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• Foundation Models for Vision
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems

Introduction
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• Foundation Models for Vision
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems
• This lecture will cover following foundation models for vision

• Discriminative models (e.g., self-supervised models, CLIP)
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• Foundation Models for Vision
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems
• This lecture will cover following foundation models for vision

• Discriminative models (e.g., self-supervised models, CLIP)
• Generative models (e.g., text-to-image diffusion models)

Introduction

6* source : [Bommasani et al., 2021]
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• Foundation Models for Vision
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems
• This lecture will cover following foundation models for vision

• Discriminative models (e.g., self-supervised models, CLIP)
• Generative models (e.g., text-to-image diffusion models)
• Vision-specific models (e.g., Segment Anything (SAM), 

Introduction
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• Foundation Models for Vision
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems
• This lecture will cover following foundation models for vision

• Discriminative models (e.g., self-supervised models, CLIP)
• Generative models (e.g., text-to-image diffusion models)
• Vision-specific models (e.g., Segment Anything (SAM)

• In specific, this lecture will answer (or at least hint) to the following questions:
• How to train foundation models?
• What are the zero-shot capabilities of foundation models?
• How to exploit foundation models on specific tasks?

Introduction
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We are interested in visual representations that extract high-level semantics 
which can be applied to various downstream tasks such as
• Supervised learning (e.g., classification, detection)

• Unsupervised learning (e.g., clustering, metric learning)

• Modular component for multimodal understanding (e.g., image-text retrieval, visual 
question answering)

Scaling model and data size is key recipe in training foundation models: 
• The loss function must be designed to be scalable and stable 

• The data should be curated to remove bias or noisy label

• Computation efficiency to lower the training cost

Discriminative Visual Foundation Models: Overview

9
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First, we introduce self-supervised learning (SSL) methods:

• Invariance based methods such as contrastive learning

• Masked image modeling (MIM)

Second, we will cover image-text contrastive methods (i.e., CLIP):
• Training data perspective of CLIP

• Training objective perspective of CLIP

Lastly, we will cover combination of visual foundation models with language 
models for vision-language multimodal understanding (i.e, multimodal LLM)

Discriminative Visual Foundation Models: Overview

10
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Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

• Q) How to construct positive/negative pairs in the unsupervised setting?

SSL via Invariance

12
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Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

• Q) How to construct positive/negative pairs in the unsupervised setting?
• A) Positive samples are constructed from

• Similar samples (e.g., in the same cluster)
• Same instance of different data augmentation
• Additional structures (e.g., multi-view images, video)
(negative samples = not positive samples)

SSL via Invariance

13
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• Instantiations of invariance-based approach
• Many classes of self-supervised learning can be viewed as invariance-based

• Clustering & pseudo-labeling
• Cluster data into 𝐾 groups, and assume they are pseudo-labels
• Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
• E.g., DeepCluster, SwAV, DINO

• Consistency regularization
• Attract similar samples
• E.g., MixMatch, UDA, BYOL

• Contrastive learning
• Attract similar samples and dispel dissimilar samples
• E.g., MoCo, SimCLR, CLIP

SSL via Invariance

14
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• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning
• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency 
• Queue allows us to use recent and many negative samples

SSL via Invariance
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• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• MoCo also optimizes contrastive learning objective

SSL via Invariance

16* source : [Chen et al., 2020]

Randomly augmented samples →



Algorithmic Intelligence Lab

• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning
• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• MoCo also optimizes contrastive learning objective

• After encoder is updated,
• Momentum encoder is updated by

• Add the current positive keys       into the queue

SSL via Invariance

17* source : [Chen et al., 2020]

Randomly augmented samples →
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• Momentum Contrast (MoCo) [He et al., 2019]
• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency 
• Queue allows us to use recent and many negative samples

SSL via Invariance
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss 
3. Large batch sizes and longer training 

SSL via Invariance

19* source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)

• Strong color distortion degrades supervised learning, but improves SimCLR
• A stronger augmentation (AutoAugment) degrades SimCLR

SSL via Invariance
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
2. A nonlinear MLP between the representation and the contrastive loss 

• Contrastive learning objective learns     to be invariant to augmentations

• can remove information that may be useful such as color
• Using nonlinear         allows     to contain more information

SSL via Invariance

21* source : [Chen et al., 2020]
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
3. Large batch sizes and longer training 

SSL via Invariance
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• SimCLR achieves outstanding performance in various downstream tasks

SSL via Invariance

23* source : [Chen et al., 2020]

Linear evaluation in ImageNetSemi-supervised learning in ImageNet

Fine-grained image classification tasks 
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• Limitations in contrastive learning (with negatives)
• It is sensitive to the number of negative ⇒ a large batch size or a queue is required
• Are all the different instances negative?

• Q) can we learn representations without negative samples?

• Simply minimizing                                   leads to mode collapse, i.e., 

• Next: Positive-only approaches

SSL via Invariance

24
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• Key components: target (momentum) network, predictor, stop-gradient (sg)

SSL via Invariance

25* source : [Grill et al., 2020]
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• Q) How does BYOL avoid the undesired collapsed solutions?
• is not updated in the direction of
• When the predictor is optimal, i.e.,                              ,
• For any constant c,                                            ⇒ constant equilibria is unstable

SSL via Invariance

26* source : [Grill et al., 2020]

Objective Update

aa’s i-th feature 
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• BYOL is more robust to the choice of batch sizes and augmentations

SSL via Invariance

27* source : [Grill et al., 2020]
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• BYOL is more robust to the choice of batch sizes and augmentations
• BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

SSL via Invariance

28* source : [Grill et al., 2020]
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• Key components: 
• (self) knowledge-distillation

• Distill the teacher (EMA version of a student) knowledge to the student
• multi-crop: a strategy to generate positive views 
• centering and sharpening: a strategy to avoid collapse

SSL via Invariance

29

Objective
ℒ!"#$ = 𝐻(𝑃% 𝑥 , 𝑃& 𝑥 )

Update
𝜃& ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝜃&, ∇'!ℒ!"#$
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• DINO constructs a set of views 𝑉 via multi-crop strategy:
• (1) global views: 𝑥!

