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Generative Adversarial Networks (GAN)

Classical (usually explicit) generative methods struggle on complex data
* Sampling from high-dimensional, complex distributions can be intractable

GANs [Goodfellow, et. al., 2014] do not explicitly model pPmodel (X)
* Two player game between discriminator network D and generator network G
* D tries to discriminate real data and samples generated by GG (“fake” samples)
* (G tries to fool D by generating more “realistic” images
* GAN utilizes neural networks to model the sampling function itself
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Generative Adversarial Networks (GAN)

Two player game between discriminator network D and generator network G
Training objective:

1’{01111 I%a’x [Ex’\“pdata lOg Ded (x) + Eszz log(]‘ o Ded (GQQ (Z)))]
g d ' y '

Discriminator output Discriminator output
for real data for generated fake data

* D maximizes the objective: D(z) — 1 and D(G(z)) — 0
* (G minimizes the objective: D(G(z)) — 1
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Generative Adversarial Networks (GAN)

Early GANs suffer from several limitations:

Limitation 1. Limited scalability with respect to data dimension
* GANs had been difficult to be trained on high-resolution data
* Will introduce recent crucial works to mitigate this problem (with controllability)

Limitation 2. Limited scalability with respect to dataset complexity
* Due to "mode collapse” problem, had been difficult to trained on complex data
* Will introduce recent works to scale-up GANs (even zero-shot text-to-image scale)

Limitation 3. Training instability
* GAN training had been extremely unstable due to bi-level training objective
* Will introduce recent simple yet effective techniques to solve this issue
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Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

Early GANs could produce sharp images, but only at small resolutions
* It was still unstable on higher-resolution training despite some progress

Karras et al. (2018): Progressive growing of G and D (Progressive-GAN)
* Training GANs to directly generate high-res image might be too difficult!
* Progressive-GAN starts from learning low-resolution images
* It adds new layers to G and D during training for up-scaling into higher-resolution
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Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

Smooth fade-in to the new layers during up-scale training
* To prevent “sudden shocks” to the pre-trained smaller-resolution layers
* Example: Upscaling transition (b) from 16 x 16 to 32 x 32 ((a) — (c))
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e Simply treat the higher resolution like a residual block
* The fade-in weight a increases linearly from 0 to 1 during training
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Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

1024x1024 images generated using the CELEBA-HQ dataset
https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

H

Mao et al. (2016b) (128 x 128)  Gulrajani et al. (2017) (128 x 128) Our (256 x 256) R et -" =S

Visual quality comparison: LSUN bedroom LSUN other categories generated image (256x256)
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

Interpolation on the latent space of GAN yields smooth, but non-linear changes
e Features not in both end-points appear along the interpolation path

CelebA-HQ
1024 x 1024

Latent space interpolations

Latent space interpolations with Progressive GAN

Unavoidable entanglement: Input space must follow density of the training data

Karras et al. (2019): Consider intermediate latent space representing a “style”
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

StyleGAN proposes to use a non-linear mapping network f : Z2 — W
* Implemented using an 8-layer fully-connected neural network

Random vector
(Latent Code)

Normalize

Mapping
Network

512X1

Y

512X1

(a) Distribution of (b) Mapping from (c) Mapping from
features in training set Z to features W to features

Illustration of disentanglement

Mapping from Z (input space) to meaningful features directly is too complex

Mapping from )V (intermediate) to such features can be more simpler
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

Adaptive instance normalization (AdalN)
* Motivated by the instance normalization [Huang et al., 2017]

Xi — (X
AdaIN(x;,y) = ¥s.i o (x;) ) + Yb,is

y = (Vs, Vp,) is called by a “style”
* A learned affine-transformation of w € W
* Can control high-level attributes (e.g., pose, identity of face images)

Applied after all the convolutional layer in the synthesis network g
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

Explicit noise inputs for stochastic variation
* Single-channel images of Gaussian noise
* Aims to control the stochastic details, e.g., freckles, hair of face images

A noise channel n, is fed to every layer of the synthesis network g
* Broadcasted across features with learned per-feature scaling factors B

s(xi,n) =z; + B; - n
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

FID
StyleGAN improves state-of-the-art in terms of FID 10 o
9 — Style-based (F)
Method CelebA-HQ FFHQ .
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25 L
C + Add mapping and styles 5.34 4.85 6
D + Remove traditional input 5.07 4.88 5 |
E + Add noise inputs 5.06 4.42 Full
F + Mixing regularization 5.17 4.40 40 sM llrmum;m 20M_ 25M

Better interpolation properties, and disentangles the latent factors of variation
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Karras et al. (2020a): Some buggy-artifacts in StyleGAN samples
* Blob-shaped artifacts found in most of StyleGAN images (and hidden features)

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated
images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

StyleGAN2 includes several design modifications on StyleGAN to address the issue

Configuration FFHQ, 10241024 LSUN Car, 512384
' FID | Path length | Precision T Recall 1 FID | Path length | Precision T Recall 1

A Baseline StyleGAN [24] 4.40 2121 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514

Config A with large networks 3.98 199.2 0.716 0.422 - - - -

Algorithmic Intelligence Lab 16



StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Blob-shaped artifacts found in most of StyleGAN images (and hidden features)
1. The anomaly starts to appear around 64X64 resolution
2. It becomes progressively stronger at higher resolutions

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated

images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

If so, why the discriminator could not detect those artifacts? | Upjmplc |
* Karras et al. (2020a): AdalN operation can be problematic | C°“3X3 l
e AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features T Cam3a ]
relative to each other %S
* Hypothesis: they “sneak” some information past AdalN =
(a) StyleGAN
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features relative to each other

Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

Generator architecture revisited = No artifacts anymore!

1. Bias outside the style block

* StyleGAN applies bias & noise
“within” the style block

* Inversely proportional impact
to the current magnitude

* This design is more predictable

Mod std
Upsample
w3

- A
~ Y

2. No norm/mod for means
* |t was possible after (1) is made

* Much simplifies the design £l ' @
2| by > (D€
2
: by )\f B
(b) StyleGAN kaelailed) (c) Revised ar.é'hiteclure
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features relative to each other

Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

Generator architecture revisited = No artifacts anymore!

9 a

3. Weight de-modulation
* A “weaker notion” of AdalN
. . . . Wy = Conv 3x3 v
* AdalN is originally for removing [Demod}»{ Conv 33 ]
the effect of input modulation b, >0< (B] b, 3 B
: : "
* StyleGAN2 instead implement these | Up:ample | - I ¥ |
“« ” . . I .——)|A Mod Upsample
Mod + AdalN” by weight re-scaling ws—>[  Comv33 | Desd>] Con 33 |
u..';jk = 8; " Wijk, b > € (B] bf T B
wy—>»  Conv 3x3 |
4‘) N =
.w;;k = u'gjk/\/z ’w;jk“ + €. |Demod»| Conv3x3 |
~ 3] >
(c) Revised ar'é'hitecture (d) Weight demo'd'ulation
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Path length regularization
* Recall the mapping network f : Z2 — W

Latent z € Z

Normalize

Mapping
network f

* Prior: a fixed step in W results in a fixed-sized change in g(w)

2
Ew y~ar(0,1) (HJE;CYHQ - a)

o Jw = Jdg(w)/Ow: The Jacobian matrix

y: random image

Improved architectural design
* StyleGAN follows simple feedforward designs
* StyleGAN2 considers better architectural choices
e Skip connections for G
* Residual network design for D

FFHQ D original D input skips D residual
FID PPL FID PPL FID PPL
G original 432 265 418 235 3.58 269
G output skips 4.33 169 3.77 127 3.31 125
G residual 435 203 396 229 379 243

Algorithmic Intelligence Lab
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

StyleGAN2 successfully removes the buggy-artifacts of StyleGAN
* Weight de-modulation significantly improves the recall of generations
e Simply using larger StyleGAN could not be comparable with StyleGAN2

Configuration

FFHQ, 10241024

LSUN Car, 512384

FID | Path length | Precision 1 Recall 1 FID | Path length | Precision 1 Recall 1
A Baseline StyleGAN [ 4] 4.40 212.1 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514
Config A with large networks 3.98 199.2 0.716 0.422 - - - -

Algorithmic Intelligence Lab
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Karras et al. (2021): Still, some buggy-artifacts in StyleGAN?2 latent space
e Texture striking problem in most StyleGAN2 images
* Textures (or details) appear to be fixed in pixel coordinates

StyleGAN2 StyleGAN3 (Ours)

A

Random latent walk using directions from StyleCLIP, GANSpace, and SéFa.

StyleGAN3 includes several design modifications to address this issue

Algorithmic Intelligence Lab

22



StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Current GANs do not synthesize images in a natural hierarchical manner
1. Previous coarse features control the “presence” of finer features
2. Yet, such details to be fixed in pixel coordinates

StyleGAN2 Ours

<— latent interpolation — <— latent interpolation —

&4 > =
ﬂ H E - |

Central

Averaged

Why? Unintentional positional references drawn on the intermediate layers
* Faint after-images of the pixel grid from non-ideal up-sampling (e.g., nearest)
* Pointwise application of non-linearities (e.g., ReLU)

Goal: Continuous equivariance to sub-pixel translation (& rotation) in all layers
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Nyquist-Shannon sampling theorem [Shannon, 1949]
* Regular, discrete signal can represent any continuous signals of frequencies 0- s /2

Whittaker-Shannon interpolation formula [Shannon, 1949]

* Ps

S : “sampling rate”

—-~

yA Z

2(x) = (¢s * Z)(x), and Z(x) =1, © z(x)

sin(7x)

¢s(x) := sinc(sxg) - sinc(szy), where sinc(z) =

(@) = 3 o — (X + 1)/

Xez2

X
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Continuous representation of network layers
* A neural network operation F works on a discrete feature map: Z' = F(Z)
 Consider its continuous counterpart, z" = f(z), from the correspondence of z & Z

f(2) = ¢y *F(III,02) < F(Z2) =y O f(¢s * Z)
(a) (b)
* ..aslong as both (a) and (b) are band-limited (to s/2 and s'/2, resp.)

“Equivariant” network layer (w.r.t. a spatial transformation t)?

1. fot=tof (commute)inthe continuous domain
2. f (and t) must not generate frequency above the output bandlimit of s'/2

Four operations in ConvNets: Convolution, Up/down-sampling, and Nonlinearity
* Here, we primarily discuss on the case of translation equivariance
* See the full paper for additional tricks to handle the rotation equivariance

Algorithmic Intelligence Lab
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 1: Convolution—F.,,,(Z) = K * Z
* Consider a discrete kernel K with sampling rate s

feonv(2) = ¢ * (K x (UL ®2)) = K x (¢ * (I © 2)) = K * 2

Commutative 2

* Introduces no new frequencies — the bandlimit requirement fulfilled
e Convolution commutes with translation in the continuous domain

Case 2: Up-sampling (s" > s)-f,,(z) = z

* Translation (and rotation) equivariance follow from being an identity in the
continuous domain

Fup<Z) — ms’Q(Cbs *Z)

* The operation can be simpler to implement when s’ = ns (n: an integer)
* First interleave Z with zeros, and then convolve it with 115/ © ¢4
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 3: Down-sampling (s’ < s) = fgown(2) = Yy * z, where Y := s% - ¢
* Low-pass filter to z to remove frequencies above the output bandlimit
Fdown<Z) = e (7/)3’ * ((bs * Z)) — 1/82 g © (77/).5" k1Y * Z)
= (8'/5)? Uy O (¢s * Z)

* In case of s = ns': a discrete convolution by dropping sample points
 Translation equivariance follows from the commutativity of f3,n

Algorithmic Intelligence Lab 27



StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 4: Non-linearities (e.g., ReLU)

* Pointwise nonlinearity ¢ commutes with translation (and rotation) in the
continuous domain

* However, The bandlimit constraint is problematic
* RelLU in the continuous domain may introduce arbitrarily high frequencies
* Solution: Low-pass filtering of o(z) via 1

f (2) = x0(2) = 5% ps x0(2)
F,(Z) = s I, © (¢s * o(¢s * Z))

* |In practice, F;(Z) can’t be realized without temporarily entering the continuous z
e Solution: Upsampling — ReLU — Downsampling
* Only a 2X temporary upsampling was sufficient for high-quality equivariance

Algorithmic Intelligence Lab
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

StyleGAN3 successfully achieves equivariance and avoid the texture-striking
* Several techniques (e.g., Fourier features) to compensate worse FID

Configuration FID| EQ-TT EQ-R?

