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Introduction

* Foundation Models for Vision

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems
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Introduction

* Foundation Models for Vision

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

* This lecture will cover following foundation models for vision

* Discriminative models (e.g., self-supervised models, CLIP)
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Introduction

* Foundation Models for Vision

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

* This lecture will cover following foundation models for vision
* Discriminative models (e.g., self-supervised models, CLIP)
* Generative models (e.g., text-to-image diffusion models)
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Introduction

* Foundation Models for Vision

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

e This lecture will cover following foundation models for vision
* Discriminative models (e.g., self-supervised models, CLIP)
* Generative models (e.g., text-to-image diffusion models)
* Vision-specific models (e.g., Segment Anything (SAM),
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Introduction

* Foundation Models for Vision

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

* This lecture will cover following foundation models for vision
* Discriminative models (e.g., self-supervised models, CLIP)
* Generative models (e.g., text-to-image diffusion models)
* Vision-specific models (e.g., Segment Anything (SAM)

* In specific, this lecture will answer (or at least hint) to the following questions:
* How to train foundation models?
* What are the zero-shot capabilities of foundation models?
* How to exploit foundation models on specific tasks?



Discriminative Visual Foundation Models: Overview

We are interested in visual representations that extract high-level semantics
which can be applied to various downstream tasks such as

* Supervised learning (e.g., classification, detection)
* Unsupervised learning (e.g., clustering, metric learning)

* Modular component for multimodal understanding (e.g., image-text retrieval, visual
guestion answering)

Scaling model and data size is key recipe in training foundation models:
* The loss function must be designed to be scalable and stable
* The data should be curated to remove bias or noisy label

* Computation efficiency to lower the training cost

Algorithmic Intelligence Lab



Discriminative Visual Foundation Models: Overview

First, we introduce self-supervised learning (SSL) methods:
* Invariance based methods such as contrastive learning

* Masked image modeling (MIM)

Second, we will cover image-text contrastive methods (i.e., CLIP):
* Training data perspective of CLIP

* Training objective perspective of CLIP

Lastly, we will cover combination of visual foundation models with language
models for vision-language multimodal understanding (i.e, multimodal LLM)
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SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

Algorithmic Intelligence Lab 12



SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

* A) Positive samples are constructed from
e Similar samples (e.g., in the same cluster)
e Same instance of different data augmentation
* Additional structures (e.g., multi-view images, video)
(negative samples = not positive samples)

Algorithmic Intelligence Lab 13



SSL via Invariance

* Instantiations of invariance-based approach
* Many classes of self-supervised learning can be viewed as invariance-based

* Clustering & pseudo-labeling
e Cluster data into K groups, and assume they are pseudo-labels
 Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
e E.g., DeepCluster, SWAV, DINO

e Consistency regularization
e Attract similar samples
* E.g., MixMatch, UDA, BYOL

e Contrastive learning
e Attract similar samples and dispel dissimilar samples
* E.g., MoCo, SimCLR, CLIP

14



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank
* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
q-k qk qk
q k q k q k
encoder q encoder k encoder sampling encoder Ty
encoder
memory
k bank k
x4 x x4 x4 x
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

Algorithmic Intelligence Lab * source : [He et al., 2019] 15



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:BH}E] EH
exp(q -k /7)
L v =—1
ST g R T) + Sy explg K /T) ®
| ‘ queue
momentum

encoder
encoder

Randomly augmented samples — Dj U

* source : [Chen et al., 2020] 16
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:BH}E] EE
exp(q- k' /T
Low+ k) = —log + ( ) -
exp(q - k*/7) + X2, exp(q -B/7) &
* After encoder is updated, ﬂ ﬂg m
* Momentum encoder is updated by | ‘ queue
emomentum — memomentum + (1 o m)@ momentum
« Add the current positive keys k' into the queue eneoder encoder

Randomly augmented samples — Dj U

* source : [Chen et al., 2020] 17
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
« MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient ? gradient T
{ q-k | Ceoqk Leoqk
F’ ) ( ) | )
q k q k q k
A A A A A A
encoder q encoder k encoder sam:llng encoder m::‘;ir;teurm
ﬁ ﬁ ﬁ memory \A %
bank
x 2" x x4 2"
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples
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SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss

3. Large batch sizes and longer training

Algorithmic Intelligence Lab * source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 19



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

e This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
* Strong color distortion degrades supervised learning, but improves SimCLR
* A stronger augmentation (AutoAugment) degrades SimCLR

Crop
-50

Cutout
40

Color

Sobel 30

1st transformation

Noise
20

Blur
10

Rotate

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering GOQ

R G

R R 2nd transformation
Color distortion strength

Methods ‘ 1/8 1/4 1/2 1 1 (+Blur) |AutoAug|

SimCLR 59.6 61.0 62.6 63.2 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 77.1

Algorithmic Intelligence Lab * source : [Chen et al., 2020] 20



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
2. A nonlinear MLLP between the representation and the contrastive loss
* Contrastive learning objective learns z to be invariant to augmentations
exp(sim(z;, z;)/7)
—1 Ljpq exp(sim(z;, Zk)/T)
e g(-) can remove informatlon that may be useful such as color
* Using nonlinear ¢(-) allows h to contain more information

gi,j = —log 2N

Maximize agreement 70
Zi Zj
A A
g9() < Projection — g9() 60 I II II . Representation
) - What to predict? Random guess h ( h)
h; +— Representation — h; 250 Projection g
! [t B Linear Color vs grayscale 80 99.3 97.4
f() IC) 40 | mmm Non-linear Rotation 25 67.6  25.6
pr— None Orig. vs corrupted 50 99.5 59.6
z, Z; 30 = Orig. vs Sobel filtered 50 96.6 56.3
D«
2N T K '\ ’LQD‘%
7 Nt PrOJectlon output d|men5|onaI|ty

Algorithmic Intelligence Lab * source : [Chen et al., 2020] 21



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized

architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
3. Large batch sizes and longer training
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SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* SimCLR achieves outstanding performance in various downstream tasks

Fine-grained image classification tasks
Food CIFARIO CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 60.0 612 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:
SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 848 69.4 64.1 82.7 72.5 92.5
Semi-supervised learning in ImageNet Linear evaluation in ImageNet
Label fraction Method Architecture ~ Param (M) Top1 TopS5
Method Architecture 1% T ;O% Methods using ResNet-50:
op Local Agg. ResNet-50 24 60.2 -
Supervised baseline ResNet-50 48.4 80.4 MoCo ResNet-50 24 60.6 -
Methods usine other label on- PIRL ResNet-50 24 63.6 -
ethods using other tabei-propagarnon. CPC v2 ResNet-50 24 63.8 853
Pseudo-label ResNet-50 16 824 SimCLR (ours) ResNet-50 24 693 89.0
VAT+Entropy Min. ResNet-50 47.0 83.4
UDA (w. RandAug) ResNet-50 - 88.5 Methods using other architectures:
FixMatch (w. RandAug) ResNet-50 - 89.1 Rotation RevNet-50 (4 %) 86 55.4 -
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 BigBiGAN RevNet-50 (4x) 86 61.3 819
Methods usine entation | ing onlv- AMDIM Custom-ResNet 626 68.1 -
ethods using representation learning only: CMC ResNet-50 (2x) 188 684 882
InstDisc ResNet-50 39.2 77.4
o MoCo ResNet-50 (4x) 375 68.6 -
BigBiGAN RevNet-50 (4x) 55.2 78.8
CPC v2 ResNet-161 (x) 305 71.5  90.1
PIRL ResNet-50 57.2 83.8 .
SimCLR (ours) ResNet-50 (2x) 94 742 92.0
CPCv2 ResNet-161(+) ~ 77.9 912 SimCLR (ours) ResNet-50 (4x) 375 765 932
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
Algorithmic Intell SimCLR (ours) ResNet-50 (4x) 858 926 * source : [Chen et al., 2020] 23



SSL via Invariance

 Limitations in contrastive learning (with negatives)
* It is sensitive to the number of negative = a large batch size or a queue is required
* Are all the different instances negative?

Positive pair f (
Negative pair f (

* Q) can we learn representations without negative samples?

 Simply minimizing ||f([&)) — f(E)H leads to mode collapse, i.e., Vz, f(x) = ¢

This relation might be not true

* Next: Positive-only approaches

Algorithmic Intelligence Lab
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SSL via Invariance
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e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

view representation projection prediction

inpu 0 g 0 qe
imI;gi t (Y I f > Z@ I‘ q6(z6) p_ online
1] &l

Y

\
1
loss |

1
1

—Af—> sg(2) ¥ target

Y

= =

f§ gf Sg
Objective Update
q0(z 2 0 < optimizer(6, VoL
LeyoL = H |IqZ zZ)ll ”Z P ( o Lsyor)

e TE+(1—T1)0

* Key components: target (momentum) network, predictor, stop-gradient (sg)

* source : [Grill et al., 2020] 25



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

view representation projection prediction

inpu 0 g 0 q9
imI;gte t (Y I f > ZQ I‘ q6(z6) p_ online
1] &l

Y

\
1
loss |

1
1

—Af—> sg(2) ¥ target

Y

= (8]

f§ gf sg
Objective Update
q0(z 2 0 < optimizer(6, VoL
LeyoL = H IIqZ zZ)II ”Z P ( o Lsyor)

E«—1E4+(1—1)0

* Q) How does BYOL avoid the undesired collapsed solutions?
« {is not updated in the direction of V¢Lgyor %'s i-th feature -
 When the predictor is optimal, i.e., ¢"(z6) = E[2¢|29], Leyor = E[ZZ Var(z¢ ;| 20)]
* For any constant c, Var(z ;|2¢) < Var(z;,/c) = constant equilibria is unstable

Algorithmic Intelligence Lab * source : [Grill et al., 2020] 26



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

prediction

q0(2p) . online
Ay

A}
loss |
.

sg(2¢) ¥ target

view representation projection
. S f 0 — 9o — 4o
mput
image t @ Yo 29
= q
'S ) SR
\ ,
t v Ye Ze
e 9¢ sg

* BYOL is more robust to the choice of batch sizes and augmentations

Algorithmic Intelligence Lab

Decrease of accuracy from baseline
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o
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—— BYOL \
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* source : [Grill et al., 2020] 27



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

#

prediction

t

q6(28) |

representation projection
R ) 9o —\ qde
) Yo 0
7|
— | N —
'S
\ ,
' Ye Ze
— 3 58

loss |

sg(2¢) ¥ target

* BYOL is more robust to the choice of batch sizes and augmentations
* BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%
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* source : [Grill et al., 2020] 28



SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

@

| softmax |

student ggs

* Key components:

loss:
- p2log pi

c€ma

sg

teacher gg;

e (self) knowledge-distillation
 Distill the teacher (EMA version of a student) knowledge to the student
* multi-crop: a strategy to generate positive views

Objective
Lpivo = H(P:(x), P(x))

Update

O, < optimizer(es, VgSLD,NO)

Ht &« /19t + (1 - /1)95

e centering and sharpening: a strategy to avoid collapse

Algorithmic Intelligence Lab
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SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
e -p2logpi @
softmax

centering

student ggs — | teacher gy

ema

* DINO constructs a set of views V via multi-crop strategy:

* (1) global views: xl‘g, x‘zg

* (2) local views with smaller resolution

* All crops are passed through the student; only the global views are passed through
the teacher: “local-to-global” correspondences

* Therefore, the loss is written as:
mi Z Z H(Pt(x),Ps(SU,))

05
ze{z], 2§} 2'eV
' #x
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SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
© e
softmax

centering

student ggs — | teacher gy

ema

* DINO avoids the collapse via centering and sharpening
* Centering: adding a bias term c to the teacher
9:(z) + g1(z) + ¢

* The center c is updated with an exponential moving average
B

1
c—me+(1-— m)E det(xi)
=1

* Sharpening: using a low value for the temperature 7, in the teacher softmax
normalization

Algorithmic Intelligence Lab



SSL via Invariance

 DINO [Caron et al., 2021]
e DINO outperforms previous contrastive methods in classification tasks

* Self-supervised ViT features contain explicit information about the semantic
segmentation of an image