", 𝑥#
"

• (2) local views with smaller resolution

• All crops are passed through the student; only the global views are passed through 
the teacher: “local-to-global” correspondences
• Therefore, the loss is written as:

SSL via Invariance

30
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• DINO avoids the collapse via centering and sharpening
• Centering: adding a bias term c to the teacher

• The center c is updated with an exponential moving average

• Sharpening: using a low value for the temperature 𝜏$ in the teacher softmax
normalization

SSL via Invariance
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• DINO [Caron et al., 2021]
• DINO outperforms previous contrastive methods in classification tasks
• Self-supervised ViT features contain explicit information about the semantic 

segmentation of an image

SSL via Invariance

32

Top-1 accuracy for linear and k-NN evaluations
on the validation set of ImageNet

Self-attention map on [CLS] of self-supervised ViT

Video instance segmentation on top of
self-supervised feature
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• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction

• Similar to BERT in NLP, BEiT randomly masks image patches and trains to 
recover the visual tokens of masked patches (instead of the raw pixels)

• Visual token: a discretized vocabulary for the image patch

• BEiT training procedure is consist of two stages:
1. Learning visual tokens
2. Masked image modeling

Masked Image Modeling

33
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• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
1. Learning visual tokens

• In this stage, a discrete variational autoencoder (dVAE) is trained to represent each 
224 × 224 image into a 14 × 14 grid of discrete image tokens, each element of whic
h can assume 8192 possible values
• The tokenizer 𝑞%(𝒛|𝒙) maps image image pixels into a visual codebook
• The decoder 𝑝&(𝒙|𝒛) learns to reconstruct the input image

Masked Image Modeling
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• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
2. Masked Image Modeling

• The standard ViT is used as the backbone network
• Some image patches are randomly masked (approx. 40%), and then the visual 

tokens that corresponds to the masked patches are predicted
• The objective is maximizing the log-likelihood of the correct visual tokens 𝑧'

given the corrupted image 𝑥ℳ with the masked positions ℳ

Masked Image Modeling
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• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
2. Masked Image Modeling

• During masked image modeling, block-wise masking strategy is used
• A block with the minimum number of patches to 16 is masked
• Repeat masking until obtaining enough masked patches (total 40% of patches)

Masked Image Modeling
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Objective: MSE loss of masked patches

• Key components: 
• High masking ratio (75%):

• BERT masks 15% of tokens, MAE needs higher masking ratio
• Asymmetric encoder-decoder architecture:

• MAE allows to train very large transformer encoder by using the 
lightweight decoder => it significantly reduces the pre-training time

Masked Image Modeling
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder

• The decoder depth is less influential for improving fine-tuning
• Only a single transformer block decoder can perform strongly with fine-tuning

• MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9% 
FLOPs per token vs. ViT-L

Masked Image Modeling
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Other intriguing properties of MAE 

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder
• It is more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation
• MAE behaves decently even if using no data augmentation

Masked Image Modeling

39
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Other intriguing properties of MAE 

(f) Random patch masking is better than block-wise and grid-wise sampling
• Block-wise sampling: Removes large random blocks
• Grid-wise sampling: Keeps one of every four patches

Masked Image Modeling
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• Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]
• Perform patch-level self-distillation on masked patch tokens (while DINO is done 

with image-level objective)
• Use data augmentation for invariance learning 
• Unlike BEiT, image tokenizer is jointly learned (i.e., online tokenizer)

Masked Image Modeling

41
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• Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]
• IBOT shows strong performance on linear probing as well as fine-tuning 

Masked Image Modeling
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• Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]
• IBOT shows strong performance on linear probing as well as fine-tuning 
• IBOT demonstrates high transferability on various downstream tasks such as semi-

supervised learning, unsupervised learning, object detection, and segmentation

Masked Image Modeling
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• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality

• Modality-unified algorithm:
• 1) Build representations of the full input data with the teacher model

• The teacher is an exponentially decaying average of the student
• 2) Encode the masked version of the input sample with the student model and 

predict the representations of original input

• Modality-specified data processing and masking strategies are used

Masked Image Modeling
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• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality

• The objective is predicting the representation for time-steps which are masked
• data2vec uses the standard transformer architecture
• Training targets are the output of the top K blocks of the teach network

• 0𝑎$) : the normalized output of block 𝑙 at time-step 𝑡
• Training target: 𝑦$ =

!
*
∑)+,-*.!, 0𝑎$)

• The objective is smooth-L1 loss between 𝑦$ and the prediction 𝑓$(𝑥) at 𝑡:

Masked Image Modeling
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• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality
• Modality-specified data processing and masking strategy
• Image processing

• (Input embed) Embed images of 224 × 224 pixels as patches of 16 × 16 pixel 
• (Masking) Apply BEiT masking strategy with 60% masking ratio

• Speech processing
• (Input embed) Sample with 16kHz then forward seven temporal convolutions
• (Masking) Mask 49% of all time-steps

• NLP processing
• (Input embed) The input data is tokenized using a byte-pair encoding (BPE)
• (Masking) Apply BERT masking strategy to 15% of uniformly selected tokens

• 80% are replaced by a learned mask token, [M]
• 10% are left unchanged
• 10% are replaced by randomly selected vocabulary token

Masked Image Modeling
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• data2vec [Baevski et al., 2022]
• data2vec shows a new state of the art or competitive performance to predominant 

approaches on three domains
• Vision task: ImageNet classification
• Speech task: Word error rate (smaller is better) on the Librispeech dataset
• NLP task: GLEU benchmark

Masked Image Modeling

47
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Speech

NLP



Algorithmic Intelligence Lab

• DINO v2 [Oquab et al., 2023]
• While there are recent breakthroughs in SSL, CLIP showed better scalability
• DINO v2 aim to scale the image-only discriminative SSL by

• Scaling data size by curating data
• Scaling model size with computational efficient engineering techniques

DINO v2: Learning Robust Visual Features without Supervision

48
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• DINO v2 [Oquab et al., 2023]
• Data preprocessing (LVD-142M dataset)

• Curated dataset from ImageNet and fine-grained dataset
• Uncurated dataset sourced from crawled web data
• Deduplication: remove near-duplicate images to increase diversity
• Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, 

retrieve relevant data from uncurated source using K-means clustering

DINO v2: Learning Robust Visual Features without Supervision

49
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• DINO v2 [Oquab et al., 2023]
• Data preprocessing (LVD-142M dataset)

• Curated dataset from ImageNet and fine-grained dataset
• Uncurated dataset sourced from crawled web data
• Deduplication: remove near-duplicate images to increase diversity
• Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, 

retrieve relevant data from uncurated source using K-means clustering

• LVD-142M maintains ImageNet-1K performance while improving in other domains 

DINO v2: Learning Robust Visual Features without Supervision

50
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• DINO v2 [Oquab et al., 2023]
• Training method

• Use both image-level objective in DINO and MIM objective in iBOT
• KoLeo regularizer: minimize the differential entropy of features

• Encourage features to be uniformly distributed

• Effect of KoLeo loss term and Masked Image Modeling from iBOT

DINO v2: Learning Robust Visual Features without Supervision

51
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• DINO v2 [Oquab et al., 2023]
• DINO v2 matches domain generalization performance of CLIP

• Linear probing experiments on ImageNet-A/R/C/Sketch

DINO v2: Learning Robust Visual Features without Supervision

52
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• DINO v2 [Oquab et al., 2023]
• DINO v2 is better at transferring to vision tasks

• Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature

DINO v2: Learning Robust Visual Features without Supervision

53
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• DINO v2 [Oquab et al., 2023]
• DINO v2 is better at transferring to vision tasks

• Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature
• Depth estimation on NYUd, KITTI, NYUd -> SUN RGB-D with frozen feature

DINO v2: Learning Robust Visual Features without Supervision

54
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CLIP [Radford et al., 2020]
• Simple contrastive learning between image and text embeddings