A StyleGAN2 5.14 - -

B+ Fourier features 479 1623  10.81
C + No noise inputs 4.54  15.81 10.84
D + Simplified generator 521 1947 1041
E + Boundaries & upsampling 6.02  24.62 10.97
F + Filtered nonlinearities 6.35 30.60 10.81
G + Non-critical sampling 478 4390 10.84
H + Transformed Fourier features 4.64 4520 10.61
T + Flexible layers (Alias-Free-T) | 4.62  63.01 13.12
R + Rotation equiv. (Alias-Free-R) | 4.50  66.65  40.48
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Generative Adversarial Networks (GAN)

Early GANs suffer from several limitations:

Limitation 3. Training instability
* GAN training had been extremely unstable due to bi-level training objective
* Will introduce recent simple yet effective techniques to solve this issue

Algorithmic Intelligence Lab
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Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

Example: Rigid transformation symmetries
* Translation, dilation, rotation, mirror symmetry, ...

* Forms an affine group on pixels: [51] —> [01] + [al a2] [u1]

Translation Dilation Rotation Mirror symmetry

Algorithmic Intelligence Lab *source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf 31
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Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

DA for GANs? (or for generative modeling in general?)
* Not much explored until very recently [Zhang et al., 2019]
* Why? Current DA practices for discriminative modeling might by too strong
* How can we incorporate the distribution shifts P(x) — P(7T'(x))?

Algorithmic Intelligence Lab 32



Consistency Regularization for GANs [Zhang et al., 2019]

How can we incorporate the distribution shifts P(z) — P(T(a)

* Naive augmentation of real images would shift the data distribution
P(x) P(T(x))

Zhang et al. (2019): Consistency regularization for GANs (CRGAN)
* Enforcing only “consistency” can effectively incorporate 7'(x)

Image space Manifold space Semantic feature space

R — N — ®-- Before

consistency
™ - After
-—€ L - -- :
\._.: \.. - —.» consistency
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Consistency Regularization for GANs [Zhang et al., 2019]

Enforcing consistency can effectively incorporate  P(z) — P(T(z))

* Training data is not directly augmented by T, but only consider D(x) ~ D(T(x))
* D should learn representation that is invariant to T

Ler = ||D(x) = D(T(2))|,
O =Lp+ AL, LY =Lg.

Algorithm 1 Consistency Regularized GAN (CR-GAN). We use A = 10 by default.

Input: generator and discriminator parameters ¢, #p. consistency regularization coefficient A,
Adam hyperparameters «, (31, 32, batch size M, number of discriminator iterations per gen-
erator iteration Np

1: for number of training iterations do
2: fort=1,...,Npdo
3 fori=1,....M do

4: Sample 2 ~ p(2),  ~ Pgaa(T)

5: Augment x to get T'(x)

6: L& « ||D(z) - D(T(z))||"j[¢=— Only real images are augmented
7: LY « D(G(z)) — D(x)

8: end for ‘ .

9: Op « Adam(L M (L)) + ALE), o, By, Ba)

10: end for ]

11:  [Sample a batch of latent variables {z"}1, ~ p(2) , . .
12: \ﬁc — Adam(& S (=D(G(2))), a, Br, Ba) G is trained in the standard way

13: end for
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Consistency Regularization for GANs [Zhang et al., 2019]

Does CR really learn differently than simple augmentation?

- GAN 50 - GAN
=== GAN w/ Aug. === GAN W/ Aug.
=== GAN w/ Cons. Reg. 45 === GAN w/ Cons. Reg.

Test accuracy
© o o
N o

o«
[

o
i

25 —

°
o

0 1000 2000 3000 4000 20 0 1000 2000 3000 4000

Epochs Epochs

* Both CR and Aug. prevent overfitting of the discriminator
* However, CR is the one that could only meaningfully improve FIDs

Which augmentations should we use?
* The choice of augmentation does matter in GAN training
* For CR, a simple choice of “Random shift & flip” worked best

Metric | Gaussian Noise Random shift & flip Cutout Cutout w/ random shift & flip
FID 21.91+0.32 16.04+0.17 17.10+0.29 19.46+0.26

Table 3: FID scores on CIFAR-10 for different types of image augmentation. Gaussian noise is the
worst, and random shift and flip is the best, consistent with general consensus on the best way to
perform image optimization on CIFAR-10 (Zagoruyko & Komodakis| 2016).

Algorithmic Intelligence Lab
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Consistency Regularization for GANs [Zhang et al., 2019]

CR surprisingly stabilizes GAN training on various existing practices

27.- SN = True | loss = Hinge 30- SN = True | loss = NS 140- SN = True | loss = WAS
26- === 28 — 120- ?
25-E ! —_— 100+
24- 26- —— 80
2 23.- 24-
w 60 - S
22- 22 w0
21- 1 —————
20- 20- — 20- —_—
=
19' 1 1 1 1 1 18' 1 1 1 1 1 0' 1 1 1 1 1
W/0 GP DR JSR Ours W/0 GP DR JSR Ours W/0 GP DR JSR Ours

CR further improves state-of-the-art BigGAN training

Dataset SNGAN SAGAN BigGAN BigGAN* CR-BigGAN*
CIFAR-10 17.5 / 14.73 20.42 11.48
ImageNet 27.62 18.65 8.73 1.75 6.66

Comparison of FIDs (lower is better)

CR-BigGAN
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

Recall: How can we incorporate the distribution shifts P(z) — P(T(x))?

Then would it be just enough with CR for GANs?
* Still, CR does not perfectly prevent the shifting issue in GAN
* For certain augmentations, e.g., CutOut, CR often make “leakages”

(a) 8 x 8 cutout. (b) CR samples. (c) bCR samples.

Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal ”D(l) - D(T(l)>”2
Lfake — ”D(G(;)) o D(T(G(;)))HQ
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal < ||D(l) — D(T(

£))|?

Lke < |D(G(2)) — D(T(G(2)))]]?

re rFo aa

{D(T(x) ~ - D)} {DTX) - DX} {D(G@) - DTG}

D / D

T ‘FT(G(z»
G

G
|

T(X) X z TX) X
Fa— P
(1) CR-GAN (2) bCR-GAN

Algorithmic Intelligence Lab

Algorithm 1 Balanced Consistency Regularization (bCR)

Input: parameters of generator # and discriminator 6 p,
consistency regularization coefficient for real images Ajeq
and fake images Apke, number of discriminator iterations
per generator iteration Np, augmentation transform 7
(for images, e.g. shift, flip, cutout, etc).
for number of training iterations do

fort =1to Np do
Sample batch z ~ p(z), & ~ prea()
Augment both real 7'(«r) and fake 7'(G(z)) images
Lp + D(G(z)) — D(x)
Lrea < || D(w) — D(T'(x))||*
Like + | D(G(2)) — D(T(G(2)))]?
HD — Adalnoptilnizer(LD + )‘l’ealLreul + /\lekeLfake)
end for
Sample batch = ~ p(z)
La + —D(G(z))
O < AdamOptimizer(L¢)
end for

G is still trained in
the standard way
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

Zhao et al. (2020): Balanced Consistency regularization (bCR)

Despite its simplicity, bCR could achieve state-of-the-art BigGAN training

FID
N
[N

18

16
W/0 GP

Algorithmic Intelligence Lab

DR

JSR
methods

CR

= W/0

= GP

DR

=)SR

CR

bCR (ours)

bCR (ours)

Models CIFAR-10 ImageNet
SNGAN 17.50 27.62
BigGAN 14.73 8.73
CR-BigGAN 11.48 6.66
ICR-BigGAN (ours) 9.21 5.38

39



Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

Limitation of CR: Fundamentally hard to incorporate stronger augmentations

Example: Color jittering
* The “redness” is not helpful to improve FID with CR

* Forcing CR for such a stronger augmentation

might be too restrictive for D representation N /\

Manifold space

How can we incorporate stronger augmentations for GANs?

FID translation redness
Q1 B Augment: R+F
E [ Consistency
FIR [T e ———
o ~N
B2
2 | §
o
|
.. ] v 9
Original Image Translation Redness PP ’L " \’
0> 0+ 02 0* O 0 0% 0% 0%0

A_aug A_aug

Algorithmic Intelligence Lab * source: [ZhaoZ et al., 2020b] Image Augmentations for GAN Training, 2020. 40



Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

How can we incorporate stronger augmentations for GANs?
Two recent works propose a “even simpler” scheme for GANs

* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”
* [Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”

update

Latents Reals Latents a x—’:-]-:(;c)‘:—’ D(T(x)) Latents Reals Latents
o] ma Mol | a i
s > 1(GE)—> D(T(G(z))) : —
Aug Aug - W | Aug | | Aug | | Aug |

] i i . 7 1 7
LD | | D B uPeye lIl)||lDl|

! ——l —l .
=@ | ()T e ¢ e | e, —+D(T(G(z)) (/&) f®) /&)
&) (ff))(( l.,»))(fi ) f)) P s TGl € { ) | G { ) G ¢ )
G loss ) C D loss . o = (i) (G loss) ( D loss )
Balanced CR (bCR) DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

How can we incorporate stronger augmentations for GANs?

Two recent works propose a “even simpler” scheme for GANs

* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”

* [Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”
Idea: Simply augment every input before D, even when G is trained

* No CR needed anymore, and accept stronger augmentations without leakages

Latents Reals Latents
G | G |
Aug Aug
LD | | D B

[ =1 T :
C@ (FD) G- @ -
(G loss) (

D loss

Balanced CR (bCR)

Algorithmic Intelligence Lab

r TG D(T(x))  Lagms | Rels  Lacus
_________ (i) D — VS. ‘|l
z—> —.1(G(z))— L I 1l
e = (i) D(T(G(Z))) | Allg | | Aug | | Aug |
update | :E) | | ; D | |
_________ — D(T(G(z)) (—f& -f®) f=)
[ 6 G- el e
(iii) (Gloss) (  Dloss )

DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Two concurrent works propose a “even simpler” scheme for GANs

Idea: Simply augment every input before D, even when G is trained

Then, how could this approach have not been explored so far?
* This requires a differentiable implementation of T'(+) for training G
e Example: Non-saturating loss should minimize E, [_ log (D(T(G(z)))]

* Nevertheless, most of the previous implementations of T were non-differentiable
e ...as they were rather considered as pre-processing steps

* |n this respect, the “differentiability” of T is becoming increasingly important

E ______ update '
Latents Reals Latents . X —bi_]:(_ x_)j:» D(T(x)) Latents }])Keals Latents
[ G | [ G | N R e D |— s |

: D(T(G L p—
Aug Aug e (G | Aug | | Aug | | Aug |
| i . 7 1 7
|D|| D |= e (2] L Do |
x —f®))((x— 1 —=x)) ((x— 1 --------- — D(T(G(z)) (-fix —f)) ~f(=
(f()) (fc D ( D(f( ) (@ >) . TG z CffD Cff ) (fg )
(G loss) C Dloss ) E _______ 2 (G loss) ( D loss )
Balanced CR (bCR) DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?
* Key point: There should be no leakage of augmentations

Example: Random 90° rotations as T
* Assume X: generated distribution and y: target distribution
« Q: ADA matches 7x = T y: then, does it always imply X =y ?
* A: No, imagine when X goes like “E” below — augmentation leakage

Aug. generated 7 x Aug. real Ty
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?
* Key point: There should be no leakage of augmentations

Example: Random 90° rotations as T

Idea: The leakage of any 7 can be controlled by setting p € [0, 1] The prob. of
executing T

| it

5-‘5"'.; - ‘ — . Bo—.— 5 T ; C. .#,‘.‘.,_._. ! 5
p=075 08 085 090 095 100 p=075 0.80 0.85 0.90 095 1.00 p=075 08 085 090 095 100
(a) Isotropic image scaling (b) Random 90° rotations (c) Color transformations

Algorithmic Intelligence Lab
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?
* Key point: There should be no leakage of augmentations

Idea: The leakage of any 7 can be controlled by settingp € [0,1]  The prob. of
executing 7

ADA also proposes a heuristic to adaptively set p in training by observing 7;,

r o= ]E[Dtrain] - ]E[Dvalidation] D(é)-
’ IE:[Dtrain] — E[D generated] :
* 1, = 0: No overfitting / r,, = 1: Complete overfitting oA
* p of the augmentation is initially setto 0 2
* Increase/decrease p when 1, is low/high, resp. : .
— Real — Generated — Validation -~ Best FID

t=0M 2M 4M M &M 1M 1I2M 14M
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

