc.
ImageNet-22K pre-trained models (ImageNet-1K fine-tuned)

Swin-B (Liu et al. 2242 88 154 852 Backbone AP™® AP  APRT  AP™F  APR*F  APR**  Params FLOPs

Swin-B1 (Liu et al. 3842 88  47.0 864 ImageNet-22K pre-trained

B . : 2

ULB] Qusovickigeeal) 284 80 54 840 Swin-B (Liu et al.) 530 718 575 458 69.4 497 145M 982G
aRepLKNetJIB (Dmgietal)i2ok. 13 A5 B30 o ConvNeXt-B (Liu et al.) 540 731 588 469 70.6 513 146M 964G
SREPLENSEIIBIDIZE)sss 1 .0 1860 o RepLKNet-B (Ding et al.) 53.0 - - 463 - - 137M 965G
*ConvNeXt-B (Liuetal) 224> 89 154 858 eRevCol-B 550 735 597 415 711 518 196M 988G
e ConvNeXt-Bf (Liuetal) 3842 89 451 8638 Swin-L (Liu et al.) 539 724 588 467 70.1 508  253M  1382G
eRevCol-B 2242 138 16.6 85.6 e ConvNeXt-L (Liu et al.) 548 738 598 476 713 517  255M  1354G
eRevCol-B 3842 138 489 867 o RepLKNet-L (Ding et al.) 53.9 - - 46.5 - - 229M  1321G

Swin-L (Lis et al) 22 197 345 863 e RevCol-L 559 741 607 484 718 528  330M  1453G

Swin-L1 (Liu et al.) 3842 197 1039 873 Extra data pre-trained

ViT-L1 (Dosovitskiy etal.) 3842 307  190.7 85.2 e RevCol-H (HTC++) 61.1 788 670  53.0 76.3 587 241G 4417G
eRepLKNet-31L (Dingetal.) 3842 172 96.0 86.6 e RevCol-H (Objects365+DINO) 638  81.8  70.2 - - - 218G 4012G

o ConvNeXt-L (Liu et al.) 2242 198 344 86.6
e ConvNeXt-Lt (Liuetal) 3842 198 101.0 87.5
e RevCol-L 2242 273 39.0 86.6
e RevCol-L1 3842 273  116.0 87.6
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Summary

* The larger the network, the more difficult it is to design
1. Optimization difficulty
2. Generalization difficulty
* ResNet: Optimization = Generalization
* Many variants of ResNet have been emerged
* Very recent trends towards network design and scaling

* Recently, various types of patch-based architectures are explored
* Vision transformers, MLP-mixing models, etc.

* Many types of architectures are explored to capture good representation
* Automated network designs and flexible model architectures
* Many observational study supports the advantages of each architecture
* Spatial-temporal models (e.g., 3D CNNs and video transformers)

* A new architectural paradigms are actively searched
e.g., Graph-based architectures and Reversible networks
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