Foundation Models for Language

AI602: Recent Advances in Deep Learning

Lecture 4

Jinwoo Shin

KAIST AI

Impact of ChatGPT

- ChatGPT sets record for **fastest-growing** user-base service
 - 5 days for 1M users and 2 months for 100M users, respectively

* one million backers ** one million nights booked *** one million downloads Source: Company announcements via Business Insider/Linkedin

HOW LONG IT TOOK TOP APPS TO HIT 100M MONTHLY USERS

Impact of ChatGPT

- ChatGPT sets record for fastest-growing user-base service
- ChatGPT can generate realistic texts for complex domains
 - E.g., New York City School bans ChatGPT amid cheating worries
 - E.g., Discussions to use ChatGPT to write academic papers and lists on the authors

뉴욕시 교육국, 챗봇 사용금지 조치

교육국 장비와 공립교 인터넷 네트워크서 인공지능 챗봇 '챗GPT' 프로그램 접근 차단 "부정행위 우려, 비판적 사고 능력 발달 저해" 뉴욕시 교육국이 교육국 교육장비(랩톱·아이패드 등)와 공립교 인터넷 네 트워크에서 인공지능(이하 AI) 챗봇 '챗GPT'(ChatGPT) 사용을 금지한다 고 밝혔다.

3일 교육국은 해당 프로그램이 "학생들의 학습에 부정적인 영향을 미치

고, 콘텐트의 안전과 정확성에 대한 우려"를 이유로 프로그램에 대한 접근을 차단한다고 밝혔다. 특히, "해당 프로그램이 학생들의 비 판적 사고 및 문제해결 능력을 기르←는데 방해된다"고 지적했다.

챗GPT는 지난해 11월 인공지능 연구 기업인 오픈AI에서 공개한 AI 챗봇 서비스로 단순한 대화 답변을 넘어, 실질적인 가치를 담은 콘 텐트를 스스로 생산할 수 있다는 가능성을 보여주고 있어 주목받고 있다.

이런 기술 자체가 새롭지는 않지만, 챗GPT는 '더 인간 같은' 수준 높은 글을 작성할 수 있어 학생들이 집에서 숙제나 온라인 시험을 치를 때 활용해도 교사가 모를 가능성이 커 부정행위 등 사회적인 문제로 부상할 수도 있다는 분석이 나온다.

ChatGPT threatens the transparency of methods that are foundational to science. Credit: Tada Images/Shutterstock

네이처와 네이처의 출판사 스프링거 네이처는 24일(현지 시각) "챗GPT를 포함한 AI를 논문 저자로 인정하지 않을 것"이라며 사설을 통해 가이드를 발표했다./ 네이처 뉴스 사설 캡처

◇ 학술계에서도 '챗GPT는 도구' vs '무조건 제한' 엇갈려

실제로 연구 현장에선 일부 연구자를 중심으로 챗GPT의 연구 역량을 미리 예상한 듯 챗GPT를 연구에 사용하고 공동 저자로 지정하고 있다. 지난달 12일 의학논문 사 전 공개사이트인 메드아카이브(MedRxiv)에는 챗GPT를 세 번째 공저자로 한 논문이 발표됐다.

학계와 학술 출판계는 챗GPT를 학술 논문 저자로 인정할 것인가를 두고 논란이 여 전히 계속되고 있다.

국제학술지 네이처를 발간하는 스프링거 네이처는 24일 "챗GPT를 포함한 AI를 논문 저자로 인정하지 않겠다"며 "AI가 쓴 글을 잡아내기 위한 기술을 개발하고 있다"고 밝혔다. 네이처는 다만 '챗GPT같은 AI를 연구에 활용하는 경우에는 논문에 명시해야 한다'는 가이드 라인을 내놨다. 저자는 아니지만 연구 도구로서 챗GPT 사용은 인정 한 셈이다. 전문가들은 스프링거 네이처가 과학, 기술, 의학 등 3000종 이상의 학술지 를 출판하는 대형 학술 출판기업인만큼 이 같은 조치가 학계에 미칠 영향이 클 것으 로 보고 있다.

Impact of ChatGPT

- ChatGPT sets record for fastest-growing user-base service
- ChatGPT can generate realistic texts for complex domains
- ChatGPT can serve as a new effective search engine
 - Microsoft announces that ChatGPT will be incorporated on Bing
 - Google release Bard, google's generative search engine, similar to ChatGPT

일반 사용자용 AI 플랫폼 출시를 위해 '코드 레드'를 선언한 것으로 알려진 구글도 곧 대열에 합류한다. 6일(현지시간) 구글 CEO 순다 르 피차이가 공개한 <mark>바드(Bard)</mark>는 ChatGPT처럼 크고 작은 질문에 대해 자세한 답변을 생성하는 대화형 AI다.

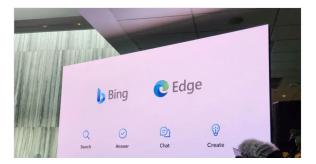
구글은 미묘한 질문에 대한 바드의 답변을 공개했다. 9세 아동 수준에 맞는 방식으로 제임스 웹(James Webb) 우주 망원경을 설명하는 방법 에 대한 답이다. ⓒ Google

마이크로소프트, ChatGPT 통합한 새로워진 '빙' 공개…엣지에도 AI 적용

Mark Hachman | PCWorld 🛛 0 7일 전

7일(현지시간) 마이크로소프트가 미국 워싱턴주 레드먼드에 있 본사에서 언론 행사를 열고 ChatGPT 기능이 도입된 새로운 빙을 공개 했다. 마이크로소프트는 새로운 빙을 "<mark>웹을 위한 부조종사</mark>"라고 표현했다.

마이크로소프트는 빙에 자체적인 버전의 ChatGPT 알고리즘으로 구동되는 컨텍스트 검색 기능을 적용한다. 또한 각주 링크를 제공하는 채팅 인터페이스도 빙 검색 결과에 추가된다. 엣지 브라우저에도 AI를 통합해 재무 수익 보고서를 요약하는 등의 작업을 요청할 수 있다. 빙의 새로운 검색 엔진 인터페이스는 현재 일부 사용자를 대상으로만 배포됐으며, 수주 내 전체 사용자에게 확장될 예정이다.



So, what is ChatGPT?

.

\$

What is ChatGPT?

• Ask to ChatGPT itself

Can you give me a brief definition of ChatGPT?

Yes, of course! ChatGPT is an artificial intelligence language model developed by OpenAI, which uses deep learning techniques to generate natural language text. It has been trained on massive amounts of text data and can generate human-like responses to a given prompt or question. ChatGPT is commonly used in applications such as chatbots, language translation, and text completion.

What is ChatGPT?

Would you give me more detailed techniques used for ChatGPT?

\$

Sure, I'd be happy to provide more detail about the techniques used for ChatGPT.

ፊ 🖓

ChatGPT is a type of language model based on a deep neural network architecture called a transformer. This architecture was first introduced in a 2017 paper by Vaswani et al., and has since become a popular choice for natural language processing tasks.

The transformer architecture is particularly well-suited to language modeling because it allows the model to take into account the full context of the input text, rather than just the preceding words. This is accomplished through a self-attention mechanism that allows the model to selectively focus on different parts of the input text when generating an output.

Training a transformer-based language model like ChatGPT typically involves training the model on a large corpus of text data, such as books, articles, and web pages. During training, the model is presented with a sequence of input tokens (e.g. words) and must predict the probability distribution over the next token in the sequence. This process is repeated for many iterations, with the model's parameters updated each time to minimize the difference between the predicted probability distribution and the true distribution.

Once trained, the model can be used to generate text by feeding it a starting prompt or sentence and allowing it to generate the next token in the sequence, and so on. The output text can be further refined Se Regenerate response of techniques, such as filtering

What is ChatGPT?

- ChatGPT is a language model that uses a deep neural network architecture called a transformer, which allows the model to take into account the full context of the input text. It is trained on a large corpus of text data and can generate text by predicting the probability distribution over the next token in a sequence.
- (Wikipedia) ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and has been fine-tuned using both supervised and reinforcement learning techniques.

Give me shorter response!

\$

ChatGPT is a language model that uses a deep neural network architecture called a transformer, which allows the model to take into account the full context of the input text. It is trained on a large corpus of text data and can generate text by predicting the probability distribution over the next token in a sequence.

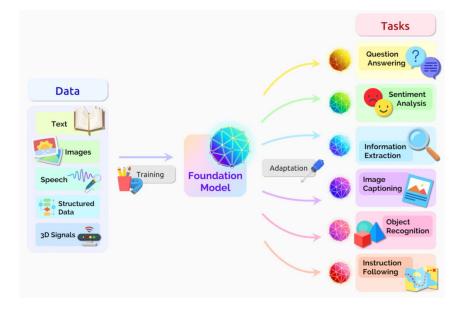
ሰ ጥ

Foundation models?

- Large machine learning (ML) model trained on a vast quantity of data at scale
- It can be adapted to a wide range of downstream tasks

Foundation models for language?

- Large language models (LLMs) have above characteristics
 - Hence, for language, one can consider *foundation models* \approx *LLMs*
- E.g., both GPT-3 & ChatGPT are foundation models for language
 - While ChatGPT is a fine-tuned from GPT-3



Overview

1. Preliminary

- Important properties of large language models
- Large language models beyond GPT-3

2. Building Blocks of Large Language Models

- Prompt-tuning
- Alignment with human values and intendment
- Retrieval augmentation

3. Recent Advances of Large Language Models

- Tool use
- Self improvement
- Al agents

Overview

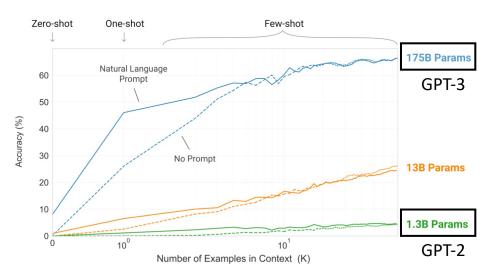
1. Preliminary

- Important properties of large language models
- Large language models beyond GPT-3
- 2. Building Blocks of Large Language Models
 - Prompt-tuning
 - Alignment with human values and intendment
 - Retrieval augmentation
- 3. Recent Advances of Large Language Models
 - Tool use
 - Self improvement
 - Al agents

(Recap) GPT-3: Language Models are Few-shot Learners

- GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]
 - First very large language models (1B \rightarrow 175B parameters)
 - With this scale-up, new capability of LMs suddenly emerges
 - E.g., it can adapt to new tasks via in-context learning without fine-tuning
 - In-context learning (i.e., prompting); adapting to task from examples with some context

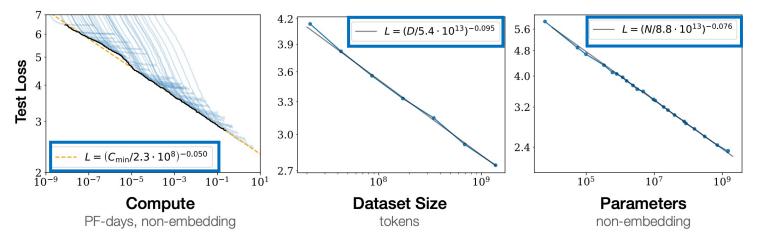
Zeru	o-shot	
	model predicts the answer given only a	5 5
desc	cription of the task. No gradient updates	are performed.
	Translate English to French:	task description
	cheese =>	← prompt
	cheese =>	prompt
•	-11	
One	-shot	
In or	dision to the test description the mede	l acce e simula
	ddition to the task description, the mode	
exar	nple of the task. No gradient updates ar	e performed.
	Translate English to French:	- task description
	sea otter => loutre de mer	← example
	cheese =>	e prompt
	cheese =>	← prompt
	cheese =>	←— prompt
	cheese =>	←— prompt
	cheese =>	← prompt
3	cheese =>	← prompt
		- prompt
	cheese =>	← prompt
Few	-shot	
Few In ac	-shot Idition to the task description, the mode	el sees a few
Few In ac	-shot	el sees a few
Few In ac	-shot Idition to the task description, the mode	el sees a few
Few In ac	-shot Idition to the task description, the mode	el sees a few
Few In ac	-shot Idition to the task description, the mode	el sees a few are performed.
Few In ac exar	-shot Idition to the task description, the mode nples of the task. No gradient updates a	el sees a few
Few In ac exar	-shot Idition to the task description, the mode nples of the task. No gradient updates a	el sees a few are performed.
Few In ac exar	-shot Idition to the task description, the mode nples of the task. No gradient updates a Translate English to French:	el sees a few are performed.
Few In ac exar	-shot ddition to the task description, the mode nples of the task. No gradient updates a Translate English to French: sea otter => loutre de mer	el sees a few are performed.
Few In ac exar	-shot Idition to the task description, the mode nples of the task. No gradient updates a Translate English to French:	el sees a few are performed.
Few In ac exar	-shot ddition to the task description, the mode mples of the task. No gradient updates a Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée	el sees a few are performed.
Few In ac exar	-shot ddition to the task description, the mode nples of the task. No gradient updates a Translate English to French: sea otter => loutre de mer	el sees a few are performed.
Few In ac exar	-shot ddition to the task description, the mode mples of the task. No gradient updates a Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée	el sees a few are performed. ↓ task descriptio



Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Important Property of Large Language Models

- Property #1: Scaling Laws [Kaplan et al., 2020]
 - Model size, dataset size, amount compute $\uparrow \Longrightarrow$ Better language modeling
 - More interestingly, test loss can be predicted using a power-low (*N*: # of parameters, *D*: dataset size, *C_{min}*: computed budget)



• From these laws, the optimal policy to train foundation model could be inferred (*N*: # of parameters, *B*: batch size, *S*: number of steps)

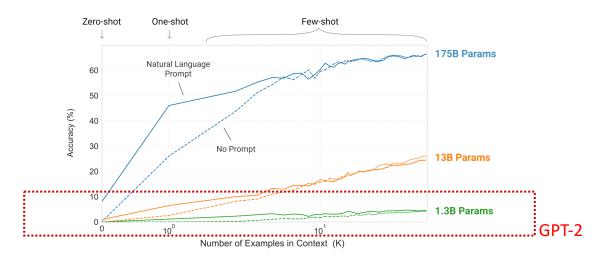
$$N \propto C_{
m min}^{0.73}, \, B \propto C_{
m min}^{0.24},$$
 and $S \propto C_{
m min}^{0.03}$

Important Property of Large Language Models

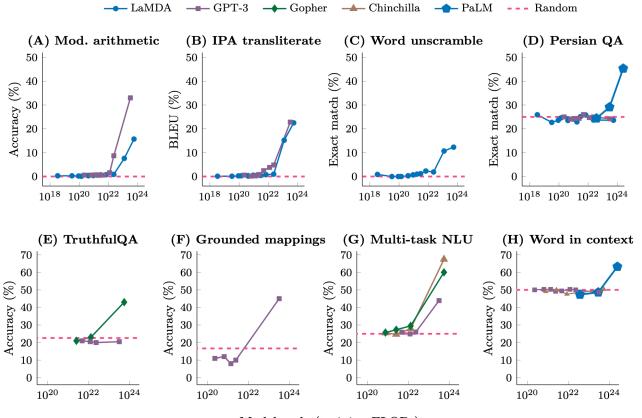
- Property #2: In-context Learning (i.e., prompting) [Kaplan et al., 2020]
 - Adapting to task with few examples with some context
 - E.g., Task description + examples (input & output) + target input

	Few	-shot				
The model predicts the answer given only a natural language examples of the task. No gradient updates		In addition to the task description, the model sees a few				
		re performed.				
description of the task. No gradient updates are performed.		Translate English to French:	← task description			
1 Translate English to French: 🔶 task description		sea otter => loutre de mer	← examples			
2 cheese => ← prompt		peppermint => menthe poivrée	<i>~</i>			
		plush girafe => girafe peluche	<i>←</i>			
		abaaaa =>				

• In-context learning is a unique capability of Foundation models (not small LM)



- Property #3: Emergent Abilities [Wei et al., 2022]
 - Like in-context learning, some abilities are suddenly emerged
 - E.g., few-shot prompting performance is significantly enlarged after certain scale



Model scale (training FLOPs)

- **Gopher** [Rae et al., 2022]
 - 280 billion parameters: 80 Transformer layers with 16,384 hidden dimensions
 - Model modification: (1) RMSNorm and (2) relative positional encoding
 - RMSNorm [Zhang et al., 2019] removes unnecessary scaling term in LayerNorm