Method Arch. Param. im/s Linear k-NN
Supervised RN50 23 1237 79.3 79.3
SCLR [12] RNS50 23 1237 69.1 60.7
MoCov2 [15] RNS0 23 1237 71.1 61.9
InfoMin [67] RNS50 23 1237 73.0 65.3
BarlowT [81] RNS0 23 1237 732  66.0
OBoW [27] RNS50 23 1237 73.8 61.9
BYOL [30] RNS50 23 1237 744 64.8
DCv2 [10] RNS50 23 1237 75.2 67.1
SwAV [10] RNS50 23 1237 753 65.7
DINO RNS50 23 1237 175.3 67.5
Supervised ViT-S 21 1007 79.8 79.8
BYOL* [30]  ViT-S 21 1007 714 666 Self-attention map on [CLS] of self-supervised ViT
MoCov2* [15] VIiT-S 21 1007 72.7 64.4
SwAV* [10]  ViT-S 21 1007 73.5 66.3 Method Data Arch. (T&F)m JIm  Fm
DINO ViT-S 21 1007 77.0 74.5 .
Supervised
Comparison across architectures ImageNet INet ViT-S/8 66.0 63.9 68.1
SCLR [12] RN50w4 375 117 76.8 69.3 STM [48] I/D/Y RNS50 81.8 79.2 843
Sl meee w7 o E—
30 —
DINO £ VITB/16 85 312 782 761 CT [71] VLOG ~ RN50 48.7 46.4 500
SwAV[10]  RN50wS sse 7 a5 el MAST [40] YT-VOS RNI8 655 633 67.6
BYOL [30] RN50w4 375 117 78.6 _ STC [37] Kinetics RN18 67.6 64.8 70.2
BYOL [30]  RN200w2 250 123 79.6 73.9 DINO INet ViT-5/16 61.8 60.2  63.4
DINO ViT-S/8 21 180 79.7 178.3 DINO INet ViT-B/16 62.3 60.7 63.9
SCLRv2 [13] RNI152w3+SK 794 46 79.8 73.1 DINO INet ViT-S/8 69.9 66.6 73.1
DINO ViT-B/8 85 63 80.1 774 DINO INet ViT-B/8 71.4 67.9 749
Top-1 accuracy for linear and k-NN evaluations Video instance segmentation on top of
on the validation set of ImageNet self-supervised feature

Algorithmic Intelligence Lab



Masked Image Modeling

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

e Similar to BERT in NLP, BEiT randomly masks image patches and trains to
recover the visual tokens of masked patches (instead of the raw pixels)

* Visual token: a discretized vocabulary for the image patch

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Visual Tokens Unused E?uﬁng Reconstructed |
i Pre-Training Image
[ 123 234 456 567 g——— [
s T et
Original o 987876765543 H | e G 4
rigina - —— — ---» | Decoder | ---» %
Image | /112 223 334 445 bl | |
=< ‘ i O l - |
SR L -« ~f
l s L 0 et
b- > ‘ 234 456 876 765 *322
= (g 0 L1 t 1 !
P'":age s I Masked Image Modeling Head |
atches B |
— 1k
T T bt | (bt (25} 5 b,
i | BEIT Encoder
=
[o]lri(=]lz](e] jﬁl—jlﬂm 2 Embedding
- 1l
= Flatten b — Patch
= |
orn — By MM <M M) - 1 M] n’ Bl Embedding

* BEIT training procedure is consist of two stages:
1. Learning visual tokens
2. Masked image modeling

Algorithmic Intelligence Lab



Masked Image Modeling

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction
* BEIT training procedure is consist of two stages:
1. Learning visual tokens

______________________________________________

Visual Tokens i Unused During Reconstructed
Pre-Training Image
i | i
g,'__,“ 123 234 456 567 - : %,.;,‘Q
s e . 2 987 876 765 543 : e g 4
Original - — e \ ---» | Decoder ! ---» 3 P
Image i /112 223334 445 P | i
- i i i G | e
<« t /,’ 21 32_?_133 544 | A J AR

] i
1 S \ MRS R | S e e oo o v s e e et e

* In this stage, a discrete variational autoencoder (dVAE) is trained to represent each
224 x 224 image into a 14 x 14 grid of discrete image tokens, each element of whic
h can assume 8192 possible values

* The tokenizer q4(z|x) maps image image pixels into a visual codebook
* The decoder py,(x|z) learns to reconstruct the input image

Algorithmic Intelligence Lab 34



Masked Image Modeling

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

g,- (.\ _q 2:]34 b’4?6 8?6‘( 7(135 ~~~~~ ‘_\)3?2
Image | | Masked Image Modeling Head |
Patches F (|
———- ) ™
Blockwise
Sockinss| BEIT Encoder
=
ER(EN|EY Y [[3(A(ED jWWTWW I I Embedding
- ;‘(‘ Flatten ,—\ ‘ YR = > | [Ml 1 [M] L Patch

s 1§ S Embedding

* The standard ViT is used as the backbone network

* Some image patches are randomly masked (approx. 40%), and then the visual
tokens that corresponds to the masked patches are predicted

* The objective is maximizing the log-likelihood of the correct visual tokens z;
given the corrupted image x™ with the masked positions M

max Z E s [Z lOgPMIM(Zi|$M)]

z€D ieM
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Masked Image Modeling

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

£ TE T
Image - | Masked Image Modeling Head |
Patches .2 | (_H
TENE bt |[n} nt, |
Blockwise
Aockues| BEIT Encoder
|
fjﬁf WW WWWTEW 14 ﬁ 18] Embadding
= D_“-\ Flatten ,—‘b- M M M [M] -~ 1 - [M] \’ Patch

r 10 Embedding

* During masked image modeling, block-wise masking strategy is used
* A block with the minimum number of patches to 16 is masked
* Repeat masking until obtaining enough masked patches (total 40% of patches)
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Masked Image Modeling

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Objective: MSE loss of masked patches

encoder -

>
Vi
=
v
i
.
R

* Key components:
* High masking ratio (75%):
* BERT masks 15% of tokens, MAE needs higher masking ratio
* Asymmetric encoder-decoder architecture:

* MAE allows to train very large transformer encoder by using the
lightweight decoder => it significantly reduces the pre-training time

Algorithmic Intelligence Lab
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Masked Image Modeling

* MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder
dim ft lin

128 84.9 69.1
256 84.8 71.3

blocks ft lin

1 84.8 65.5
2 84.9 70.0

4 84.9 71.9 512 84.9 73.5

8 84.9 73.5 768 84.4 75.1

12 84.4 73.3 1024 843 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
prove linear probing accuracy. rower than the encoder (1024-d).

* The decoder depth is less influential for improving fine-tuning
* Only a single transformer block decoder can perform strongly with fine-tuning

* MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9%
FLOPs per token vs. ViT-L

Algorithmic Intelligence Lab
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Masked Image Modeling

« MAE [He et al., 2022]

e Task: Predicting the pixel values for each masked patch

e Other intriguing properties of MAE

case ft lin FLOPs case ft lin
encoder w/ [M] 842 59.6 33X pixel (w/o norm) 84.9 735
encoder w/o [M] 849 735 1x pixel (W/ norm) 85.4 73.9
PCA 84.6 72.3
dVAE token 85.3 71.6

(c) Mask token. An encoder without mask to- (d) Reconstruction target. Pixels as recon-

kens is more accurate and faster (Table 2). struction targets are effective.

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder

case ft lin

none 84.0 65.7
crop, fixed size 84.7 73.1
crop, rand size 849 735
crop + color jit 84.3 71.9

* |tis more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation

* MAE behaves decently even if using no data augmentation

Algorithmic Intelligence Lab

(e) Data augmentation. Our MAE works with
minimal or no augmentation.
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Masked Image Modeling

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
e Other intriguing properties of MAE

case ratio ft lin

random 75 849 735
block 50 839 723
block 75 828 639
grid 75 84.0 66.0

(f) Mask sampling. Random sampling works _ s !
the best. See Figure 6 for visualizations. Pe—r “block 50%

(f) Random patch masking is better than block-wise and grid-wise sampling
* Block-wise sampling: Removes large random blocks
* Grid-wise sampling: Keeps one of every four patches

Algorithmic Intelligence Lab
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Masked Image Modeling

* Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]

* Perform patch-level self-distillation on masked patch tokens (while DINO is done
with image-level objective)

e Use data augmentation for invariance learning
* Unlike BEIT, image tokenizer is jointly learned (i.e., online tokenizer)

~[CLS]
Oom Ug |
u fs E Lyvim
ﬁgatchE
x~7 t~T
[CLS]
om U @
v ft H
patch
Uy
|Z e[MASK] online tokenizer H
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Masked Image Modeling

* Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]
* |BOT shows strong performance on linear probing as well as fine-tuning

Table 1: £-NN and linear probing on ImageNet- Table 2: Fine-tuning on ImageNet-1K.

1K. T denotes using selective kernel. * denotes pre- :

training on ImageNet-22K. Method _ Arch. Epo.  Acc.
Method Arch. Par. im/s Epo.! k-NN Lin. MoCov3 ViT-S/16 600 81.4
SSL big ResNets DINO ViT-S/16 3200 82.0
MoCov3 RN50 23 1237 1600 - 746 iBOT ViT-S/16 ~ 3200  82.3
SwAV  RNS50 23 1237 2400 65.7 753 3 ;
DINO RN50 23 1237 3200 67.5 753 MoCov3 VIiT-B/16 600 832
BYOL RN200w2 250 123 2000 73.9 79.6 BEiT ViT-B/16 800 834
SCLRv2 RN152w3' 794 46 2000 73.1 79.8 DINO ViT-B/16 1600 83.6
SSL Transformers iBOT VIT-B/16 1600  84.0
MoCov3 ViT-S/16 21 1007 1200 - 734 MoCov3  ViT-L/16 600  84.1
MoCov3 ViT-B/16 85 312 1200 - 76.7 iBOT ViT-L/16 1000 84.8
SwAV  ViT-S/16 21 1007 2400 66.3 735 BEIiT ViT-L/16 800 85.2

DINO  VIT-S/16 21 1007 3200 745 77.0 - -
DINO ViT-B/16 85 312 1600 76.1 782 Table 3: Fine-tuning on ImageNet-1K.

EsViT  Swin-T/7 28 726 1200 75.7 78.1 Pre-training on ImageNet-22K.

O R Ry —ohod  Arch Bpo. Acc
1 11- . . . N

iBOT  Swin-T/7 28 726 1200 753 78.6 o e oy o
iBOT  Swin-T/14 28 593 1200 762 79.3 :
iBOT  ViT-B/16 85 312 1600 77.1 79.5 BEiT ViT-L/16 150 86.0
iBOT  ViT-L/16 307 102 1200 78.0 81.0 iBOT ViT-L/16 200 86.6
iBOT ¥ WVIT-L/16 307 102 200 729 823 iBOT ViT512-L/16 200 87.8
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Masked Image Modeling

* Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]
e |IBOT shows strong performance on linear probing as well as fine-tuning

* |BOT demonstrates high transferability on various downstream tasks such as semi-
supervised learning, unsupervised learning, object detection, and segmentation

Table 4: Semi-supervised learning on Table 5: Unsupervised learning on ImageNet-

ImageNet-1K. 1% and 10% denotes label 1K. T denotes k-means clustering on frozen fea-

fraction. SD denotes self-distillation. tures.
Method Arch. 1% 10%  Method Arch. ACC ARI NMI FMI
DCLRY2 Ao 79 881 Selflabel! RNSO 305 162 754 -
SwAV RN50 53:9 70:2 InfoMinT RN50 33.2 147 68.8 -
SimCLRv2+SD  RN50 60.0  70.5 SCAN  RN50 399 275 720 -
DINO ViT-S/16 60.3 74.3 DINO ViT-S/16 41.4 29.8 76.8 32.8
iBOT ViT-S/16 619 75.1 iBOT ViT-S/16 43.4 32.8 78.6 35.6

Table 6: Object detection (Det.) & instance segmentation (ISeg.) on COCO and Semantic
segmentation (Seg.) on ADE20K. We report the results of ViT-S/16 (left) and ViT-B/16 (right).
Seg.t denotes using a linear head for semantic segmentation.
T
. IE. I%. Seg. Method Det. ISeg. Seg. Seg.
APP AP™ mloU AP®  AP®™ mloU mloU

Method Arch. Param

MoBY Swin-T 29 48.1 415 44.1 BEiT 50.1 435 274 45.8

DINO 50.1 434 34.5 46.8
iBOT ViT-S/16 21 494 42.6 454 iBOT 51.2 442 383 50.0
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Masked Image Modeling

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* Modality-unified algorithm:

e 1) Build representations of the full input data with the teacher model
* The teacher is an exponentially decaying average of the student

* 2) Encode the masked version of the input sample with the student model and
predict the representations of original input

* Modality-specified data processing and masking strategies are used

Algorithmic Intelligence Lab
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Masked Image Modeling

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* The objective is predicting the representation for time-steps which are masked

* data2vec uses the standard transformer architecture
* Training targets are the output of the top K blocks of the teach network

. ai: the normalized output of block [ at time-step t

—~~

- 1
» Training target: v = —XJ_; 41 G¢

e The objective is smooth-L1 loss between y; and the prediction f;(x) at t:

3@ — £@)/B v — fu(@) < B
Ly, fe(z)) = {(|yt @)~ 1) otherwise
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Masked Image Modeling

* data2vec [Baevski et al., 2022]

data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Modality-specified data processing and masking strategy

Image processing
* (Input embed) Embed images of 224 x 224 pixels as patches of 16 x 16 pixel
* (Masking) Apply BEIT masking strategy with 60% masking ratio

Speech processing

* (Input embed) Sample with 16kHz then forward seven temporal convolutions
e (Masking) Mask 49% of all time-steps

NLP processing
* (Input embed) The input data is tokenized using a byte-pair encoding (BPE)
* (Masking) Apply BERT masking strategy to 15% of uniformly selected tokens
* 80% are replaced by a learned mask token, [M]
* 10% are left unchanged
* 10% are replaced by randomly selected vocabulary token
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Masked Image Modeling

* data2vec [Baevski et al., 2022]

* data2vec shows a new state of the art or competitive performance to predominant
approaches on three domains

* Vision task: ImageNet classification

* Speech task: Word error rate (smaller is better) on the Librispeech dataset
* NLP task: GLEU benchmark

Table 1. Computer vision: top-1 validation accuracy on ImageNet-
1K with ViT-B and ViT-L models. data2vec ViT-B was trained
for 800 epochs and ViT-L for 1,600 epochs. We distinguish be-
tween individual models and setups composed of multiple models
(BEiT/PeCo train separate visual tokenizers and PeCo also distills
two MoCo-v3 models).