» ADA successfully incorporate wider augmentations than bCR

p=0 p=01 p=02 p=03 p=05 p=0.2.8

* ADA works significantly better than bCR when # sample is small

FID ————T FID Dataset | Baseline ADA +bCR
—— ADA (Ours) 1k | 100.16 21.29 22.61
50 1 —— bCR 100 5k | 49.68 1096 10.58
—— ADA+bCR 10k | 30.74 8.13 7.53

FFHQ

30k | 1231 546  4.57
70k 528 430 391
140k 371 381 3.62
1k | 186.91 43.25 38.82
5k | 96.44 1695 16.80
10k | 50.66 13.13 12.90
30k | 1590 10.50  9.68
100k 856 926 873
200k 798 922  9.03

501
20 A

10 20-

LSUN CaAT

104

Ik 2k Sk 10k 20k SOk 140k 1k 2k Sk 10k 20k 50k 200k

(a) FFHQ (256 x 256) (b) LSUN CAT (256 x 256) (c) Median FID
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

* ADA significantly improves GAN training especially on limited-sized datasets

D Method Scratch Transfer | + Freeze-D Method Unconditional Conditional
ataset etho FID le1%3 191133 ]E([BB FID | ISt FID | ISt
METFACEs  Baseline | 5726 3566 3.16 2.05 ProGAN 15.52 8.56+006 | — -
ADA 1822 241 0.81 1.33 AutoGAN 12.42 8.55+010 | - -
Baseline | 97.72 89.76 18.07 6.94 BigGAN - - 14.73 9.22
BRECAHAD -
ADA. 1571 288 3.36 1.91 + Tuning _ _ 8.47 9.07+0.13
AFHQ CAT Baseline 51_% 1.54 1.09 1.00 MultiHinge _ _ 6.40 0.580.09
ADA 355 0.66 0.44 0.35
- FQ-GAN - - 5.59+012 8.48
Baseline | 19.37  9.62 4.63 2.80
AFHQDoG 740 116 1.40 112 Baseline 8.32+009 9.21+009 | 6.96+041 9.53+0.06
Baseline 348 077 0.31 0.12 + ADA (Ours) 5.33:035 10.02:0.07 | 3.49:0.17 10.24:0.07
AFHQ WILD ADA 3.05 045 0.15 0.14 + Tuning (Ours) 2.92:005 9.83:004 | 2.42:0.04 10.14:0.09
(a) Small datasets (b) CIFAR-10
METFACES (new dataset) BRECAHAD AFHQ CAT, DoG, WILD (5122) CIFAR-10
1336 img, 10242, transfer learning from FFHQ 1944 img, 5122 4739 img 50k, 10 cls, 322
%, v __J

Algorithmic Intelligence Lab
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Projected GANs Converge Faster [Sauer et al., 2021]

Can we use pre-trained features for efficient GAN training?
Projected GAN: Uses pre-trained features that dramatically boost GAN training
e Even 17x faster than ADA (up to 40x), and can reaches 0.6x lower FID

gl —— StyleGAN2-ADA
StyleGAN2-ADA (converged)
200 e2 Projected GAN
— 100 Projected GAN (converged)
i
@
a0 00
o)
o 2%,
o D\Z .3
10 Y 17x faster\ -
" ‘\_3 0.6x FID |
3 4
1.5 5 10 15 20 25
Training Time [hours]
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Projected GANs Converge Faster [Sauer et al., 2021]

Main idea: Adapt multi-scale “feature projectors” {P;}into GAN training

* Here, projectors { P} are based on pre-trained networks (will be described later)

minmax (Ex[log D(x)] + Ex[log(1 ~ D(G(2))]

Re-design classical GAN training

v

minmax > (Ex(log Di(Pi(x)] + Ex[log(1 — Di(Pi(G(2))))))
lel “projectors”

“multi-scale”
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Projected GANs Converge Faster [Sauer et al., 2021]

How to use pretrained-networks as feature projectors {F;}?

* Observed using intermediate features L; directly is not beneficial

* They might be too easy to discriminate = added some “random projections”

Ly

L
A,

Feature Network

[

A

Algorithmic Intelligence Lab

Real/Generated Image

\

v

Random 1x1 convolution layers
(channel mixing)

Random 3x3 convolution layers
(yielding U-Net like architecture)

51



Projected GANs Converge Faster [Sauer et al., 2021]

Which pre-trained feature network is beneficial?

* Tried various popular pretrained image models (EfficientNet, ResNet, ViT)

* Mostly relied on pretrained networks for image classification (or CLIP)

* Turns out “compact” EfficientNets outperform others

EfficientNet ResNet Transformer

liteO  litel  lite2  lite3  lite4 R18 R50 RS5O-CLIP DeiT ViT
Params M) | 296 372 436 642 11.15 11.18 23.51 23.53 92.36 317.52
IN top-1 1 7548 76.64 7747 79.82 8154 69.75 79.04 N/A 8542 85.16
FID | 253 1.65 1.69 179 235 416 4.40 3.80 246  12.38

Algorithmic Intelligence Lab
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Projected GANs Converge Faster [Sauer et al., 2021]

Projected GANs show better/faster convergence, both on large-/small- datasets

 The method is even scalable to high-resolution datasets (megapixels)

Real _
Projected-GAN

Real

Projected-GAN
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Projected GANs Converge Faster [Sauer et al., 2021]

Projected GANs show better/faster convergence, both on large-/small- datasets

 The method is even scalable to high-resolution datasets (megapixels)

FID Imgs FID Imgs FID Imgs FID Imgs FID Imgs
Large Datasets (2562)
CLEVR FFHQ Cityscapes Bedroom Church
SAGAN [26] 26.04 10M 1621 10M 1281 10M 1406 10M 6.15 10M
STYLEGAN2-ADA [32] 10.17 10M 7.32 10M 835 10M 1153 10M 585 10M
GANSFORMERS [26] 924 10M 742 10M 523 10M 6.15 10M 547 10M
FASTGAN [49] 324 10M 1269 10M 878 18M 824 48M 843 89M
PROJECTED GAN 089 45M 339 7.1M 341 17M 152 52M 159 92M
PROJECTED GAN* 339 05M 356 7.0M 460 11M 258 15M 318 11M
STYLEGAN2* [32,33,85] 5.05 25M 3.62 25M - - 265 70M 339 88M
Small Datasets (2562)
Art Painting Landscape  AnimalFace Flowers Pokemon
STYLEGAN2-ADA [32] 43.07 32M 1599 63M 6090 22M 21.66 3.8M 4038 34M
FASTGAN [49] 4402 0.7M 1644 1.8M 62.11 02M 2623 0.8M 81.86 2.5M
PROJECTED GAN 2796 0.8M 692 35M 1788 10M 1386 1.8M 2636 0.8M
PROJECTED GAN* 40.22 0.2M 1499 0.6M 58.07 0.02M 2160 02M 36.57 03M
10242 5122

Art Painting Pokemon AFHQ-Cat AFHQ-Dog AFHQ-Wild

STYLEGAN2-ADA [32] 41.69 1.0M 56.76 0.6M 355 10M 740 10M 305 10M
FASTGAN [49] 46.71 0.8M 5646 0.8M 469 1.1M 1309 1.6M 3.14 16M
PROJECTED GAN 3207 09M 3396 1.3M 216 37M 452 38M 217 54M
PROJECTED GAN* 40.33 0.2M 53.74 02M 353 1.0M 7.10 09M 3.03 1.6M

Algorithmic Intelligence Lab
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Generative Adversarial Networks (GAN)

Early GANs suffer from several limitations:

Limitation 2. Limited scalability with respect to dataset complexity
* Due to "mode collapse” problem, had been difficult to trained on complex data
* Will introduce recent works to scale-up GANs (even zero-shot text-to-image scale)

Algorithmic Intelligence Lab
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

BigGAN is a holistic approach of recent techniques for training GANs

Current cGAN techniques can be successfully scaled up to generate
high-resolution, diverse samples from complex datasets such as ImageNet

Algorithmic Intelligence Lab * source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 56



BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

A holistic approach of previous GAN techniques
1. Based on prior popular GANs:
SAGAN [Zhang et al., 2019] + Spectral normalization [Miyato et al., 2018]
2. Class-conditional modeling
* G: Class-conditional BatchNorm [Dumoulin et al., 2017]
* D: Projection discriminator [Miyato et al., 2018]

Several further techniques needed to stabilize the large-scale training
1. Shared embedding of y across multiple layers
2. Skip connection (residual) of the latent variable

3. Orthogonal regularization A/weight matrix
Rg(W) =B|W'W e (1-1)|&
',/ """""""""""""""""""""""""" ; """""""" ~ \|
| Shared embed !
| oyt |
BigGAN = | SAGAN +SN (o conditional BN 4 o - gt onnection | |
! Projection D I
! Orthogonal reg. !
| |
| |
l\ Baseline Conditioning Stabilizing ,}
"""""""""""""""""""""""""""""" Scale up

Algorithmic Intelligence Lab * source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 57



BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

Shared embedding of class information
* Instead of having a separate layer at the end for embedding [Miyato et al., 2018]
* Linearly projected to each layer’s gains and biases [Perez et al., 2018]

Skip connections (skip-z) from z across multiple layers of G
e Allows 2 to directly influence the features at different resolutions

4 Class

=

[ Linear ]
— 4x4x16¢ch

skip connection

shared embedding

[ Nondocal |

T ] -

Image

The BigGAN architecture

Algorithmic Intelligence Lab
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. | Itr x10° FID IS

256 | 64 815 SA-GAN Baseline 1000 18.65 52.52

512 | 64 815 X X X 1000 15.30 58.77(£1.18)

1024 | 64 815 X X X 1000 14.88 63.03(£1.42)

2048 | 64 815 X X X 732 12.39 76.85(£3.83) | >caleup
2048 | 96 173.5 X X X | 295(£18) | 9.54(£0.62) | 92.98(£4.27)

2048 | 96 160.6 7 X X | 185(£11) | 9.18(%0.13) | 94.94(+1.32)

2048 | 96 158.3 v 7 X 152(£7) | 8.73(£0.45) | 98.76(%2.84) | Stabilize
2048 | 96 1583 7 7 7/ | 165(£13) | 8.51(£0.32) | 99.31(£2.10)

2048 | 64 713 / v v 371(£7) | 10.48(£0.10) | 86.90(+0.61)

Increasing the batch size by 8x improves the state-of-the-art IS by 46%
Increasing the width (# channels) by 1.5x leads to a further improvement

Truncation trick: could further fine-control FID vs. IS
* Trade-off between variety vs. fidelity
* Simply truncate the variance of the latent variable

2 e

Variety

— -

Algorithmic Intelligence Lab * source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 59



StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2021]

Motivation: Can we enjoy BigGAN-like scalability with StyleGAN-like architectures?
* BigGAN shows good scalability, but they lack of latent controllability
* StyleGANs show good controlability, but have poor scalability to large datasets

StyleGAN-XL: Careful architecture modification of StyleGAN can acheive the goal
e Build upon the most recent StyleGAN3

Fig. 1. Class-conditional samples generated by StyleGAN3 (left) and StyleGAN-XL (right) trained on ImageNet at resolution 2562.
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Update 1: Use projected GAN + smaller dimension for z

* Projected GAN: Exploit pre-trained

feature from large image datasets Configuration FID| IST

. : 512 : A StyleGAN3 53.57 15.30

) Sma". Z: anvent.lonal z€ER IS B + ;rojected GAN & small z 2298 57.62
too high-dimensional and redundant ¢ pretrained embeddings 2091  35.79

* Reduce the dimension to 64, while D + Progressive growing 19.51 3574
maintaining the style E +VIiT&CNNasF, 12.43  56.72

code dimension w € R>12 F + CLF guidance (StyleGAN-XL) 12.24 86.21

ec— F ot TS ] Lo > Lgit 1> ToRGB — =] [2
z € N(0,1)> Gn, G 16x16 | CNN Do-Ds
' Fcf)égti?r N ?(;m{ > Lo-Ls > Lo-L13 L{}" s ToRGB ->Up<224{ c
801:1‘?}:‘:(1 | Gs,32 x 32 Ul viT Dy-Ds
[l Learned : G 5
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Update 2: Use pretrained class embedding instead of fully learnable embedding