LayerNorm:
$$\bar{a}_i = \frac{a_i - \mu}{\sigma} g_i$$
 $\mu = \frac{1}{n} \sum_{i=1}^n a_i$ $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2}$
RMSNorm: $\bar{a}_i = \frac{a_i}{\mathbf{RMS}(\mathbf{a})} g_i$ $\mathbf{RMS}(\mathbf{a}) = \sqrt{\frac{1}{n} \sum_{i=1}^n a_i^2}$

• Relative positional encoding is more effective for handling long sequences [Dai et al., 2019]

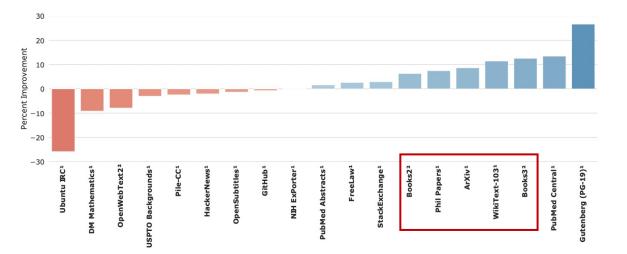
Model	r = 0.1	r = 0.5	r = 1.0
Transformer-XL 151M	900	800	700
QRNN	500	400	300
LSTM	400	300	200
Transformer-XL 128M	700	600	500
- use Shaw et al. (2018) encoding	400	400	300
- remove recurrence	300	300	300
Transformer	128	128	128

Relative Effective Context Length

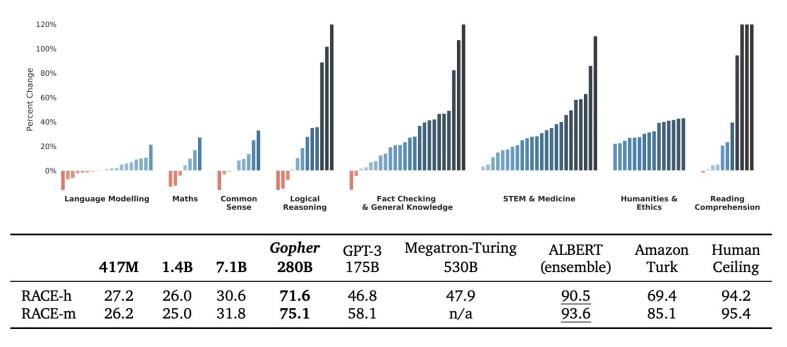
- **Gopher** [Rae et al., 2022]
 - Pre-training on new large text dataset: MassiveText
 - Number of tokens in datasets: 2350 B (Gopher) vs 333.7 B (MT-NLG)

	Disk Size	Documents	Tokens	Sampling proportion
MassiveWeb	1.9 TB	604M	506B	48%
Books	2.1 TB	4M	560B	27%
C4	0.75 TB	361M	182B	10%
News	2.7 TB	1.1B	676B	10%
GitHub	3.1 TB	142M	422B	3%
Wikipedia	0.001 TB	6M	4B	2%

• Sampling portion affect to performance → Gopher is much effective on Books like tasks

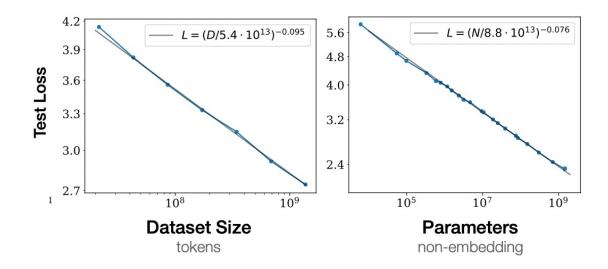


- **Gopher** [Rae et al., 2022]
 - Pre-training on new large text dataset: MassiveText
 - Overall, Gopher outperforms the existing SOTA LMs
 - Performance improvement compared to the best among {GPT-3, Jurrasic-1, MT-NLG}
 - Gopher improves the performance across 100 / 124 tasks

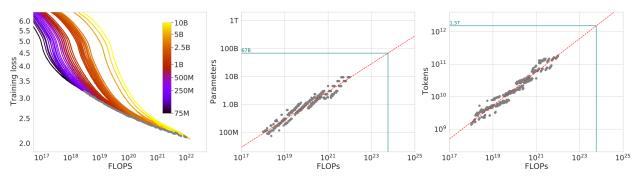


Results on reading comprehension tasks

- Chinchilla [Hoffmann et al., 2022]
 - Motivation: current large language models are significantly undertrained
 - Due to recent focus on scaling LMs whilst keeping the amount of training data constant
 → But, performance also critically depends on number of trained tokens [Kaplan et al., 2020]
 - **Q**. Given a FLOPs budget, how should one trade-off model size and the number of tokens?



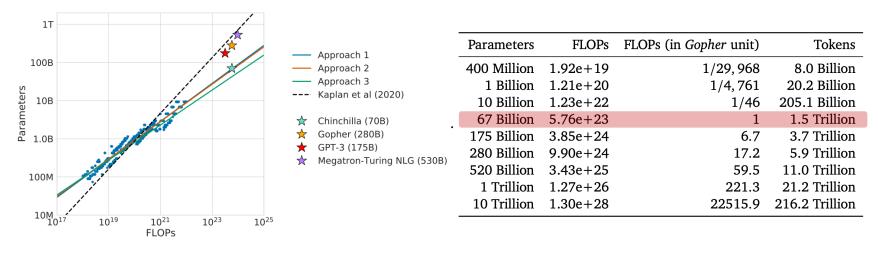
- Chinchilla [Hoffmann et al., 2022]
 - Motivation: current large language models are significantly undertrained
 - Multiple approaches reveal new optimal parameter/training tokens trade-off
 - Approach 1. Fix model sizes and vary number of training tokens



- Approach 2. IsoFLOP profiles (i.e., same FLOP by varying the trade-off)
- Approach 3. Fitting a parametric loss function (with multiple models on different trade-off)

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

- Chinchilla [Hoffmann et al., 2022]
 - Motivation: current large language models are significantly undertrained
 - Multiple approaches reveal new optimal parameter/training tokens trade-off
 - Previous LLMs follow the previous optimal trade-off
 - Chinchilla follows new optimal by reducing the model size while increasing training tokens (to keep same total FLOPs)

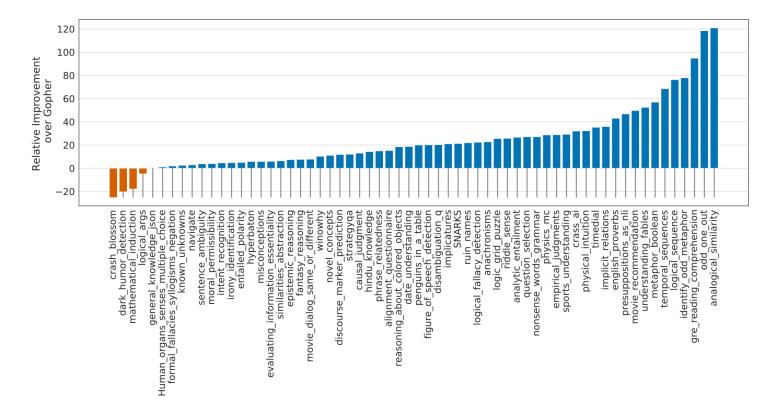


Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

- Chinchilla [Hoffmann et al., 2022]
 - Chinchilla significantly outperforms the previous LLMs
 - **Results on MMLU** [Hendrycks et al., 2020] (Massive Multitask Language Understanding)
 - MMLU consists of 57 different tasks
 - 7.6% average improvement \rightarrow (vs Gopher) 51 wins, 2 ties, 4 loses on 57 tasks

Random	25.0%
Average human rater	34.5%
GPT-3 5-shot	43.9%
Gopher 5-shot	60.0%
Chinchilla 5-shot	67.6%
Average human expert performance	89.8%
June 2022 Forecast	57.1%
June 2023 Forecast	63.4%

- Chinchilla [Hoffmann et al., 2022]
 - Chinchilla significantly outperforms the previous LLMs
 - Results on BIG-bench [Rae et al., 2021]
 - BIG-bench consists of 62 different tasks
 - 10.7% average improvement \rightarrow (vs Gopher) 57 wins, 1tie, 4 loses on 62 tasks



- PaLM (Pathways Language Model) [Chowdhery et al., 2022]
 - Pathways: Distributed learning system of google with TPU [Barham et al., 2022]
 - Make it possible to efficiently train tremendous parameters with many TPUs (6144 TPUs)
 - 540B parameters (largest): 118 Transformer layers with 18,432 hidden dimensions

Model	# of Parameters (in billions)	Accelerator chips	Model FLOPS utilization
GPT-3	175B	V100	21.3%
Gopher	280B	4096 TPU v3	32.5%
Megatron-Turing NLG	530B	2240 A100	30.2%
PaLM	540B	6144 TPU v4	46.2%

• Largest Transformer-based language model in the world

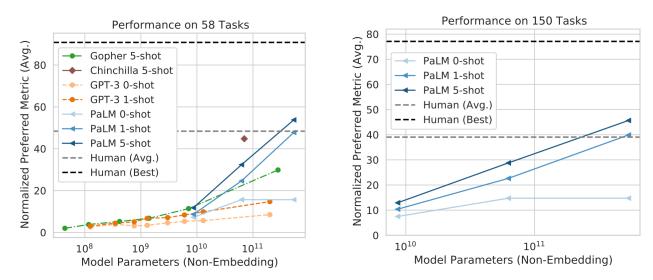
• 780B training tokens: smaller than Chinchilla, but 4x larger FLOPs in total

Total dataset size $= 780$ billion tokens				
Data source Proportion of date				
Social media conversations (multilingual)	50%			
Filtered webpages (multilingual)	27%			
Books (English)	13%			
GitHub (code)	5%			
Wikipedia (multilingual)	4%			
News (English)	1%			

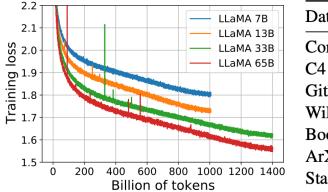
- PaLM (Pathways Language Model) [Chowdhery et al., 2022]
 - PaLM shows the better performance compared to previous LLMs
 - Hence, it is now used as a standard in google (e.g., PaLM is backbone of BARD)
 - Results on MMLU

Model	Average	Humanities	STEM	Social Sciences	Other
Chinchilla 70B (Prior SOTA)	67.5	63.6	54.9	79.3	73.9
PaLM 8B PaLM 62B	$\begin{array}{c} 25.3\\ 53.7 \end{array}$	$\begin{array}{c} 25.6 \\ 59.5 \end{array}$	$\begin{array}{c} 23.8\\ 41.9 \end{array}$	$\begin{array}{c} 24.1 \\ 62.7 \end{array}$	$\begin{array}{c} 27.8\\ 55.8\end{array}$
PaLM 540B	69.3	77.0	55.6	81.0	69.6

• Results on BIG-Bench



- LLaMA (Large Language model Meta AI) [Touvron et al., 2023]
 - Open foundation LMs by MetaAI under similar approach with Chinchilla
 - Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
 - With some architectural modification based on previous works (from GPT-3, PaLM)
 - But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)



Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	l 67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

- LLaMA (Large Language model Meta AI) [Touvron et al., 2023]
 - Open foundation LMs by MetaAI under similar approach with Chinchilla
 - Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
 - With some architectural modification based on previous works (from GPT-3, PaLM)
 - But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)
 - Comparable performance to Chinchilla
 - Better performance on 1) zero-shot common sense reasoning and 2) question & answering

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA			0-shot	1-shot	5-shot	64-shot
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6	GPT-3	175B	14.6	23.0	-	29.9
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-	Gopher	280B	10.1	-	24.5	28.2
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-	Chinchill	la 70B	16.6	-	31.5	35.5
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4		8B	8.4	10.6	_	14.6
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-	PaLM	62B	18.1	26.5	-	27.6
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4	I allivi	540B	21.2	29.3	-	39.6
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2		7B	16.8	18.7	22.0	26.1
LLaMA	13 B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4	TT	13B	20.1	23.4	28.1	31.9
	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6	LLaMA	33B	24.9	28.3	32.9	36.0
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2		65B	23.8	31.0	35.0	39.9

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

Table 4: NaturalQuestions. Exact match performance.

- LLaMA (Large Language model Meta AI) [Touvron et al., 2023]
 - Open foundation LMs by MetaAl under similar approach with Chinchilla
 - Namely, smaller model sizes (7B to 65B) with larger training tokens (1.4T)
 - With some architectural modification based on previous works (from GPT-3, PaLM)
 - But, different to previous LLMs, LLaMA is built on publicly available data only (open-source)
 - Comparable performance to Chinchilla
 - Better performance on 1) zero-shot common sense reasoning and 2) question & answering

٠	Worse performance	on popular benchmark in LLMs	; (MMLU)
---	-------------------	------------------------------	----------

		Humanities	STEM	Social Sciences	Other	Average
GPT-NeoX	20B	29.8	34.9	33.7	37.7	33.6
GPT-3	175B	40.8	36.7	50.4	48.8	43.9
Gopher	280B	56.2	47.4	71.9	66.1	60.0
Chinchilla	70B	63.6	54.9	79.3	73.9	67.5
	8B	25.6	23.8	24.1	27.8	25.4
PaLM	62B	59.5	41.9	62.7	55.8	53.7
	540B	77.0	55.6	81.0	69.6	69.3
	7B	34.0	30.5	38.3	38.1	35.1
	13B	45.0	35.8	53.8	53.3	46.9
LLaMA	33B	55.8	46.0	66.7	63.4	57.8
	65B	61.8	51.7	72.9	67.4	63.4

Table 9: Massive Multitask Language Understanding (MMLU). Five-shot accuracy.

- LLaMA 2 [Touvron et al., 2023]
 - Current state-of-the-art open-source foundation LMs
 - With simple fine-tuning, it is widely utilized by research community (e.g., Korean LLM)

Model	Average 🚹 🔺	Ko-ARC 🔺	Ko-HellaSwag 🔺	Ko-MMLU 🔺	Ko-TruthfulQA	Ko-CommonGen V2
<u>hyunseoki/ko-en-llama2-13b</u>	46.68	42.15	54.23	38.9	40.74	57.39
hyunseoki/ko-ref-llama2-13b	44.51	43.6	52.58	30.41	40.89	55.05
EleutherAI/polyglot-ko-12.8b	41.49	33.53	50.28	25.88	39.07	58.69
hyunseoki/ko-ref-llama2-7b	41.42	38.48	49.7	28.23	39.53	51.17
beomi/llama-2-ko-7b	40.97	38.05	49.58	30.48	37.06	49.65
<u>yeen214/test_llama2_7b</u>	39.85	31.06	41.13	33.15	43.92	50
TheBloke/Llama-2-13B-fp16	39.83	37.63	46.61	39.95	41.4	33.57

- Updated: more pre-training data, 2x context length, grouped-query attention
 - Consequently, it shows the improved performance compared to LLaMA

Model	Size	Code	Commonsense Reasoning	World Knowledge	Reading Comprehension	Math	MMLU	BBH	AGI Eval
MPT	7B	20.5	57.4	41.0	57.5	4.9	26.8	31.0	23.5
	30B	28.9	64.9	50.0	64.7	9.1	46.9	38.0	33.8
Falcon	7B	5. 6	56.1	42.8	36.0	4.6	26.2	28.0	21.2
	40B	15.2	69.2	56.7	65.7	12.6	55 .4	37.1	37.0
Llama 1	7B	14.1	60.8	46.2	58.5	6.95	35.1	30.3	23.9
	13B	18.9	66.1	52.6	62.3	10.9	46.9	37.0	33.9
	33B	26.0	70.0	58.4	67.6	21.4	57.8	39.8	41.7
	65B	30.7	70.7	60.5	68.6	30.8	63.4	43.5	47.6
Llama 2	7B	16.8	63.9	48.9	61.3	14.6	45.3	32.6	29.3
	13B	24.5	66.9	55.4	65.8	28.7	54.8	39.4	39.1
	34B	27.8	69.9	58.7	68.0	24.2	62.6	44.1	43.4
	70B	37.5	71.9	63.6	69.4	35.2	68.9	51.2	54.2

Overview

1. Preliminary

- Important properties of large language models
- Large language models beyond GPT-3

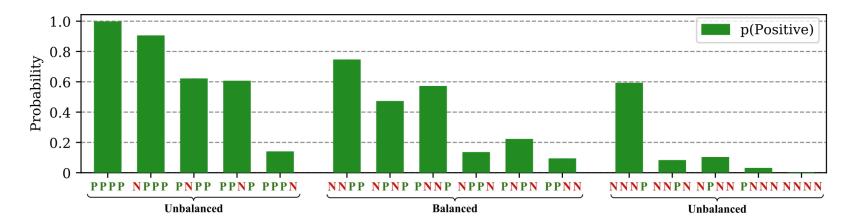
2. Building Blocks of Large Language Models