ViT-B  ViT-L
Multiple models
BEIT (Bao et al., 2021) 832 852
PeCo (Dong et al., 2022) 84.5 865
Single models
MoCo v3 (Chenet al., 2021b)  83.2  84.1
DINO (Caron et al., 2021) 82.8 -
MAE (He et al., 2021) 83.6 859
SimMIM (Xie et al., 2021) 83.8 -
iBOT (Zhou et al., 2021) 83.8 -
MaskFeat (Wei et al., 2021) 84.0 857
data2vec 842  86.6

Vision

Algorithmic Intelligence Lab

Table 2. Speech processing: word error rate on the Librispeech test-other test set when fine-tuning pre-trained models on the Libri-light
low-resource labeled data setups (Kahn et al., 2020) of 10 min, 1 hour, 10 hours, the clean 100h subset of Librispeech and the full 960h of
Librispeech. Models use the 960 hours of audio from Librispeech (LS-960) as unlabeled data. We indicate the language model used
during decoding (LM). Results for all dev/test sets and other LMs can be found in the supplementary material (Table 5).

Unlabeled IM Amount of labeled data
data 10m 1h 10h 100h 960h
wav2vec 2.0 (Baevski et al., 2020b)  LS-960  4-gram 156 113 95 80 6.1
HuBERT (Hsu et al., 2021) LS-960 4-gram 153 113 94 8.1 -
WavLM (Chen et al., 2021a) LS-960  4-gram - 108 92 17 -
data2vec LS-960 4-gram 123 91 81 68 55
Speech

Table 3. Natural language processing: GLUE results on the development set for single-task fine-tuning of individual models. For MNLI
we report accuracy on both the matched and unmatched dev sets, for MRPC and QQP, we report the unweighted average of accuracy and
F1, for STS-B the unweighted average of Pearson and Spearman correlation, for CoLA we report Matthews correlation and for all other
tasks we report accuracy. BERT Base results are from Wu et al. (2020) and our baseline is ROBERTa re-trained in a similar setup as BERT.
We also report results with wav2vec 2.0 style masking of spans of four BPE tokens with no unmasked tokens or random targets.

MNLI QNLI RTE MRPC QQP STS-B CoLA SST Avg

BERT (Devlin et al., 2019)  84.0/84.4  89.0 61.0 863 89.1 895 573 93.0 807
Baseline (Liu et al., 2019)  84.1/83.9 904 69.3 80.0 893 889 568 923 825

data2vec 83.2/83.0 909 67.0 902 89.1 872 622 918 827
+ wav2vec 2.0 masking 82.8/834 91.1 699 900 8.0 8.7 603 924 829
NLP
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DINO v2: Learning Robust Visual Features without Supervision

 DINO v2 [Oquab et al., 2023]
* While there are recent breakthroughs in SSL, CLIP showed better scalability
* DINO v2 aim to scale the image-only discriminative SSL by
* Scaling data size by curating data
* Scaling model size with computational efficient engineering techniques

kNN linear
Method Arch. Data Text sup. val val RealL V2
Weakly supervised
CLIP ViT-L/14 WIT-400M v 79.8 84.3 881 753
CLIP ViT-L/14336 WIT-400M v 80.5 85.3 888 75.8
SWAG ViT-H/14 1G3.6B v 82.6 85.7 88.7 77.6
OpenCLIP ViT-H/14 LAION v 81.7 84.4 884 755
OpenCLIP ViT-G/14 LAION v 83.2 86.2 894 T7.2
EVA-CLIP ViT-g/14 custom* v 83.5 86.4 893 774

Self-supervised

MAE ViT-H/14 INet-1k X 49.4 76.6 83.3  64.8
DINO ViT-S/8 INet-1k X 78.6 79.2 855  68.2
SEERv2  RGI10B IG2B X - 798 - -
MSN ViT-L/7 INet-1k X 79.2 80.7 86.0 69.7
EsViT Swin-B/W=14 INet-1k X 79.4 81.3 870 704
Mugs ViT-L/16 INet-1k X 80.2 821 869 70.8
iBOT ViT-L/16 INet-22k X 72.9 82.3 875 724
i LVD-142M X
LVD-142M X
DINOv2 LVD-142M X
LVD-142M X
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DINO v2: Learning Robust Visual Features without Supervision

 DINO v2 [Oquab et al., 2023]
* Data preprocessing (LVD-142M dataset)
e Curated dataset from ImageNet and fine-grained dataset
* Uncurated dataset sourced from crawled web data
* Deduplication: remove near-duplicate images to increase diversity

* Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16,
retrieve relevant data from uncurated source using K-means clustering

Uncurated Data i :
—— : :
| # I
= R
"«. - i — E = i Augmented Curated Data

@ & & = =
+ g
: :
—— I :
| |
| |
| |
| |

Curated Data Embedding | Deduplication | Retrieval
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
* Data preprocessing (LVD-142M dataset)

Curated dataset from ImageNet and fine-grained dataset
Uncurated dataset sourced from crawled web data
Deduplication: remove near-duplicate images to increase diversity

Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16,
retrieve relevant data from uncurated source using K-means clustering

e LVD-142M maintains ImageNet-1K performance while improving in other domains

Training Data INet-1k Im-A ADE-20k Oxford-M
INet-22k 85.9 73.5 46.6 62.5
INet-22k \ INet-1k 85.3 70.3 46.2 58.7
Uncurated data 83.3 59.4 48.5 54.3
LVD-142M 85.8 73.9 47.7 64.6

Algorithmic Intelligence Lab
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DINO v2: Learning Robust Visual Features without Supervision

 DINO v2 [Oquab et al., 2023]
* Training method
* Use both image-level objective in DINO and MIM objective in iBOT
* KolLeo regularizer: minimize the differential entropy of features
* Encourage features to be uniformly distributed

[’koleo = —% Z?:l log(dn,i), where dn,i = minj;,gz- ||332 — acj||

» Effect of KoLeo loss term and Masked Image Modeling from iBOT

KoLeo INet-1k Im-A ADE-20k Oxford-M MIM INet-1k Im-A ADE-20k Oxford-M

X 85.3 70.6 47.2 95.6 X 85.3 72.0 44.2 64.3
v 85.8 72.8 47.1 63.9 v 85.8 72.8 47.1 63.9
(a) Koleo loss (b) MIM objective in iBOT
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
* DINO v2 matches domain generalization performance of CLIP
* Linear probing experiments on ImageNet-A/R/C/Sketch

Method Arch Data, Im-A Im-R Im-C| Sketch
OpenCLIP ViT-G/14 LAION 63.8 87.8 45.3 66.4
MAE ViT-H/14 INet-1k 10.2 344 61.4 21.9
DINO ViT-B/8  INet-1k 239 370 56.6 25.5
iBOT ViT-L/16 INet-22k 415 51.0 43.9 38.5

ViT-S/14 LVD-142M 33.5  H3.7 04.4 41.2
ViT-B/14 LVD-142M 5.1  63.3 42.7 50.6
ViT-L/14 LVD-142M 71.3 744 31.5 99.3
ViT-g/14  LVD-142M 75.9 788  28.2 62.5

DINOv2
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
* DINO v2 is better at transferring to vision tasks
* Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature

ADE20k CityScapes Pascal VOC

(62.9) (86.9) (89.0)
Method Arch. lin. +ms lin. +ms lin. +ms
OpenCLIP ViT-G/14 39.3 46.0 60.3 70.3 71.4 79.2
MAE ViT-H/14 33.3 30.7 58.4 61.0 67.6 63.3
DINO ViT-B/8 31.8 35.2 56.9 66.2 66.4 75.6
iBOT ViT-L/16 44.6 47.5 64.8 74.5 82.3 84.3

ViT-S/14 44.3 47.2 66.6 77.1 81.1 82.6
ViT-B/14 47.3 951.3 69.4 80.0 82.5  84.9
ViT-L/14 47.7 53.1 70.3  80.9 82.1 86.0
ViT-g/14 49.0 53.0 71.3 81.0 83.0 86.2

DINOv2
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
* DINO v2 is better at transferring to vision tasks

* Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature
* Depth estimation on NYUd, KITTI, NYUd -> SUN RGB-D with frozen feature

NYUd KITTI NYUd — SUN RGB-D

(0.330) (2.10) (0.421)
Method Arch. lin.1 lin. 4 DPT lin.1 lin. 4 DPT lin. 1 lin. 4 DPT
OpenCLIP ViT-G/14 0.541 0.510 0.414 3.57 3.21 2.56 0.537 0.476 0.408
MAE ViT-H/14 0.517 0.483 0.415 3.66 3.26 2.59 0.545 0.523 0.506
DINO ViT-B/8 0.555 0.539 0.492 3.81 3.56 2.74 0.553 0.541 0.520
iBOT ViT-L/16  0.417 0.387 0.358 3.31 3.07 2.55 0.447 0.435 0.426
ViT-S/14  0.449 0.417 0.356 3.10 286 2.34 0477 0.431 0.409
DINOv2 ViT-B/14 0.399 0.362 0.317 2.90 2.59  2.23 0.448 0.400 0.377
M ViT-L/14 0.384 0.333  0.293 2.78 2.50 2.14 0.429 0.396 0.360

ViT-g/14 0.344 0.298 0.279 2.62 235 211 0.402 0.362 0.338
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]
* Simple contrastive learning between image and text embeddings

* Trained on large-scale web image-text pairs
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| N
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(2) Create dataset classifier from label text

?‘

(1) Contrastive pre-training

plane —

y

i=1 exp

(£;

- T5)

Y

car —

Pepper the \‘

aussie pup > Er;lzﬁer dog > A photo of
a {object}.

ﬁ

Algorithmic Intelligence Lab

Ty T, T; Tn
bird ——
—> L LTy | Ty | LTy I'Ty .
(3) Use for zero-shot prediction v v v v
\‘ —>» b Iy Ty | Iy Ty | IpTs LTy T, T, T5 TN
Image > 1 3Ty | I3, | IyT Iy T
Encoder 4 - S B 3N Image I LT, | 1T, | 1T I,-T
Encoder 1 1Ty | Ty | I T3 1T
v
—> In || INTy | INT2 | INTs INTy * pah?f?q .




CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer
* Transfer learning without seeing the images or labels
* Prompt Engineering: “"A photo of a [MASK]”

* Choose class that maximizes similarity with respect to image

(1) Contrastive pre-training

\?‘

Pepper the
aussie pup

’ﬁ
D

(2) Create dataset classifier from label text

plane

car

dog

ﬁ
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer

* Transfer learning without seeing the images or labels
* Prompt Engineering: “"A photo of a [MASK]”

* Choose class that maximizes similarity with respect to image

Food101
correct label: guacamole

correct rank: 1/101  correct probability: 90.15%

photo of ceviche, a type of food.

photo of edamame, a type of food.

a photo of hummus, a type of food.

la photo of tuna tartare, a type of food.

0 20 40 60 80

PatchCamelyon (PCam)
correct label: healthy lymph node tissue

correct rank: 2/2  correct probability: 22.81%

100

tissue

oto of healthy lymph node tissue
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100

SUN397

correct label: television studio

correct rank: 1/397  correct probability: 90.22%

Youtube-BB
correct label(s): airplane,person

correct rank: 1/23  correct probability: 88.98%

photo of a podium indoor.

photo of a conference room.

photo of a lecture room.

a photo of a control room.

b photo of a bird.

h photo of a bear.

b photo of a giraffe.

a photo of a car.