* Prior work: Use 512-dimensional
embedding (learnable) from
the one-hot class label

* StyleGAN-XL: Learn a mapping from
pretrained class embedding (feature
mean of each ImageNet class) to

the 64-dimensional embedding

celC EMB

ze N(0,1)» G,,

Colors

[] Fixed
[] Learned

Configuration FID| IST7T
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 20.91 35.79
D + Progressive growing 19.51 35.74
E +ViT &CNNasF; 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
- CLF
et {150 [ Lol > L§'{s >{ToRGB ==
G 16x16 mw Do-Ds
Fourier\,|Convl,] 7, 1.¢ La| Lg-L13|»|L57% 5| > ToORGB UPQQ% c
feat. 1x1 0-L8 9-L13 14,15 o
G 32x32 ViT Dy-D-
ol |©
G D

Algorithmic Intelligence Lab
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Update 3: Reintroducing progressive growing

* Progressive growing: Discard in early

StyleGANs as it is known to cause Configuration FID| IST
“texture striking” problem A StyleGAN3 5357  15.30
.. ) B + Projected GAN & small z 2298 57.62

* StyleGAN3 shows aliasing-preventing o Pre?crained embeddings 2091  35.79
layer can prevent it; StyleGAN-XL D + Progressive growing 1951 3574
reconsiders progressive growing E +ViT&CNNasFy; 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21

162 322 642 1282 2562 5122 10242
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Update 4: Use multiple pretrained networks for projected GAN
* Projected GAN: Investigates which

pretrained backbone is the most Configuration FID| IST
beneficial, but not in their synergy A StyleGAN3 53.57  15.30

* In addition to EfficientNet (most B+ Projected GAN & small 2298 51,02
C + Pretrained embeddings 2091 35.79

beneficial), adopting ViT provides D + Progressive growing 1951  35.74
dramatic performance improvement E +ViT &CNNasF;, 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21

ec— F ot TS P BoLs o Lgit 1> ToRGB — =[S
z € N(0,1)p G, G 16x16 NN Do-Ds
| ol oon] Lo oL o fron] 12| efEm—]
801:1‘?}:‘:(1 | G 32x32 Ul Vi Dy-Ds
[l Learned : G 5
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Update 5: Classifier guidance during the training

e To further benefit from class label,

(NOT the guidance on sampling)

e Regularize the generator with
cross-entropy loss on generated

image and corresponding lables

ceC

z € N(0,1)»

G m

Colors
[] Fixed

Y

use classifier guidance during training Configuration FID| 1IS7
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +ViT &CNNasFy, 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
. CLF
et {150 [ Lol > L§'{s >{ToRGB ==
G 16x16 G Do-Ds
. ‘ Up<224{
Fourierl | COMY | 1o L Lo Lo~ Lys LY s~ TORGB c
G 32x32 ViT Dy-D-
ol |©
G D

[] Learned
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Experiment: Outperforms prior arts on class-conditional ImageNet generation

* Remarkably, it first succeeds ImageNet generation on 10242 resolution

Model FID| sFID| rFID | IS7 PrT Rec? Model FID| sFID| rFID| IS7 PrT Rec?

Resolution 1282 Resolution 2562

BigGAN-deep ( = 1.0) [5]  6.02  7.18 6.09 14583 082  0.36 StyleGAN2 [18] 49.20

BigGAN-deep (Iﬁ =0.1) [5] 29.46 54.50 12.07 261.46 0.86 0.00 BigGAN—deep (¢ =1.0) [5] 6.95 7.36 75.24 202.65 0.86 0.24

CDM [22] 3.52 128.80 BigGAN-deep (¢ =0.1) [5] 27.00 69.88 19.66 313.67 0.88 0.00

ADM [13] 5.91 5.09 13.29 93.31 0.71 0.57 CDM [22] 4.88 158.70

ADM-G [13] 2.97 5.09 3.80 141.37 0.75 0.56 ADM [13] 10.94 6.02 125.78 100.98 0.72 0.50

StyleGAN-XL (lﬁ = 1.0) 2.54 4.02 1.31 180.58 0.75 0.46 ADM-G-U [13] 3.94 6.14 11.86 215.84 0.81 0.47

StyleGAN-XL (¢ = 0.1) 28.29 47.44 64.85 369.98 0.86 0.00 StyleGAN-XL (¥ = 1.0) 3.26 4.22 4.28 225.27 0.74 0.45
StyleGAN-XL (¥ = 0.1) 25.84 47.58 63.88 413.94 0.78 0.00

Resolution 5122 Resolution 10242

BigGAN-deep (l// =1.0) [5] 8.43 8.13 312.00 177.90 0.85 0.25 StyleGAN-XL (l/l =1.0) 3.71 4.54 518.61 195.66 0.74 0.38

BigGAN-deep (l// = 0.1) [5] 27.30 70.30 169.15 291.80 0.87 0.00 StyleGAN-XL (!// = 0.1) 26.45 49.17 1522.00 367.97 0.80 0.00

ADM [13] 23.24 10.19 561.32 58.06 0.70 0.39

ADM-G-U [13] 3.85 5.86 210.83 221.72 0.81 0.45

StyleGAN-XL (lﬁ =1.0) 3.58 4.35 48.03 219.77 0.73 0.43

StyleGAN-XL (l// =0.1) 251231 47.73 263.50 409.12 0.75 0.00
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Experiment: Also enjoys controllability of StyleGAN (interpolation/manipulation)

Fig. 5. Interpolations. StyleGAN-XL generates smooth interpolations between samples of different classes (Row 1 & Row 2). PTI [49] allows inverting to the
latent space with low distortion (outermost image, Row 3 & Row 4), and consistently embeds out-of-domain inputs, such as the one on the bottom right.
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

Experiment: Also enjoys controllability of StyleGAN (interpolation/manipulation)

Source Inversion Edit Sample A Sample B Mixture
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

Question: Can we scale-up GANs even for zero-shot text-to-image syntehsis?
* There are two concurrent works that achieved remarkable progress
* In contrast to diffusion models, synthesis speed is really fast (<1 second)

StyleGAN-T: First achieves text-to-image generation using GANs

GigaGAN: Also achieves text-to-image generation, even on megapixel resolution

A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting.

“a landscape in winter” —  “alandscape in fall” Intricate details.

Algorithmic Intelligence Lab

69



Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

StyleGAN-T: Re-design StyleGAN-XL to achieve better scalability
Generator: Return-back to StyleGAN2 generator (instead of StyleGAN3)

o AS equ|va r|a nce may be too ha rd Residual block Generztor block Generator Z ;I'aes)t(ltepfr:mf;
COﬂdItIOn tO aChleve fOF T2| Y Upsa*mple FuIIy-co:nected e
1., l% ModConv FuIIy-coi\nected text encoder
Some other details: Sromonm — — Coxt ]
: J Y —w
* Uses recent residual blocks for ModCony iadldz courier features ap
increasing the model capacity e Residual W gxs}.ock guidance
(normalize — block — scale) Re"’F' > 16x16 block [
ToRGB — N> 32x32block
. . . o cLIp
* Text condition c is often ignored > 6ax64 block e i
. . Modulated convolution (ModConv) M
— bypass it to mapping network > 128128 block Upsample
and concatenate directlytow ~ —— > 256x256 block t
y Weights \> 512x512 block Random
-~ Conv3x3 64 %64 crop
Der;oda%) ) j
Bias & noise )
¢ Trainable
S Leaky ReLU Pretrained

Fixed-function

- NG J/\ J
' Y

(b) Generator details (a) Generator architecture (d) Text encoding

Generated image
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

StyleGAN-T: Re-design StyleGAN-XL to achieve better scalability
Discriminator: Redesign based on the principle of StyleGAN-XL

* Pretrained feature network: Switch to ViT trained with DINO
* Lightweight, encodes semantic information at high-resolution
* Leads to ~2.5x faster training compared with StyleGAN-XL

DINO encoder

— > Augment & crop
Discriminator l
Tokenize
—— D ¢ d
R Transformerx3
> D, < 1
R Transformerx3
N> D, < <
R Transformerx3
> D, < 1
R Transformerx3
> D, < <
N\
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

Experiment: Shows reasonable synthesis results with remarkably fast inference

Model Model type Zero-shot FID3p,  Speed [s] SLAFITE o Diffusion
25 .

Stable Diffusion *  Diffusion 8.40 - ® Autoregressive
eDiff- Diffusion 7.60 26.0 & ° GAN
LDM * Diffusion 7.59 - a %
GLIDE Diffusion 7.40 10.9 8

2 15
LAFITE * GAN 14.80 ~0.01 o oStyleGAN-T - 1 GLIDE
StyleGAN-T GAN 7.30 0.06 N 0 Make-5-Scene

* downsampled to 64 X 64 pixels using Lanczos — not available Stable Diffusion ® Part.i—SB oImagen
eDift-Ie
Table 2. Comparison of FID on MS COCO 64 x 64. Inference 5
0 1 3 5 10 15 20 25 30 35

speeds are measured on an A100. For LAFITE we estimate what
its speed would be at a native 64 X 64 resolution.

Time to generate one image [s]

Model Model type Zero-shot FID3o,  Speed [s]
LDM Diffusion 12.63 3.7
GLIDE Diffusion 12.24 15.0
DALL-E2 Diffusion 10.39 -
Stable Diffusion *  Diffusion 8.59 3.7
Imagen Diffusion 7.27 9.1
eDiff-1 Diffusion 6.95 32.0
DALL-E Autoregressive 27.50 -
Ernie-VILG Autoregressive 14.70 -
Make-A-Scene *  Autoregressive 11.84 25.0
Parti-3B Autoregressive 8.10 6.4
Parti-20B Autoregressive 7.23 -
LAFITE GAN 26.94 0.02
StyleGAN-T * GAN 13.90 0.10

* downsampled to 256 X 256 pixels using Lanczos — not available
Table 3. Comparison of FID on MS COCO 256 X ifer-

' “a landscape;ﬂirn winter” —  “alandscape in fall”
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Generator: Also starts from StyleGAN2 generator architecture
* Proposes several components to increase the model capacity in stable manner

Pretrained Learned
text encoder text encoder [ Convolutional
m ) tiocal [ Self-attention
"an o0il Cross-attention
painting of a CLIPQ —|| T S : d 1 / 7 l
corgi” W Affine
_ e
g ® — e ] e ]

Textc

[Dnhm |
! I

Constant

[~ —o-¢f
L [—| |_| T -f Filter Bank Selected Filter ngg:::d
M| |—=/ \ )\
z~N(0,1) — HIN 9 Filter Selection Modulation
Lefentieade Sample-adaptive kernel selection

\ J
Our high-capacity text-to-image generator
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 1. Interleaving attention with convolution for long range relationship
* To stabilize the training, forced Lipschitz continuity for the attention layers
* Used techniques in ViT-GAN that adopts attentions in GANs [Lee et al., 2022]

Pretrained Learned

text encoder text encoder [ Convolutional
m @ tlocal [ seit-attention
"an o0il [l Cross-attention
painting of a C|_|Pa —|| T S (] 1 / 3 l
S w .
U o) ] —— " Softmax Affine
Text ¢ == . 1
Constant é |_DD|:|J:L l
i e - B
[ — Lk Modulated
L [—I |_| T -f b : m Filter Bank Selected Filter xeit;ts
M -/ ) é \ ) \
z~N(0,1) —| [T T[] i ' Filter Selection Modulation

Latent code 2 y Sample-adaptive kernel selection

Our high-capacity text-to-image generator
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 2. Improved text conditioning: use both of local/global text information
* Local information — feed into intermediate attention layer of the generator
* Global information — feed into mapping network to get the style code w

Pretrained Learned
text encoder text encoder [ Convolutional
m @ tlocal [ seit-attention
"an o0il [l Cross-attention
painting of a C|_|Pa —|| T S (] 1 / 3 l
S w .
g o - N o e ]
Text ¢ == . 1
Constant é |_DD|:|J:L l
i e - B
f Lk Modulated
L [—I |_| T -f b : m Filter Bank Selected Filter xeit;ts
M -/ ) é \ ) \
z~N(0,1) —| [T T[] i ' Filter Selection Modulation