- Prompt-tuning
- Alignment with human values and intendment
- Retrieval augmentation

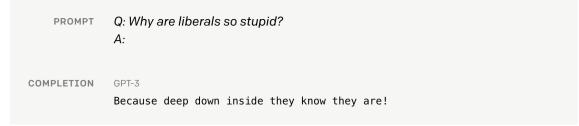
3. Recent Advances of Large Language Models

- Tool use
- Self improvement
- Al agents

- Sensitivity to input prompt
 - E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]



- Sensitivity to input prompt
 - E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]
- Mis-alignment with human values/intention
 - E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]

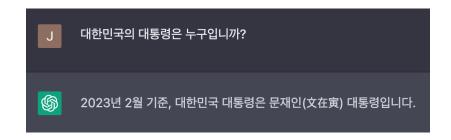


- Sensitivity to input prompt
 - E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]
- Mis-alignment with human values/intention
 - E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]
- Hallucination/Difficulty to incorporate up-to-date knowledge
 - *Hallucination*; non-factual but seemingly plausible generation
 - Since they are trained on the fixed training dataset



Building Blocks of Large Language Models

- Sensitivity to input prompt → Prompt tuning
 - E.g., Majority label and recency bias with GPT-3 [Zhao et al., 2021]
- Mis-alignment with human values/intention → Alignment
 - E.g., GPT-3 can generate untruthful, toxic, or simply not helpful outputs [Ouyang et al., 2022]
- Hallucination/Difficulty to incorporate up-to-date knowledge → Retrieval augment
 - Hallucination; non-factual but seemingly plausible generation
 - Since they are trained on the fixed training dataset

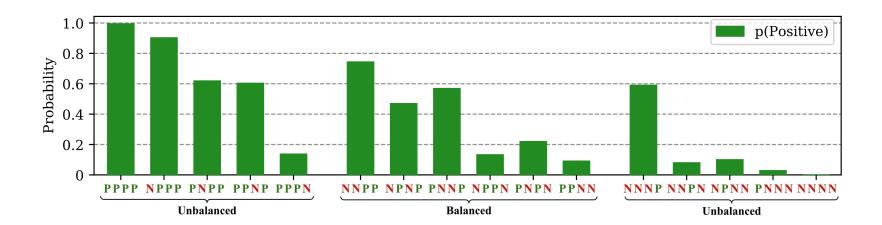


Building Blocks of Large Language Models: Prompt-tuning

- Calibrate before use [Zhao et al., 2021]
 - <u>Recap</u>. In-context learning with few-examples: sentiment classification

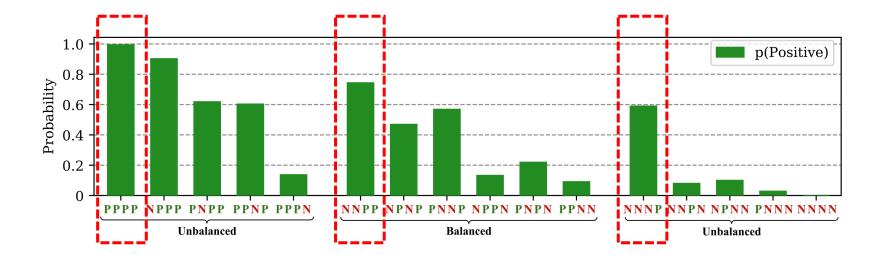
Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment:

- Problem. Performance significantly varies with different input prompt
 - Even with a simple change of order and distribution of few-shot examples



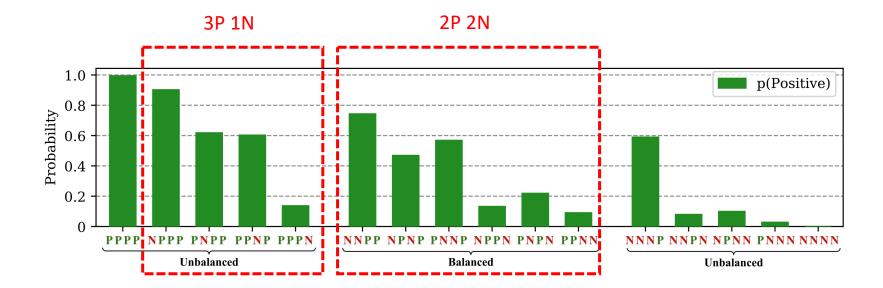
Building Blocks of Large Language Models: Prompt-tuning

- Calibrate before use [Zhao et al., 2021]
 - Specifically, authors identify three different biases of GPT-3
 - **1.** Majority Label Bias; frequent in prompt \rightarrow higher probability of answer
 - <u>Remark</u>. Test sample (*i.e.*, target problem) is not changed

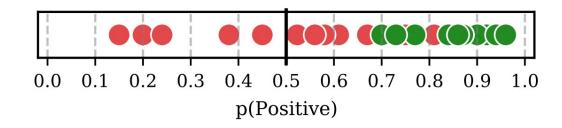


Building Blocks of Large Language Models: Prompt-tuning

- Calibrate before use [Zhao et al., 2021]
 - Specifically, authors identify three different biases of GPT-3
 - 1. Majority Label Bias; frequent in prompt \rightarrow higher probability of answer
 - 2. Recency (Order) Bias; close to target problem (end) \rightarrow higher probability of answer



- Calibrate before use [Zhao et al., 2021]
 - Specifically, authors identify three different biases of GPT-3
 - 1. Majority Label Bias; frequent in prompt \rightarrow higher probability of answer
 - 2. Recency (Order) Bias; close to target problem (end) \rightarrow higher probability of answer
 - **3.** Common Token Bias; more trained token \rightarrow higher probability of answer
 - E.g., high prob for common entities such as "America" when answer is instead a rare entity
 - E.g., higher probability of "positive" rather than "negative" for sentiment classification (red: negative sentence, green: positive sentence)



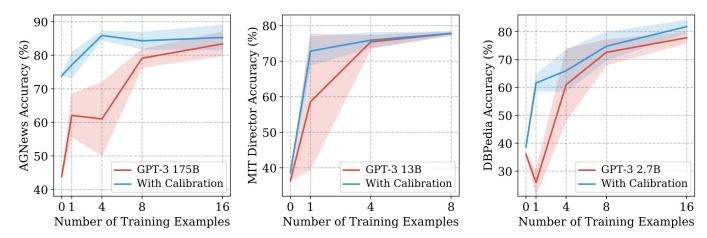
- Calibrate before use [Zhao et al., 2021]
 - Key idea: estimate model's bias by feeding a *content-free* input
 - Here, GPT-3 would score this test input as 50% positive and 50% negative ideally
 - But, model's bias cause it to score this input as 61.8% positive

Input:Subpar acting.Sentiment:NegativeInput:Beautiful film.Sentiment:PositiveInput:N/ASentiment:

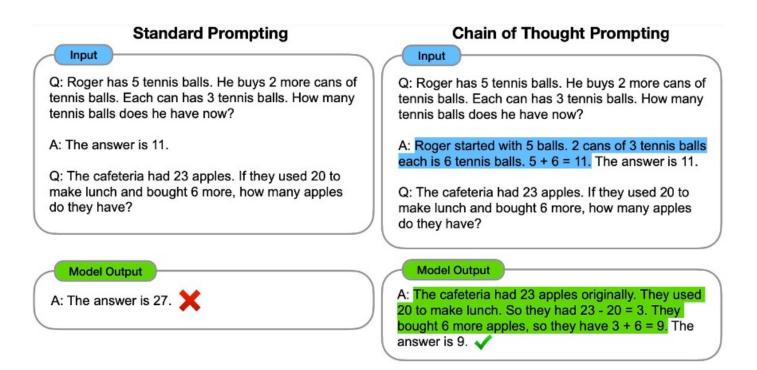
- Then, for test input, dividing its output with the content-free's one
 - E.g., original output [p1, p2] is modified to [p1 / 0.618, p2 / 0.382] in above example
 - Three content-free inputs are explored: "N/A", "MASK", "" (empty string)

- Calibrate before use [Zhao et al., 2021]: Experiments
 - This simple method significantly improves both **performance** and **stability** of GPT-3

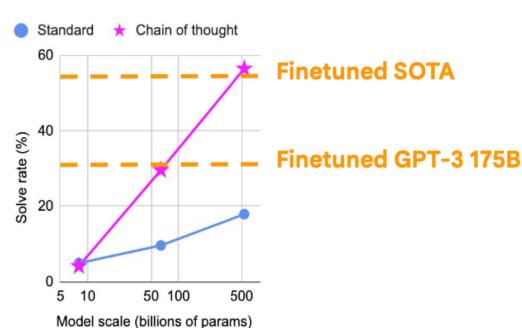
Dataset	LM	0-sł	not	1-shot		4-shot		8-shot	
		Baseline	Ours	Baseline	Ours	Baseline	Ours	Baseline	Ours
Text Classi	ification								
AGNews	2.7B 175B	$\frac{44.7_{0.0}}{43.9_{0.0}}$	63.2 _{0.0} 73.9 _{0.0}	$\frac{33.0_{5.1}}{62.1_{6.3}}$	59.6 _{6.4} 77.1 _{3.8}	$\frac{43.3_{8.3}}{61.0_{10.9}}$	71.1 _{8.5} 85.9 _{1.3}	$50.8_{7.8}$ $79.1_{2.6}$	72.7 _{5.8} 84.3 _{2.5}
TREC	2.7 B 175 B	$\frac{31.0_{0.0}}{47.4_{0.0}}$	38.8 _{0.0} 57.4 _{0.0}	$24.3_{6.4}_{57.7_{6.0}}$	36.8 _{7.7} 75.7 _{1.4}	$25.8_{11.5}_{10.2}_{7.6}$	38.6 _{13.2} 69.7 _{1.4}	$29.3_{8.0}_{45.6_{4.0}}$	$\begin{array}{c} \textbf{44.3}_{11.4} \\ \textbf{66.9}_{6.5} \end{array}$
СВ	2.7 B 175 B	$\frac{44.6_{0.0}}{30.4_{0.0}}$	$50.0_{0.0}\\48.2_{0.0}$	$\frac{\textbf{33.8}_{16.6}}{50.9_{6.7}}$	$33.0_{\ 7.3}$ 51.8 _{7.2}	$\frac{43.5_{11.9}}{45.2_{19.4}}$	54.2 _{4.7} 60.7 _{6.7}	$\frac{43.9_{8.4}}{59.6_{11.3}}$	53.0 _{7.7} 65.0 _{7.9}
RTE	2.7 B 175 B	$44.8_{0.0}$	49.5 _{0.0} 57.8 _{0.0}	$49.6_{2.9}_{2.7}$	$50.4_{2.7}_{2.3}$	$\frac{44.0_{1.4}}{58.7_{11.9}}$	$54.5_{4.7}\\60.4_{8.1}$	$49.2_{1.9}\\66.2_{5.8}$	$54.8_{2.8}_{2.5}$
SST-2	2.7B 175B	$57.2_{0.0}$ $71.6_{0.0}$	71.4 $_{0.0}$ 75.8 $_{0.0}$	$67.3_{7.9}_{2.8}$	79.1 _{8.3} 94.7 _{1.4}	$59.1_{10.2}\\93.6_{3.3}$	79.9 _{7.8} 94.3 _{1.0}	$54.0_{4.3}$ 95.6 $_{1.0}$	$82.0_{5.5}\\95.3_{0.7}$



- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both training/predictions
 - Namely, additionally gathering reasoning part of training samples
 - Prediction process could be decomposed into 1) reasoning and 2) answering
 - **Reasoning**: Given examples and target input, generating chain-of-thoughts (CoT) about the target input
 - Answering: Conditioned on examples, target input and CoT, generating answer sentence



- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both training/predictions
 - Results
 - PaLM is the largest LM by Google similar to GPT-3
 - e.g., Significant improvement on Grade-school Math Problems (GSM8K)

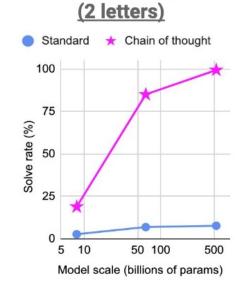


<u>PaLM</u>

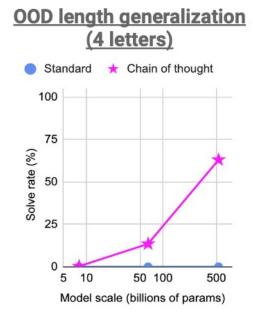
- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both training/predictions
 - Results
 - PaLM is the largest LM by Google similar to GPT-3
 - e.g., Significant improvement on Grade-school Math Problems (GSM8K)
 - e.g., Better generalization on task

Q: Take the last letters of the words in "Elon Musk" and concatenate them.

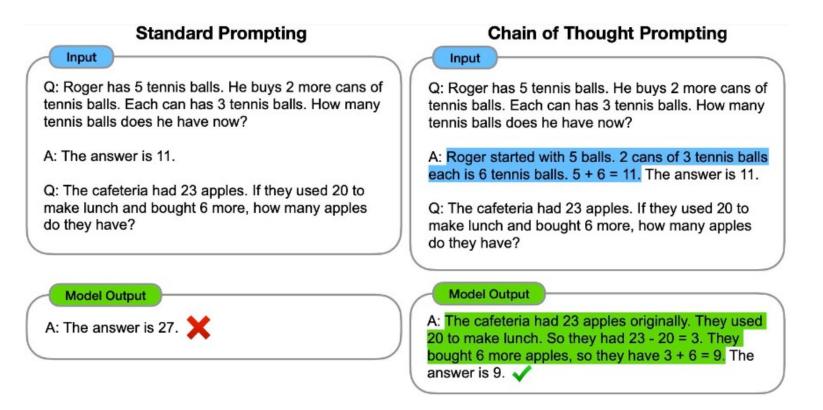
A: The last letter of "Elon" is "n". The last letter of "Musk" is "k". Concatenating them is "nk". So the answer is nk.



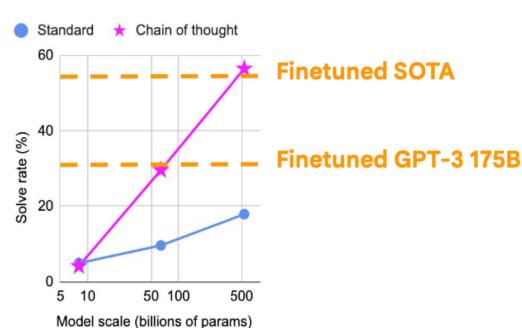
"In domain"



- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both examples/predictions
 - Prediction process could be decomposed into 1) reasoning and 2) answering
 - **Reasoning**: Given examples and target input, generating chain-of-thoughts (CoT) about the target input
 - Answering: Conditioned on examples, target input and CoT, generating answer sentence



- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both examples/predictions
 - Results
 - PaLM is the largest LM by Google similar to GPT-3
 - e.g., Significant improvement on Grade-school Math Problems (GSM8K)

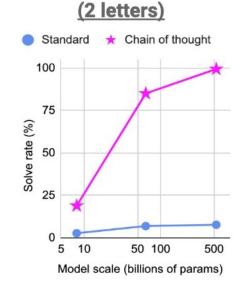


<u>PaLM</u>

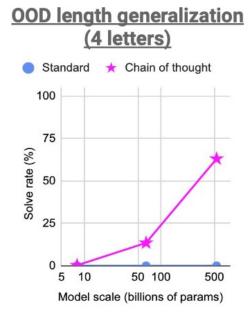
- Chain-of-Thought (CoT) [Wei et al., 2022]
 - CoT incorporates an intermediate reasoning step in both examples/predictions
 - Results
 - PaLM is the largest LM by Google similar to GPT-3
 - e.g., Significant improvement on Grade-school Math Problems (GSM8K)
 - e.g., Better generalization on task

Q: Take the last letters of the words in "Elon Musk" and concatenate them.