• Trained on large-scale  web image-text pairs

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 2

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮
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I3·T3
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⋮
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⋮
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⋮
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…

(3) Use for zero-shot prediction
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…
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I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find

<latexit sha1_base64="HdkIBvkJM1Y/pVwU2yLQ1j6xkNA="></latexit>

LCLIP = � 1

2N

NX

i=1

log
exp(Ii · Ti)PN
j=1 exp(Ii · Tj)

� 1

2N

NX

j=1

log
exp(Ij · Tj)PN
i=1 exp(Ii · Tj)



Algorithmic Intelligence Lab

CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels
• Prompt Engineering: ”A photo of a [MASK]”
• Choose class that maximizes similarity with respect to image

CLIP: Contrastive Language-Image Pre-training 
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find
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CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels
• Prompt Engineering: ”A photo of a [MASK]”
• Choose class that maximizes similarity with respect to image

CLIP: Contrastive Language-Image Pre-training 
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Figure 21. Visualization of predictions from 36 CLIP zero-shot classifiers. All examples are random with the exception of reselecting
Hateful Memes to avoid offensive content. The predicted probability of the top 5 classes is shown along with the text used to represent
the class. When more than one template is used, the first template is shown. The ground truth label is colored green while an incorrect
prediction is colored orange.
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CLIP [Radford et al., 2020]

• A zero-shot CLIP classifier shows a competitive performance with a fully 
supervised linear classifier fitted on ResNet-50 features

• Linear-probing with CLIP image features outperform the best ImageNet model

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 8

Similar to the “prompt engineering” discussion around GPT-
3 (Brown et al., 2020; Gao et al., 2020), we have also
observed that zero-shot performance can be significantly
improved by customizing the prompt text to each task. A
few, non exhaustive, examples follow. We found on several
fine-grained image classification datasets that it helped to
specify the category. For example on Oxford-IIIT Pets, us-
ing “A photo of a {label}, a type of pet.”
to help provide context worked well. Likewise, on Food101
specifying a type of food and on FGVC Aircraft a type of
aircraft helped too. For OCR datasets, we found that putting
quotes around the text or number to be recognized improved
performance. Finally, we found that on satellite image classi-
fication datasets it helped to specify that the images were of
this form and we use variants of “a satellite photo

of a {label}.”.

We also experimented with ensembling over multiple zero-
shot classifiers as another way of improving performance.
These classifiers are computed by using different context
prompts such as ‘A photo of a big {label}” and
“A photo of a small {label}”. We construct the
ensemble over the embedding space instead of probability
space. This allows us to cache a single set of averaged text
embeddings so that the compute cost of the ensemble is the
same as using a single classifier when amortized over many
predictions. We’ve observed ensembling across many gen-
erated zero-shot classifiers to reliably improve performance
and use it for the majority of datasets. On ImageNet, we
ensemble 80 different context prompts and this improves
performance by an additional 3.5% over the single default
prompt discussed above. When considered together, prompt
engineering and ensembling improve ImageNet accuracy
by almost 5%. In Figure 4 we visualize how prompt engi-
neering and ensembling change the performance of a set of
CLIP models compared to the contextless baseline approach
of directly embedding the class name as done in Li et al.
(2017).

3.1.5. ANALYSIS OF ZERO-SHOT CLIP PERFORMANCE

Since task-agnostic zero-shot classifiers for computer vision
have been understudied, CLIP provides a promising oppor-
tunity to gain a better understanding of this type of model.
In this section, we conduct a study of various properties of
CLIP’s zero-shot classifiers. As a first question, we look
simply at how well zero-shot classifiers perform. To con-
textualize this, we compare to the performance of a simple
off-the-shelf baseline: fitting a fully supervised, regularized,
logistic regression classifier on the features of the canonical
ResNet-50. In Figure 5 we show this comparison across 27
datasets. Please see Appendix A for details of datasets and
setup.

Zero-shot CLIP outperforms this baseline slightly more of-

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

ten than not and wins on 16 of the 27 datasets. Looking at
individual datasets reveals some interesting behavior. On
fine-grained classification tasks, we observe a wide spread
in performance. On two of these datasets, Stanford Cars and
Food101, zero-shot CLIP outperforms logistic regression
on ResNet-50 features by over 20% while on two others,
Flowers102 and FGVCAircraft, zero-shot CLIP underper-
forms by over 10%. On OxfordPets and Birdsnap, per-
formance is much closer. We suspect these difference are
primarily due to varying amounts of per-task supervision
between WIT and ImageNet. On “general” object classifica-
tion datasets such as ImageNet, CIFAR10/100, STL10, and
PascalVOC2007 performance is relatively similar with a
slight advantage for zero-shot CLIP in all cases. On STL10,
CLIP achieves 99.3% overall which appears to be a new
state of the art despite not using any training examples. Zero-
shot CLIP significantly outperforms a ResNet-50 on two
datasets measuring action recognition in videos. On Kinet-
ics700, CLIP outperforms a ResNet-50 by 14.5%. Zero-
shot CLIP also outperforms a ResNet-50’s features by 7.7%
on UCF101. We speculate this is due to natural language
providing wider supervision for visual concepts involving
verbs, compared to the noun-centric object supervision in
ImageNet.

Looking at where zero-shot CLIP notably underperforms,

Learning Transferable Visual Models From Natural Language Supervision 13

Figure 11. CLIP’s features outperform the features of the best
ImageNet model on a wide variety of datasets. Fitting a linear
classifier on CLIP’s features outperforms using the Noisy Student
EfficientNet-L2 on 21 out of 27 datasets.

low for both approaches.

3.3. Robustness to Natural Distribution Shift

In 2015, it was announced that a deep learning model ex-
ceeded human performance on the ImageNet test set (He
et al., 2015). However, research in the subsequent years
has repeatedly found that these models still make many sim-
ple mistakes (Dodge & Karam, 2017; Geirhos et al., 2018;
Alcorn et al., 2019), and new benchmarks testing these sys-
tems has often found their performance to be much lower
than both their ImageNet accuracy and human accuracy
(Recht et al., 2019; Barbu et al., 2019). What explains this
discrepancy? Various ideas have been suggested and stud-
ied (Ilyas et al., 2019; Geirhos et al., 2020). A common
theme of proposed explanations is that deep learning models
are exceedingly adept at finding correlations and patterns
which hold across their training dataset and thus improve
in-distribution performance. However many of these corre-
lations and patterns are actually spurious and do not hold for
other distributions and result in large drops in performance
on other datasets.

We caution that, to date, most of these studies limit their
evaluation to models trained on ImageNet. Recalling the
topic of discussion, it may be a mistake to generalize too
far from these initial findings. To what degree are these
failures attributable to deep learning, ImageNet, or some

combination of the two? CLIP models, which are trained via
natural language supervision on a very large dataset and are
capable of high zero-shot performance, are an opportunity
to investigate this question from a different angle.