0 20 40 60

ImageNet-A (Adversarial)
correct label: lynx

80

correct rank: 5/200  correct probability: 4.18%

100

hoto of a skunk.

photo of a lynx.

e
Camera Name 30.011nt 37F @

0 20 40 60

80

100

0 20 40 60 80

CIFAR-10
correct label: bird

correct rank: 1/10  correct probability: 40.86%

100

to of a deer.

hoto of a frog.

hoto of a dog.

0 20 40 60 80

100



CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

* A zero-shot CLIP classifier shows a competitive performance with a fully
supervised linear classifier fitted on ResNet-50 features

* Linear-probing with CLIP image features outperform the best ImageNet model

StanfordCars +28.9 SST2 +23.6

Country211 +23.2 Country211 +22.7
Food101 +22.5 HatefulMemes
Kinetics700 StanfordCars
SST2 GTSRB
SUN397 SUN397
UCF101 Kinetics700
HatefulMemes RESISC45
CIFAR10 . FER2013
CIFAR100 |3+3.0 Food101

STL10 |3+ 3.0 FGVCAircraft .
FER2013 |§f+2.8 UCF101 +3.1
Caltech101 j§+2.0 KITTI Distance
ImageNet i|+1.9 Birdsnap

+1.1 Flowers102 |+ 1.4
+0.5 Caltech101 jj+1.3
Birdsnap EuroSAT |i|+0.9
MNIST MNIST j§+0.6
FGVCAircraft DTD |§+0.5
RESISC45 VOC2007 ||+0.5
Flowers102 STL10[+0.0

DTD -0.5] OxfordPets

OxfordPets
PascalvVOC2007

CLEVRCounts -0.8 CIFAR10
GTSRB -1.2 8| PatchCamelyon
PatchCamelyon -1.788 CIFAR100
KITTI Distance -2.4 CLEVRCounts
EuroSIAT : : : : -31.0 Imaqe!\let : : : .
-40 -30 -20 -10 O 10 20 30 40 -10 -5 0 5 10 15 20 25
A Score (%) A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50 Logistic Regression on CLIP vs. EfficientNet L2 NS
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [llharco et al., 2021] show that CLIP have high effective robustness even
at small scale

ImageNet Zero-Shot
ResNet101  CLIP A Score

100

== |deal robust model (y = x) V4

951 @ Zero-Shot CLIP /K"’
® Standard ImageNet training -

901 Exisiting robustness techniques

85 A

80
75 PR

ImageNet & 76.2 76.2 0%

ImageNetV2 64.3 70.1 +5.8%

70 1 -7
65 17

60 -
55 1
50 1
45 4
40 A
354
30 1
25 A1
20

ImageNet-R 377 88.9 +51.2%

ObjectNet | 326 723 +39.7%

ImageNet

252 60.2 +35.0%
Sketch kS

Effective
Robustness

65 70 75 80 85 90 95 10
Average on class subsampled ImageNet (top-1, %)

Average on 7 natural distribution shift datasets (top-1, %)

» ImageNet-A VAl <o sﬂ‘ A 2.7 774 +74.4%
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [lIharco et al., 2021] show that CLIP have high effective robustness even
at small scale

* Few-shot CLIP classifier also shows high effective robustness, but less than zero-
shot CLIP classifier

35 1

= Ideal robust model (y = x)
® Few-Shot CLIP (best model)
® Zero-Shot CLIP (best model)
® Standard ImageNet training
® Robustness intervention
® Trained with more data

30 1

25 4

Average on 7 natural distribution shift datasets (top-1, %)

20

65 70 75 80 85 90 95
Average on class subsampled ImageNet (top-1, %)
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Scaling Up dataset size for improved CLIP

Follow-up studies showed scaling dataset size improves performance

* CLIP uses carefully filtered 400M image-text pairs from web

* ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP

* BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

i Ideal robustness (y=x)

01 ___ 7 logistic fit ' ' 7
< === Non-ZS logistic fit ool
‘_,- *  BASIC /,*
330' ALIGN/CLIP 1 Jrate
Nad) ® Non-ZS models ,/
n .
] e
-§ 701 [ [ ,’// o ¢ ./
(2] 7
o e ' 4 4}
&£ 1 3 /
& ,’/ 'Y N
< 60 i o P —
S /‘/ * . ‘///
.-3 ,/’ [} &
"E Rad ’
0 50 g @,
< - ,’“
T:E r”’ .’.
2 »°
a0 | . |
Lo @ ’
p °
o o °
a0 'Y _
g 30 b s o o
> @ [
< g o 9

o o ,/"’
20+—=—~ | | |
60 65 70 75 80 85 90

ImageNet (top-1, %)
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Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP

1.

vk wnN

Size of training dataset
Distribution of training data
Language supervision at training
Prompt-tuning as test-time
Contrastive learning objectives

* For systematic study, they considered two datasets
* ImageNet-Captions: Captions for ImageNet dataset to do CLIP
* YFCC-Classification: Labeled YFCC dataset to do original training

ImageNet-Captions

caption:
class: @ A Phone Call at Night
payphone Flickr API phone pay phone
telephone

YFCC-Classification
caption:

Muchenley church ; class:

= across the ruins of church
8 part of the Abbey. Label search
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Dataset Design and Distributional Robustness

 Size of training dataset do not affect effective robustness

e CLIP on YFCC shows similar effective robustness as original CLIP

e CLIP model is not robust than classification models on same dataset
e CLIP on ImageNet-Caption does not show high effective robustness

* |t follows the trend of other ImageNet models

* SimCLR on labeled YFCC shows similar effective robustness as YFCC CLIP

* YFCC CLIP follows the trend of original CLIP model
* Data distribution affects the effective robustness!

Average over 4 shifts (top-1, %)

w

w H» U1 O
(2O N O, B O |

N
S,

=
(9]
L

Robustness under distribution shift

10

200 30 40 50 60
ImageNet (top-1, %)

70

y=x
ImageNet Classification
Linear fit (ImageNet Classification)

CLIP zero-shot

Linear fit (CLIP zero-shot)
YFCC CLIP
ImageNet-Captions CLIP
YFCC SimCLR + Classification



Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP
L Cire of trainined

2. Distribution of training data

3 - ..
4. Prompt-tuning as test-time

5. Contrastive learning objectives
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Dataset Design and Distributional Robustness

* Prompt-tuning does not have correlation on effective robustness

* Prompt variation act as interpolation with a random classifier

* Various contrastive learning methods do not affect effective robustness
* SwAV [Caron et al., 2020], SimSiam [Chen et al., 2021], SimCLR v2 [Chen et al., 2021]

Average over 4 shifts (top-1, %)

=
o1

on ImageNet dataset follows the trend on ImageNet models

Effect of test time prompts

~
(€]
!

[e)}
(&,
!

[&)]
(&;]
!

N
a1
)

w
(&)
!

N
(€]
!

*ﬂ*
*
*
” )
v .
&
/ ¥
e
45 55 65 75 85

ImageNet (top-1, %)
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Average over 4 shifts (top-1, %)

Effect of contrastive training losses

~
(€]
!

D
(&)
!

[&)]
(&)
!

S
a1
)

w
(&)
!

N
(€]
!

—
o1

N
o

55 65 75 85
ImageNet (top-1, %)

y=x

ImageNet Classification

Linear fit (ImageNet Classification)
CLIP zero-shot

Linear fit (CLIP zero-shot)

Prompt variations

Interpolation with a random classifier
SimCLRv2

SimSiam

Swav



Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP

L Cire of trainined

2. Distribution of training data

2 - "
- . .
c ¢ o loarning obioet

e Conclusion
* The effective robustness of CLIP is not from language supervision
* The choice of training data distribution matters in effective robustness

* But then, how to choose the training dataset?
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset

=
= = " oy
R 354 R Bl
2 - g 20
Q 254 a £
2 e =1l
~ b= o
Q
i 5 B
o)) o =2
© © ]
E £ 2
y =
5 . - . . ———— — = . ;
5 15 25 35 5 15 25 35 45 55 65 75 5 15 25 35
ImageNet (top-1, %) ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)
9 y=x Standard ImageNet models
n Linear fit (standard ImageNet models) m YFCC15m
~
a ~—— Linear fit (YFCC15m) % LAION15m
é’, Linear fit (LAION15m) ® RedCapsl2m
1] Linear fit (RedCaps12m) CC12m
% Linear fit (CC12m) WITSm
Q Linear fit (WIT5Sm) v ShutterStock15M
'8 = Linear fit (ShutterStock15M)
1l

5 15 25 35 45 55
ImageNet (class-subsampled) (top-1, %)
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset

* The robustness of a mixed dataset is not additive
» Effective robustness of mixed dataset interpolates between that of two datasets
* Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

w
i
L
|

; o
ust = Linear fit (YFCC15m)

Linear fit (LAION15m)
Linear fit (YFCC15m+LAION15m)
Linear fit (YFCC7.5m+LAION7.5m)
m YFCCl5m
% LAION15m
YFCC15m+LAION15m
YFCC7.5m+LAION7.5m

N
=
L

[y
[}
1

ImageNet-R (top-1, %)
ImageNet Sketch (top-1, %)

=

5 T T T T T T T T
25 35 45 55 65 75 20 30 40
ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)

=
o
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset
* The robustness of a mixed dataset is not additive

* |ImageNet accuracy increases by mixing dataset

* Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

* However, this does not give us how to choose effective dataset for CLIP
* Their theoretical analysis show that filtering with pretrained model is beneficial
* E.g., LAION filters image-text pairs by using pre-trained CLIP
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Reproducible Scaling law for CLIP

Since OpenAl do not release dataset, many have tried to reproduce its performance

Some open-source approaches in reproducing CLIP:

e OpenCLIP [llharco et al., 2021] is a open-source re-implementation of CLIP
* LAION [Schuhmann et al., 2022] is a public large-scale image-text pair

Then, they together performed a study on the scaling behavior of CLIP
* OpenAl’'s WIT dataset show better scaling than LAION

OpenCLIP
—— CLIP
Model
ViT-B/32
e ViT-B/16
e o ViT-L/14
v e ViT-H/14
e ViT-g/14
Samples seen
3B
13B
34B
Dataset
v LAION-80M
e LAION-400M
= LAION-2B
*  CLIP-WIT

=y

w
(o)}
o

B
o
w w
o w

w

wv
D
v

w

o
By
o

ImageNet error rate (%)
N
w

w

w

Qoo

ImageNet robustness error rate (%)

N
E=586%C- = E=11.61*C™"
E=23.18 * C~01¢ N | E=211.66 * C024

w
o

1011 1012 1011 1012
Total compute (GMAC per sample x samples seen) Total compute (GMAC per sample x samples seen)

Algorithmic Intelligence Lab



Reproducible Scaling law for CLIP

Then, they together performed a study on the scaling behavior of CLIP
* OpenAl’s WIT dataset show better scaling than LAION on ImageNet accuracy

* LAION dataset show better scaling than OpenAl’s WIT on COCO image-text
retrieval

=> Scaling leads to better performance, but scaling behavior depends on task type
and dataset

w
o

ey
w

B
o

MS-COCO (100 - Recall@5%)
w
vl

w
o

E
E

[}

2
1

75 * C0.08
59 *x C-0 05

Flickr30K (100 - Recall@5%)

o N o v ©

20

151

[ | v

E=15.51*C-01°
E=2.21*C-010

1011 1012
Total compute (GMAC per sample x samples seen)

Algorithmic Intelligence Lab

1011 1012
Total compute (GMAC per sample x samples seen)

OpenCLIP

—— CLIP

Model
ViT-B/32
ViT-B/16
ViT-L/14
ViT-H/14
ViT-g/14
Samples seen
3B

13B

34B

Dataset
LAION-80M
LAION-400M
LAION-2B
CLIP-WIT



Sigmoid Loss for Language Image Pre-training

We have seen that training data is crucial in CLIP, then how about training loss?
SigLIP [Zhai et al., 2023] propose Sigmoid loss for image-text pretraining which
* Has more efficient implementation

* And better scaling performance compared to CLIP’s softmax loss

In specific, recall the CLIP’s softmax normalization for image-text contrastive loss:
e tisalearnable temperature parameter

* The normalization should be performed twice: across images and texts

_A _A

( image—stext softmax text—image softmax \
'8 N\

etxi'Yi etxi‘Yi

1
— lo +lo
2|B] Z 5 |.B|1 etXi'Yi © lelill etx; i

/



Sigmoid Loss for Language Image Pre-training

Instead, Sigmoid loss compute every image-text pair independently:

* z;j: 1if paired -1 otherwise |B| |B]|

1
. t: — lo
t: learnable temperature parameter B Z Z g 1+ ezis (—txi: y3+b)

b: learnable bias term 1=1 j=1\

L,
Efficient implementation

Conventional contrastive loss requires expensive ‘all-gather’ of embeddings that
results in memory-intensive BXB matrix

On the other hand, Sigmoid loss is memory efficient, fast, and stable by
summation of the loss by swapping negatives across device:

Device 1 Device 2 Device 3 Device 1 Device 2 Device 3 Device 1 Device 2 Device 3 Device 1 Device 2 Device 3
I [Iz Iz | Lo |Is [Tg [I7 | I3 | Io [T10 T34 |Is2 Iy [Iz |13 | Ly |15 [Ig | I7 | Ig | Ig [I30|Ty1|Ts2 Iy [Io Iz | Ly |Is | Ig [I7 | I3 | Is |10 111 |ls2 I I I3 L |Is lg 17 Ig o Iy Iyq 112

Ty T, [+ - - - Ty - |- T, - - - -
— Ll o o~
Sz =) - | - | - 3L 3Tz
3 Ty 3 Ts -+ - 3 Ts 3 T
a a a a

i T, -+ Ty T

5 Ts + - Ts Ts
~ ~ - o
3| Te 3| Te - 53 = 3 Te 3| Te
3 T, 3 T, + - 3 T, 3 T,
a a a a

Tg Tg + Tg Tg

To To Bl -] -]- To To
o o ~N —
8 1o 3 T10 -+ == 3 T1o 8 T1of
g Ti1 g T11 - [ - g Tia g Tia|

Ti2 Tiz - |+ Ti2 Tiz

I I A 2 e
33% 33% 33% 33%|33% 33% 33% 33%|33% 33% 33% 33% 66% 66% 66% 66%|66% 66% 66% 66%|66% 66% 66% 66%
loss los loss 1 Device 2 Device 3
Device 1 Device 2 D 3 Device 1 Device 2 Device 3 CLUN [mcyice eVl
N ) "4

Cross Device X
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Sigmoid Loss for Language Image Pre-training

As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger
batch size with stable training loss, thus results in better scalability

* Sigmoid is better than Softmax at small batch size, but similar at large batch size

» Sigmoid show better scaling behavior than Softmax

- SigLiT SigLIP 85 1
74 84 1
—— 84' 2 83 T
= 7 2
3 < 82
2 %) " Zu
£ &
E 65 Esof |
821 / —e— Sigmoid /l — 8k —— Sigmoid
661 * ——-  Softmax 71 — 262k  -%- Softmax
81 T T T T T T T T T T 78 T T T T
8 32 262 1024 4 8 16 32 98 307 450 900 3000 18'000
Batch Size (k) Batch Size (k) Examples Seen [M]
Effect of batch size Effect of data scaling

*SigLiT is Sigmoid loss with Locked-Image Tuning which use pretrained ViT from
ImageNet-22K and only fine-tune text encoder using image-caption pairs
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Sigmoid Loss for Language Image Pre-training

As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger
batch size with stable training loss, thus results in better scalability

* Comparison to various models

Method Image Encoder ImageNet-1k COCORe@1
etho
ViT size #Patches  Validation v2 Real.  ObjectNet I-T T—1I

CLIP B 196 68.3 61.9 - 55.3 524 33.1
OpenCLIP B 196 70.2 62.3 - 56.0 59.4 42.3
EVA-CLIP B 196 74.7 67.0 - 62.3 58.7 422
SigLIP B 196 76.2 69.6 82.8 70.7 64.4 47.2
SigLIP B 256 76.7 70.0 83.1 71.3 65.1 474
SigLIP B 576 78.6 72.1 84.5 73.8 67.5 49.7
SigL.IP B 1024 79.2 73.0 84.9 74.7 67.6 50.4
CLIP L 256 75.5 69.0 - 69.9 56.3 36.5
OpenCLIP L 256 74.0 61.1 - 66.4 62.1 46.1
CLIPA-v2 L 256 79.7 72.8 - 71.1 64.1 46.3
EVA-CLIP L 256 79.8 72.9 - 75.3 63.7 47.5
SigLIP L 256 80.5 74.2 85.9 77.9 69.5 511
CLIP L 576 76.6 72.0 - 70.9 579 37.1
CLIPA-v2 L 576 80.3 73.5 - 73.1 65.5 47.2
EVA-CLIP L 576 80.4 73.8 - 78.4 64.1 47.9
SigLIP L 576 82.1 75.9 87.0 81.0 70.6 52.7
OpenCLIP G (2B) 256 80.1 73.6 - 73.0 67.3 514
CLIPA-v2 H (630M) 576 81.8 75.6 - 77.4 67.2 49.2
EVA-CLIP E (5B) 256 82.0 75.7 - 79.6 68.8 51.1
SigLIP SO (400M) 729 83.2 77.2 87.5 82.9 70.2 52.0
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Sigmoid Loss for Language Image Pre-training

As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger
batch size with stable training loss, thus results in better scalability

* Comparison to various models
* Trends of CLIP models

0.85 A

0.80 A

0.75 A

o
9
o

ImageNet zero-shot accuracy
o
(o))
(6,]

0-60 = | T T T T T T T
0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700

Average zero-shot performance on 38 datasets

Dataset FLOPs (B)

e LAION ® OpenAl WIT ® 200 ' 1600
DataComp MetaCLIP @ 500

® WeblLl CommonPool ‘ 1200 ‘ 2000
LAION+COYO
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Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

e Better VL models for few-shot learning by
* Bridging pre-trained vision-only and language-only models
* Can handle sequences of arbitrary visual and textual data

* Seamlessly ingest images or videos as inputs

Input Prompt [ * Completion ]
A This is a a flamingo.
. e This is a shiba. They are found

chinchilla. They ot o

‘ e They are very This is in the
> alCh};l ou popular in Japan. Caribbean and
- - South America.
What is the title ‘Where is this )
of this painting? painting th;lt is the nlz:me
Answer: The displayed? t(,)h' DEly wt:; Arles.
Hallucinogenic Answer: Louvres 15 X‘:‘S Pa"” :
Toreador. Museum, Paris. SWEE Qo g g a
This is an apple with a sticker
— 4 "
| SRS
o - What does the sticker say?
utput: AVE utput: .

"Underground”  {LIGHANR  "Congress" Output: jiSoulomes The sticker says "iPod".
What is the common thing Where is the photo taken?
about these three images? R "

2 It looks like it’s taken in a
— They are all flamingos. backyard.
2+1=3 T 5+6=11 — 3x6=18 y e
What is the difference be- Do you think it is printed or
tween these three images? handwritten?
e
l:éo%agijﬂga Outont: A ik A vortsaitof The first one is a cartoon, the It looks like it’s handwritten.
| poster depicting a put: A pinl portrait of : .
Catdressedlas roomyithla Output: — Salvador Dali il e Lol f!ammgo, What color is the sticker?
French emperor flamingo pool tput: with a robot and the third one is a 3D
Napoleon float. head. (™ model of a flamingo. It’s white.
holding a piece

Multimodal In-Context Learning
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Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* Better pretrained vision and language model
* Vision encoder pretrained from CLIP-like objective with more data
* Used 1.4B, 7B, 70B Chinchilla model for LLM
* New Perceiver-Resampler module for vision-language alignment
* Gated Cross-attention dense (GATED XATTN-DENSE) layers for vision-language fusion

Output: text
Pretrained and frozen R
. ‘ a very serious cat. ‘

Trained from scratch

| ] n-th GATED XATTN-DENSE
Perceiver Perceiver é
o C mblek
1st GATED XATTN-DENSE

T

Processed text

|<image> This is a very cute dog.<image> This is | . ; :
Interleaved visual/text data i E
% ] Y : Joe=tv
tf This is a very cute dog.| A" | This is -
; Vision X Languag

i input input

Perceiver-Resampler Architecture GATED-XATTN-DENSE layer
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Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* MultiModal MassiveWeb (M3W) dataset — Mixture of datasets

* Extract text and images from HTML of 43M webpages
» Special tokens: Use <image> token to determine locations of images and <EOC> prior to image

and end of document
* Also use 1.8B image-text pairs from ALIGN and 27M video-text pairs

* Use autoregressive captioning loss, weighted per dataset

M L
> AmEgynn, |~ logp(yely<s, v<)
m=1 =1
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Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* Flamingo outperforms (6 out of 16) existing SOTA fine-tuned models with no fine-tuning

<
E ) Flamingo (80B) Previous 100.0% 1
R 150% B 37 shots E—1 Zero/few-shot SotA g
= c
L 125% - 115 £ 90.0% -
= == 5
£ 100% mmmmmmmmmmmm s s -Ro7- t
S 75% 2 80.0%
= ]
(] -
C 50% ;!.} . —8— Flamingo-80B
e £ 70.0% Flamingo-9B
= 25% A 34 o) .
o < Flamingo 3B
;
& 0% - < < x T T T T 60.0% T T T T
N o N N S wn a9 ¥
- S ¥ B &3¢ < g z % S g 0 48 16 32
Q E T 2 8§ o < & % § o S »h ¥ =2 X Number of shots
S = s > > > > s 0 O = -
o h ol s (.
>
=
* When fine-tuned, it achieves SOTA various tasks
Method VQAV2 COCO | VATEX VizWiz MSRVTTQA VisDial YouCook2 TextVQA HatefulMemes
test-dev  test-std | test test test-dev  test-std test valid | test-std valid valid | test-std test seen
% 32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0
” Fine-tuned  82.0 82.1 138.1 84.2 65.7 65.4 474 618  59.7 118.6 571 541 86.6
SotA 81.37 81.37  149.67 81.47 57.27 60.67 46.8 752 7541 138.7 54.7 73.7 84.67
° [133] [133] [119] [153] [65] [65] [51] [79] [123] [132] [137] [84] [152]
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
* Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

* Propose two-stage alignment using Q-former
e Stage 1: Representation learning with Q-former
* Q-former: BERT initialized transformer that encodes visual information given query
e Various learning objectives used
* Image-Text Matching (binary classification loss)
* Image-Text Contrastive Learning (i.e., CLIP loss)
* Image-grounded text generation (i.e., captioning loss)

Q: query token positions; T: text token positions.
@ masked [ unmasked

Image-Grounded

SR Image-Text
Matching

Image-Text Text Generation
Input Image Con?,asﬁve Q T Q T Q T
2 Feed Forward Learning Feed Forward Q D D D D Q D D . l. Q D D i
— £ for every 0000 00 Bl D0 Bl
| LN image Kilakia 1 o Y o [ EE OO
2} WM Y  Cross Attention - .
‘ Encoder Attention Masking T T T
g 4 bidirectional _— O O Lo BE O]
If Attention

Self Attenti mutlimodal causal

x N — - uni-modal - % —- x N Bi-directional Multi-modal Causal Uni-modal
Self-Attention Mask  Self-Attention Mask Self-Attention Mask

Learned Input Text [ 2 cat weering sun lasses] Image-Text ‘ Image-Grounded Image-Text
Queries LTSS g sung Matching Text Generation Contrastive Learning
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]

* Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

* Propose two-stage alignment using Q-former
» Stage 1: Representation learning with Q-former
e Stage 2: Bootstrapping with Frozen LLM
* Can be applied to both decoder-based / encoder-decoder-based LLM

% O0O-00 Output Text [ a cat wearing sunglasses ]

Bootstrapping from a - )
Decoder-based 1 XY Image ‘ i J [ Fully
Large Language Model Encoder Q-Former Connected LLM Decoder
(e.g. OPT) f
ooO-o0o
Learned Queries
Ood-0On0o Suffix Text [ wearing sunglasses J
Bootstrapping from an -
Encoder-Decoder-based %. Ny mage NN Fully
Large Language Model ﬁ ‘ Encoder ‘ Q-Former ’ ‘ T J # LLM Decoder
(e.g. FlanT5) kb )
/ EE-EN \r[lj O-0 D][acat]
Input Image Learned Queries Prefix Text
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
e BLIP-2 achieves SOTA on zero-shot VL tasks

. Visual Question Answering Image Captioning Image-Text Retrieval
Models g::;‘:ble g)fl’fr‘c‘e " VQAW2 (test-dev) ¢ N%)Capsp (val) ¢ gFlickr (test)
’ VQA acc. CIDEr SPICE TR@1 IR@1
BLIP (Li et al., 2022) 583M v - 113.2 14.8 96.7 86.7
SimVLM (Wang et al., 2021b) 1.4B X - 112.2 - - -
BEIT-3 (Wang et al., 2022b) 1.9B X - - - 94.9 81.5
Flamingo (Alayrac et al., 2022) 10.2B X 56.3 - - - -
BLIP-2 188M v | 65.0 121.6 158 97.6 89.7
Models #Trainable #Total VQAv2 OK-VQA GQA
Params Params | val test-dev test test-dev
VL-T506-vqa 224M 269M 13.5 - 5.8 6.3
FewVLM (Jin et al., 2022) 740M 785M | 47.7 - 16.5 29.3
Frozen (Tsimpoukelli et al., 2021) 40M 7.1B 29.6 - 5.9 -
VLKD (Dai et al., 2022) 406M 832M | 42.6 44.5 13.3 -
Flamingo3B (Alayrac et al., 2022)  1.4B 3.2B - 49.2 41.2 -
Flamingo9B (Alayrac et al., 2022) 1.8B 9.3B - 51.8 44.7 -
Flamingo80B (Alayrac et al., 2022) 10.2B 80B - 56.3 50.6 -
BLIP-2 ViT-L OPT, 75 104M 3.1B 50.1 49.7 30.2 33.9
BLIP-2 ViT-G OPT, 75 107M 3.8B 53.5 52.3 31.7 34.6
BLIP-2 ViT-G OPT¢ 78 108M 7.8B 54.3 52.6 36.4 36.4
BLIP-2 ViT-L FlanT5x; 103M 3.4B 62.6 62.3 394 44.4
BLIP-2 ViT-G FlanT5x, 107M 4.1B 63.1 63.0 40.7 44.2
BLIP-2 ViT-G FlanT5xx;. 108M 12.1B 65.2 65.0 45.9 44.7
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
e BLIP-2 achieves SOTA on zero-shot VL tasks