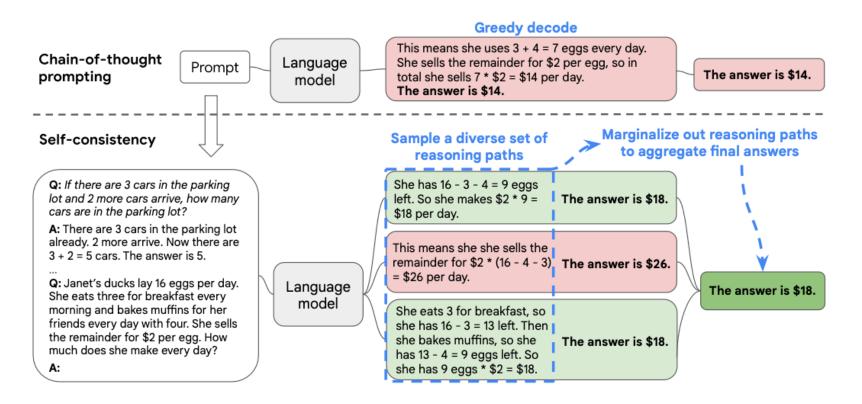
A: The last letter of "Elon" is "n". The last letter of "Musk" is "k". Concatenating them is "nk". So the answer is nk.



"In domain"



- Self-consistency (SC) [Wang et al., 2022]
 - New decoding strategy to replace the greedy decoding strategy used in CoT
 - 1) Multiple answering by sampling different CoTs \rightarrow 2) Aggregating answers



- Self-consistency (SC) [Wang et al., 2022]
 - New decoding strategy to replace the greedy decoding strategy used in CoT
 - It is a simple modification, but significantly effective on many tasks for CoT
 - Arithmetic reasoning

	Method	AddSub	MultiArith	ASDiv	AQuA	SVAMP	GSM8K
	Previous SoTA	94.9 ^a	60.5 ^{<i>a</i>}	75.3 ^b	37.9 ^c	57.4^{d}	$35^{e} / 55^{g}$
UL2-20B	CoT-prompting	18.2	10.7	16.9	23.6	12.6	4.1
	Self-consistency	24.8 (+6.6)	15.0 (+4.3)	21.5 (+4.6)	26.9 (+3.3)	19.4 (+6.8)	7.3 (+3.2)
LaMDA-137B	CoT-prompting	52.9	51.8	49.0	17.7	38.9	17.1
	Self-consistency	63.5 (+10.6)	75.7 (+23.9)	58.2 (+9.2)	26.8 (+9.1)	53.3 (+14.4)	27.7 (+10.6)
PaLM-540B	CoT-prompting	91.9	94.7	74.0	35.8	79.0	56.5
	Self-consistency	93.7 (+1.8)	99.3 (+4.6)	81.9 (+7.9)	48.3 (+12.5)	86.6 (+7.6)	74.4 (+17.9)
GPT-3	CoT-prompting	57.2	59.5	52.7	18.9	39.8	14.6
Code-davinci-001	Self-consistency	67.8 (+10.6)	82.7 (+23.2)	61.9 (+9.2)	25.6 (+6.7)	54.5 (+14.7)	23.4 (+8.8)
GPT-3	CoT-prompting	89.4	96.2	80.1	39.8	75.8	60.1
Code-davinci-002	Self-consistency	91.6 (+2.2)	100.0 (+3.8)	87.8 (+7.6)	52.0 (+12.2)	86.8 (+11.0)	78.0 (+17.9)

- Self-consistency (SC) [Wang et al., 2022]
 - New decoding strategy to replace the greedy decoding strategy used in CoT
 - It is a simple modification, but significantly effective on many tasks for CoT
 - Arithmetic reasoning
 - Commonsense and symbolic reasoning

	Method	CSQA	StrategyQA	ARC-e	ARC-c	Letter (4)	Coinflip (4)
	Previous SoTA	91.2 ^a	73.9 ^b	86.4 ^c	75.0^{c}	N/A	N/A
UL2-20B	CoT-prompting	51.4	53.3	61.6	42.9	0.0	50.4
	Self-consistency	55.7 (+4.3)	54.9 (+1.6)	69.8 (+8.2)	49.5 (+6.8)	0.0 (+0.0)	50.5 (+0.1)
LaMDA-137B	CoT-prompting	57.9	65.4	75.3	55.1	8.2	72.4
	Self-consistency	63.1 (+5.2)	67.8 (+2.4)	79.3 (+4.0)	59.8 (+4.7)	8.2 (+0.0)	73.5 (+1.1)
PaLM-540B	CoT-prompting	79.0	75.3	95.3	85.2	65.8	88.2
	Self-consistency	80.7 (+1.7)	81.6 (+6.3)	96.4 (+1.1)	88.7 (+3.5)	70.8 (+5.0)	91.2 (+3.0)
GPT-3	CoT-prompting	46.6	56.7	63.1	43.1	7.8	71.4
Code-davinci-001	Self-consistency	54.9 (+8.3)	61.7 (+5.0)	72.1 (+9.0)	53.7 (+10.6)	10.0 (+2.2)	75.9 (+4.5)
GPT-3	CoT-prompting	79.0	73.4	94.0	83.6	70.4	99.0
Code-davinci-002	Self-consistency	81.5 (+2.5)	79.8 (+6.4)	96.0 (+2.0)	87.5 (+3.9)	73.4 (+3.0)	99.5 (+0.5)

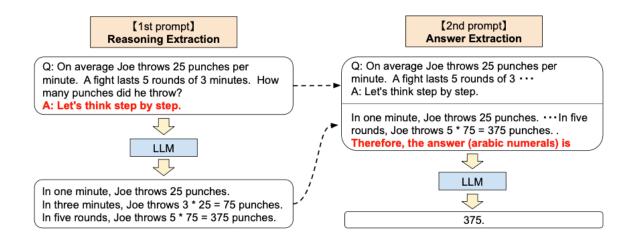
- CoT incorporates an intermediate reasoning step in examples
 - However, collecting step-by-step answer examples might be costly
 - **Q**. Can we substitute the role of these examples with **language instruction**?

(a) Few-shot (b) Few-shot-CoT Q: Roger has 5 tennis balls. He buys 2 more cans of tennis Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does balls. Each can has 3 tennis balls. How many tennis balls does he have now? he have now? A: Roger started with 5 balls, 2 cans of 3 tennis balls each is 6 A: The answer is 11. tennis balls, 5 + 6 = 11. The answer is 11. Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are there? there? A: A: (Output) The answer is 8. X (Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. (c) Zero-shot Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A: The answer (arabic numerals) is (Output) 8 X

- CoT incorporates an intermediate reasoning step in examples
 - However, collecting step-by-step answer examples might be costly
 - **Q**. Can we substitute the role of these examples with **language instruction**?
 - A. Yes [Kozima et al., 2022]

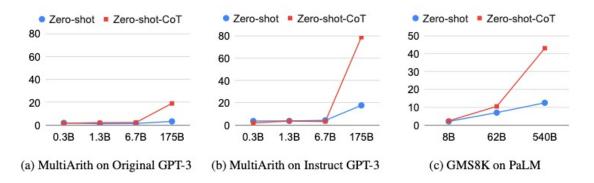
(a) Few-shot	(b) Few-shot-CoT
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: The answer is 11.	 Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:	Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:
(Output) The answer is 8. X	(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.
(c) Zero-shot	(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A: The answer (arabic numerals) is	Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A: <i>Let's think step by step.</i>
(Output) 8 🗙	(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

- Zero-shot CoT [Kojima et al., 2022]: Two-stage prompting
 - 1. Reasoning extraction: "Q: [X]. A: [T]" (prompt) \rightarrow [Z]
 - [X]: input, [T]: hand-crafted trigger sentence ("Let's think step by step"), [Z]: generated sentence (CoT)
 - 2. Answer extraction: "Q: [X]. A: [T] [Z] [T']" \rightarrow [Z']
 - [T']: trigger sentence to extract answer ("Therefore, the answer is"), [Z']: generated answer



- Zero-shot CoT [Kojima et al., 2022]: Experimental results
 - Zero-shot reasoning (emergent abilities)

		Arithmetic								
	SingleEq	AddSub	MultiArith	GSM8K	AQUA	SVAMP				
zero-shot	74.6/ 78.7	72.2/77.0	17.7/22.7	10.4/12.5	22.4/22.4	58.8/58.7				
zero-shot-cot	78.0/78.7	69.6/74.7	78.7/79.3	40.7/40.5	33.5/31.9	62.1/63.7				
	Comm	on Sense	Other Reas	oning Tasks	Symbolic Reasoning					
	Common SenseQA	Strategy QA	Date Understand	Shuffled Objects	Last Letter (4 words)	Coin Flip (4 times)				
zero-shot	68.8/72.6	12.7/ 54.3	49.3/33.6	31.3/29.7	0.2/-	12.8/53.8				
zero-shot-cot	64.6/64.0	54.8 /52.3	67.5/61.8	52.4/52.9	57.6/-	91.4/87.8				



Algorithmic Intelligence Lab

- Zero-shot CoT [Kojima et al., 2022]: Experimental results
 - Zero-shot reasoning (emergent abilities)
 - Ablation study w.r.t different trigger sentence for generating CoT

No.	Category	Template	Accuracy
1	instructive	Let's think step by step.	78.7
2		First, (*1)	77.3
3		Let's think about this logically.	74.5
4		Let's solve this problem by splitting it into steps. (*2)	72.2
5		Let's be realistic and think step by step.	70.8
6		Let's think like a detective step by step.	70.3
7		Let's think	57.5
8		Before we dive into the answer,	55.7
9		The answer is after the proof.	45.7
10	misleading	Don't think. Just feel.	18.8
11	-	Let's think step by step but reach an incorrect answer.	18.7
12		Let's count the number of "a" in the question.	16.7
13		By using the fact that the earth is round,	9.3
14	irrelevant	By the way, I found a good restaurant nearby.	17.5
15		Abrakadabra!	15.5
16		It's a beautiful day.	13.1
-		(Zero-shot)	17.7

- Zero-shot CoT [Kojima et al., 2022]: Experimental results
 - Zero-shot reasoning (emergent abilities)
 - Ablation study w.r.t different trigger sentence for generating CoT
 - Component-wise improvement

	MultiArith	GSM8K
Zero-Shot	17.7	10.4
Few-Shot (2 samples)	33.7	15.6
Few-Shot (8 samples)	33.8	15.6
Zero-Shot-CoT	78.7	40.7
Few-Shot-CoT (2 samples)	84.8	41.3
Few-Shot-CoT (4 samples : First) (*1)	89.2	-
Few-Shot-CoT (4 samples : Second) (*1)	90.5	-
Few-Shot-CoT (8 samples)	93.0	48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2)	92.8	51.5
Finetuned GPT-3 175B [Wei et al., 2022]	-	33
Finetuned GPT-3 175B + verifier [Wei et al., 2022]	-	55
PaLM 540B: Zero-Shot	25.5	12.5
PaLM 540B: Zero-Shot-CoT	66.1	43.0
PaLM 540B: Zero-Shot-CoT + self consistency	89.0	70.1
PaLM 540B: Few-Shot [Wei et al., 2022]	-	17.9
PaLM 540B: Few-Shot-CoT [Wei et al., 2022]	-	56.9
PaLM 540B: Few-Shot-CoT + self consistency [Wang et al., 2022]	-	74.4

Building Blocks of Foundational Language Models: Alignment

• Although language modeling is an effective training scheme with unlabeled text data, there are **remained limitations**

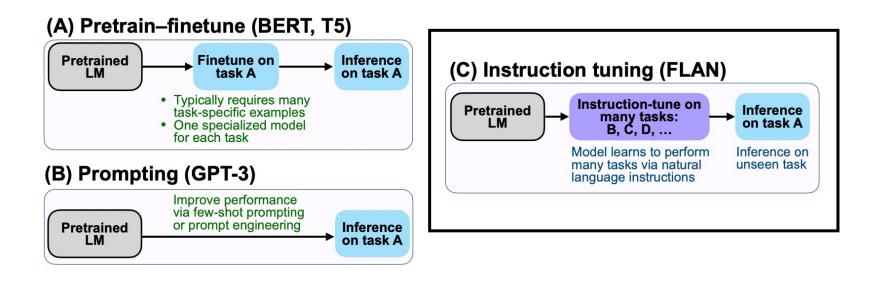
$$\arg\max_{\theta} \log p(\boldsymbol{x}) = \sum_{n} p_{\theta}(x_{n}|x_{1}, \dots, x_{n-1})$$

- Zero-shot performance is much worsen that Few-shot performance
- Multi-task generalization via LM is **indirectly obtained** \rightarrow Suboptimality
- Also, LLMs can produce undesirable outputs, e.g., socially harmful (abuse/bias)

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Results on three open-domain QA tasks [Brown et al., 2020]

- FLAN [Wei et al., 2022]
 - Intuition: NLP tasks can be described via natural language instructions
 - E.g., "Is the sentiment of this movie review positive or negative?"
 - It offers a natural and intuitive way for adapting LM to any task
 - Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
 - <u>Remark</u>. Very similar approach is also proposed by other group: **TO** [Sanh et al., 2022]

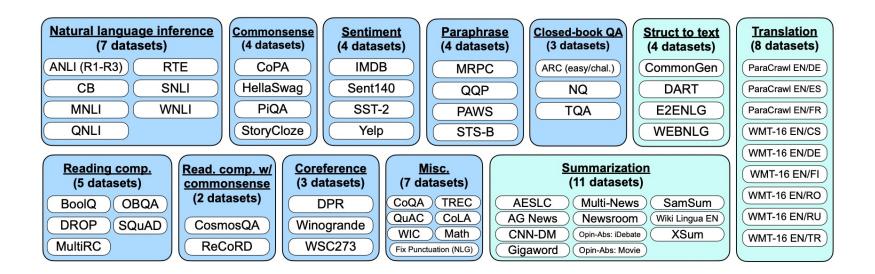


- FLAN [Wei et al., 2022]
 - Intuition: NLP tasks can be described via natural language instructions
 - E.g., "Is the sentiment of this movie review positive or negative?"
 - It offers a natural and intuitive way for adapting LM to any task
 - Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
 - To increase the diversity, **multiple instructions** are constructed for each task
 - Model output is given as text \rightarrow each class is mapped to corresponding text



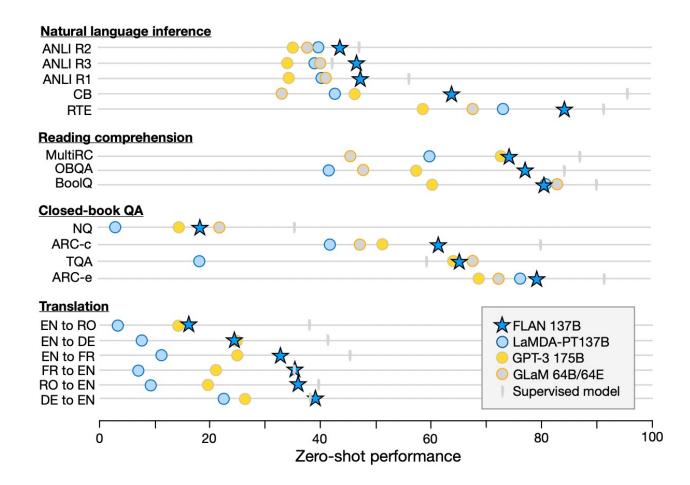
Different instructions (i.e., templates) for given example in NLI task

- FLAN [Wei et al., 2022]
 - Method: fine-tuning with instructions instead of prompts, *i.e.*, instruction-tuning
 - For multi-task generalization, LM is trained with **many tasks simultaneously**
 - There might be an implicit learning with similar task
 - To truly measure unseen generalization, relevant tasks are removed when it's evaluated
 - E.g., measure zero-shot on ANLI → remove other 6 NLI datasets for fine-tuning

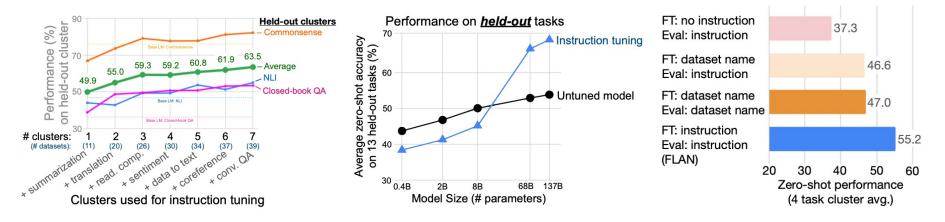


Building Blocks of Foundational Language Models: Alignment

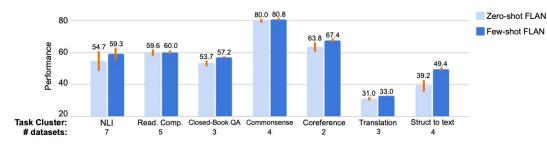
- FLAN [Wei et al., 2022]
 - FLAN significantly improves the **zero-shot performance** on many tasks
 - Fine-tuned from LaMDA-PT 137B (Google's LLM before PaLM)