Taori et al. (2020) is a recent comprehensive study mov-
ing towards quantifying and understanding these behaviors
for ImageNet models. Taori et al. (2020) study how the
performance of ImageNet models change when evaluated
on natural distribution shifts. They measure performance
on a set of 7 distribution shifts: ImageNetV2 (Recht et al.,
2019), ImageNet Sketch (Wang et al., 2019), Youtube-BB
and ImageNet-Vid (Shankar et al., 2019), ObjectNet (Barbu
et al., 2019), ImageNet Adversarial (Hendrycks et al., 2019),
and ImageNet Rendition (Hendrycks et al., 2020a). They
distinguish these datasets, which all consist of novel images
collected from a variety of sources, from synthetic distri-
bution shifts such as ImageNet-C (Hendrycks & Dietterich,
2019), Stylized ImageNet (Geirhos et al., 2018), or adver-
sarial attacks (Goodfellow et al., 2014) which are created by
perturbing existing images in various ways. They propose
this distinction because in part because they find that while
several techniques have been demonstrated to improve per-
formance on synthetic distribution shifts, they often fail to
yield consistent improvements on natural distributions.3

Across these collected datasets, the accuracy of ImageNet
models drop well below the expectation set by the Ima-
geNet validation set. For the following summary discussion
we report average accuracy across all 7 natural distribution
shift datasets and average accuracy across the correspond-
ing class subsets of ImageNet unless otherwise specified.
Additionally, for Youtube-BB and ImageNet-Vid, which
have two different evaluation settings, we use the average
of pm-0 and pm-10 accuracy.

A ResNet-101 makes 5 times as many mistakes when eval-
uated on these natural distribution shifts compared to the
ImageNet validation set. Encouragingly however, Taori et al.
(2020) find that accuracy under distribution shift increases
predictably with ImageNet accuracy and is well modeled
as a linear function of logit-transformed accuracy. Taori
et al. (2020) use this finding to propose that robustness
analysis should distinguish between effective and relative
robustness. Effective robustness measures improvements
in accuracy under distribution shift above what is predicted
by the documented relationship between in-distribution and
out-of-distribution accuracy. Relative robustness captures
any improvement in out-of-distribution accuracy. Taori et al.
(2020) argue that robustness techniques should aim to im-
prove both effective robustness and relative robustness.

Almost all models studied in Taori et al. (2020) are trained
3We refer readers to Hendrycks et al. (2020a) for additional

experiments and discussion on this claim.
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CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift
• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even 

at small scale
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CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift
• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even 

at small scale

• Few-shot CLIP classifier also shows high effective robustness, but less than zero-
shot CLIP classifier

CLIP: Contrastive Language-Image Pre-training 



Algorithmic Intelligence Lab

Follow-up studies showed scaling dataset size improves performance

• CLIP uses carefully filtered 400M image-text pairs from web

• ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP
• BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

Scaling Up dataset size for improved CLIP
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Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

• For systematic study, they considered two datasets
• ImageNet-Captions: Captions for ImageNet dataset to do CLIP
• YFCC-Classification: Labeled YFCC dataset to do original training

Dataset Design and Distributional Robustness
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• Size of training dataset do not affect effective robustness
• CLIP on YFCC shows similar effective robustness as original CLIP

• CLIP model is not robust than classification models on same dataset
• CLIP on ImageNet-Caption does not show high effective robustness

• It follows the trend of other ImageNet models
• SimCLR on labeled YFCC shows similar effective robustness as YFCC CLIP

• YFCC CLIP follows the trend of original CLIP model
• Data distribution affects the effective robustness!

Dataset Design and Distributional Robustness
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Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

Dataset Design and Distributional Robustness
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• Prompt-tuning does not have correlation on effective robustness
• Prompt variation act as interpolation with a random classifier

• Various contrastive learning methods do not affect effective robustness
• SwAV [Caron et al., 2020], SimSiam [Chen et al., 2021], SimCLR v2 [Chen et al., 2021] 

on ImageNet dataset follows the trend on ImageNet models

Dataset Design and Distributional Robustness

YFCC-15M, results in an accuracy of 35.7%, which we found surprisingly close to CLIP. Further, as shown in
Figure 1 (“YFCC SimCLR + Classification”), our baseline model’s e↵ective robustness is similar to that of
CLIP.

Appendix L provides figures that plot the above results on various distribution shifts, as well as a model trained
on YFCC-15M-Cls from scratch. Since the training set is now about nine times smaller than YFCC-15M, the
resulting models trained from scratch achieve much lower accuracy and are hard to compare to CLIP.

Overall, we find that despite largely eschewing language, and training on a fraction of the supervision, our
baseline model results in high e↵ective robustness, similar to CLIP. These results indicate that image-only
pre-training followed by classification fine-tuning can match the robustness of CLIP, and that language
pre-training is not necessary for e↵ective robustness. Models trained on YFCC consistently achieve higher
e↵ective robustness than models trained on ImageNet, which shows that di↵erent training distributions have
di↵erent levels of e↵ective robustness.

6 E↵ect of test time prompts
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Figure 6: E↵ect of prompting strategies and contrastive objectives on robustness. (Left) On
most natural distribution shifts, e↵ect of prompting on e↵ective robustness is similar to that
of random interpolation. (Right) Models pre-trained with various contrastive objectives on
ImageNet do not achieve the same e↵ective robustness as CLIP models.

As another hypothesis, we study whether natural language prompts a↵ect CLIP’s robustness. Recall that
prompts consist of a template (e.g., “a photo of ”) and the name of a class in the dataset. Radford et al.
[27] showed how to use multiple templates by averaging their text representations. Similarly, it is also possible
to use multiple class names for each class if synonyms exist (e.g. microwave and microwave oven). To
investigate the influence of specific prompts in the robustness of CLIP, we conduct a series of experiments
using a trained CLIP model and multiple prompting strategies. Specifically, we vary:

• The templates used, using one of the following three options:

i) Templates from Radford et al. [27];

ii) No templates (i.e., only the class names);

iii) Random words appended before and after the class name.5

• The names of the classes, using one of the following three sources:

5Templates are composed by one to ten random words along with the class name, in an arbitrary position. Random words
are drawn using https://pypi.org/project/Random-Word/.

11
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Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

• Conclusion
• The effective robustness of CLIP is not from language supervision
• The choice of training data distribution matters in effective robustness

• But then, how to choose the training dataset?