* Also it achieves SOTA on image-text retrieval tasks, outperforming various dual encoder-
based (e.g., CLIP) or fusion-encoder based models

#Trainable Flickr30K Zero-shot (1K test set) COCO Fine-tuned (5K test set)
Model Params Image — Text Text — Image Image — Text Text — Image
R@1 R@5 R@10 R@1 R@5 R@10 |R@1 R@5 R@10 R@l1 R@5 R@10
Dual-encoder models
CLIP (Radford et al., 2021) 428M 88.0 98.7 994 687 90.6 952 - - - - - -
ALIGN (Jiaet al., 2021) 820M 88.6 98.7 997 757 938 968 | 77.0 935 969 599 833 8938
FILIP (Yao et al., 2022) 417M 89.8 992 998 750 934 963 | 789 944 974 612 843 90.6
Florence (Yuan et al., 2021) 893M 909 99.1 - 76.7 93.6 - 81.8 952 - 63.2 85.7 -
BEIT-3(Wang et al., 2022b) 1.9B 949 999 1000 815 956 978 | 848 965 983 672 877 928
Fusion-encoder models
UNITER (Chen et al., 2020) 303M 83.6 957 9777 687 892 939 | 657 886 938 529 799 88.0
OSCAR (Li et al., 2020) 345M - - - - - - 70.0 91.1 955 540 80.8 885
VinVL (Zhang et al., 2021) 345M - - - - - - 754 929 962 588 835 903
Dual encoder + Fusion encoder reranking
ALBEEF (Li et al., 2021) 233M 941 995 997 828 963 98.1 | 77.6 943 972 60.7 843 905
BLIP (Li et al., 2022) 446M 96.7 100.0 100.0 86.7 973 98.7 | 824 954 979 651 863 918
BLIP-2 ViT-L 474M 969 100.0 1000 886 976 989 | 835 960 980 663 865 918
BLIP-2 ViT-G 1.2B 97.6 100.0 100.0 89.7 981 989 |854 970 985 683 877 926
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Visual Instruction Tuning

LLaVA [Liu et al., 2023]
* Using pre-trained vision encoder and pre-trained LLM (LLaMA) for visual understanding

* Given pre-trained LLM, map an image with vision encoder (CLIP ViT-L/14) into grid features
and map to LLM word embedding space using learnable projector

» Stage 1. feature alignment: pretrain projector on small image-text pairs to map vision encoders
into LLM word embedding space

» Stage 2. Instruction tuning: keep the visual encoder frozen, and fine-tune projector and LLM

* For Stage 2., they collected multimodal instruction-following dataset using GPT-4 and
ChatGPT for conversation, detailed description, and complex reasoning

Language Response X, Q Q Q

Language Model f¢

ANOO0O Aad

Proiecti
rojection W Z. H, *Hq

Vision Encoder X, Image Xq Language Instruction

Figure 1: LLaVA network architecture.



Visual Instruction Tuning

LLaVA [Liu et al., 2023]

* Using pre-trained vision encoder and pre-trained LLM (LLaMA) for visual understanding

* LLaVA show comparable performance to GPT-4 in multimodal understanding and
conversational capability

Visual input example, Extreme Ironing:

User
LLaVA

User
LLaVA

Source: https: //www.barnorama. com/wp- content/uploads/2016/12/03- Confusing-Pictures. jpg

‘What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or
van. This is not a typical place to perform this activity, as one would usually iron clothes

in a more stationary and safe location, such as a home, using a regular ironing board.

The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.

[Start a new conversation, and clear the history]

What’s happening in the scene?

The image depicts a man standing on top of a yellow SUV in a busy city street. He is
holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around
the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are

two other people in the vicinity, one close to the man on the car and another further away.

The man on the ladder appears to be attracting attention due to his unconventional choice
of ironing his clothes on top of a moving car. The city street around him is bustling with
activity, adding to the unique nature of the scene.

Visual input example, Chicken Nugget Map:

User
LLaVA

Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it all is.

Can you explain this meme in detail?

The meme in the image is a creative and humorous take on food, with a focus on chicken
nuggets, as the center of the universe. The meme begins with the phrase "Sometimes I just
look at pictures of the Earth from space and I marvel at how beautiful it all is..." The main
image features a tray of cooked chicken nuggets, with the chicken pieces positioned to
resemble the continents and islands on a world map. The meme playfully suggests that the
chicken nuggets represent the Earth, and the various locations depicted in the photo are
actually chicken nugget versions of different places. The punchline of the meme appears
in smaller text at the bottom, reading "I mean, it’s not the real Earth, but how beautiful it
is all is." This lighthearted and entertaining meme combines food and humor, using the
image of chicken nuggets to create a funny and imaginative representation of the world.

User
GPT-4 [32]

What is unusual about this image?
The unusual thing about this image is that a man is ironing clothes on an ironing board
attached to the roof of a moving taxi.

User
GPT-4 [32]

Can you explain this meme?

This meme is a joke that combines two unrelated things: pictures of the earth from space
and chicken nuggets. The text of the meme suggests that the image below is a beautiful
picture of the earth from space. However, the image is actually of chicken nuggets
arranged to vaguely resemble a map of the world. The humor in this meme comes from
the unexpected juxtaposition of the text and the image. The text sets up an expectation of a
majestic image of the earth, but the image is actually something mundane and silly.

User
BLIP-2

Can you explain this meme in detail?
sometimes i just look at pictures of the earth from space and marvel how beautiful it is

User
BLIP-2

Can you explain this meme in detail?
a man is sitting on the back of a yellow cab

User
OpenFlamingo

Can you explain this meme in detail?
It’s a picture of a chicken nugget on the International Space Station.

User
OpenFlamingo

Can you explain this meme in detail?
The man is drying his clothes on the hood of his car.
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Text-to-Image Diffusion Models

Development of Text-to-Image (T2l) Diffusion Models

* Due to the scalability of diffusion models and the presence of numerous image-
caption pairs, various T2I Diffusion models have been proposed

* Latent Diffusion Models (i.e., Stable Diffusion)
* (Cascaded Diffusion Models (e.g., Imagen, DeepFloyd-IF)

* In this lecture, we will explore various text-to-image diffusion models and their
applications to various tasks, expanding the capabilities

* Image editing
* Controllable generation and personalization
* Extending to other modalities (e.g., Text-to-3D, Text-to-Video)
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Text-to-Image Diffusion Models

Latent Diffusion Models (a.k.a Stable Diffusion) [Rombach et al., 2022]

* Training a diffusion model on the pixel space is too memory expensive

* Latent Diffusion Models (LDMs) handle this problem by compressing an image
into lower dimensional latent, and train diffusion model on the latent space

* LDM first use condition text embeddings on cross-attention layer

80
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20

Distortion (RMSE)

Perceptual & Semantic Compression

N
a u

0

| Semantic Compression |

— Generative Model:
Latent Diffusion Model (LDM)

l Perceptual Compression

— Autoencoder+GAN |

0.5 D
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Text-to-Image Diffusion Models

Imagen [Saharia et al., 2022]

* Imagen first used large language models (i.e., T5) as text encoder, and train by
conditioning on cascaded U-Nets of size 64 -> 256 -> 1024

* Imagen use Classifier-Free Guidance [Ho et al., 2022] to control sample quality
and diversity

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck.”

v

Frozen Text Encoder

Text Embedding

\4

Text-to-Image
Diffusion Model

64 x 64 Image
Y

agen
—d

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a

Super-Resolution
fairytale book. bike. It is wearing sunglasses and a beach hat.

Diffusion Model

256 x 256 Image

\4

Super-Resolution
Diffusion Model

|

1024 x 1024 Image
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Text-to-Image Diffusion Models

Stable Diffusion XL (SDXL) [Podell et al., 2022]

» After the introduction of Latent Diffusion Models, various organizations have
open-sourced the scaled version of LDMs

» Stable Diffusion (v1.5 & v2.1): LDM trained on LAION image-text pairs

* SDXL is the updated version of Stable Diffusion with better autoencoder and
larger model size and scale

* The model size is increased from 860M (SD 1.5) to 2.6B

* The model is conditioned with the size of image and cropping parameters to
generate more centered images

’A propaganda poster depicting a cat dressed as french "a close-up of a fire spitting dragon,
emperor napoleon holding a piece of cheese. cinematic shot.’

SD 1-5

SD 2-1

SDXL
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Text-to-Image Diffusion Models

Due to the existence of large-scale pretrained T2l models, many following works
focused on extending the capability beyond image generation

From now on, we explore recent topics in leveraging T2l models for
* Image editing (or image-to-image translation) using text

e Controllable generation

* Personalization

* Text-to-3D generation

Algorithmic Intelligence Lab
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Prompt-to-Prompt [Hertz et al., 2023]

Prompt-to-Prompt Image Editing with Cross-Attention Control [Hertz et al., 2023]

Motivation: Image editing is challenging in text-driven synthesis diffusion models
* Small modification in text prompt leads to different outcome
* Prior works require a spatial mask for localized image editing

Contribution: Textual editing method via Prompt-to-Prompt manipulations
» Text-only editing (w/o spatial mask) based on cross-attention maps

“Landscape with a house near a river
Y . Vi
and o rainbow in the \y\cxgmu\'\&.j

e <]

a cake withdecorations. Sclildren drawing of a castle next to a river.”

g DR ,
My fluffy bunny doll. s
Jelly bedng
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Prompt-to-Prompt [Hertz et al., 2023]

Cross-attention maps: High-dim tensors binding pixels and tokens from the prompt
e Contain semantic relations which affects the generated images

Observation: Spatial layout and geometry depend on the cross-attention maps
* Pixels are more attracted to the words describing them (e.g., bear)

(%) How to utilize cross-attention maps for image editing?

_ Inject the attention maps of original prompt to the modified prompt

bear watches

Average cross-attention maps across all timestamps
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Prompt-to-Prompt [Hertz et al., 2023]

Main Idea: Injecting cross-attention maps during the diffusion process
* Word swap: attention injection of the source image

* E.g., “a big bicycle” = “a big car”
* Prompt refinement: attention injection over the common tokens

* E.g., “acastle” - “children drawing of a castle”

» Attention Re-weight: increase / decrease the attention weights of specified tokens
* E.g., more or less "fluffy” on “a fluffy ball”

Q
S

N
Pixel features Pixel Queries Token Keys Y"L@ ébQ Token Values Output
(from prompt) (from prompt)
—> X | —» X | ] —»
¢ (Zt) Q K M, t V ¢ (Zt)

Text to Image Cross Attention

Cross Attenetion Control

M, M; \_‘—//-\:‘ New weighting
M; i M,
Word Swap Prompt Refinement Attention Re—weighting
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Prompt-to-Prompt [Hertz et al., 2023]

Prompt-to-Prompt edits high-quality images with only text modification

“A basket full of apples.”

Word Swap
basket —> bowl basket —> box basket —> nest
Prompt
Refinement
Source i;nage : “...wéring a squareﬁ sunglésses..." “...beer drinik,“ «...coffee drink.” ‘;‘.wheatgrass drink.”
“Photo of a field of poppies at night(\).”
Attention
Re-weighting

Algorithmic Intelligence Lab
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InstructPix2Pix [Brooks et al., 2023]

InstructPix2Pix: Learning to Follow Image Editing Instructions [Brooks et al., 2023]
Motivation: Image editing with detailed prompt or extra information are cumbersome
How about editing images with human instructions (e.g., make it big)?

Contribution: Fine-tune a generative model to follow human instructions

“Swap sunflowers with roses” “Replace the fruits with cake”

“Add fireworks to the sky”

R L/ v ~
b ;;,1,'! s

“What would it look like if it were snowing?”