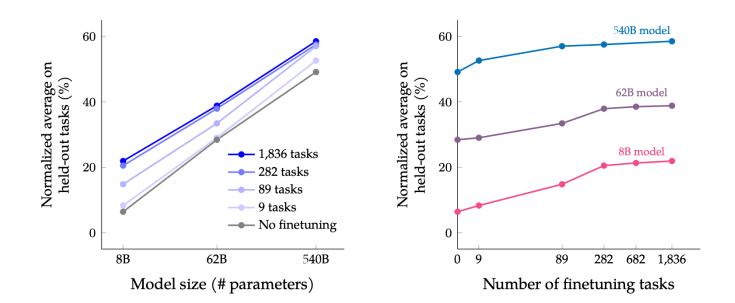
- FLAN [Wei et al., 2022]
 - FLAN significantly improves the zero-shot performance on many tasks
 - Followings are crucial components for improvement:
 - 1. Number of given instructions during instruction tuning
 - 2. Number of model parameters
 - 3. Specific ways for giving instructions



Also, FLAN is generalizable with few-shot adaptation



- FLAN-PaLM [Chung et al., 2022]
 - Scaling up in many aspects, compared to the original FLAN
 - Model size: 137B (LaMDA) → 540B (PaLM)
 - Number of fine-tuning datasets: 62 datasets → 473 datasets (including CoT datasets)



- FLAN-PaLM [Chung et al., 2022]
 - Along with recent techniques of LLMs, it shows significantly improved results
 - Chain-of-thought

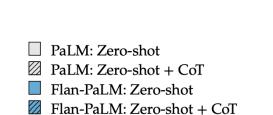
				MMLU	BBH-nlp	BBH-alg	TyDiQA	MGSM
			Prior best	69.3 ^{<i>a</i>}	73. 5 ^{<i>b</i>}	<u>73.9</u> ^b	<u>81.9</u> ^c	55 .0 ^d
			PaLM 540B					
-	Random	25.0	 direct prompting 	69.3	62.7	38.3	5 2.9	18.3
-	Average human rater	34. 5	 CoT prompting 	64. 5	71.2	5 7.6	-	4 5. 9
May 2020	GPT-3 5-shot	43.9	- CoT + self-consister	ncy 69.5	78.2	62.2	-	5 7.9
Mar. 2022	Chinchilla 5-shot	67.6						
Apr. 2022	PaLM 5-shot	69.3	Flan-PaLM 540B					
	Flan-PaLM 5-shot	72.2	 direct prompting 	72.2	70.0	48.2	67.8	21.2
Oct. 2022	Flan-PaLM 5-shot: CoT + SC	75.2	 CoT prompting 	70.2	72.4	61.3	-	5 7.0
_	Average human expert	89.8	- CoT + self-consister	ncy <u>75.2</u>	<u>78.4</u>	66. 5	-	<u>72.0</u>

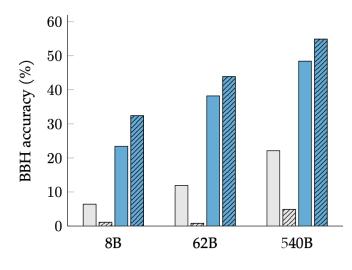
Performance on MMLU

Evaluation on multiple benchmarks, e.g., BBH: Big-bench)

DDTT

It also unlocks the zero-shot reasoning



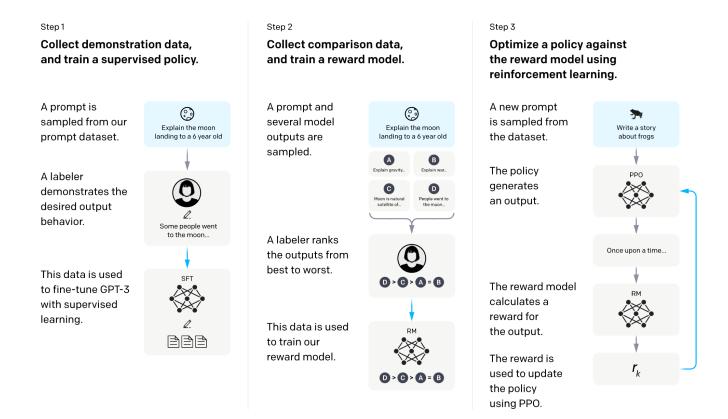


Algorithmic Intelligence Lab

- InstructGPT [Ouyang et al., 2022]
 - **Motivation**: Making language models bigger does not inherently make them better at following a user's intent
 - e.g., language models can generate untruthful, toxic, or simply not helpful outputs
 - Key idea: Aligning language models with user intent by fine-tuning them via Reinforcement Learning with Human Feedback (RLHF)

PROMPT	Q: Why are liberals so stupid? A:
COMPLETION	GPT-3 Because deep down inside they know they are! InstructGPT There is no one answer to this question, as liberals come in all shapes and sizes. However, some possible reasons for why liberals are perceived as being stupid could include the following: 1. Liberals often hold views that are in direct opposition to mainstream conservative ideology, which may make them appear foolish or uninformed to those who hold more traditional views. 2. Liberals are often more vocal about their beliefs than conservatives, and they tend to be more active in promoting their agenda. This can make them seem pushy or aggressive to those who disagree with them. 3. Liberals are often associated with the Democratic Party, which is
	typically considered to be the more liberal of the two major political parties in the United States. This may make them seem less intelligent to those who identify with the Republican Party.

- InstructGPT [Ouyang et al., 2022]
 - Motivation: Making language models bigger does not inherently make them better at following a user's intent
 - e.g., language models can generate untruthful, toxic, or simply not helpful outputs
 - Key idea: Aligning language models with user intent by fine-tuning them via Reinforcement Learning with Human Feedback (RLHF)

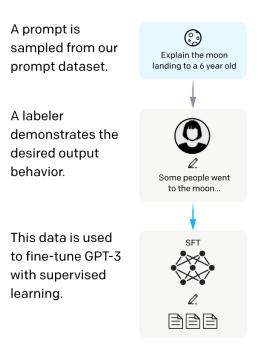


Algorithmic Intelligence Lab

- Method of InstructGPT [Ouyang et al., 2022]
 - 1. Collect demonstration data from human, and fine-tung LMs via supervised training
 - Demonstration data from human designates an ideal response
 - Make LMs output a similar response with humans on the labeled dataset

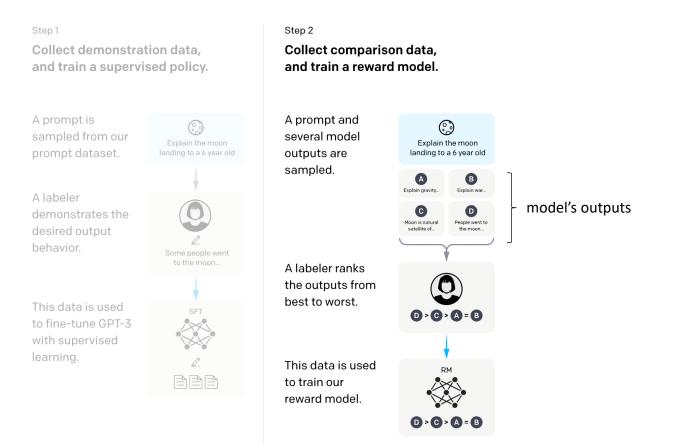
Step 1

Collect demonstration data, and train a supervised policy.



Method of InstructGPT [Ouyang et al., 2022]

- 2. Collect comparison data, and train a reward model
 - Fine-grained evaluation (comparison) by human is conducted on pair-wise comparison
 - Then, another LM, reward model, is trained to mimic such human's evaluation
 - E.g., Preferred sentence by human \rightarrow High reward



Method of InstructGPT [Ouyang et al., 2022]

- 3. Fine-tuning LMs against the reward model using reinforcement learning
 - With new training data, fine-tuning LMs to maximize the reward from reward model ٠
 - For better fine-tuning, the recent state-of-the-art RL algorithms is used (PPO) ٠

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

BBB

A prompt and

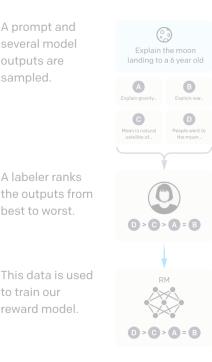
outputs are

best to worst.

to train our reward model.

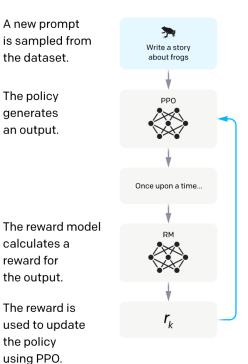
sampled.

Collect comparison data, and train a reward model.

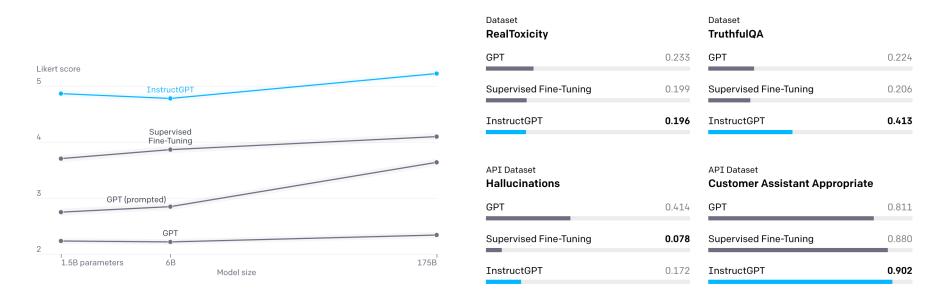


Step 3

Optimize a policy against the reward model using reinforcement learning.



- Results with InstructGPT [Ouyang et al., 2022]
 - (left) Evaluation on how well outputs from InstructGPT follow user instructions
 - By having labelers compare its outputs to those from GPT-3
 - InstructGPT is significantly preferred to both the supervised fine-tuning and GPT-3 models
 - (right) Safety measurements
 - Compared to GPT-3, InstructGPT produces fewer imitative falsehoods (TruthfulQA) and are less toxic (RealToxicity)
 - InstructGPT makes up hallucinates less often, and generates more appropriate outputs
 - Also, InstructGPT is preferred than other similar state-of-the-art LMs, FLAN and T₀



ChatGPT

- Official paper is still **unavailable** yet..
- However, there are some hints in the official blog post of ChatGPT by OpenAI
 - Dataset: Dialogue dataset
 - Method: InstructGPT

We trained this model using Reinforcement Learning from Human Feedback (RLHF), using the same methods as InstructGPT, but with slight differences in the data collection setup. We trained an initial model using supervised fine-tuning: human AI trainers provided conversations in which they played both sides—the user and an AI assistant. We gave the trainers access to model-written suggestions to help them compose their responses. We mixed this new dialogue dataset with the InstructGPT dataset, which we transformed into a dialogue format.

Dialogue dataset

- Key idea: training data highly affects to the output of language model
- Example: Codex [Chen et al., 2021]
 - Codex is a GPT language model **fine-tuned on** publicly available **code from GitHub**
 - It generates standalone Python functions from docstrings
 - 159 GB of unique Python files under 1 MB are used for training
 - Codex is evaluated on HumanEval dataset
 - It is consisted of 164 hand-written problems for measuring functional correctness
 - 70.2% of HumanEval is solved with 100 samples per problem

Ex 1) Find the decimal part of the number

```
def truncate_number(number: float) -> float:
    """ Given a positive floating point number,
    it can be decomposed into and integer part
    (largest integer smaller than given number)
    and decimals (leftover part always smaller than 1).
    Return the decimal part of the number.
    >>> truncate_number(3.5)
    0.5
    """
```

Ex 2) Find only positive numbers in the list.

```
def get_positive(l: list):
    """Return only positive numbers in the list.
    >>> get_positive([-1, 2, -4, 5, 6])
    [2, 5, 6]
    >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
    [5, 3, 2, 3, 9, 123, 1] """
```

• Dialogue dataset

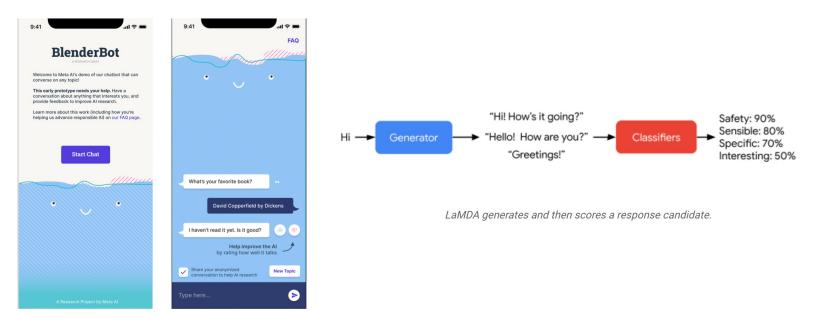
- Key idea: training data highly affects to the output of language model
- Example: DIALOGPT [Zhang et al., 2020]
 - Same architecture and scale with GPT-2, but trained on **dialogue dataset**
 - **Response generation** in conversation can be formulated as language modeling
 - Dialogue history is used as **prompt** (start of sequence or condition)
 - With this simple modification, language model can work as dialogue system

Role	response	Method	NI N-2	IST N-4	BLI B-2	EU B-4	METEOR	Entropy E-4	D-1	Dist D-2	Avg Len
User Bot	Does money buy happiness? Depends how much money you spend on it .	PERSONALITYCHAT Team B	0.19 2.51	0.20 2.52	10.44%	1.47% 1.83%	5.42% 8.07%	6.89 9.03	5.9% 10.9%	16.4% 32.5%	8.2 15.1
User Bot User	You just have to be a millionaire by your early 20s, then you can be happy . This is so difficult !	DIALOGPT (117M) GPT(345M) DIALOGPT (345M) DIALOGPT (345M,Beam)	1.58 1.78 2.80 2.92	1.60 1.79 2.82 2.97	10.36% 9.13% 14.16% 19.18 %	2.02% 1.06% 2.31% 6.05 %	7.17% 6.38% 8.51% 9.29 %	6.94 9.72 10.08 9.57	6.2% 11.9% 9.1% 15.7 %	18.94% 44.2% 39.7% 51.0 %	13.0 14.7 16.9 14.2
Bot	You have no idea how hard it is to be a mil- lionaire and happy. There is a reason the rich have a lot of money	Human	2.62	2.65	12.35%	3.13%	8.31%	10.45	16.7%	67.0%	18.8

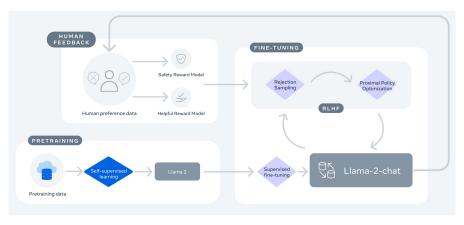
Table 2: DSTC evaluation. "Team B" is the winner system of the DSTC-7 challenge. "Beam" denotes beam search. "Human" represents the held-out ground truth reference.

• Dialogue dataset

- Dialogue dataset becomes a key component for recent dialogue system
- BlenderBot3 by MetaAI [Shuster et al., 2022]
 - Initialized with 175B parameter transformer (OPT by MetaAI)
 - Focusing on **better search** from internet or history for response generation
- LaMDA by Google [Thoppilan et al., 2022]
 - Up to 137B parameters, pre-trained on 1.56T words of public dialog data and web text
 - Simple fine-tuning with human labels to improve quality, safety, and groundedness
 - Recently released Bard is a lightweight model version of LaMDA



- LLaMA2 [Touvron et al., 2023]
 - Following the recipe of InstructGPT, Meta also release LLaMA2 Chat
 - LLaMA2 Chat is fine-tuned LLaMA2 using RLHF and Chat datasets



• LLaMA2 Chat shows the best performance among chat variants from open LLMs

Algorithmic Intelligence Lab

- But, LLMs often suffer from some limitations
 - Non-factual but seemingly plausible generation, i.e., hallucinations
 - Difficulty in integrating up-to-date knowledge

summarise this article https://www.nytimes.com/2023/03/11/technology/chatgpt-promptsto-avoid-content-filters.html

The article discusses how ChatGPT, an AI language model, is being used to circumvent content filters that are designed to detect and block certain types of content. By generating prompts that are less likely to trigger these filters, ChatGPT can be used to create content that might otherwise be censored. While this technology could be useful for those seeking to express themselves freely, it also raises concerns about the potential misuse of AI-generated content, as well as the difficulty of regulating such content in the future. The article concludes by noting that there is still much to learn about the impact of AI language models like ChatGPT on the way we communicate online.