Dataset Design and Distributional Robustness



Algorithmic Intelligence Lab

Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset

Dataset Design and Distributional Robustness



Algorithmic Intelligence Lab

Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset
• The robustness of a mixed dataset is not additive

• Effective robustness of mixed dataset interpolates between that of two datasets
• Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

Dataset Design and Distributional Robustness
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Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset
• The robustness of a mixed dataset is not additive

• ImageNet accuracy increases by mixing dataset 
• Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

• However, this does not give us how to choose effective dataset for CLIP
• Their theoretical analysis show that filtering with pretrained model is beneficial

• E.g., LAION filters image-text pairs by using pre-trained CLIP

Dataset Design and Distributional Robustness
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Since OpenAI do not release dataset, many have tried to reproduce its performance

Some open-source approaches in reproducing CLIP:

• OpenCLIP [Ilharco et al., 2021] is a open-source re-implementation of CLIP
• LAION [Schuhmann et al., 2022] is a public large-scale image-text pair 

Then, they together performed a study on the scaling behavior of CLIP

• OpenAI’s WIT dataset show better scaling than LAION

Reproducible Scaling law for CLIP
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Then, they together performed a study on the scaling behavior of CLIP

• OpenAI’s WIT dataset show better scaling than LAION on ImageNet accuracy

• LAION dataset show better scaling than OpenAI’s WIT on COCO image-text 
retrieval

=> Scaling leads to better performance, but scaling behavior depends on task type 
and dataset

Reproducible Scaling law for CLIP
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We have seen that training data is crucial in CLIP, then how about training loss?

SigLIP [Zhai et al., 2023] propose Sigmoid loss for image-text pretraining which

• Has more efficient implementation 
• And better scaling performance compared to CLIP’s softmax loss

In specific, recall the CLIP’s softmax normalization for image-text contrastive loss:

• 𝑡 is a learnable temperature parameter

• The normalization should be performed twice: across images and texts

Sigmoid Loss for Language Image Pre-training
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Instead, Sigmoid loss compute every image-text pair independently:

• 𝑧!": 1 if paired -1 otherwise

• 𝑡: learnable temperature parameter

• 𝑏: learnable bias term
Efficient implementation

• Conventional contrastive loss requires expensive ‘all-gather’ of embeddings that 
results in memory-intensive 𝐵×𝐵 matrix 

• On the other hand, Sigmoid loss is memory efficient, fast, and stable by 
summation of the loss by swapping negatives across device:

Sigmoid Loss for Language Image Pre-training
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As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger 
batch size with stable training loss, thus results in better scalability

• Sigmoid is better than Softmax at small batch size, but similar at large batch size
• Sigmoid show better scaling behavior than Softmax

Sigmoid Loss for Language Image Pre-training

Effect of batch size Effect of data scaling

*SigLiT is Sigmoid loss with Locked-Image Tuning which use pretrained ViT from 
ImageNet-22K and only fine-tune text encoder using image-caption pairs



Algorithmic Intelligence Lab

As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger 
batch size with stable training loss, thus results in better scalability

• Comparison to various models

Sigmoid Loss for Language Image Pre-training
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As a result, SigLIP (i.e., image-text pretraining with Sigmoid loss) can afford larger 
batch size with stable training loss, thus results in better scalability

• Comparison to various models
• Trends of CLIP models 

Sigmoid Loss for Language Image Pre-training



Algorithmic Intelligence Lab

1. Introduction
• Foundation models in vision tasks

2. Discriminative Visual Foundation Models
• Self-supervised Learning
• Image-text Contrastive Learning
• Multimodal LLM

3. Generative visual foundation models
• Text-to-Image Diffusion models
• Applications 

4. Segment Anything 
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Flamingo [Alayrac et al., 2022]
• Better VL models for few-shot learning by 

• Bridging pre-trained vision-only and language-only models 
• Can handle sequences of arbitrary visual and textual data
• Seamlessly ingest images or videos as inputs

Flamingo: a Visual Language Model for Few-Shot Learning

Multimodal In-Context Learning Multimodal visual dialogue
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Flamingo [Alayrac et al., 2022]
• Better pretrained vision and language model

• Vision encoder pretrained from CLIP-like objective with more data 
• Used 1.4B, 7B, 70B Chinchilla model for LLM
• New Perceiver-Resampler module for vision-language alignment
• Gated Cross-attention dense (GATED XATTN-DENSE) layers for vision-language fusion

Flamingo: a Visual Language Model for Few-Shot Learning

Perceiver-Resampler Architecture GATED-XATTN-DENSE layer
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Flamingo [Alayrac et al., 2022]
• MultiModal MassiveWeb (M3W) dataset – Mixture of datasets

• Extract text and images from HTML of 43M webpages
• Special tokens: Use <image> token to determine locations of images and <EOC> prior to image 

and end of document
• Also use 1.8B image-text pairs from ALIGN and 27M video-text pairs
• Use autoregressive captioning loss, weighted per dataset

Flamingo: a Visual Language Model for Few-Shot Learning
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Flamingo [Alayrac et al., 2022]
• Flamingo outperforms (6 out of 16) existing SOTA fine-tuned models with no fine-tuning

• When fine-tuned, it achieves SOTA various tasks

Flamingo: a Visual Language Model for Few-Shot Learning
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BLIP-2 [Li et al., 2023]
• Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

• Propose two-stage alignment using Q-former
• Stage 1: Representation learning with Q-former

• Q-former: BERT initialized transformer that encodes visual information given query
• Various learning objectives used

• Image-Text Matching (binary classification loss)
• Image-Text Contrastive Learning (i.e., CLIP loss)
• Image-grounded text generation (i.e., captioning loss)

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

• Propose two-stage alignment using Q-former
• Stage 1: Representation learning with Q-former
• Stage 2: Bootstrapping with Frozen LLM

• Can be applied to both decoder-based / encoder-decoder-based LLM

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• BLIP-2 achieves SOTA on zero-shot VL tasks

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• BLIP-2 achieves SOTA on zero-shot VL tasks

• Also it achieves SOTA on image-text retrieval tasks, outperforming various dual encoder-
based (e.g., CLIP) or fusion-encoder based models

BLIP-2: BLIP with Frozen Image Encoders and LLM
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LLaVA [Liu et al., 2023]
• Using pre-trained vision encoder and pre-trained LLM (LLaMA) for visual understanding

• Given pre-trained LLM, map an image with vision encoder (CLIP ViT-L/14) into grid features 
and map to LLM word embedding space using learnable projector
• Stage 1. feature alignment: pretrain projector on small image-text pairs to map vision encoders 

into LLM word embedding space
• Stage 2. Instruction tuning: keep the visual encoder frozen, and fine-tune projector and LLM

• For Stage 2., they collected multimodal instruction-following dataset using GPT-4 and 
ChatGPT for conversation, detailed description, and complex reasoning

Visual Instruction Tuning
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LLaVA [Liu et al., 2023]
• Using pre-trained vision encoder and pre-trained LLM (LLaMA) for visual understanding

• LLaVA show comparable performance to GPT-4 in multimodal understanding and 
conversational capability

Visual Instruction Tuning
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Development of Text-to-Image (T2I) Diffusion Models 

• Due to the scalability of diffusion models and the presence of numerous image-
caption pairs, various T2I Diffusion models have been proposed
• Latent Diffusion Models (i.e., Stable Diffusion)
• Cascaded Diffusion Models (e.g., Imagen, DeepFloyd-IF)

• In this lecture, we will explore various text-to-image diffusion models and their 
applications to various tasks, expanding the capabilities
• Image editing
• Controllable generation and personalization
• Extending to other modalities (e.g., Text-to-3D, Text-to-Video)