—
=
~—
*———’-
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InstructPix2Pix [Brooks et al., 2023]

Main Idea: Treat instruction-based image editing as a supervised problem

» Dataset generation: Text editing instructions and images before/after the edit
* Two large-scale models on different modalities: GPT-3 and Stable Diffusion
* GPT-3: Fine-tuned to produce the instructions and the edited caption
 Stable Diffusion: Transform a pair of captions into a pair of images (w/ p2p)

Training Data Generation
(@) Generate text edits:
Instruction: “have her ride a dragon”

Input Caption: “photograph of a girl riding a horse” » GPT-3
PULAPUOTE PR/ BT Edited Caption: “photograph of a girl riding a dragon”

(b) Generate paired images:

Input Caption: ‘photograph of a girl riding a horse” N Stable Diffusion
Edited Caption: “photograph of a girlriding a dragon” ~+ PrOmpt2Prompt

(c) Generated training examples:
“Color the cars pink”

“have her ride a dragon”

‘Make it lit by fireworks”

" \
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InstructPix2Pix [Brooks et al., 2023]

Main Idea: Treat instruction-based image editing as a supervised problem

» Dataset generation: Text editing instructions and images before/after the edit
* Two large-scale models on different modalities: GPT-3 and Stable Diffusion
* GPT-3: Fine-tuned to produce the instructions and the edited caption
» Stable Diffusion: Transform a pair of captions into a pair of images (with PtP)

e Training: Train Stable diffusion on generated paired dataset

L= Eg(x),g(CI)aCTaENN(O’l)at |:||6 — €9 (zt7 t S(CI), CT))”g]

: Input image conditioning : Text instruction conditioning

* Classifier-free guidance for two conditionings
* Leverage classifier-free guidance w.r.t. input image c; and text instruction ¢y

€~9(Zt,CI,CT) = ee(zt,@,@)
 Spe (ee(zt)CI)Q) - 69(2t7@7®))

+ s1 - (eq(zt, er, 1) — eq(2¢,€1,9))
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InstructPix2Pix [Brooks et al., 2023]

InstructPix2Pix performs many challenging edits

* E.g., replacing object, changing seasons, replacing backgrounds and etc.

/éi ‘ . Ag_:(/(’
S g N ‘z=
N

N =
’.: vﬁ’.*.\'* :f 4

<

L
5 ‘;w'%
2 I

“Put them in outer space” “Turn the humans into robots”

Trade-off in consistency 1.0

>
'Z% —e— Qurs
* Consistency with the input images (y-axis) E \ T Dol
g 08 —e— SDEdit (caption)
* Consistency with the edit (x-axis) g
o
— Higher image consistency 3 %00 oos o010 o1s

CLIP Text-Image Direction Similarity
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ControlNet [Zhang et al., 2023]

Adding Conditional Control to Text-to-Image Diffusion Models [Zhang et al., 2023]

Motivation: Challenges in additional control on the text-to-image diffusion models
e Text prompt is not enough for matching mental imagery; need trial-and-error cycles
* Lack of data: Available data for a specific condition is small (e.g., human pose)

Contribution: End-to-end way that learns conditional controls
* while preserving the quality and capabilities of the large model

Input Canny edge

. e | {
Input human pose Default “chef in kitchen” “Lincoln statue”
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ControlNet [Zhang et al., 2023]

Main Idea: End-to-end neural network with trainable copy and locked copy

* Trainable copy: Cloning of the neural network block for task-specific dataset
* Locked copy: Preserve the capability of large-scale model

Effect of zero convolution:

* Reduce number of trainable parameters

* Elimination of harmful noise in training

JES— | : Zero convolution
' (zero convolution ) 1 X 1 convolution layer
x x § %} with zero weights and bias
{neural network} [neural network ] [ Ty ]
block block (locked) ) :

o I
l (% : [ zero convolution |
¢ : | i

y

.................................

Ye ControlNet

Y. =F(x;0) + Z(F(x+ Z(c;0,1);0¢); O2)

: locked copy : trainable copy
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ControlNet [Zhang et al., 2023]

Main Idea: End-to-end neural network with trainable copy and locked copy

* Trainable copy: Cloning of the neural network block for task-specific dataset
* Locked copy: Preserve the capability of large-scale model

Effect of zero convolution:

* Reduce number of trainable parameters

* Elimination of harmful noise in training

Training: Fine-tune the entire diffusion model with ControlNet

L= Exy ticrcuemaion) |6 = co(z1,t, &, @)]3

: text prompt : task-specific condition

Algorithmic Intelligence Lab 106



ControlNet [Zhang et al., 2023]

ControlNet robustly interprets content semantics in diverse input conditioning

Sketch Normal map Depth map Canny[l1] edge @ M-LSD[24]line = HED[90] edge = ADE20k[95] seg. Human pose

> —~ y
{
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Textual Inversion [Gal et al., 2023]

An Image is Worth One Word: Personalizing Text-to-Image Generation using
Textual Inversion [Gal et al., 2023]

Motivation: Difficulty in introducing new concepts into large scale models
e Re-training requires huge amount of cost
* Fine-tuning on few examples leads to catastrophic forgetting

Contribution: Personalized text-to-image generation (given 3-5 images)
e Textual inversion: find new pseudo-words capturing visual semantics and details

| I
invert

Input samples —— “S..” “An oil painting of S.,.” “App icon of S.” the ih;ll:;(l)tsnenfslg*,, “Crochet S.”

() &2

TnpuE samples 222210, g g:lh?g;% ggtg;’ag* “A S, backpack” “Banksy art of S* “A S, themed lunchbox”
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Textual Inversion [Gal et al., 2023]

Main Idea: Find new pseudo-word in text embedding space (in LDMs)

* For pseudo-word S*, directly optimize textual embedding v* of §*

Vy = arg min ]EzNg(x),y,eNN(O,l)at

: Learnable new token embedding

(%

[ “A photo of S.” }

A\ 4

v \ 4 ‘L

|
/

Tokenizer

I i
508 701 73 () i
P 1 bl

Embedding Lookup
oo
Usog V701 V73 Vs
N

Text Transformer

Text Encoder
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Textual Inversion [Gal et al., 2023]

Textual Inversion enables capturing and recreating variations of an object
* Image synthesis guided by a caption lacks fine-grained detail (e.g., color patterns)
» Capture finer details and compose novel scenes w/ only a single token embedding

»  “Death metal album cover “Masterful oil painting of S.
featuring S..” hanging on the wall”

“A mosaic depicting S« “An artist drawing a S..”

“A photo of S full “A mouse using S, “A photo of a
of cashew nuts” as a boat” S« mask”

»

Input samples “Ramen soup served in S

Algorithmic Intelligence Lab 110



DreamBooth [Ruiz et al., 2023]

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven
Generation [Ruiz et al., 2023]

Motivation: Lack the ability to synthesize same subjects in different context
* QOutput domain is limited; detailed textual description yield different appearances

Contribution: Personalization of text-to-image diffusion models (given 3-5 images)
* Fine-tuning method to implant the given subject into the model’s output domain

Input images settang a hoarcut
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DreamBooth [Ruiz et al., 2023]

Main Idea: Fine-tune text-to-image model w/ few images of a subject and class name

e Text prompt with unique identifier and the class name (e.g., a [V] dog)
* Unique identifier: class-specific instance
e Class name: prior knowledge on the subject class

However, fine-tuning text-to-image model with small set may cause:
1. Language drift
2. Reduced output diversity

Fine-Tunin Inference
Input g Output
Images (~3-5) + Unique
subject’s class name identifier
( ) » A <
A [V] dog n
V) the beach”
’—» DreamBooth > .
g )
"A V] dog
walking on a P
. Y, colorful cacpet”
Pretraind Personalized
Text-to-Image Text-to-Image
model model
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DreamBooth [Ruiz et al., 2023]

Main ldea: Fine-tune text-to-image model w/ few images of a subject and class name

e Text prompt with unique identifier and the class name (e.g., a [V] dog)

* Unique identifier: class-specific instance

e Class name: prior knowledge on the subject class

* Class-specific prior preservation loss

* Supervise the model w/ own generated samples

* Leverages the semantic prior that the model has on the class

Reconstruction Loss

"A V] o(og”
|
Text — 64x6h4
Shared
Input images (~3-5) Weights
N e
I
”A 0‘03” ”A do i

Class-Specific Prior Preservation Loss

Algorithmic Intelligence Lab

Super-Resolution components:
Fine tuning + unconditional sampling in inference

@ 64 x 66 —> 1024 x 1024

Reconstruction Loss
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DreamBooth [Ruiz et al., 2023]

* Generates image with high preservation of subject details in various context

A wet [V] backpack A [V] backpack with the
Grand Canyon in water night sky

Input images A [V] teapot floating A &ansparent [V] teapot A [V] teapot A [V] teapot floating
in milk with milk inside pouring tea in the sea

* Generate novel views with preserving subject identity

Text-guided view synthesis
Input images Top view} Bottom view * Back view ¥\
S

Ao B S | At
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DreamBooth fine-tuning with LoRA

(%) How to efficiently fine-tune large models (e.g., DreamBooth)?
_ Reduce the number of trainable parameters, not fine-tuning all parameters
LoRA: Low-Rank Adaptation of Large Language Models [Hu et al., 2022]

* Freeze the original weights and update only low-rank decomposed matrices
h = WO.’E + AWz = W()SB + BAx

h |
A TR
Pretrained
Weights

%

[
X |

— LoRA enables faster and memory efficient DreamBooth fine-tuning
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HyperDreamBooth [Ruiz et al., 2023]

HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image
Models [Ruiz et al., 2023]

Motivation: Personalization requires huge amount of time and memory
e GPU time for fine-tuning the entire model
» Storage for each personalized model

Contribution: Tackles the problem of speed and size of DreamBooth
* while preserving model integrity, editability and subject fidelity

otl

painting
2 [sec] | HyperNetwork
22 [sec] Text-to-|
Fine- | I€Xt-to-image tail )
tuning * Qg — d:e:’;:f psychedelie

“A vl faceas a...”
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HyperDreamBooth [Ruiz et al., 2023]

Main Idea: Propose HyperNetwork for fast personalization
* Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space
* Further decompose A and B matrices of LoRA into two matrices

LoRA DreamBooth

s TTFTFEFEEmEEEEEEEEEEEEEEEEEEEEEEES N
| r=1 \
' 386k variables |
: 1.6 MB I

|
I

1
1

I
: 1
\

M i m e s i i e e e e e e o e Sy B e i Sk S i i et - ¥
e a=100,b=50",
| 28k variables I
! 120 KB ,
: > 1
: |

1

: i
\

N i e e e e e e e e e e s e o e - /
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HyperDreamBooth [Ruiz et al., 2023]

Main Idea: Propose HyperNetwork for fast personalization
* Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space
* HyperNetwork: Generate an initial prediction of LiDB weight

* ViT Encoder: Translates face images into latent face features

* Transformer Decoder: Iteratively predicts the values of weight features

HyperNetwork
( K iterations
5 A Layer_1
) il
Visual —— _J’Q > B e
Transformer = . . .
Transformer ->

Decoder

Encoder : . C )
> . A Layer_ L
k weights

g

Linear | ee°
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HyperDreamBooth [Ruiz et al., 2023]

Main Idea: Propose HyperNetwork for fast personalization
* Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space
* HyperNetwork: Generate an initial prediction of LiDB weight
* Rank-relaxed fine-tuning
* HyperNetwork training: Training a hypernetwork to predict network weights
* Fast fine-tuning: Fine-tuned using reconstruction loss with given image

Phase1 HyperNetwork Training (Large Scale) Phase2 Fast Fine-Tuning
"""""""""""""""""" }?-e-c-o-);;t-r:u-(:-t;o-r-t-i;);;-"""""“""""""": e g T
a RegpuVleaifilzlftian Gr&l:izl};;uﬂl E ':Ileytsle:;ka _|
HyperNetwork —— QW «--------------
Weights
composition Text-to-lmage a
Text-to-Image & Diffusion Model
Diffusion Model

“A (V] face
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HyperDreamBooth [Ruiz et al., 2023]

HyperNetwork + Fast Finetuning achieves strong results

* Preserves identity and subject fidelity more closely compared to prior works\\

Method Face Rec. ¥ DINOt CLIP-IT CLIP-T?
Ours 0.655 0.473 0.577 0.286
DreamBooth 0.618 0.441 0.546 0.282
Textual Inversion 0.623 0.289 0.472 0.277

e Strong personalization results for diverse faces

Initial HyperNetwork HyperNetwork + w/o
Prediction Fast Finetuning - HyperNetwork

Reference Output
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DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

Recent, Text-to-image (T2l) diffusion models have shown impressive capabilities
* Synthesizing high-quality, realistic, diverse images with the text given as input

How can we utilize T2l diffusion models to 3D synthesis without 3D training data?

How can we use DMs as a critic to optimize the underlying 3D representation?