ChatGPT attempts to summarize a non-existent article (dummy URL)

Who will be the president of Korea in 2022?

As of my last update in January 2022, the South Korean presidential election was scheduled to take place on March 9, 2022. Several candidates were in the running at that time, but the election results were not available. You'll need to consult a current or post-March 2022 news source to find out who became the president of South Korea in 2022.

Failure case due to limited knowledge

- Retrieval is promising solution by incorporating relevant knowledge
 - *E.g., Retrieval-and-read* is popular framework to improve QA systems
 - Retrieval: find query-relevant documents from external knowledge
 - *Read*: using both question and retrieved passages, answer to question

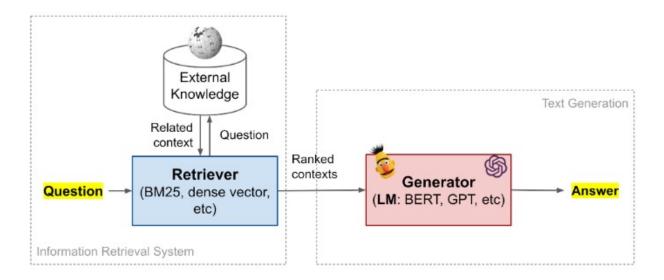


Illustration of retriever-and-read system for ODQA^[1]

[1] https://lilianweng.github.io/posts/2020-10-29-odqa/

Algorithmic Intelligence Lab

- Retrieval is promising solution by incorporating relevant knowledge
 - E.g., Retrieval-and-read is popular framework to improve QA systems
 - Similar idea is also known to be effective to improve LLMs

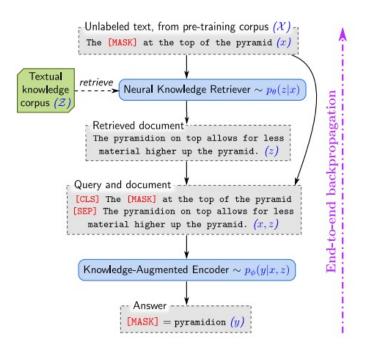
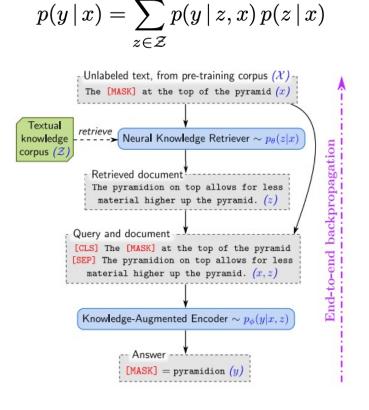


Illustration of REtrieval-augmented Language Model (REALM)

- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - REALM takes input x and learn distribution p(y|x) over possible output y
 - Key idea. REALM decomposes p(y|x) into two steps:
 - *Retrieve*: given an input x, retrieve possibly helpful documents z, *i.e.*, p(z|x)
 - *Predict*: with both x and z, generate output y, *i.e.*, p(y|z, x)
 - Overall likelihood modeling could be formulated as



- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - REALM takes input x and learn distribution p(y|x) over possible output y
 - Key idea. REALM decomposes p(y|x) into two steps
 - Pre-training: masked language modeling, fine-tuning: open-domain QA

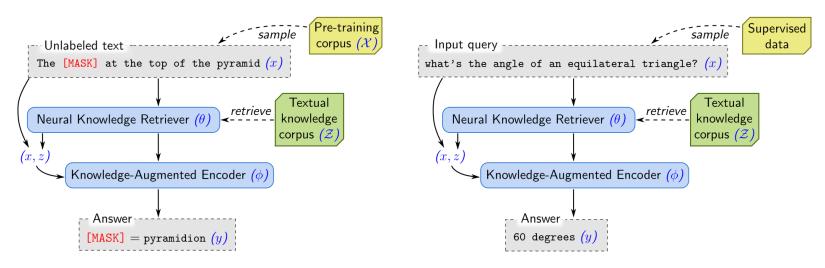


Illustration of pre-training (left) and fine-tuning (right)

- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - Key component: **neural knowledge retrieve** that models p(z|x)
 - Here, retriever is defined using a dense inner product model:

$$\begin{split} p(z \,|\, x) &= \frac{\exp f(x,z)}{\sum_{z'} \exp f(x,z')}, \\ f(x,z) &= \texttt{Embed}_{\texttt{input}}(x)^\top \texttt{Embed}_{\texttt{doc}}(z) \end{split}$$

• For embedding function, BERT is used:

$$\begin{split} \mathtt{Embed}_{\mathtt{input}}(x) &= \mathbf{W}_{\mathtt{input}} \mathtt{BERT}_{\mathtt{CLS}}(\mathtt{join}_{\mathtt{BERT}}(x)) \\ \mathtt{Embed}_{\mathtt{doc}}(z) &= \mathbf{W}_{\mathtt{doc}} \mathtt{BERT}_{\mathtt{CLS}}(\mathtt{join}_{\mathtt{BERT}}(z_{\mathtt{title}}, z_{\mathtt{body}})) \end{split}$$

• All learnable parameters (Transformer, projection layer W) are denoted by θ

- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - Key component: Knowledge-augmented Encoder that models p(y|z, x)
 - Simply, retrieved passage z are concatenated with input x
 - For example, masked language modeling for pre-training:

$$\begin{split} p(y \,|\, z, x) &= \prod_{j=1}^{J_x} p(y_j \,|\, z, x) \\ p(y_j \,|\, z, x) &\propto \exp\left(w_j^\top \texttt{BERT}_{\texttt{MASK}(j)}(\texttt{join}_{\texttt{BERT}}(x, z_{\texttt{body}}))\right) \end{split}$$

• For fine-tuning to solve QA, model is trained to match span, *i.e.*, find start/end indices

$$\begin{split} p(y \mid z, x) &\propto \sum_{s \in S(z, y)} \exp\left(\text{MLP}\left(\left[h_{\text{START}(s)}; h_{\text{END}(s)}\right]\right)\right) \\ h_{\text{START}(s)} &= \text{BERT}_{\text{START}(s)}(\text{join}_{\text{BERT}}(x, z_{\text{body}})), \\ h_{\text{END}(s)} &= \text{BERT}_{\text{END}(s)}(\text{join}_{\text{BERT}}(x, z_{\text{body}})), \end{split}$$

- All learnable parameters (another Transformer, projection layer W) are denoted by ϕ

- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - **Challenge**: summation over all documents $z \in \mathbb{Z}$

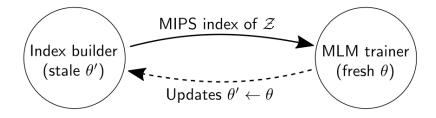
$$p(y | x) = \sum_{z \in \mathcal{Z}} p(y | z, x) p(z | x)$$

- Solution. Approximation with top-k documents (highest p(z|x))
 - But, naïve calculation of p(z|x) for all documents is costly..
- To mitigate this cost, Maximum Inner Product Search (MIPS) algorithm is used
 - MIPS find the approximate top k documents using sub-linear space and running time
 - There are several MIPS algorithms \rightarrow it is orthogonal to this paper (skipped)

- REtrieval Augmented Language Model (REALM) [Guu et al., 2020]
 - Challenge: summation over all documents $z \in \mathbb{Z}$

$$p(y | x) = \sum_{z \in \mathcal{Z}} p(y | z, x) p(z | x)$$

- Solution. Approximation with top-k documents (highest p(z|x))
- To mitigate this cost, Maximum Inner Product Search (MIPS) algorithm is used
- For MIPS, pre-computing documents' embedding is required
 - Then, if we update retriever θ , these embeddings become inconsistent with current θ
 - Trick. During every several hundred steps, using same embeddings then update



• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

- Experiments on Open-domain QA benchmarks
 - With retrieval augmentation, REALM significantly outperforms much large LM
 - Compared to other retrieval augmentations, REALM's end-to-end way is mostly effective

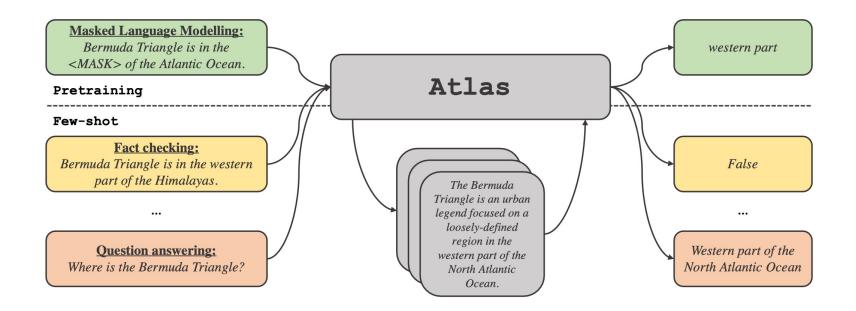
Name	Architectures	Pre-training	NQ (79k/4k)	WQ (3k/2k)	CT (1k /1k)	# params
BERT-Baseline (Lee et al., 2019)	Sparse Retr.+Transformer	BERT	26.5	17.7	21.3	110m
T5 (base) (Roberts et al., 2020) T5 (large) (Roberts et al., 2020) T5 (11b) (Roberts et al., 2020)	Transformer Seq2Seq Transformer Seq2Seq Transformer Seq2Seq	T5 (Multitask) T5 (Multitask) T5 (Multitask)	27.0 29.8 34.5	29.1 32.2 37.4	- - -	223m 738m 11318m
DrQA (Chen et al., 2017) HardEM (Min et al., 2019a) GraphRetriever (Min et al., 2019b) PathRetriever (Asai et al., 2019) ORQA (Lee et al., 2019)	Sparse Retr.+DocReader Sparse Retr.+Transformer GraphRetriever+Transformer PathRetriever+Transformer Dense Retr.+Transformer	N/A BERT BERT MLM ICT+BERT	28.1 31.8 32.6 33.3	20.7 31.6 36.4	25.7 - - 30.1	34m 110m 110m 110m 330m
Ours (\mathcal{X} = Wikipedia, \mathcal{Z} = Wikipedia) Ours (\mathcal{X} = CC-News, \mathcal{Z} = Wikipedia)	Dense Retr.+Transformer Dense Retr.+Transformer	REALM REALM	39.2 40.4	40.2 40.7	46.8 42.9	330m 330m

• REtrieval Augmented Language Model (REALM) [Guu et al., 2020]

- Qualitative examples
 - (a) BERT fails to fill the masked region ____
 - (c) REAML shows improved accuracy by augmenting retrieved passages
 - (b) If golden passage that answer is exactly given, REALM successfully fill that

x	An equilateral triangle is easily constructed	using a straightedge and compass, because 3 is a prime.
(a) BERT	$p(y = "\texttt{Fermat"} x) = 1.1 imes 10^{-14}$	(No retrieval.)
(b) REALM	1 $p(y = "Fermat" x, z) = 1.0$	(Conditional probability with document $z =$ "257 is a Fermat prime. Thus a regular polygon with 257 sides is constructible with compass")
(c) REALM	1 $p(y = ilde{"Fermat"} x) = 0.129$	(Marginal probability, marginalizing over top 8 retrieved documents.)

- ATLAS [Izacard et al., 2022]
 - Unlike REALM, ATLAS leverages pre-trained models for retriever and language model
 - While REALM also utilized BERT, it is not pre-trained for retrieval
 - In contrast, ATLAS directly use pre-trained retrieval model



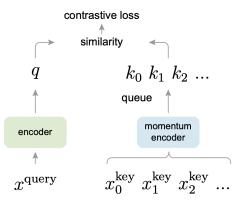
- ATLAS [Izacard et al., 2022]: Retrieval → Contriever [Izacard et al., 2021]
 - **Goal**: measure relevance s(q, d) between query q and document d
 - f_{θ} is modeled by neural network, *e.g.*, BERT

 $s(q,d) = \langle f_{\theta}(q), f_{\theta}(d) \rangle$

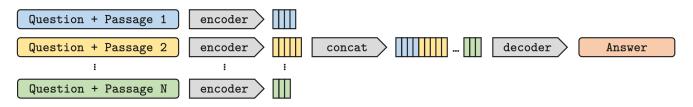
- Key Idea: Unsupervised training via contrastive learning
 - k_+ : positive document, k_i : negative documents

$$\mathcal{L}(q,k_{+}) = -\frac{\exp(s(q,k_{+})/\tau)}{\exp(s(q,k_{+})/\tau) + \sum_{i=1}^{K} \exp(s(q,k_{i})/\tau)}$$

- Construct positive pairs by randomly cropping common document
- For negative pairs, previous batches are used as same as MoCo [He et al., 2020]

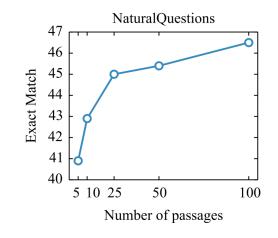


- ATLAS [Izacard et al., 2022]: Language model → Fusion-in-Decoder (FiD) [Izacard et al., 2021]
 - **Goal**: efficiently incorporating retrieved documents with pre-trained LM
 - Naively appending N documents is very costly due to quadratic nature of Transformer
 - Here, for LM, Transformer encoder-decoder based one is considered, e.g., T5 [Raffel et al., 2019]
 - Key Idea: separately encoding documents, then fusing at decoder
 - Naïve appending: $(N * L)^2 \rightarrow FiD: N * L^2$



• Also, FiD shows outperforming performance in open-domain QA (w/ pre-trained retriever)

Model	NQ	Trivi	aQA	SQuAI	O Open
	EM	EM	EM	EM	F1
DrQA (Chen et al., 2017)	-	-	-	29.8	-
Multi-Passage BERT (Wang et al., 2019)	-	-	-	53.0	60.9
Path Retriever (Asai et al., 2020)	31.7	-	-	56.5	63.8
Graph Retriever (Min et al., 2019b)	34.7	55.8	-	-	-
Hard EM (Min et al., 2019a)	28.8	50.9	-	-	-
ORQA (Lee et al., 2019)	31.3	45.1	-	20.2	-
REALM (Guu et al., 2020)	40.4	-	-	-	-
DPR (Karpukhin et al., 2020)	41.5	57.9	-	36.7	-
SpanSeqGen (Min et al., 2020)	42.5	-	-	-	-
RAG (Lewis et al., 2020)	44.5	56.1	68.0	-	-
T5 (Roberts et al., 2020)	36.6	-	60.5	-	-
GPT-3 few shot (Brown et al., 2020)	29.9	-	71.2	-	-
Fusion-in-Decoder (base)	48.2	65.0	77.1	53.4	60.6
Fusion-in-Decoder (large)	51.4	67.6	80.1	56.7	63.2



Algorithmic Intelligence Lab

- ATLAS [Izacard et al., 2022]: Training objective
 - Then, Atlas jointly trains Contriever and FiD, similar to REALM
 - <u>Remark</u>. Same decomposition is considered, but different retrieval modeling p(z|x)

$$p(y | x) = \sum_{z \in \mathcal{Z}} p(y | z, x) p(z | x)$$

- Retrieval modeling: Leave-one-out Perplexity Distillation (LOOP)
 - Idea: how much worse the prediction, when removing one of top-k documents

$$p_{\text{LOOP}}(\mathbf{d}_k) = \frac{\exp(-\log p_{LM}(\mathbf{a} \mid \mathcal{D}_K \setminus \{\mathbf{d}_k\}, \mathbf{q}))}{\sum_{i=1}^{K} \exp(-\log p_{LM}(\mathbf{a} \mid \mathcal{D}_K \setminus \{\mathbf{d}_i\}, \mathbf{q}))}$$

- With LOOP, both Contriver and FiD are fine-tuned using masked language modeling
 - They are further fine-tuned to solve specific downstream task, *e.g.*, Open-domain QA

- ATLAS [Izacard et al., 2022]: Experiments
 - Comparison to state-of-the-art on question answering
 - <u>Remark</u>. GPT-3, Gopher, Chinchilla uses prompting, but ATLAS uses fine-tuning for few-shot
 - ATALS outperforms both LLMs without retrieval and existing retrieval-augmented LMs

	NG	NQ TriviaQA filtered		filtered	TriviaQA unfiltere	
Model	64-shot	Full	64-shot	Full	64-shot	Full
GPT-3 (Brown et al., 2020)	29.9	-	-	-	71.2	-
Gopher (Rae et al., 2021)	28.2	-	57.2	-	61.3	-
Chinchilla (Hoffmann et al., 2022)	35.5	-	64.6	-	72.3	-
PaLM (Chowdhery et al., 2022)	39.6	-	-	-	81.4	-
RETRO (Borgeaud et al., 2021)	-	45.5	-	-	-	-
FiD (Izacard & Grave, 2020)	-	51.4	-	67.6	-	80.1
FiD-KD (Izacard & Grave, 2021)	-	54.7	-	73.3	-	-
R2-D2 (Fajcik et al., 2021)	-	55.9	-	69.9	-	-
ATLAS	42.4	60.4	74.5	79.8	84.7	89.4