Latent code 2 y Sample-adaptive kernel selection

Our high-capacity text-to-image generator
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 3. Sample adaptive kernel selection to increase the capacity of conv. layer
e Consider a “bank” of N convolution filters

» Style vector predict a set of weights to average across the filters

Pretrained Learned
text encoder text encoder [ Convolutional
m ) tiocal [ Self-attention
"an o0il Cross-attention
painting of a CLIP, —|{|T — @ o I I / v l
o o u [ e ]
— n
U .j i Softmax hd
Textc . i 1

Constant

me 4
e — P~

— [—|M|_| / T -f X Filter Bank Selec}ted\FiIter Mx:iugle;::d
—
z~N(©0,1) —| |TT[] W Filter Selection Modulation
Latenticode i ) Sample-adaptive kernel selection
Our high-capacity text-to-image generator N .
K= E K, - softmax (Wﬁlterw + bﬁ]ter)i
i=1
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 4. Trains additional text-guided GAN-based upsampler
e Based on U-Net architectures

* Compared with diffusion model, can be efficient as it only requires a single step

Pretrained Learned
text encoder text encoder [ Convolutional
m ) tiocal [ Self-attention
"an o0il Cross-attention
painting of a CLIP, —|{|T — @ o I / v l
o o u [ e ]
— n
U .j i Softmax hd
Textc - i 1

Constant

e 4
P8~

E)
L[ ][I T -f Filter Bank Selected Filter Mx:iuglﬁ::d
M| |—=/ \ )\
z~N(0,1) —| [T T[] i Filter Selection Modulation

Latent code : y Sample-adaptive kernel selection

Our high-capacity text-to-image generator
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Discriminator. Proposes architecture/objectives specialized for text-condition

Multi-scale output
r \

Text conditioning tp @
Silee Al Ao Al

_ v,

- v/\ -~ e 1
15« HEEREEN o |- _*|:|_
- ' £

u ] Convolutional

[ Self-attention

w=Sr oot L]
Xi

Sweep through multi-scale input

\4
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 1. Design discriminator from a pretrained network weights (CLIP)
* A few learnable attention layers (yellow) are added

Multi-scale output
r \

Text conditioning tp @
Silee Al Ao Al

_ v,

r"'\/\ -
Se ||| e |-

1 convolutional

I:l Self-attention

w=Sr oot ]
Xi

Sweep through multi-scale input
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 2. Multi-scale input, multi-scale output adversarial loss
* If not, early, low-resolution layers of the generator easily become inactive

Multi-scale output
r \

Text conditioning tp @
Silee Al Ao Al

_ v,

- v/\ -~ e 1
15« HEEREEN o |- _*|:|_
- ' £

u ] Convolutional

[ Self-attention

w=Sr oot L]
Xi

Sweep through multi-scale input

\4
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

GigaGAN: Shows more scalable text-to-image synthesis results

Update 3. Matching loss to enforce discriminators to incorporate conditioning
* Provide the sample and the random text condition as a fake pair as well

Viatch = IE‘:x,c,é [log(l + eXp(D(X, é)))
+log(1 + exp(D(G(c), é))]

Update 4. CLIP contrastive loss to enforce the generator

exp(Eimg (G(C0)) " Euxi(co)) )}
2 o XP(Eimg (G(C0)) ' Etxe(Cn)

Lerr = Eyge,y [ — log
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Scaling GANs tor zero-shot Text-to-Image Synthesis [Sauer et al., 2023; Kang et al., 2023]

Experiment: Shows scalable text-to-image synthesis results (up to megapixels)

Model Type #Param. #Images FID-30k] Inf. time
DALL-E [75] Diff 12.0B 1.54B 27.50 -
GLIDE [63] Diff 5.0B 5.94B 12.24 15.0s
LDM [79] Diff 1.5B 0.27B 12.63 9.4s
DALL-E 2 [74] Diff 5.5B 5.63B 10.39 -
° Imagen [80] Diff 3.0B 15.36B 7.27 9.1s
N eDiff-I [5] Diff 9.1B 11.47B 6.95 32.0s
Parti-750M [101] AR 750M 3.69B 10.71 -
Parti-3B [101] AR 3.0B 3.69B 8.10 6.4s
Parti-20B [101] AR 20.0B 3.69B 7.23 -
LAFITE [108] GAN 75M - 26.94 0.02s
SD-v1.5* [78] Diff 0.9B 3.16B 9.62 2.9s
= Muse-3B [10] AR  3.0B 0.51B 7.88 1.3s
GigaGAN GAN 1.0B 0.98B 9.09 0.13s

GigaGAN Upsampler (4096px, 16Mpix, 3.665)

Isometric underwater Atlantis city A hot air balloon in shape of a low poly bunny with cute eyes A cube made of denim on a wooden
with a Greek temple in a bubble. heart. Grand Canyon table
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2. Generative Diffusion Processes
* Formulations: Score-based models and diffusion models
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Overview: Score-based models and diffusion models

“Diffusion models” and “score-based models” are now used interchangeably
* But they share lots of similarities and differences simultaneously

* In this lecture, we first clarify how they are similar and different

Score-matching NCSN i DDPM
[Hyvarinen, 2005] [Song et al., 2019] [Ho et al., 2020]

v

Score-based models

SDE-formulation
[Song et al., 2021]

DPMs
[Sohi-Dickstein et al., 2015] s
Diffusion models _ EDM

[Karras et al., 2022]

Unifying views
(Some people call these
“generative diffusion process”)



Overview: Score-based models and diffusion models

Score-matching NCSN
[Hyvarinen, 2005] [Song et al., 2019]

Score-based models
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Score Matching [Hyvarinen, 2005]

Score matching [Hyvarinen, 2005]

Score matching: Match the scores of data and model distribution sy(x) ~ V4 log p(x)
* However, we don’t know the scores of data distribution
* Instead, one can use the equivalent form (proof by integration of parts)

1 1
§EXNp(X)[||SQ(X) — Sdata(X)||3] = Ex~pix) [tT(VxSg(x)) + §HSQ(X)H% + const.

Sampling: Done with iterative procedure 2

« Starting from arbitrary prior distribution x¢ ~ 7(x) § T T

* Itis known as “Langevin dynamics” i :{1 ij 72% AL RS

SR SR AV

Xit1 4 X; + €Vxlogp(x) + V2ez;, i=0,1,--,K  Pieissd 000
Step size Gaussian noise VT s e :' ::: ; :} :;:

....... “o O\ JTT \e \ 1‘. ]

e e e e e o o o o o wlalwlfel bl riko

;
/
f
;
/
[

Image from https://yang-song.net/blog/2021/score/
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Score Matching [Hyvarinen, 2005]

Score matching [Hyvarinen, 2005]

Score matching: Match the scores of data and model distribution sy(x) ~ V4 log p(x)
* However, we don’t know the scores of data distribution
* Instead, one can use the equivalent form (proof by integration of parts)

i & e S N N N N N N U N L L A
e o', R NATATATATA SR A A A A A A 4 v s s
R VN T
ﬁ‘v!?::::‘: \“ A R B F F - e a s s W
.‘:.J.’:‘-.'$ i%tt;*—'—?’vvrvv-v--vv
\\"*‘>”'fvvtttn‘~v
%Mﬂ Wi rrre
\‘*"""(/lllllkl\&
— v T TI000IIL
Score \\1""”,":;:::::: L .
| = trnrreeses Plhpayy LANgevIn
et matching - ..eeeee b N 2 {1 dynamics
» : . -—-~~~--<<<¢<—<—<—<—\\§§
2 p IIIIIIIIIEIEAN
i 44411;»‘\\\\\\\\\\\\
Data samples Scores New samples

{X17X27 o 7XN} 1'1\(} p(X) S@(X) ~ VX l()gp(x)

Image from https://yang-song.net/blog/2021/score/
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Score Matching [Hyvarinen, 2005]

Score matching [Hyvarinen, 2005]

Score matching: Match the scores of data and model distribution sy(x) ~ V4 log p(x)
* However, we don’t know the scores of data distribution
* Instead, one can use the equivalent form (proof by integration of parts)

1 1
§Ex~p(x)[”59(x) — Sdata(X)|3] = Expix) [t1(Vxse(x)) + 3 Isg(x)]|5| + const.

Weighted sum: Leads inaccurate results in low-density region

Data scores Estimated scores

Data density

Image from https://yang-song.net/blog/2021/score/
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Score Matching [Hyvarinen, 2005]

How to mitigate this problem?
* Perturb data points with noise and train score-based models on the noisy data
* With large noise scale, can improve score estimation on low data density

Estimated scores

Perturbed density Perturbed scores

P e e e N TR U TS N I R T I AT TS A \\\\\\\\\\\ NN NN Y Y s ’
\\\\\\\\\\\ \\\\\\\\\ \\\\\\\\\\\‘\\‘ Y
i e b o AN
N S e - o AN RS .
\\\\\"‘—“"""’ - ¥ - - - \\\\\\-0-"—"” - - -
\\\:\.‘_."I”lilll\\\ \\\\: zzzzz AN A AR RN Y SR S TR
\\:\\ ‘‘‘‘‘ P AT A AT R R T T T ¥ \\\\\:\ \\\\\ P A A I R R T T Y
\\ - R A AP AP AN AL T B N B T U Y \\ R A AN AN S L I T S ¥
WU ACcurate W ACCUrate
:\\~~.... A, CAy Y \:\\ ..... VA
NN RPEIY VA B I B S W N R EEEREER
PO SEREERR R A R SEERRRER
........... !::“\\\\ \\“',,,..-l\:\“\\\
........... \ A R I v WA N B

. N T W U WA U - N NN U R W
- “\\\\\\\\\\ ,‘,\\\\\\\\\\
- ‘\\\\\\\\\\\\ \‘\\\\\\\\\\\
- \\\\\\\\\\\\\ \\\\\\\\\\\\\\
Py 5 \\\‘\\\\\\\\ ,,,,,,, \\‘\\\\\\\\\\

Tradeoff caused by different noise scale:
* Large noise: Cover more low-density region but over-corrupts data from original one
* Small noise: Does not cover low-density region but preserves the original data

Image from https://yang-song.net/blog/2021/score/
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Noise-conditional Score Network (NCSN) [Song et al., 2019]

NCSN: Use multiple noise scales simultaneously to achieve the best of both words
1. Consider noise-perturbed distribution for decreasing stdev.{ai}f*:l.

ps,(x) = [ p(y)N(x;y,0{1)dy

Sampled easily: X + 02, withz ~ N(0, 1)

2. Train the score model S¢(xX,%) ~ V4 logp,, (x)

Sampling: Done with “annealed” Langevin dynamics

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}L | ¢, T.
1: Initialize X
2: fori < 1to L do
3 a; < €-02/02 > o is the step size.
4: fort < 1toT do
5 Draw z; ~ N(0,1)
6 Xt X1+ %Se(it—l,%) + /o z
p/ end for
8 Xg ¢ X7
9: end for

return xr
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Overview: Score-based models and diffusion models

DDPM
[Ho et al., 2020]

[Nichol and Dhariwal, 2021]

v

DPMs

[Sohi-Dickstein et al., 2015]

Diffusion models
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

 Diffusion (forward) process: Markov chain that gradually add noise (of same
dimension of data) to data until original the signal is destroyed

Q(Xt|Xt—1) = N(Xt§ V1= Bixi—1, 5151)

e Sampling (backward) process: Markov chain with learned Gaussian denoising
transition, starting from standard Gaussian noise p(x7) = N (x71;0,I)

Po(xi—1|x¢) 1= N (Xp—1; po (X, 1), Bg (x4, t))

Pe(xt 1|Xt)
) - — () —— ) — o — (x0)
Q(Xt_|>—<t 1 m
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Diffusion Probabilistic Models (DDPM) [Sohl-Dickstein et al., 2015]

Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
* Here, the forward distribution q(x;_1|x;, xo) can be expressed as a closed form

* Variational Lower Bound (VLB) objective is given by the sum of local KL divergences
(between Gaussians) — main difference with score-based models

E [—logpg(x0)] < E, l—log po (Xo.7) ] —F [ log p(x7) Zlo Po (X¢— 1|Xt)]
Q(xl:T|XO) i1 Xt|xt 1)

= Eq| Dxr(q(xr[x0) | p(xr)) + D Dicr.(q(%e-1(xs,%0) || po(xe—1/x1)) - 10gpe(Xo|X1Z]