Text-to-Image Diffusion Models
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Latent Diffusion Models (a.k.a Stable Diffusion) [Rombach et al., 2022] 

• Training a diffusion model on the pixel space is too memory expensive

• Latent Diffusion Models (LDMs) handle this problem by compressing an image 
into lower dimensional latent, and train diffusion model on the latent space

• LDM first use condition text embeddings on cross-attention layer

Text-to-Image Diffusion Models

91

Perceptual & Semantic Compression LDM architecture
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Imagen [Saharia et al., 2022] 

• Imagen first used large language models (i.e., T5) as text encoder, and train by 
conditioning on cascaded U-Nets of size 64 -> 256 -> 1024

• Imagen use Classifier-Free Guidance [Ho et al., 2022] to control sample quality 
and diversity

Text-to-Image Diffusion Models
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Stable Diffusion XL (SDXL) [Podell et al., 2022]

• After the introduction of Latent Diffusion Models, various organizations have 
open-sourced the scaled version of LDMs 
• Stable Diffusion (v1.5 & v2.1): LDM trained on LAION image-text pairs

• SDXL is the updated version of Stable Diffusion with better autoencoder and 
larger model size and scale
• The model size is increased from 860M (SD 1.5) to 2.6B
• The model is conditioned with the size of image and cropping parameters to 

generate more centered images 

Text-to-Image Diffusion Models
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Due to the existence of large-scale pretrained T2I models, many following works 
focused on extending the capability beyond image generation

From now on, we explore recent topics in leveraging T2I models for

• Image editing (or image-to-image translation) using text
• Controllable generation

• Personalization

• Text-to-3D generation

Text-to-Image Diffusion Models
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Prompt-to-Prompt [Hertz et al., 2023]

96

Prompt-to-Prompt Image Editing with Cross-Attention Control [Hertz et al., 2023]
Motivation: Image editing is challenging in text-driven synthesis diffusion models

• Small modification in text prompt leads to different outcome
• Prior works require a spatial mask for localized image editing

Contribution: Textual editing method via Prompt-to-Prompt manipulations
• Text-only editing (w/o spatial mask) based on cross-attention maps
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Prompt-to-Prompt [Hertz et al., 2023]
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Cross-attention maps: High-dim tensors binding pixels and tokens from the prompt
• Contain semantic relations which affects the generated images

Observation: Spatial layout and geometry depend on the cross-attention maps
• Pixels are more attracted to the words describing them (e.g., bear)

• How to utilize cross-attention maps for image editing?
• Inject the attention maps of original prompt to the modified prompt
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Prompt-to-Prompt [Hertz et al., 2023]
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Main Idea: Injecting cross-attention maps during the diffusion process
• Word swap: attention injection of the source image 

• E.g., “a big bicycle” → “a big car”

• Prompt refinement: attention injection over the common tokens
• E.g., “a castle” → “children drawing of a castle”

• Attention Re-weight: increase / decrease the attention weights of specified tokens
• E.g., more or less ”fluffy” on “a fluffy ball” 
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Prompt-to-Prompt [Hertz et al., 2023]
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Prompt-to-Prompt edits high-quality images with only text modification 

Prompt 
Refinement

Word Swap

Attention
Re-weighting
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InstructPix2Pix [Brooks et al., 2023]

100

InstructPix2Pix: Learning to Follow Image Editing Instructions [Brooks et al., 2023]
Motivation: Image editing with detailed prompt or extra information are cumbersome

• How about editing images with human instructions (e.g., make it big)?

Contribution: Fine-tune a generative model to follow human instructions
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InstructPix2Pix [Brooks et al., 2023]
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Main Idea: Treat instruction-based image editing as a supervised problem
• Dataset generation: Text editing instructions and images before/after the edit 

• Two large-scale models on different modalities: GPT-3 and Stable Diffusion
• GPT-3:  Fine-tuned to produce the instructions and the edited caption
• Stable Diffusion: Transform a pair of captions into a pair of images (w/ p2p)
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InstructPix2Pix [Brooks et al., 2023]
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Main Idea: Treat instruction-based image editing as a supervised problem
• Dataset generation: Text editing instructions and images before/after the edit 

• Two large-scale models on different modalities: GPT-3 and Stable Diffusion
• GPT-3:  Fine-tuned to produce the instructions and the edited caption
• Stable Diffusion: Transform a pair of captions into a pair of images (with PtP)

• Training: Train Stable diffusion on generated paired dataset

• Classifier-free guidance for two conditionings
• Leverage classifier-free guidance w.r.t. input image 𝒄𝑰 and text instruction 𝒄𝑻

: Text instruction conditioning: Input image conditioning
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InstructPix2Pix [Brooks et al., 2023]
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InstructPix2Pix performs many challenging edits 
• E.g., replacing object, changing seasons, replacing backgrounds and etc.

Trade-off in consistency

• Consistency with the input images (y-axis)

• Consistency with the edit (x-axis)

→ Higher image consistency
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ControlNet [Zhang et al., 2023]
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Adding Conditional Control to Text-to-Image Diffusion Models [Zhang et al., 2023]
Motivation: Challenges in additional control on the text-to-image diffusion models

• Text prompt is not enough for matching mental imagery; need trial-and-error cycles
• Lack of data: Available data for a specific condition is small (e.g., human pose)

Contribution: End-to-end way that learns conditional controls
• while preserving the quality and capabilities of the large model
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ControlNet [Zhang et al., 2023]
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Main Idea: End-to-end neural network with trainable copy and locked copy

• Trainable copy: Cloning of the neural network block for task-specific dataset

• Locked copy: Preserve the capability of large-scale model
Effect of zero convolution:

• Reduce number of trainable parameters
• Elimination of harmful noise in training

Zero convolution
1 × 1 convolution layer
with zero weights and bias

: trainable copy: locked copy
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ControlNet [Zhang et al., 2023]
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Main Idea: End-to-end neural network with trainable copy and locked copy

• Trainable copy: Cloning of the neural network block for task-specific dataset

• Locked copy: Preserve the capability of large-scale model
Effect of zero convolution:

• Reduce number of trainable parameters
• Elimination of harmful noise in training

Training: Fine-tune the entire diffusion model with ControlNet

: task-specific condition: text prompt
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ControlNet [Zhang et al., 2023]

107

ControlNet robustly interprets content semantics in diverse input conditioning
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Textual Inversion [Gal et al., 2023]
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An Image is Worth One Word: Personalizing Text-to-Image Generation using       
Textual Inversion [Gal et al., 2023]
Motivation: Difficulty in introducing new concepts into large scale models 

• Re-training requires huge amount of cost
• Fine-tuning on few examples leads to catastrophic forgetting

Contribution: Personalized text-to-image generation (given 3-5 images)
• Textual inversion: find new pseudo-words capturing visual semantics and details
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Main Idea: Find new pseudo-word in text embedding space (in LDMs)