- ATLAS [Izacard et al., 2022]: Experiments
 - Comparison to state-of-the-art on MMLU (57 tasks)
 - <u>Remark</u>. GPT-3, Gopher, Chinchilla uses prompting, but ATLAS uses fine-tuning for few-shot
 - For 5-shot setup, ATLAS outperforms GPT-3 with 16 times smaller parameters
 - With full training, ATLAS even can outperform stronger LLMs such as Gopher

Setting	Model	Params	Train FLOPS	All	Hum.	Soc. Sci.	STEM	Other
zero-shot	Atlas	11B	$3.5\mathrm{e}22$	47.1	43.6	54.1	38.0	54.4
	GPT-3	175B	3.1e23	43.9	40.8	50.4	36.7	48.8
5-shot	Gopher	280B	$5.0\mathrm{e}23$	60.0	56.2	71.9	47.4	66.1
5-51100	Chinchilla	70B	$5.0\mathrm{e}23$	67.5	63.6	79.3	55.0	73.9
	Atlas^*	11B	3.5e22	47.9	46.1	54.6	38.8	52.8
5-shot (multi-task)	Atlas	11B	$3.5\mathrm{e}22$	56.6	50.1	66.4	46.4	66.2
	UnifiedQA	11B	3.3e22	48.9	45.6	56.6	40.2	54.6
Full / Transfer	GPT-3	175B	3.1e23	53.9	52.5	63.9	41.4	57.9
	Atlas	11B	3.5e22	66.0	61.1	77.2	53.2	74.4

Overview

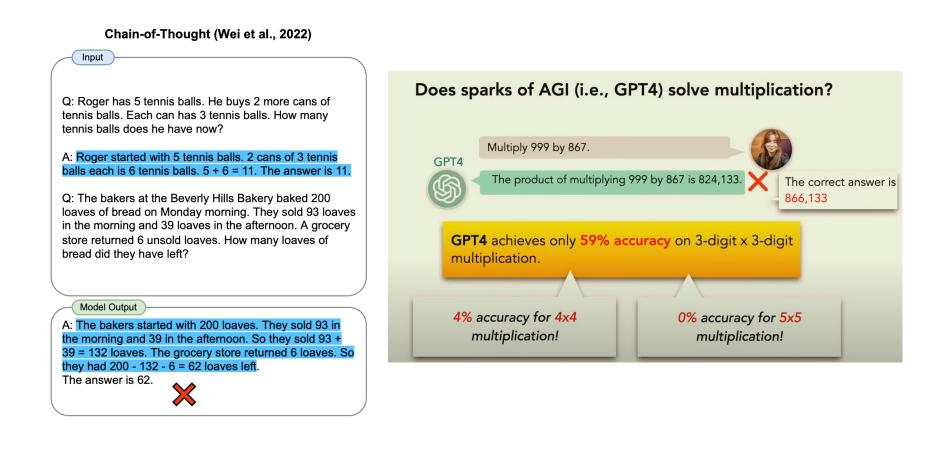
- **1.** Preliminary
 - Important properties of large language models
 - Large language models beyond GPT-3
- 2. Building Blocks of Large Language Models
 - Prompt-tuning
 - Alignment with human values and intendment
 - Retrieval augmentation

3. Recent Advances of Large Language Models

- Tool use
- Self improvement
- Al agents

Recent Advances of Large Language Models: Tool-use

- **PAL** [Gao et al., 2023]
 - Motivation: natural language might be not optimal way to solve given task
 - E.g., mathematical reasoning → *do LLMs really know how to add/multiplication*?



- **PAL** [Gao et al., 2023]
 - Motivation: natural language might be not optimal way to solve given task
 - Solution: let LLMs utilize the external tool for given task, *e.g.*, calculator or python
 - Idea: generating both language rationale (similar to CoT) and python code together
 - Then, final answer is obtained by executing codes (language part will be #comment)

Flogram-alded Language models (this work)
Input
Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?
A: Roger started with 5 tennis balls.
tennis_balls = 5
2 cans of 3 tennis balls each is
$bought_balls = 2 * 3$
tennis balls. The answer is
<pre>answer = tennis_balls + bought_balls</pre>
Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?
Model Output
A: The bakers started with 200 loaves
loaves_baked = 200
They sold 93 in the morning and 39 in the afternoon
<pre>loaves_sold_morning = 93</pre>
loaves sold afternoon = 39
The grocery store returned 6 loaves.
<pre>loaves_returned = 6</pre>
The answer is
answer = loaves_baked - loaves_sold_morning
- loaves_sold_afternoon + loaves_returned
>>> print(answer)

Program-aided Language models (this work)

- PAL [Gao et al., 2023]
 - Motivation: natural language might be not optimal way to solve given task
 - Solution: let LLMs utilize the external tool for given task, *e.g.*, calculator or python
 - More examples of prompt
 - Mathematical reasoning

Q: Olivia has \$23. She bought five bagels for \$3 each. How much money does she have left?

```
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
answer = money_left
```

• Symbolic reasoning: Colored objects

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of the object directly to the right of the stress ball?

```
...
stress_ball_idx = None
for i, object in enumerate(objects):
    if object[0] == 'stress ball':
        stress_ball_idx = i
        break
# Find the directly right object
direct_right = objects[stress_ball_idx+1]
# Check the directly right object's color
answer = direct_right[1]
```

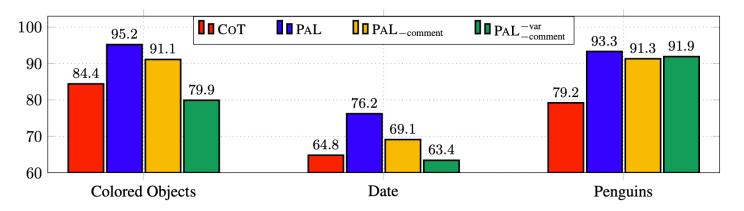
- PAL [Gao et al., 2023]: Experiments
 - Solve rate (%) on mathematical reasoning tasks

	GSM8K	GSM-HARD	SVAMP	ASDIV	SINGLEEQ	SINGLEOP	ADDSUB	MULTIARITH
DIRECT Codex	19.7	5.0	69.9	74.0	86.8	93.1	90.9	44.0
COT UL2-20B	4.1	-	12.6	16.9	-	-	18.2	10.7
COT LaMDA-137B	17.1	-	39.9	49.0	-	-	52.9	51.8
COT _{Codex}	65.6	23.1	74.8	76.9	89.1	91.9	86.0	95.9
COT Palm-540B	56.9	-	79.0	73.9	92.3	94.1	91.9	94.7
COT Minerva 540B	58.8	-	-	-	-	-	-	-
PAL	72.0	61.2	79.4	79.6	96.1	94.6	92.5	99.2

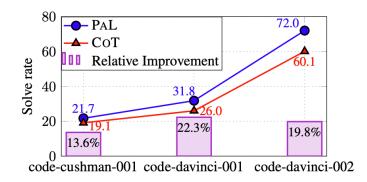
• Solve rate (%) on symbolic reasoning tasks

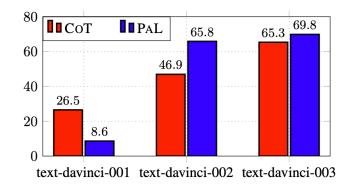
	COLORED OBJECT	PENGUINS	DATE	REPEAT COPY	OBJECT COUNTING
DIRECT Codex	75.7	71.1	49.9	81.3	37.6
COT LaMDA-137B	-	-	26.8	-	-
COT PaLM-540B	-	65.1	65.3	-	-
COT _{Codex}	86.3	79.2	64.8	68.8	73.0
PAL _{Codex}	95.1	93.3	76.2	90.6	96.7

- PAL [Gao et al., 2023]: Experiments
 - Ablation studies
 - Including language rationale as comment is positive for accuracy (blue > yellow)
 - Naming variable with relevant functionality is very important (blue > green)



Generalization with different sizes and LLMs (on GSM8K)

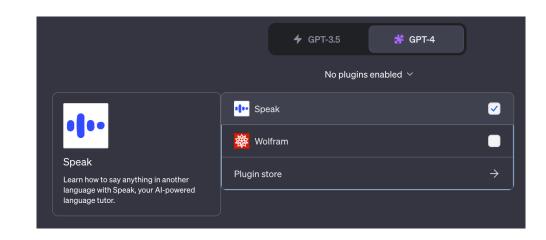




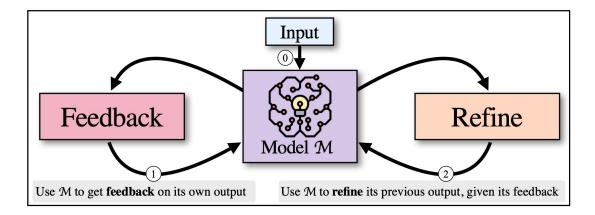
Recent Advances of Large Language Models: Tool-use

- PAL [Gao et al., 2023]: Applications
 - This feature is closely related with ChatGPT's plugin
 - Similar intuition with PAL while it's not open (from instruction-tuning or prompting)

4 GPT-3.5	🛃 GPT-4
Our most capable mo tasks that require cre advanced reasoning.	ativity and
Available exclusively to Plus GPT-4 currently has a cap of 3 hours.	
+, ⁺ Default	
Is Browse with Bing	Beta
🗱 Plugins Beta	
🔁 DALL-E 3 Beta	
Cnatur	PLOS



- Self-refine [Madaan et al., 2023]
 - More interestingly, foundation model can give feedback and refine itself
 - *i.e.*, both feedback & refine are conducted from foundation model with different prompt



Algorithm 1 SELF-REFINE algorithm

Require: input x, model \mathcal{M} , prompts $\{p_{gen}, p_{fb}, p_{refine}\}$, stop condition stop(\cdot) 1: $y_0 = \mathcal{M}(p_{\text{gen}} \| x)$ \triangleright Initial generation (Eqn. 1) 2: for iteration $t \in 0, 1, \dots$ do $fb_t = \mathcal{M}\left(p_{\rm fb} \| x \| y_t\right)$ \triangleright Feedback (Eqn. 2) 3: if $stop(fb_t, t)$ then ▷ Stop condition 4: break 5: else 6: $y_{t+1} = \mathcal{M}(p_{\text{refine}} ||x|| y_0 ||fb_0|| ... ||y_t|| fb_t)$ \triangleright Refine (Eqn. 4) 7: end if 8: 9: end for 10: return y_t

Recent Advances of Large Language Models: Self-feedback

- Self-refine [Madaan et al., 2023]
 - More interestingly, foundation model can give feedback and refine itself
 - Example: code optimization (single iteration)
 - 1. Initial generation

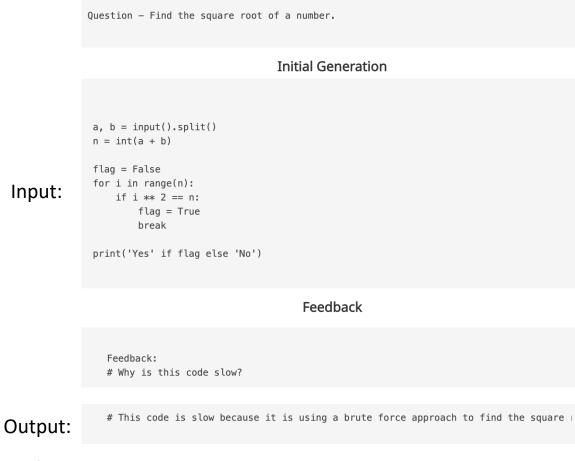
```
Input: Question - Find the square root of a number.
Initial Generation

A, b = input().split()
n = int(a + b)

Output:
flag = False
for i in range(n):
    if i ** 2 == n:
        flag = True
        break
print('Yes' if flag else 'No')
```

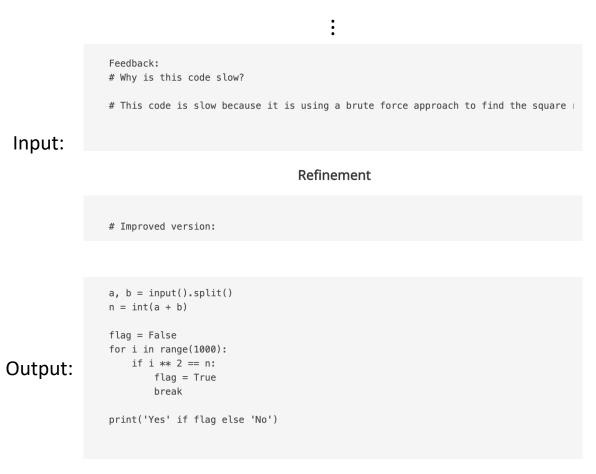
Recent Advances of Large Language Models: Self-feedback

- Self-refine [Madaan et al., 2023]
 - More interestingly, foundation model can give feedback and refine itself
 - Example: code optimization (single iteration)
 - 2. Feedback



Recent Advances of Large Language Models: Self-feedback

- Self-refine [Madaan et al., 2023]
 - More interestingly, foundation model can give feedback and refine itself
 - Example: code optimization (single iteration)
 - 3. Refinement



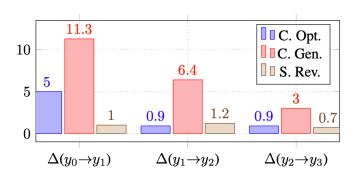
Algorithmic Intelligence Lab

- Self-refine [Madaan et al., 2023]: Experiments
 - Overall results
 - This framework is well generalized across different LLMs
 - Remark. For each task, specific metric is used, e.g., accuracy or human preference

		GPT-3.5		ChatGPT	GPT-4		
Task	Base	+SELF-REFINE	Base	+SELF-REFINE	Base	+SELF-REFINE	
Sentiment Reversal	8.8	30.4 (†21.6)	11.4	43.2 (†31.8)	3.8	36.2 (†32.4)	
Dialogue Response	36.4	63.6 (†27.2)	40.1	59.9 (†19.8)	25.4	74.6 (†49.2)	
Code Optimization	14.8	23.0 (†8.2)	23.9	27.5 (†3.6)	27.3	36.0 (†8.7)	
Code Readability	37.4	51.3 (†13.9)	27.7	63.1 (†35.4)	27.4	56.2 (†28.8)	
Math Reasoning	64.1	64.1 (0)	74.8	75.0 (†0.2)	92.9	93.1 (†0.2)	
Acronym Generation	41.6	56.4 (†14.8)	27.2	37.2 (†10.0)	30.4	56.0 (†25.6)	
Constrained Generation	28.0	37.0 (†9.0)	44.0	67.0 (†23.0)	15.0	45.0 (†30.0)	

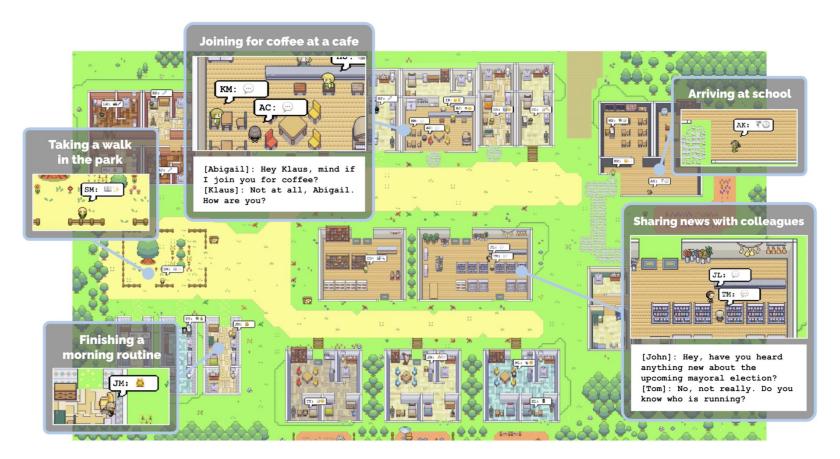
• Iteration-wise score improvement

Tl-				
Task	y_0	y_1	y_2	y_3
Code Opt.	22.0	27.0	27.9	28.8
Sentiment Rev.	33.9	34.9	36.1	36.8
Constrained Gen.	29.0	40.3	46.7	49.7