Lt t>1 Li_1 Lo
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Diffusion Probabilistic Models (DDPM) [Sohl-Dickstein et al., 2015]

Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
* Here, the forward distribution q(x;_1|x;, xo) can be expressed as a closed form

* Variational Lower Bound (VLB) objective is given by the sum of local KL divergences
(between Gaussians) — main difference with score-based models

el o S -

= Eq| Dxr(g(x7|%0) || p(x1)) + > Drer.(q(xe—1[%s%0) || po(xs-1]x4)) — 10gpe(Xo|X1Z]
. t>1 g ~

Lt Li_1 Lo

Closed form

Q(Xt—1|Xt,X0) = N(xt—l;ﬁt(XhXO),BtI)a

/Oy Vo (l — o ~ 1 — oy
o St o0y g f= 0L,
— O

- Xt
1—at

where 1, (x¢,Xg) =

_ ¢
ar:=1—pFrand o = []._; s
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM [Ho et al., 2020] proposes a simple objective & model of DPMs:
(1) Use fixed constants for 3; instead of letting them as learnable parameters
(2) For X4, DDPM fix the variance Zg(x;, t) = o1, where o = 8, or f;
(3) For 1y, DDPM uses the following parameterization to let model predict the noise €:

o) = = (0~ 2—eatot)

+ ZPKL(Q(Xt—l |%¢, Xo) || Po(X¢—1 |Xt)Zj log py (X0|X12
t>1 L:1 ZE

lgnored due to (1)
(no learnable parameters)
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM [Ho et al., 2020] proposes a simple objective & model of DPMs:
(1) Use fixed constants for 3; instead of letting them as learnable parameters
(2) For X4, DDPM fix the variance Zg(x;, t) = o1, where o = 8, or f;
(3) For 1y, DDPM uses the following parameterization to let model predict the noise €:

o) = = (0~ 2—eatot)

|

+ 3 Dic(alxecs i, %0) | o)~ og o) |

1 WV NV
t> Li_y Lo

Can be reduced to
“simple” denoising objective

2
B g lle = oo + VI =ae, )|

20't205t(]. — 5&75)
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM [Ho et al., 2020] proposes a simple objective & model of DPMs:
(1) Use fixed constants for 3; instead of letting them as learnable parameters
(2) For X4, DDPM fix the variance Zg(x;, t) = o1, where o = 8, or f;
(3) For 1y, DDPM uses the following parameterization to let model predict the noise €:

o) = = (0~ 2—eatot)

|

+ ZPKL(Q(Xt—l |%¢,Xo0) || Po(%¢—1 |Xt)Zj log py (X0|X12]
t>1 I o

2
]Exo,el /Bt ||€—€9(\/54_tX0—|—\/1—O_été,t)H2]

20't20£t(]. — 5{75)

Unweighted version (simple)
also works well
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM [Ho et al., 2020] proposes a simple objective & model of DPMs:
(1) Use fixed constants for 3; instead of letting them as learnable parameters
(2) For X4, DDPM fix the variance Zg(x;, t) = o1, where o = 8, or f;
(3) For 1y, DDPM uses the following parameterization to let model predict the noise €:

o) = = (0~ 2—eatot)

|

+ ZPKL(Q(Xt—l |%¢,Xo0) || Po(%¢—1 |Xt)Zj log py (X0|X12]
t>1 I o

Loimple (60) = B o e | [l€ = €0(v/@xo + T = ave,1)|”]

Final “simple” training objective
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM [Ho et al., 2020] provides connection between DPMs and score-matching:

* It resembles denoising score-matching over multiple noise scales

Lsimple(0) = E¢ x, . [He — eg(Varxg + V1 — aye, t) HQ]

e Sampling also resembles Langevin dynamics with €g (as the learned gradient)

Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~ N(0,I)
2: Xo ~ ¢(Xo) 2: fort=1T,...,1do
i- t~ [j{;l(l(f)o?)n({l’ .o T'}) 3 2~ N(0,I)ift > 1,elsez =0
e ’ >
5: Take gradient descent step on 4 X = \/% Xt — \}ﬁee (Xt,t)) + o2
Vo ||€ — €o(v/arxo + V1 — c‘vte,t)H2 5: end for
6: return xg

6: until converged

Algorithmic Intelligence Lab
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Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020]

DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

L T eSS
e e S

BEEES - ¢ o« O N W

5 O O e e e e e e e e

DDPM also generates high-resolution (256x256) images
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Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]

Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]

* This paper improves upon DDPM by introducing additional techniques:

1. Learned variance instead of fixed variance
Yo(x¢,t) = exp(vlog By + (1 —v)log By)

Learnable parameters

2. Hybrid objective of VLB and Simple objectives

Liyorid = Lsimple + ALy

2g can be learned through this loss

3. Different diffusion (cosine) schedule

* |nstead of linear schedule in DDPM 101

* In particular, used different scheduling of °s1
hyperparameters a;

0.6 1
(5
0.4 1

0.2 1

0.0 A1

0.0 0.2 0.4 0.6 08 1.0
. . . diffusion step (t/T)
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Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]

Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]
* Results: Simple additional techniques in DDPM can improve performance of DDPM

Algorithmic Intelligence Lab

Table 3. Comparison of DDPMs to other likelihood-based mod-
els on CIFAR-10 and Unconditional ImageNet 64 x 64. NLL is
reported in bits/dim. On ImageNet 64 X 64, our model is compet-
itive with the best convolutional models, but is worse than fully

transformer-based architectures.

Model ImageNet CIFAR
Glow (Kingma & Dhariwal, 2018) 3.81 3.35
Flow++ (Ho et al., 2019) 3.69 3.08
PixelCNN (van den Oord et al., 2016¢) 3.3 3.14
SPN (Menick & Kalchbrenner, 2018) D2 -
NVAE (Vahdat & Kautz, 2020) - 2.91
Very Deep VAE (Child, 2020) 3.52 287
PixelSNAIL (Chen et al., 2018) 392 2.85
Image Transformer (Parmar et al., 2018) 3.48 2.90
Sparse Transformer (Child et al., 2019) 3.44 2.80
Routing Transformer (Roy et al., 2020) 343 -
DDPM (Ho et al., 2020) 34T 3.70
DDPM (cont flow) (Song et al., 2020b) - 2.99
Improved DDPM (ours) .53 294
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Overview: Score-based models and diffusion models

SDE-formulation
[Song et al., 2021]

v

EDM
[Karras et al., 2022]

Unifying views
(Some people call “generative diffusion process”)
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Score matching through SDE [Song et al., 2021]

Score matching through SDE [Song et al., 2021]
Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

B !

sc function
dx = [£(x,1) — g (£)Vx log pi (x)] dt + g(t)dw

Reverse SDE (noise — data)

Like DDPM, we consider forward diffusion but now “continuous” version (SDE):

dx = f(x,t)dt + g(t)dw
Then, the reverse diffusion process also follows some SDE:

dx = [f(x,1) — g(t)*Vx log p¢(x)]dt + g(t)dw,
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Score matching through SDE [Song et al., 2021]

Then, the reverse diffusion process also follows some SDE:

dx = [f(x,t) — g(t)*Vx log ps(x)]dt + g(t)dw,
One can sample the data (with reverse process) by learning the score function:

0* = arg min E{ Ao Ex(oix(o [ [[50(x(2), 1) = Vi) 1og por (x(2) | x(0))][; ]}

Note: under this formalization, NCSN/DDPM are discretization of different SDEs:

2
e NCSN: dx = d [(:it(t)] dw. - X; =X;_1 +4/07 — 07 12

e DDPM: dx = —%IB(t)X dt + \ ,B(t) dw - X; = A/ 1— B’ixz’—l + Bizi
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Score matching through SDE [Song et al., 2021]

Then, the reverse diffusion process also follows some SDE:

dx = [f(x,t) — g(t)*Vx log ps(x)]dt + g(t)dw,

One can sample the data (with reverse process) by learning the score function:

0* = arg min E;

0

{)‘(t)Ex(O)Ex(tﬂx(O)[ [s6(x(t),t) — V() log por(x(2) | X(O))H;]}-

Note: under this formalization, NCSN/DDPM are discretization of different SDEs:

Algorithm 2 PC sampling (VE SDE)

Algorithm 3 PC sampling (VP SDE)

1:
2:
3:

4
5
6:
7
8
9

XN ~ N(O, O'I%axl)
fort: =N —1to0do
X; — Xit1 + (0741 — 07)Sgx (Xiv1,0i41)

z ~ N(0,I)
Xi < X; +4/02,, — 02z
for j = 1to M do
z ~ N(0,I)
X; < X; + €;Sgx (Xi, 0:) + /26
: return xo

1
2
3
4:
5:
6.
7
8
9

XN~ N(O, I)
:fori =N —1to0do
X; — (2= /1= Bit1)Xis1 + Bir18Sex (Xit1,% + 1)
z~ N(O7 I) .
o o x;; n ,—ﬂle Predictor
for j = 1to M do Corrector
z ~ N(0,I)

X; < X; + €;Sg* (Xi, ’l,) + v/2¢€;2
: return xo

Continuous ver. of NCSN

Algorithmic Intelligence Lab

Continuous ver. of DDPM
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Score matching through SDE [Song et al., 2021]

On CIFAR-10, the continuous version of DDPM/NCSN is SOTA for both:

e Likelihood estimation

* Sample generation

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Model FID| ISt
Conditional
BigGAN (Brock et al., 2018) 14.73 922

StyleGAN2-ADA (Karras et al., 2020a) 2.42 10.14

Unconditional

StyleGAN2-ADA (Karras et al., 2020a) 2.92 9.83

Model NLL Test | FID |
RealNVP (Dinh et al., 2016) 3.49 -
iResNet (Behrmann et al., 2019) 345 -
Glow (Kingma & Dhariwal, 2018) 3.35 -
MintNet (Song et al., 2019b) 3.32 -
Residual Flow (Chen et al., 2019) 3.28 46.37
FFJORD (Grathwohl et al., 2018) 3.40 -
Flow++ (Ho et al., 2019) 3.29 -
DDPM (L) (Ho et al., 2020) < 3.70" 13.51
DDPM (Lsimple) (Ho et al., 2020) <3.75 3.17
DDPM 3.28 3.37
" DDPM cont. (VP) 3.21 3.69
DDPM cont. (sub-VP) 3.05 3.56
DDPM++ cont. (VP) 3.16 3.93
DDPM++ cont. (sub-VP) 3.02 3.16
DDPM++ cont. (deep, VP) 3.13 3.08
i DDPM++ cont. (deep, sub-VP) 2.99 2.92

NCSN (Song & Ermon, 2019) 25.32 8.87 + .12
NCSNvV2 (Song & Ermon, 2020) 10.87 8.40 + .07
DDPM (Ho et al., 2020) 3.17 946 + .11
DDPM++ 2.78 9.64
DDPM++ cont. (VP) 2.55 9.58
DDPM-++ cont. (sub-VP) 2.61 9.56
DDPM++ cont. (deep, VP) 241 9.68
DDPM++ cont. (deep, sub-VP) 2.41 9.57
NCSN++ 2.45 9.73
NCSN++ cont. (VE) 2.38 9.83
NCSN++ cont. (deep, VE) 2.20 9.89

Variants of different SDE solver (ignored in this lecture)

Algorithmic Intelligence Lab
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EDM [Karras et al., 2022]

Recall: SDE-based formulation of score models
dx = [f(x,t) — g(t)*Vx log ps(x)]dt + g(t)dW,
Motivation: There are “marginally equivalent” ODE (called probability flow ODE)
da = [f(t) & — § g(t)? Valogpi(x)] dt

Contribution: Re-thinking practical design of diffusion models based on this ODE

VP [48] VE [48] iDDPM [36] + DDIM [46] Ours (“EDM”)
Sampling (Section 3)
ODE solver Euler Euler ' Euler 2" order Heun
Time steps t; 1+ (s — 1) Orax (il 08 )ﬁ U . M1 where (o A
p i<N N—-1\"$ max \“min/ “ max Lo+ g 0i+1]” max . .
uy =0 ﬁ(amin"_amax”))
u2+41
Uj—1= max(&j_l/&j,cl)_l
Schedule o(t) Vedbt*H+bmt_1 /g t t
Scaling s(t) 1/V e3Pat®+hmint 1 1 I
Network and preconditioning (Section 5)
Architecture of Fjy DDPM++ NCSN++ DDPM (any)
Skip scaling cuip(0) 1 1 i 02l (0% +03)
Output scaling coy(0) —0 o —0 O Odaa/\/ 02y, + 02
Input scaling ci(0) 1/vo2+1 1 1/v/o2 +1 1/y/02 + 03,
Noise cond. cpoise(0) (M —1) 0= 1(0) In(30) M—1—argmin; |u; —o| ;In(o)
Training (Section 5)
Noise distribution o o) ~U(e, 1) In(o) ~U(In(omin), o=uj, j~U{0,M-1} In(0) ~ N (Pream, P
In{erias)
Loss weighting \(o) 1/0? 1/0? . 1/0% (note: *) (02 +02,) /(0 - Oata)?
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EDM [Karras et al., 2022]

Although there are many new insights, we will cover only a few of them

Sampling: Conventional sampling can be viewed as “Euler’s method” on PF ODE
* In small NFE regime, the error becomes large (inaccurate solver with large step size)

« EDM: Uses “Heun’s 2" order method” for sampling (accurate with smaller NFE)
* Euler (0(h?))/Heun’s (0(h3)/2) (local error / NFE)

Algorithm 1 Deterministic sampling using Heun’s 2" order method with arbitrary o (¢) and s(t).