• For pseudo-word 𝑺∗, directly optimize textual embedding 𝒗∗ of 𝑺∗

: Learnable new token embedding : Frozen LDM model

Textual Inversion [Gal et al., 2023]
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Textual Inversion [Gal et al., 2023]
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Textual Inversion enables capturing and recreating variations of an object
• Image synthesis guided by a caption lacks fine-grained detail (e.g., color patterns)
• Capture finer details and compose novel scenes w/ only a single token embedding
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DreamBooth [Ruiz et al., 2023]
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DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven 
Generation [Ruiz et al., 2023]
Motivation: Lack the ability to synthesize same subjects in different context

• Output domain is limited; detailed textual description yield different appearances

Contribution: Personalization of text-to-image diffusion models (given 3-5 images)
• Fine-tuning method to implant the given subject into the model’s output domain
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Main Idea: Fine-tune text-to-image model w/ few images of a subject and class name
• Text prompt with unique identifier and the class name (e.g., a 𝑉 dog)

• Unique identifier: class-specific instance 
• Class name: prior knowledge on the subject class

However, fine-tuning text-to-image model with small set may cause: 
1. Language drift
2. Reduced output diversity

DreamBooth [Ruiz et al., 2023]
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Main Idea: Fine-tune text-to-image model w/ few images of a subject and class name
• Text prompt with unique identifier and the class name (e.g., a 𝑉 dog)

• Unique identifier: class-specific instance 
• Class name: prior knowledge on the subject class

• Class-specific prior preservation loss
• Supervise the model w/ own generated samples
• Leverages the semantic prior that the model has on the class

DreamBooth [Ruiz et al., 2023]
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• Generates image with high preservation of subject details in various context

• Generate novel views with preserving subject identity

DreamBooth [Ruiz et al., 2023]
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DreamBooth fine-tuning with LoRA

115

• How to efficiently fine-tune large models (e.g., DreamBooth)?
• Reduce the number of trainable parameters, not fine-tuning all parameters

LoRA: Low-Rank Adaptation of Large Language Models [Hu et al., 2022]
• Freeze the original weights and update only low-rank decomposed matrices

→ LoRA enables faster and memory efficient DreamBooth fine-tuning
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HyperDreamBooth [Ruiz et al., 2023]
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HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image    
Models [Ruiz et al., 2023]
Motivation: Personalization requires huge amount of time and memory

• GPU time for fine-tuning the entire model
• Storage for each personalized model

Contribution: Tackles the problem of speed and size of DreamBooth
• while preserving model integrity, editability and subject fidelity
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HyperDreamBooth [Ruiz et al., 2023]
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Main Idea: Propose HyperNetwork for fast personalization
• Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space 

• Further decompose A and B matrices of LoRA into two matrices
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HyperDreamBooth [Ruiz et al., 2023]
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Main Idea: Propose HyperNetwork for fast personalization
• Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space 
• HyperNetwork: Generate an initial prediction of LiDB weight

• ViT Encoder: Translates face images into latent face features
• Transformer Decoder: Iteratively predicts the values of weight features



Algorithmic Intelligence Lab

HyperDreamBooth [Ruiz et al., 2023]
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Main Idea: Propose HyperNetwork for fast personalization
• Lightweight DreamBooth (LiDB): Training a model in a low-dim weight-space 
• HyperNetwork: Generate an initial prediction of LiDB weight
• Rank-relaxed fine-tuning

• HyperNetwork training: Training a hypernetwork to predict network weights
• Fast fine-tuning: Fine-tuned using reconstruction loss with given image



Algorithmic Intelligence Lab

HyperDreamBooth [Ruiz et al., 2023]
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HyperNetwork + Fast Finetuning achieves strong results
• Preserves identity and subject fidelity more closely compared to prior works\\

• Strong personalization results for diverse faces
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• Recent, Text-to-image (T2I) diffusion models have shown impressive capabilities
• Synthesizing high-quality, realistic, diverse images with the text given as input

• How can we utilize T2I diffusion models to 3D synthesis without 3D training data?
• How can we use DMs as a critic to optimize the underlying 3D representation?

• Poole et al. (2023): Score Distillation Sampling (SDS)
• Probabilistic density distillation enabling the use of a 2D diffusion models for priors 

• DreamFusion: Optimize NeRF using T2I diffusion models with SDS 
• Optimize NeRF 𝑔(𝜃), that look like images     when rendered from random angles
• The optimized NeRF yields good images appropriate for given text prompt 
• Does not require 3D training data and no modification to the image diffusion models

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

121* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

x = g(θ)
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• How does DreamFusion create 3D assets from text descriptions?
1. Initialization: 

NeRF is randomly initialized and trained from scratch for each caption
2. NeRF parameter updates:

DreamFusion diffuses the rendering and reconstructs it with a (frozen) Imagen

• Subtracting the injected noise produces a low variance update direction 
• Backpropagated through the rendering process to update the NeRF MLP parameters

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

122* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

prediction of injected noise injected noise
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• Score distillation sampling enables sampling in parameter space, not pixel space
• create 3D models that look like good images when rendered from random angles
1. Training objective of diffusion models is as follows:

2. Minimize the diffusion model training loss w.r.t a generated data point

3. Gradient of the training objective becomes:

4. Score Distillation Sampling

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

123* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023

x = g(θ)

: θ∗ = argminθLDiff(φ,x = g(θ))
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• DreamFusion generates coherent 3D scenes from a variety of text prompts

DreamFusion: Text-to-3D using 2D diffusion [Poole et al., 2023]

124* source : Poole et al., DreamFusion: Text-to-3D using 2D diffusion, ICLR 2023
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Segment Anything Model (SAM) [Kirillov et al., 2023]
• A foundation model for image segmentation, i.e., predicting object masks
• SA-1B dataset

• Web-scale 11M photography and 1.1B segmentation masks1

• Enables strong zero-shot transfer on new domains
• e.g., segmenting underwater scenes, or microscopy

Segment Anything Models (SAM)

126

SA-1B examples
Zero-shot transfer with SAM
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Segment Anything Model (SAM) [Kirillov et al., 2023]
• Promptable Segmentation via points and boxes

• User can steer the image segmentation, like prompting MLs

• For example, user can prompt regions to be included & excluded by the model
• Segmenting the whole image can be done by prompting a grid of points

Segment Anything Models (SAM)
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excludeinclude

Prompt-based
Image Segmentation by SAM

Segmenting the whole image
by prompting a grid of points
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Component of SAM model
• Image Encoder

• A ViT model producing a one-time embedding for segmentation
• The embedding can be shared for different prompts

• Prompt Encoder
• Encodes point, box, or text1 prompts into transformer tokens

• Mask Decoder
• Prompt token and image embedding goes through a transformer decoder
• Decoder predicts multiple candidates for segmentation mask and the 

confidence

Segment Anything Models (SAM)

128
1. Text encoding function is not published.
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SA-1B dataset
• Web-scale 11M photography and 1.1B segmentation masks

• Challenge: manually annotating the images is too expensive

• Model-in-the-loop design
1. The data annotators use and fix SAM’s outputs to annotate images (semi-

auto)
2. Newley available annotations are then used to re-train SAM
3. The process is repeated and SAM’s performance is bootstrapped

• Finally, the automatic annotator (a SAM) creates the SA-1B dataset 

Segment Anything Models (SAM)
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Model-in-the-loop process is repeated +10 times to get the final automatic annotation



Algorithmic Intelligence Lab

SAM model variants
• Default variants by the original research paper

• Considers different image enocders: ViT-B, ViT-L, ViT-H
• A direct trade-off on performance vs. computation cost

Segment Anything Models (SAM)

130
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SAM model variants
• Default variants by the original research paper

• Considers different image enocders: ViT-B, ViT-L, ViT-H
• A trivial trade-off on segmentation accuracy vs. computation cost

• More effective way for the efficiency?