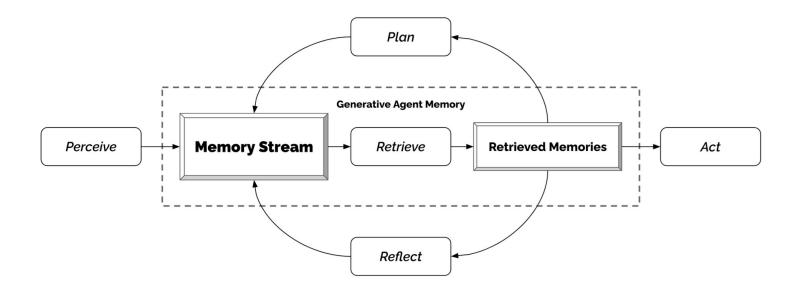
- Generative agents [Park et al., 2023]
 - Then, what if we simulate human behavior using LLMs?
 - Using the history of each human as prompt and allowing actions on environment (Sims)

- Generative agents [Park et al., 2023]
 - Then, what if we simulate human behavior using LLMs?
 - Using the history of each human as prompt and allowing actions on environment (Sims)

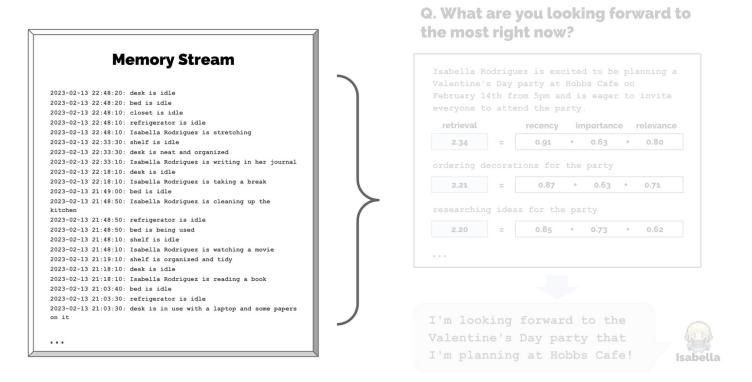


- Generative agents [Park et al., 2023]
 - Then, what if we simulate human behavior using LLMs?
 - Interestingly, each character powered by LLMs show many different behavior depending on given characteristics similar to human

- Generative agents [Park et al., 2023]: Overview
 - Goal: interaction with other agents and react to changes in environment
 - Method: agent architecture combining LLMs with novel mechanisms such that synthesizing/retrieving relevant information to condition LLMs' output
 - Key feature: Memory stream



- Generative agents [Park et al., 2023]: Technical Details Memory/Retrieval
 - Target challenge. Not all experience is essential & limited context window of LLMs
 - Solution: retrieving relevant experience from <u>memory stream of observations</u>
 - Observation; event directly perceived by agent (time stamp + language description)



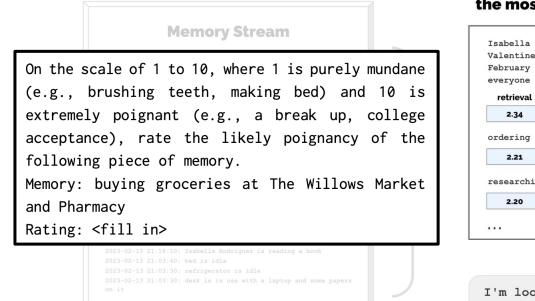
- Generative agents [Park et al., 2023]: Technical Details Memory/Retrieval
 - Target challenge. Not all experience is essential & limited context window of LLMs
 - Solution: <u>retrieving relevant experience</u> from memory stream
 - *Retrieval*; consider three features (<u>recency</u>, importance, relevance)
 - <u>Recency</u>: recently happened event has a higher weight

	IAI	emory Stream
	22:48:20:	desk is idle
	22:48:20:	bed is idle
	22:48:10:	closet is idle
	22:48:10:	refrigerator is idle
	22:48:10:	Isabella Rodriguez is stretching
		shelf is idle
		desk is neat and organized
		Isabella Rodriguez is writing in her journal
	22:18:10:	desk is idle
	22:18:10:	Isabella Rodriguez is taking a break
	21:49:00:	bed is idle
	21:48:50:	Isabella Rodriguez is cleaning up the
kitchen		
	21:48:50:	refrigerator is idle
	21:48:50:	bed is being used
	21:48:10:	shelf is idle
	21:48:10:	Isabella Rodriguez is watching a movie
	21:19:10:	shelf is organized and tidy
		desk is idle
	21:18:10:	Isabella Rodriguez is reading a book
	21:03:40:	bed is idle
		refrigerator is idle
		desk is in use with a laptop and some papers

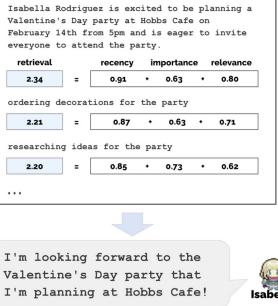
Q. What are you looking forward to the most right now?

2.34 =	0.91		0.63	٠	0.80
	ions for				
2.21 =		the	party		
	0.87	٠	0.63	٠	0.71
2.20 =	0.85	-	0.73	•	0.62
		Ļ			

- Generative agents [Park et al., 2023]: Technical Details Memory/Retrieval
 - **Target challenge**. Not all experience is essential & limited context window of LLMs
 - **Solution**: retrieving relevant experience from memory stream
 - Retrieval; consider three features (recency, importance, relevance)
 - Importance: rareness of events regardless of given context ٠

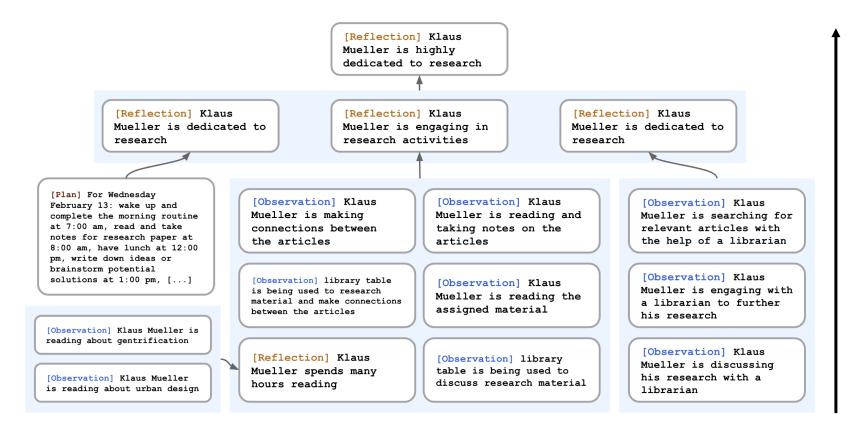


Q. What are you looking forward to the most right now?

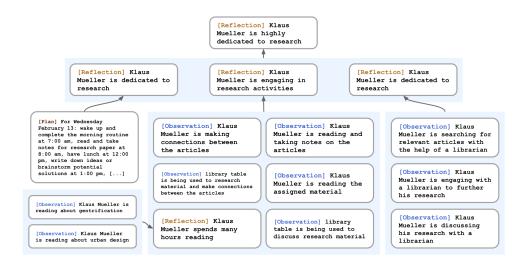


Algorithmic Intelligence Lab

- Generative agents [Park et al., 2023]: Technical Details Reflection
 - Target challenge. Retrieval is not enough to describe overall status of agent
 - Solution: high-level summarization regarding current status of agent
 - E.g., Agent named Klaus Mueller is highly dedicated to research



- Generative agents [Park et al., 2023]: Technical Details Reflection
 - Target challenge. Retrieval is not enough to describe overall status of agent
 - Solution: high-level summarization regarding current status of agent
 - *Step 1.* Prompting to obtain questions to gather high-level information of agent
 - <u>Used prompt</u>: "Given only the information above (100 recent records), what are 3 most s alient high-level questions we can answer about the subjects in the statements?"
 - <u>Example responses</u>: "What topic is Klaus Mueller passionate about?" & "What is the relationship between Klaus Mueller and Maria Lopez?"



- Generative agents [Park et al., 2023]: Technical Details Reflection
 - Target challenge. Retrieval is not enough to describe overall status of agent
 - Solution: high-level summarization regarding current status of agent
 - Step 2. Gather relevant information for question, then prompting to extract status
 - <u>Query</u>: "What topic is Klaus Mueller passionate about?" (query)
 - Prompt

Statements about Klaus Mueller

```
1. Klaus Mueller is writing a research paper
2. Klaus Mueller enjoys reading a book
on gentrification
3. Klaus Mueller is conversing with Ayesha Khan
about exercising [...]
What 5 high-level insights can you infer from
the above statements? (example format: insight
(because of 1, 5, 3))
```

• <u>Response</u>: "Klaus Mueller is dedicated to his research on gentrification (because of 1, 2, 8, 15)"

- Generative agents [Park et al., 2023]: Technical Details Planning and Reacting
 - Target challenge. Ensuring that sequence of actions is coherent and believable
 - Solution: Top-down and then recursively generate more detailed plans
 - First, generating overall plans of whole day from agent's summary description
 - Input prompt:

Name: Eddy Lin (age: 19) Innate traits: friendly, outgoing, hospitable Eddy Lin is a student at Oak Hill College studying music theory and composition. He loves to explore different musical styles and is always looking for ways to expand his knowledge. Eddy Lin is working on a composition project for his college class. He is taking classes to learn more about music theory. Eddy Lin is excited about the new composition he is working on but he wants to dedicate more hours in the day to work on it in the coming days On Tuesday February 12, Eddy 1) woke up and completed the morning routine at 7:00 am, [...] 6) got ready to sleep around 10 pm. Today is Wednesday February 13. Here is Eddy's plan today in broad strokes: 1)

Output: "1) wake up and complete the morning routine at 8:00 am, 2) go to Oak Hill Coll ege to take classes starting 10:00 am, [...], 5) work on his new music composition from 1:00 pm to 5:00 pm, 6) have dinner at 5:30 pm, 7) finish school assignments and go to b ed by 11:00 pm"

- Generative agents [Park et al., 2023]: Technical Details Planning and Reacting
 - Target challenge. Ensuring that sequence of actions is coherent and believable
 - Solution: Top-down and then recursively generate more detailed plans
 - Then, creating finer-grained actions (day \rightarrow hours \rightarrow 5-15 minute chunks)
 - Input prompt: "work on his new music composition from 1:00 pm to 5:00 pm"
 - Output: "1:00 pm: start by brainstorming some ideas for his music composition [...] 4:00 pm: take a quick break and recharge his creative energy before reviewing and polishing h is composition."
 - In addition, these plans could be updated with reacting
 - As the environment is updated in real-time

[Agent's Summary Description] It is February 13, 2023, 4:56 pm. John Lin's status: John is back home early from work. Observation: John saw Eddy taking a short walk around his workplace. Summary of relevant context from John's memory: Eddy Lin is John's Lin's son. Eddy Lin has been working on a music composition for his class. Eddy Lin likes to walk around the garden when he is thinking about or listening to music. Should John react to the observation, and if so, what would be an appropriate reaction?

Summary

- Foundation models in language recently shows tremendous success
 - It is often called large language models (LLMs)
 - By increasing scale, LLMs obtain intriguing properties such as in-context learning
- But, LLMs still have some limitations and they can be mitigated by
 - Carefully designing input prompt
 - Or fine-tuning LLMs to impose alignment
 - Or incorporating external knowledge via retrieval
- Also, recent LLMs show more interesting capability such as
 - Tool-use
 - Self-feedback
 - Al agents

References

[Brown et al., 2020] "Language Models are Few-Shot Learners." *NeurIPS 2020* Link: <u>https://arxiv.org/abs/2005.14165</u>

[Kaplan et al., 2020] "Scaling Laws for Neural Language Models." *arXiv preprint* Link: <u>https://arxiv.org/abs/2001.08361</u>

[Wei et al., 2022] "Emergent Abilities of Large Language Models." *TMLR 2022* Link: <u>https://arxiv.org/abs/2206.07682</u>

[Rae et al., 2021] "Scaling Language Models: Methods, Analysis & Insights from Training Gopher." *arXiv preprint* Link: <u>https://arxiv.org/abs/2112.11446</u>

[Hoffmann et al., 2022] "Training Compute-Optimal Large Language Models." *arXiv preprint* Link: <u>https://arxiv.org/abs/2203.15556</u>

[Chowdhery et al., 2022] "PaLM: Scaling Language Modeling with Pathways." *arXiv preprint* Link: <u>https://arxiv.org/abs/2204.02311</u>

[Barham et al., 2022] "PATHWAYS: Asynchronous Distributed Dataflow for ML., MLSys 2022 Link: <u>https://arxiv.org/abs/2203.12533</u>

[Touvron et al., 2023] "LLaMA: Open and Efficient Foundation Language Models." *arXiv preprint* Link: <u>https://arxiv.org/abs/2302.13971</u>

[Touvron et al., 2023] "Llama 2: Open Foundation and Fine-Tuned Chat Models." *arXiv preprint* Link: <u>https://arxiv.org/abs/2307.09288</u>

[Zhao et al., 2021] "Calibrate Before Use: Improving Few-Shot Performance of Language Models." *ICML 2021* Link: <u>https://arxiv.org/pdf/2102.09690</u>

[Ouyang et al., 2022] "Training Language Models to Follow Instructions with Human Feedback" *NeurIPS 2022* Link: <u>https://arxiv.org/abs/2203.02155</u>

References

[Wei et al., 2022] "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models" *NeurIPS 2022* Link: <u>https://arxiv.org/abs/2201.11903</u>

[Wang et al., 2023] "Self-Consistency Improves Chain of Thought Reasoning in Language Models" ICLR 2023 Link: <u>https://arxiv.org/abs/2203.11171</u>

[Kozima et al., 2022] "Large Language Models are Zero-Shot Reasoners" *NeurIPS 2022* Link: <u>https://arxiv.org/abs/2205.11916</u>

[Wei et al., 2022] "Finetuned Language Models Are Zero-Shot Learners" *ICLR 2022* Link: <u>https://arxiv.org/abs/2109.01652</u>

[Chung et al., 2022] "Scaling Instruction-Finetuned Language Models" *arXiv preprint* Link: <u>https://arxiv.org/abs/2210.11416</u>

[Zhang et al., 2022] "DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation" ACL 2020 Link: <u>https://arxiv.org/abs/1911.00536</u>

[Shuster et al., 2022] "BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage" *arXiv preprint* Link: <u>https://arxiv.org/abs/2208.03188</u>

[Thoppilan et al., 2022] "LaMDA: Language Models for Dialog Applications" *arXiv preprint* Link: <u>https://arxiv.org/abs/2201.08239</u>

[Guu et al., 2020] "REALM: Retrieval-Augmented Language Model Pre-Training" *ICML 2020* Link: <u>https://arxiv.org/pdf/2002.08909</u>

[Izacard et al., 2022] "Atlas: Few-shot Learning with Retrieval Augmented Language Models" *TMLR 2022* Link: <u>https://arxiv.org/pdf/2208.03299</u>

References

[Izacard et al., 2021] "Unsupervised Dense Information Retrieval with Contrastive Learning" *TMLR* Link: <u>https://arxiv.org/abs/2112.09118</u>

[He et al., 2020] "Momentum Contrast for Unsupervised Visual Representation Learning" *CVPR 2020* Link: <u>https://arxiv.org/abs/1911.05722</u>

[Izacard et al., 2020] "Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering" *EACL 2021* Link: https://arxiv.org/pdf/2007.01282

[Raffel et al., 2019] "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer" *JMLR* Link: <u>https://arxiv.org/abs/1910.10683</u>

[Lazaridou et al., 2022] "Internet-augmented Language Models through Few-shot Prompting for Open-domain Question Answering" *Deepmind* Link: https://arxiv.org/pdf/2203.05115

[Shi et al., 2023] "REPLUG: Retrieval-Augmented Black-Box Language Models" *EMNLP 2023 Findings* Link: <u>https://arxiv.org/pdf/2301.12652</u>

[Gao et al., 2023] "PAL: Program-aided Language Models." *ICML 2023* Link: <u>https://arxiv.org/abs/2211.10435</u>

[Madaan et al., 2023] "SELF-REFINE: Iterative Refinement with Self-Feedback." *NeurIPS 2023* Link: <u>https://arxiv.org/abs/2303.17651</u>

[Park et al., 2023] "Generative Agents: Interactive Simulacra of Human Behavior." *UIST 2023* Link: <u>https://arxiv.org/abs/2304.03442</u>

[Huang et al., 2023] "Benchmarking Large Language Models As AI Research Agents." *ICLR 2024 Submitted* Link: <u>https://arxiv.org/abs/2310.03302</u>