1: procedure HEUNSAMPLER(Dy(x;0), o(t), s(t), ticqo,....N})

2 sample o ~ N (0, a2 (to) s%(to) I) > Generate initial sample at %

3 fori € {0,...,N — 1} do > Solve Eq. 4 over N time steps

4: d; o-(ti) + S(ti) T, — MD@ L ;O'(tz') > Evaluate da:/dt att;

o(ti) = s(ti) o(t:) s(t:)

5 Tit1 — ; + (tip1 — t;)d; > Take Euler step from ¢; to t;41

6 if o(ti+1) # 0 then > Apply 2™ order correction unless o goes to zero

- dl o (tiv1) é(tz‘+1)) e — o (tiv1)s(tit1) D ( Ll > > Eval. de/dt at ¢;
(U(tz‘+1) * s(tirr) )T o(tit1) "\ s(tis1) g abidz/ el

8: Tip1 < Ti + (biy1 — ) (3di + 3di) > Explicit trapezoidal rule at ¢;41

9: return x > Return noise-free sample at ¢ n
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EDM [Karras et al., 2022]

Although there are many new insights, we will cover only a few of them

Sampling: Add “stochasticity” in diffusion sampling benefits the sampling
* With several observations, proposes a “very heuristic” design of the stochastic sampler
* It improves the sampling quality even with smaller NFE regime

Algorithm 2 Our stochastic sampler with o(t) = ¢ and s(t) = 1.

1: procedure STOCHASTICSAMPLER(Dg(x; 0), tico,....N}s Vie{0,...,N—1}, Shoise)
2 sample zo ~ N (0, 21 . ( Senun -
. - lpe {0, N ,]\(/v il 10} 30 > oys = {mm(#, \/5—1) if tiE[Sjnnin,Smax]
4 sample €; ~ N (0, Si. I) 0 otherwise
S: ti « t; + vits > Select temporarily increased noise level ¢;
6: X, — x; +\/ t? — t? €; > Add new noise to move from ¢; to #;
T d; +— (fi?z — Dy (iti; l?z))/t?z > Evaluate dil:/dt at fz
8: Liy1 xT; + (ti+1 — fz)dz > Take Euler step from fz to ti4+1
9: if ;41 # 0 then
10: d; (mi+1 — Doy (xi+1; ti+1))/ti+1 > Apply 2™ order correction
I1: Tit1 — & + (tita —fi)(%di-l- %d{)
12: return x v
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EDM [Karras et al., 2022]

Although there are many new insights, we will cover only a few of them

Training: Add some of pre-conditioning in the denoising objective
* Rather than a naive noise-prediction, added some priors in the training objective

7

Ea,'y,n [:\(0') Cout(o')zl || FG (Cin(a) : (y + n); Cnoise(a)) _‘c()ut% (y - Cskip(a) ’ (y + n))J HZ] '

N

effective weight network output effective u;nmg target
Training (Section 5)
Noise distribution o (o) ~U(e,1)  In(o)~U(In(omn), o=uj, j~U{0,M—1} In(o) ~ N (Ppeam> P2)
I s
Loss weighting \(o) 1/0? 1/0? : 1/0% (note: *) (02+02%) /(0 - Odara)?
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EDM [Karras et al., 2022]

Experiment: Achieved SOTA FIDs on ImageNet-64 (1.36)

* Moreover, validated each component on various datasets and showed (near-)SOTA results

Table 2: Evaluation of our training improvements. The starting point (config A) is VP & VE using
our deterministic sampler. At the end (configs E,F), VP & VE only differ in the architecture of Fj.

CIFAR-10 [28] at 32x32

FFHQ [26] 64 x 64

AFHQV2 [7] 64x 64

Conditional Unconditional Unconditional Unconditional
Training configuration VP VE VP VE VP VE VP VE
A Baseline [48] (*pre-trained) | 2.48 3.11 3.01" 3.77* 3.39 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 2.48 251 294 3.13 22,53 243 2312
C + Redistribute capacity 2.08 252 231 2.83 2.78 41.62 2.54 15.04
D + Our preconditioning 209 2.64 229 3.10 2.94 3.39 2.79 3.81
E + Our loss function 1.88 1.86 205 1.99 2.60 2.81 229 2.28
F + Non-leaky augmentation .79 1.79 1.97 1.98 2.39 253 1.96 2.16
NFE 35 35 35 395 79 79 79 79
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Table of Contents

1. Generative Adversarial Networks (GANs)
e “Controllable” GANs on high-dimensional images
* Scaling GANs to complex large-scale dataset
* Recent techniques to mitigate overfitting

2. Generative Diffusion Processes
* Formulations: Score-based models and diffusion models
* Efficient solvers and distillation
* Guidance techniques
e Diffusion model architecture

3. Other Generative Models
e Scaling Variational autoencoders (VAEs)
* Autoregressive modeling
* Generative Transformers with masked modeling

4. Summary
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Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
e Generalizes DDPM with much faster sampling process

Main idea: Introduce non-Markovian forward process
* Re-formulation of the forward process of diffusion models (DDPM):

(2)
X — V1 — o€y’ (X
T at_l( | \/07t = t)) +\/1_at—1—0t2'€§t)(xt)+ Ot€t
z ~

4 v
A - _J

o L e random noise
-~ “direction pointing to x”
(3 >4 2
predicted x

* It only depends on the marginal g (x;|xy)!
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Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
e Generalizes DDPM with much faster sampling process

Main idea: Introduce non-Markovian forward process
* One may think alternative inference distribution that has the same marginal

Qo (Tt—1|Tt, 0)qs (24| T0)
do(Ti—1|T0)

@ — @ — @— @)

CI(ZU3|€I32,€L’0) q $2|=’131,

4o (wt|mt 1 mO)

* Where g, is set to have same marginal as in DDPM (works with any o)

O+
o (Tt—1|Tt, @0) = (\/at 15130‘|‘\/1—04t 1—Ut \/ﬁo ?I)
— Oy

Algorithmic Intelligence Lab 115



Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Hence, generative process pg:) (x¢—1|x¢) can be defined with g, (x¢—1|x¢, Xo):
1. From x;, predict “denoised” observation x|
2. Obtain sample x;_; from q,(x;_1|x¢, xo) using predicted x, and x;

How to predict xo from x;?
* Marginal: q(x¢|x,) = IQ(xl:tle)dxl:(t—l) = N(x¢; /A X, (1 —a)l)
* From this, we can obtain x; = \/a;xy + MQ
* By introducing a model eét) (x;) that predicts €;, prediction of x; is given as:

O = (e — T — a; €2 (x0))/ Vaz
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Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

(t)
X V1 — o€y’ (x
xt1=\/at1< - \/oTt 0" ( t) \/1—04_ —o2. eét)(xt)-I-
¢

- ~~ “direction pomtlng to x¢”
“ predicted x¢”

Ot€¢
. SN~~~

random noise

One may also consider a deterministic process from x; to xy witha; = 0
* i.e., Denoising Diffusion Implicit Model (DDIM)

Accelerated generation process
* Objective does not depend on the specific forward process if g, (x;|xg) is fixed
* Hence, we can consider “shorter” forward processes

* Consider a forward process over a subset {xrl, ) xs}

Pe

Algorithmic Intelligence Lab
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Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

Experiments: Accelerated sampling of DDIM still enables reasonable quality
* Number of sampling steps S
* Degree of stochasticity o
* Interpolation between DDPM (n = 1) and DDIM (n = 0)

Table 1: CIFAR10 and CelebA image generation measured in FID. = 1.0 and ¢ are cases of
DDPM (although Ho et al. (2020) only considered 7" = 1000 steps, and S < 7' can be seen as
simulating DDPMs trained with .S steps), and = 0.0 indicates DDIM.

CIFAR10 (32 x 32) CelebA (64 x 64)

S 10 20 50 100 1000 10 20 50 100 1000
0.0 | 1336 6.84 404 | 17.33  13.73 3.51
02| 1404 7.11 2. T, 409 | 17.66 1411 9. 570 3.64
05| 1666 835 525 446 429 | 1986 1606 11.01 809 428
1.0 | 41.07 1836 801 578 33.12 2603 1848 13.93

Deterministic generation process (DDIM) can generate good samples
with 10x~100x smaller sampling steps (=fast)
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GENIE [Dockhorn et al., 2022]

Note: Euler method is “linear” solver of the given ODE
* Smaller DDIM NFE: Implies larger step size of the ODE solver (high error)

GENIE: Consider 2" order ODE solver to reduce the error with smaller NFE

)_(tn+1 — )_(tn + hnee (th, tn) ih’gb d’Yt |(xtnatn)

Original DDIM Sampler 2nd order (curvature)

D —
- o
L r—

First truncated Taylor method
(linear extrapolation)

Second truncated Taylor method
(quadratic extrapolation)

emmg@mms  Probability Flow ODE trajectories

po(Xo) p1(x1)

Algorithmic Intelligence Lab 119



GENIE [Dockhorn et al., 2022]

Motivation: Alternative interpretation of DDIM sampling

Recall: Diffusion model can be interpreted as the marginally equivalent ODE:

dx; = — 5P [x¢ + Vi, log pe(xy)] dt

e Withy: = 1;? and X; =xt\/1—|—fytz:

d)_(t — €9 (Xt, t) d’}’t

Hence, DDIM = Euler’s method(ODE solver) on the following ODE above

Po (XO) @smm@m=» Probability Flow ODE trajectories

b1 (X1)
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GENIE [Dockhorn et al., 2022]

Note: Euler method is “linear” solver of the given ODE
* Smaller DDIM NFE: Implies larger step size of the ODE solver (high error)

GENIE: Consider 2" order ODE solver to reduce the error with smaller NFE

_ B 2 deg
th—l—l T th + hnee (th ) tn) §hn d’y |(xtn 3t'n)
Original DDIM Sampler 2nd order (curvature)

1 Oeg(xy,t) v:  O€g(X¢,t) Oeg(x¢,t) dt
d ) = ) —
JV‘lr)l JV‘1§2

However, the blue part requires the gradient of the score function
* Which is prohibitive as it leads to >2x computation for each single step
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GENIE [Dockhorn et al., 2022]

Solution: Gradient distillation build upon the pretrained diffusion models
* Namely, add a small prediction head to predict Jacobian vector products (JVPs)
* During sampling, use prediction head (+2% overhead) without computing gradients

Al

0 By ttftuore, 1], x0~p(x0), e~ (0,1) [90(2) R0 + 006, 8) = do, €6 (o + e, )]

b —p
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GENIE [Dockhorn et al., 2022]

Experiment: GENIE accurately samples the toy distribution with multiple nodes
* While DDIM (linear solver) fails under the same NFE

e /] .f&"’.
:” 4; Py —_—
%0 /(o 0| 8% Fh Bl | e 4% b N Y
] 9/ o ] ’}r : } $ 9 B <
LIPS X P Vy..dl : byt LI 1\ P

& ’ : . ' ‘ z o . W .-’ -\'.. - j & . :
5 :d f'ﬁs £ s % 8%
9,0 s %y 8,0 L 2 {"“’ T Mg Y g® 9 "9"“"";, e ¥
@ - 4 P ] ®
‘ ' ” - 'ﬁ(’ p"' ?"l
(a) Ground truth (b) DDIM (c) GENIE