Segment Anything Models (SAM)

131
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FastSAM [Zhao et al., 2023]
• Trains SA-1B on a CNN-based architecture for image segmentation (YoLo v7)
• Predicts all possible masks at once, without conditioning on prompts

(+) Better parallization on the GPUs (Running time is independent to the number of points)
(−) Does not learn to utilize user prompts, e.g., points, boxes

Segment Anything Models (SAM)
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YoLo architecture predicts all image segmentations at once

FastSAM shows constant running tim; independent of the number of masks
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MobileSAM [Zhang et al., 2023]
• Downsizing the image encoder through Knowledge Distillation [Hinton et al., 2015]
• Parameters: 611M (ViT-H) → 5M (tiny transformer)

• Image embedding space tends to be similar after knowledge distillation
• Can perform well close to the original SAM
• Realtime inference 452ms (Original SAM) → 8ms (MobileSAM)

Segment Anything Models (SAM)

133

Image encoder is distillated, with a frozen mask decoder
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SAM-HQ [Ke et al., 2023]
• Identifies the weakness of SAM and SA-1B dataset

• Failures on objects with intricate structures (e.g., grate patterns)

Segment Anything Models (SAM)
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SAM has weakness on intricate structures, which gets fixed by HQ-SAM [Ke et al., 2023]
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SAM-HQ [Ke et al., 2023]
• SAM-HQ introduces fine-tuning to mitigate the failure cases (HQSeg-44K dataset)

• Custom collection of 44K images, with extremely intricate segmentation 
annotations

Segment Anything Models (SAM)
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SAM vs. HQ-SAM on HQSeq-44k samples
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SAM-HQ [Ke et al., 2023]
• The pretrained SAM parameters remain frozen

• Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K 
dataset

• SAM-HQ only introduces a tunable prompt token and MLPs for fusion
• Requires training only 5.1M additional parameters (0.5% of the SAM’s 

parameters)

Segment Anything Models (SAM)
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HQ-SAM architecture

Training cost of HQ-SAM
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SAM-HQ [Ke et al., 2023]
• The pretrained SAM parameters remain frozen

• Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K 
dataset

• SAM-HQ only introduces a tunable prompt token and MLPs for fusion
• Brings simple and effective performance boosts on all existing SAM variants
• Including VIT-H, ViT-L, ViT-B and MobileSAM [Zhang et al., 2023]

Segment Anything Models (SAM)
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Zero-shot performances on MS-COCO
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Notable Applications of SAM

• Open-Vocabulary Semantic Segmentation (e.g., Grounded SAM [Liu et al., 2023])
Basic Idea: prompting SAM with boxes, via text-prompted box predictors

• Recent vision-language models can make zero-shot box predictions at ease
e.g., GroundingDINO [Liu et al., 2023], ViLD [Gu et al., 2022]

• However, zero-shot semantic segmentation has remained challenging

• SAM directly escalates the semantic box predictions → segmentation masks
• A break-through in the zero-shot, open vocabulary, semantic segmentation task

Segment Anything Models (SAM)
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Segment Anything Models (SAM)
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Segmentation in the Wild competition @ CVPR 2023 

SAM-based models
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Notable Applications of SAM

• Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS, 2023] )
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

• 3D novel-view generation methods has rapidly emerged recently
e.g., Zero1-to-3 [Liu et al., 2023], 3D Fuse [Seo et al., 2023]

• However, clean-cut inputs are required for them to work
• Constrains in-the-wild usage

Segment Anything Models (SAM)

140



Algorithmic Intelligence Lab

Notable Applications of SAM

• Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS team, 2023] )
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

• Given the SAM predictions, clean-cut objects can be readily available

Segment Anything Models (SAM)

141Anything 3D [NUS team, 2023]
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Notable Applications of SAM

• Modeling 3D objects for in-the-wild images (e.g., Anything 3D [NUS, 2023] )
Basic Idea: utilize SAM to segment an object’s 2D view, then escalate to 3D.

• Given the SAM predictions, clean-cut objects can be readily available

Segment Anything Models (SAM)
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Anything 3D-Face [NUS team, 2023]
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Conclusion

Segment Anything Model, a foundation model in Vision AI
• Trained on a web-scale dataset of 11M images & 1B+ masks
• Adaptable to wide range of image domains & tasks via user prompts

Segment Anything Models (SAM)
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Foundation Model = scale & flexibility

SA-1B Anything 3D [NUS team, 2023]



Algorithmic Intelligence Lab

[He et al., 2020] Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

[Chen et al., 2020] A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020

[Grill et al., 2020] Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020

[Caron et al., 2021] Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021

[Bao et al., 2022] BEiT: BERT Pre-Training of Image Transformers, ICLR 2022

[He et al., 2022] Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

[Zhou et al., 2022] ibot: Image bert pre-training with online tokenizer, ICLR 2022

[Baevski et al., 2022] data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language, 
2022

[Oquab et al., 2023] DINOv2: Learning Robust Visual Features without Supervision, 2023

[Radford et al., 2021] Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

[Schuhmann et al., 2022] Laion-5b: An open large-scale dataset for training next generation image-text models, 
NeurIPS 2022

[Fang et al., 2022] Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), 
2022

[Zhai et al., 2023] Sigmoid Loss for Language Image Pre-Training, ICCV 2023

[Mehdi, et al. 2023] Reproducible scaling laws for contrastive language-image learning., CVPR 2023

References

144



Algorithmic Intelligence Lab

[Hertz et al., 2022] Prompt-to-Prompt Image Editing with Cross Attention Control, ICLR 2023

[Brooks et al., 2022] InstructPix2Pix: Learning to Follow Image Editing Instructions, CVPR 2023

[Zhang et al., 2023] Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2023

[Gal et al., 2022] An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

[Ruiz et al., 2022] DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation, CVPR 
2023

[Ruiz et al., 2023] HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models, 2023

[Poole et al., 2022] DreamFusion: Text-to-3D using 2D Diffusion, ICLR 2023

[Kirillov et al., 2023] Segment Anything.

[Yang et al., 2023] SAM3D: Segment Anything in 3D Scenes.

[Liu et al., 2023] Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

[Gu et al., 2022] Open-vocabulary Object Detection via Vision and Language Knowledge Distillation. ICLR 2022

[NUS team, 2023] Anything-3D: Towards Single-view Anything Reconstruction in the Wild.

References

145