Poole et al. (2023): Score Distillation Sampling (SDS)
* Probabilistic density distillation enabling the use of a 2D diffusion models for priors

DreamFusion: Optimize NeRF using T2I diffusion models with SDS
e Optimize NeRF g(80), that look like images x when rendered from random angles
* The optimized NeRF yields good images appropriate for given text prompt
* Does not require 3D training data and no modification to the image diffusion models
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DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

* How does DreamFusion create 3D assets from text descriptions?

1. Initialization:
NeRF is randomly initialized and trained from scratch for each caption

2. NeRF parameter updates:
DreamFusion diffuses the rendering and reconstructs it with a (frozen) Imagen

€ (2¢|y;t) —
Yy v

prediction of injected noise injected noise

e Subtracting the injected noise produces a low variance update direction
. Backpropagated through the renderlng process to update the NeRF MLP parameters

"a DSLR photo of a

peacock on a surfboard" Imagen
‘ n-£
hght Zt U(O 1) -I\ra.nsformere §/'¢(zt|y, t)

_ normals n ‘ _ shading |

rendering

albedo p - colorc | P(camera) h

NeRF MLP (-; 0 ) Backpropagate onto NeRF weights o b
€p(zely;t) — € ép(2ely;t)
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DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

* Score distillation sampling enables sampling in parameter space, not pixel space
» create 3D models that look like good images when rendered from random angles
1. Training objective of diffusion models is as follows:

Lpitt (¢, x) = Ett4(0,1),e~N (0,1) [w(t)H%(O‘tX + ore;t) — €||§] ‘
2.  Minimize the diffusion model training loss w.r.t a generated data point x = g(e)
6* = argming Lpig (¢, x = g(0))

3. Gradient of the training objective becomes:

R 0y (2t y,t 0
VoLpitt(p,x = g(0)) = Er.c |w(t) (é4(ze;y,t) — €) €¢(Zzt y,t) a_z ]
N > Pty ) 5

Noise Residual U-Net Jacobian Generator Jacobian

4. Score Distillation Sampling

VoLsps (o, x = g(0)) £ E; e [w(t) (€s(z¢5y,t) = €) 8){]

20
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DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

* DreamFusion generates coherent 3D scenes from a variety of text prompts

Algorithmic Intelligence Lab * source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023 124
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Segment Anything Models (SAM)

Segment Anything Model (SAM) [Kirillov et al., 2023]
* A foundation model for image segmentation, i.e., predicting object masks
* SA-1B dataset
* Web-scale 11M photography and 1.1B segmentation masks?

* Enables strong zero-shot transfer on new domains
* e.g., segmenting underwater scenes, or microscopy

SA-1B examples

Zero-shot transfer with SAM
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Segment Anything Models (SAM)

Segment Anything Model (SAM) [Kirillov et al., 2023]
* Promptable Segmentation via points and boxes
e User can steer the image segmentation, like prompting MLs

* For example, user can prompt regions to be included & excluded by the model
* Segmenting the whole image can be done by prompting a grid of points

exclude

~ Prompt-based Segmenting the whole image
Image Segmentation by SAM by prompting a grid of points
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Segment Anything Models (SAM)

Component of SAM model
* Image Encoder
* A VIiT model producing a one-time embedding for segmentation
» The embedding can be shared for different prompts
* Prompt Encoder
* Encodes point, box, or text! prompts into transformer tokens

* Mask Decoder
* Prompt token and image embedding goes through a transformer decoder

* Decoder predicts multiple candidates for segmentation mask and the
confidence

valid masks

= < confidence

\‘ score

i ( ) N lightweight ]

B (5 =2 = confidence

encoder mask decoder H( + core
T T T . confidence

¢ score

image ‘ prompt encoder ’
embeddings

/T\
/ down (x,y,fg/bg)
/  sample
(x1,y1),(x2y2)

i I

mask points  box text

1. Text encoding function is not published.
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Segment Anything Models (SAM)

SA-1B dataset

* Web-scale 11M photography and 1.1B segmentation masks
* Challenge: manually annotating the images is too expensive

* Model-in-the-loop design

1. The data annotators use and fix SAM’s outputs to annotate images (semi-
auto)

2. Newley available annotations are then used to re-train SAM

3.

The process is repeated and SAM’s performance is bootstrapped

Finally, the automatic annotator (a SAM) creates the SA-1B dataset
I—) annotate —l

model data

T— train <—|

Segment Anything 1B (SA-1B): G
* 1+ billion masks A

* 11 million images

* privacy respecting
* licensed images

Model-in-the-loop process is repeated +10 times to get the final automatic annotation
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Segment Anything Models (SAM)

SAM model variants

* Default variants by the original research paper

* Considers different image enocders: ViT-B, ViT-L, ViT-H
* A direct trade-off on performance vs. computation cost

~l
o

(o))
(@)

mloU (23 datasets)
N
V)]

"1 point
91M 308M 636M
ViT-B ViT-L ViT-H
Number of parameters

e @-mmmmmmmmmmmmmmmmmmm—mm—=mes

Original
Image
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Segment Anything Models (SAM)

SAM model variants

* Default variants by the original research paper

* Considers different image enocders: ViT-B, ViT-L, ViT-H
* A trivial trade-off on segmentation accuracy vs. computation cost

* More effective way for the efficiency?

~J
]

D
]

mloU (23 datasets)
(@)
N

o ]Wpi(iwi’lrll
91M 308M 636M
ViT-B ViT-L ViT-H
Number of parameters

Original
Image
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Segment Anything Models (SAM)

FastSAM [Zhao et al., 2023]
* Trains SA-1B on a CNN-based architecture for image segmentation (YoLo v7)
* Predicts all possible masks at once, without conditioning on prompts

(+) Better parallization on the GPUs (Running time is independent to the number of points)
(—) Does not learn to utilize user prompts, e.g., points, boxes

Detect Branch

" e
— Detect

-Mask Coeff.
]

CNN FPN 7 Detect

Backbone % I—‘
Detect
\_li ProtoNet ——

R Threshold
— Mask Branch !

& %+o.o137 Q%«10342 é>+o.5546 %

’ -1- Mask Coeff. I

- < N S - + = -
e -]

YolLo architecture predicts all image segmentations at once

|

P.

IS

Running Speed under Different Point Prompt Numbers (ms)
method params 1 10 100 E(16x16) E(32x32%) E(64x64)
SAM-H [20] 0.6G 446 464 627 852 2099 6972
SAM-B [20] 136M 110 125 230 432 1383 5417
FastSAM (Ours) | 68M 40

FastSAM shows constant running tim; independent of the number of masks

Algorithmic Intelligence Lab 132



Segment Anything Models (SAM)

MobileSAM [Zhang et al., 2023]

* Downsizing the image encoder through Knowledge Distillation [Hinton et al., 2015]
* Parameters: 611M (ViT-H) — 5M (tiny transformer)

* Image embedding space tends to be similar after knowledge distillation
e Can perform well close to the original SAM
* Realtime inference 452ms (Original SAM) — 8ms (MobileSAM)

Finetuning (optional)

ViT-based (large) prompt-guided

!
image encoder mask decoder : mask
distillation ' icopy
v
ViT-based (small) prompt-guided -
image encoder mask decoder !

Image encoder is distillated, with a frozen mask decoder

(a) Image (b) MobileSAM (c) Original SAM
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* |dentifies the weakness of SAM and SA-1B dataset
* Failures on objects with intricate structures (e.g., grate patterns)

SAM has weakness on intricate structures, which gets fixed by HQ-SAM [Ke et al., 2023]
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* SAM-HQ introduces fine-tuning to mitigate the failure cases (HQSeg-44K dataset)

* Custom collection of 44K images, with extremely intricate segmentation
annotations

HQ-SAM ({8
Prediction 5§ ;

SAM vs. HQ-SAM on HQSeq-44k samples
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* The pretrained SAM parameters remain frozen

* Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K
dataset

* SAM-HQ only introduces a tunable prompt token and MLPs for fusion
* Requires training only 5.1M additional parameters (0.5% of the SAM’s

~ ~~ e~ \
param~* -
E SAM Mask__
Trmage Encoder 64x64 o Transposed Mask feat. || 3
g Conv. ! ||
_________ 5 i
B Output \
: Prompt Token T Token to T olt(pel;
: (NigkenX256) . & image attn. :
| MLP 1
= : Output Token |1 Mask Decoder ]
i I ! I
e 4 1 1 1
HQ-SAM |, = 1 Updated 1
| HQ-Output (! |nrask Feat. HQ-Output !
:_ Token : Token :
) =t | Emor
ViT Feat. MLP ICorrection
Early Layer - I
) Global-local HQ-Feature: ¥
® Point-wise Product “ M}'E} Fusion 256X256
HQ-SAM architecture
Method Training Inference
Learnable Params (M) #GPU Batch Size Time (h) | FPS Mem.
SAM [21] 1191 128 128 N/A 5.0 7.6G
HQ-SAM 51 8 32 4 4.8 7.6G

Training cost of HQ-SAM
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* The pretrained SAM parameters remain frozen

* Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K
dataset

* SAM-HQ only introduces a tunable prompt token and MLPs for fusion
* Brings simple and effective performance boosts on all existing SAM variants
* Including VIT-H, ViT-L, ViT-B and MobileSAM [Zhang et al., 2023]

HQ-SA
HQ-SAM
50 1 (ViT—L)m (ViT'}'P)ﬁw
7/ SAM
475 HQ-SAM
L 475 (VIT—E?)/~*'
< Light HQ-SAM \
8 (TinyViT)
8 SAM
o (VIT-B)
B 45- 41.3rps )
; .
¢
°
N MobileSAM
4251 (TinyViT)
40 T T 1
0 50 500 1500 3000

Model Size [M]
Zero-shot performances on MS-COCO
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Segment Anything Models (SAM)

Notable Applications of SAM

* Open-Vocabulary Semantic Segmentation (e.g., Grounded SAM [Liu et al., 2023])
Basic Idea: prompting SAM with boxes, via text-prompted box predictors

* Recent vision-language models can make zero-shot box predictions at ease
e.g., GroundingDINO [Liu et al., 2023], ViLD [Gu et al., 2022]

* However, zero-shot semantic segmentation has remained challenging

* SAM directly escalates the semantic box predictions — segmentation masks
* A break-through in the zero-shot, open vocabulary, semantic segmentation task

N»w .

Ny Bl %nf\,a}“w 4‘

Text Prompt: Grounding DINO: Grounded-SAM:
“Horse. Clouds. Grasses. Sky. Hill.” Detect Everything Detect and Segment Everything
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Segment Anything Models (SAM)

mean mean mean mean Hand- )
L ) House- HouseHold- Fruits Nutt
Rank Participant SGinW PQ AP loU Elephants Metal Watermelon Part it M Strawberry M Squi
arts ems qui
¢ team s (1) () M) (M) (1) = (M ™M = B . - (1) = R +
S i M= s
Grounded SAM-based models
HQ-SAM
1 (Grounded  49.6 0.0 0.0 0.0 77.5 812 656 85 60.1 85.6 823 771
HQ-SAM-
(B+H))
Grounded-
SAM
2 (Grounded-  46.0 0.0 0.0 0.0 78.6 752 615 7.2 35.0 82.5 869 709
SAM-(L+H))
UNINEXT
3 (UNINEXT)  42.1 0.0 0.0 0.0 72.1 570  56.3 0.0 54.0 80.7 811 841
SAN (SAN-
4 CLIP-VITL) 414 221 106 435 674 629 435 9.0 60.1 81.8 774 822
odise
5 (ODISE-L) 387 0.0 0.0 0.0 74.9 51.4 375 9.3 60.4 79.9 813 719
OpenSEED
6 (OpenSEED-  36.1 197 150 47 72.9 387 523 1.8 50.0 82.8 764 400
L)

Segmentation in the Wild competition @ CVPR 2023
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Segment Anything Models (SAM)

Notable Applications of SAM

* Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS, 2023])
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

* 3D novel-view generation methods has rapidly emerged recently
e.g., Zerol-to-3 [Liu et al., 2023], 3D Fuse [Seo et al., 2023]

* However, clean-cut inputs are required for them to work
* Constrains in-the-wild usage
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Segment Anything Models (SAM)

Notable Applications of SAM

* Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS team, 2023] )
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

* Given the SAM predictions, clean-cut objects can be readily available

Input Segment Parts Novel View

Input Segment Parts Novel View

Anything 3D [NUS team, 2023]
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Segment Anything Models (SAM)

Notable Applications of SAM

* Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS, 2023] )
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

* Given the SAM predictions, clean-cut objects can be readily available

Anything 3D-Face [NUS team, 2023]
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Segment Anything Models (SAM)

Conclusion

Segment Anything Model, a foundation model in Vision Al
* Trained on a web-scale dataset of 11M images & 1B+ masks
* Adaptable to wide range of image domains & tasks via user prompts

Foundation Model = scale & flexibility

Input Segment Parts Novel V|ew

Input Segment Parts Novel View

=)

Anything 3D [NUS team 2023]
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