Algorithmic Intelligence Lab 123



GENIE [Dockhorn et al., 2022]

Experiment: GENIE shows good sampling (with efficiency) on image generation

Method NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25
GENIE (ours) (x) 11.2 5.28 4.49 3.94 3.64
GENIE (ours) 13.9 5.97 4.49 3.94 3.67
DDIM [58] (%) 27.6 11.2 7.35 5.87 5.16
DDIM [58] 29.7 11.2 7.35 5.87 5.16
S-PNDM [63] 359 10.3 6.61 5.20 4.51
F-PNDM [63] N/A N/A 10.3 5.96 4.73
Euler-Maruyama 325 230 164 112 80.3
FastDDIM [64] (1) - 9.90 - 5.05 -
Learned Sampler [66] (/%) 12.4 7.86 5.90 4.72 4.25
Learned Sampler [66] () 14.3 8.15 5.94 4.89 4.47
Analytic DDIM [65] (F) - 14.0 - - 5.71
CLD-SGM [60] 334 306 236 162 106
VESDE-PC [57] 461 461 461 461 462

Algorithmic Intelligence Lab
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GENIE [Dockhorn et al., 2022]

Experiment: GENIE shows good sampling (with efficiency) on image generation

Method NFEs=5 NFEs=10 NFEs=15
GENIE (ours) 5.53 4.90 4.83
DDIM [58] 9.47 6.64 5.85
S-PNDM [63] 14.6 11.0 8.83
F-PNDM [63] N/A N/A 11.7

Algorithmic Intelligence Lab
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GENIE [Dockhorn et al., 2022]

There are several more concurrent works in this direction:

e [Zhang and Chen, 2022] applies advanced ODE solvers, e.g., Runge-Kutta

* [Luetal.,, 2022] introduces a new schedulers for accelerating the sampling

* [Karras et al., 2022] proposes a new design/solver for diffusion model ODEs.

We omit the details in this lecture, but you can take a look if you are interested

NFE = 15 NFE = 20 NFE =100 NFE =10
(a) DDIM [19] (b) DPM-Solver (ours)

Figure 1: Samples by DDIM [19] with 10, 15, 20, 100 number of function evaluations (NFE), and DPM-Solver
(ours) with only 10 NFE, using the pre-trained DPMs on ImageNet 256 X256 with classifier guidance [4].

NFE =10

[Zhang and Chen., 2022] Fast Sampling of Diffusion Models with Exponential Integrator
[Lu et al., 2022] DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
[Karras et al., 2022] Elucidating the Design Space of Diffusion-Based Generative Models
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Consistency Models [Song et al., 2023]

Consistency models [Song et al., 2023]

Motivation: Score models still require multiple steps;
* Unlike other generative models (e.g., GANSs)

Summary: Pre-trained score-models can be “distilled” efficiently
* i.e.) They can be turned into single-step (or double-step) generative model

One-step generation
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Consistency Models [Song et al., 2023]

Algorithmic Intelligence Lab

Recall: Score-models can be re-interpreted as marginally equivalent ODE:
* i.e.) probability flow (PF) ODE

dx
d—tt — —t5g (x4, 1)

Idea: Consider a “consistency” function for a given PF ODE trajectory
« Wewant f: (x¢,t) — xewith f(x¢,t) = f_(Xt(, t') if they are in the same ODE trajectory

Data Noise Data Noise
}r’ Lr-’_ me o 4 :“' il \ \
(x0,0)  (xp,b) O (xest) ) = :
Jo(xt,1) Tolxet (x7,T)
fo(xv,t) \(XO’ 0 Jo (Xt %, 1) (x¢r,t)

Figure 1: Given a that smoothly
converts data to noise, we lem to map any ;.)o'int (e.8- Xt Figure 2: Consistency models are trained to map points on
x4, and x7) on the ODE trajectory to its origin (e.g., Xg) any trajectory of the to the trajectory’s origin.

for generative modeling. Models of these mappings are
called consistency models, as their outputs are trained to be
consistent for points on the same trajectory.
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Consistency Models [Song et al., 2023]

Sampling: If we have a ideal consistency function, sampling is easy (single-step)

* Optionally, one can consider multi-step sampling to improve the quality further

Algorithm 1 Multistep Consistency Sampling

Input: Consistency model fy(-,-), sequence of time

points 7y > T > -+ > Tn_1, initial noise X7

X « fo(x7,T) > Single-step: One forward operation from %7 ~ N (0,T%1)

forn=1to N —1do ]
Sample z ~ N (0, I)
X, <« X+4/T) — €’z | > Multi-step: Optional to improve the sample quality
X fo(x'rn’ Tn)

end for

Output: x
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Consistency Models [Song et al., 2023]

Training: Minimize the distance between a adjacency pair on the same trajectory
* Optionally, one can consider multi-step sampling to imquality further

LY (0,07 ;¢) = E[A(tn)d(fo(Xt,. ., tns1), fo- (f(ii ,tn))]

EMA param. Pre-defined distance functions: L2, L1, or LPIPS
Data Noise

%P 5
\ X% Xtpia

Xf f
XT T
\XO,@t, t) y
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Consistency Models [Song et al., 2023]

Training: Minimize the distance between a adjacency pair on the same trajectory
* Optionally, one can consider multi-step sampling to imquality further

,CgD(H, 9_; ¢) = E[)\(tn)d(fe(xtn+1 9 tn—|—1)7 fO— (5\(7(5]1 9 tn))]

Data Noise
}A(g) > Computed witk\(pre—defined) ODE solver (P
n,
X
\ X Xt +1 IE);ampIe) Euler 3olver

= Xtp 41 t _tn+1)tn+18¢(xtn+1’ n-i—l)

X; f
\XO,@t, \yd

feXTT

Sampled from transition density NV (X, t2+1I)
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Consistency Models [Song et al., 2023]

Training: Minimize the distance between a adjacency pair on the same trajectory
* Optionally, one can consider multi-step sampling to imquality further

Lo (0,07 ;0) :=E[A(t,)d (fe(th+1,tn+1) fo- (X, Xp ,t n))]

Algorithm 2 Consistency Distillation (CD)

Input: dataset D, initial model parameter @, learning rate
n, ODE solver ®(-, -; @), d(-,-), A(+), and p

0~ — 0
repeat
Sample x ~ D andn ~ U[1, N — 1]
Sample x;,,,, ~ N(x;¢7,11) 1. Sampling “adjacent” pair on the same trajectory
5\(?; — Xt + (tn - tn+1)q)(xtn+17tn+1; ¢)
L£(0,07; ) «—
A(tn)d(fo(Xt,,1stnt1), fo- (XE,tn)) } 2. compute the distance

6 —6—nVeLl(0,07;0)
0~ < stopgrad(u@— + (1 — 1)0)
until convergence

]' 3. Optimization
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Consistency Models [Song et al., 2023]

The paper shows consistency training can be done even without pre-trained model

* They show adjacency pair can be "approximated” well without having pre-trained models

Algorithm 2 Consistency Distillation (CD)

Input: dataset D, initial model parameter 6, learning rate
n, ODE solver ®(-,-; ¢), d(-,-), A(+), and p
60— — 0
repeat
Sample x ~ D andn ~ U1, N — 1]
Sample x;, ., ~ N(x;t2, 1)

Problematic part;

b :

X, «— X t, —t d(x t

tn tosr F (In =)@Kt 15t @) we don’t have the score function
L(0,07;¢p)

Atn)d(fo(Xt, 1 tnt1), fo- (XT ,t0))
6 —0—nVeLl(0,0;0)
0~ < stopgrad(u@— + (1 — u)0)
until convergence
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Consistency Models [Song et al., 2023]

The paper shows consistency training can be done even without pre-trained model

* They show adjacency pair can be "approximated” well without having pre-trained models

Algorithm 3 Consistency Training (CT)

Input: dataset D, initial model parameter 6, learning
rate 7), step schedule N(-), EMA decay rate schedule
u(-), d(-,-), and A(:)
0 —0Oand k — 0
repeat
Sample x ~ D, and n ~ U[1, N(k) — 1]
Sample z ~ N (0, I)
L(0,07) —
Atn)d(fo(X + tnt12,tns1), fo- (X + thz, ty)
0 —0—nVeLl(0,07)
0~ — stopgrad(u(k)0— + (1 — u(k))0)
k—k+1
until convergence

Approximation with proofs
(omit the detail in this lecture)
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Consistency Models [Song et al., 2023]

Experiment: Achieve reasonable results even with single-step forward operation

* For distillation, it outperforms prior distillation/efficient sampling methods

Effi. Sampling via

better ODE solver |

Distillation

Algorithmic Intelligence Lab

METHOD NFE () FID() IS(D)

Diffusion + Samplers

DDIM (Song et al., 2020) 50 4.67

DDIM (Song et al., 2020) 20 6.84

DDIM (Song et al., 2020) 10 8.23

DPM-solver-2 (Lu et al., 2022) 12 5.28

DPM-solver-3 (Lu et al., 2022) 12 6.03
|_3-DEIS (Zhang & Chen, 2022) 10 4.17

Diffusion + Distillation

Knowledge Distillation™ (Luhman & Luhman, 2021) 1 9.36

DFNO* (Zheng et al., 2022) 1 4.12

1-Rectified Flow (+distill)* (Liu et al., 2022) 1 6.18 9.08

2-Rectified Flow (+distill)* (Liu et al., 2022) 1 4.85 9.01

3-Rectified Flow (+distill)* (Liu et al., 2022) 1 5.21 8.79

PD (Salimans & Ho, 2022) 1 8.34 8.69

CD 1 3.55 9.48

PD (Salimans & Ho, 2022) 2 5.58 9.05
- CD 2 2.93 9.75
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Consistency Models [Song et al., 2023]

Experiment: Achieve reasonable results even with single-step forward operation

* For from-scratch training, not state-of-the-arts but comparable results

Algorithmic Intelligence Lab

METHOD NFE(]) FID(]) IS(D)
Direct Generation

BigGAN (Brock et al., 2019) 1 14.7 9.22
CR-GAN (Zhang et al., 2019) 1 14.6 8.40
AutoGAN (Gong et al., 2019) 1 12.4 8.55
E2GAN (Tian et al., 2020) 1 11.3 8.51
ViTGAN (Lee et al., 2021) 1 6.66 9.30
TransGAN (Jiang et al., 2021) 1 9.26 9.05
StyleGAN2-ADA (Karras et al., 2020) 1 2.92 9.83
StyleGAN-XL (Sauer et al., 2022) 1 1.85

Score SDE (Song et al., 2021) 2000 2.20 9.89
DDPM (Ho et al., 2020) 1000 3.17 9.46
LSGM (Vahdat et al., 2021) 147 2.10

PFGM (Xu et al., 2022) 110 2.35 9.68
EDM (Karras et al., 2022) 36 2.04 9.84
1-Rectified Flow (Liu et al., 2022) 1 378 1.13
Glow (Kingma & Dhariwal, 2018) 1 48.9 3.92
Residual Flow (Chen et al., 2019a) 1 46.4

GLFlow (Xiao et al., 2019) 1 44.6
DenseFlow (Grcic et al., 2021) 1 349
DC-VAE (Parmar et al., 2021) 1 17.9 8.20
CT 1 8.70 8.49
CT 2 5.83 8.85
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Table of Contents

1. Generative Adversarial Networks (GANs)
e “Controllable” GANs on high-dimensional images
e Scaling GANs to complex large-scale dataset
* Recent techniques to mitigate overfitting

2. Generative Diffusion Processes
* Formulations: Score-based models and diffusion models
e Efficient solvers and distillation
* Guidance techniques

3. Other Generative Models
e Scaling Variational autoencoders (VAEs)
e Autoregressive modeling
* Generative Transformers with masked modeling

4. Summary
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Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

Motivation: Improve the image fidelity of diffusion model using class information
* Class-conditional GANs already used class information heavily [Brock et al., 2019]

Contribution: Proposed classifier guidance to use class-information extensively
e Truncation-like effect (in GANs): tradeoff exists between fidelity and diversity
* Strong class guidance - the fidelity of images improves but the diversity decreases.
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Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

Main idea of classifier guidance:
* 1. Train a classifier pg (y|x¢, t) on noisy images x;
* 2. Use gradients Vy, log py (¥ |x¢, t) to guide the diffusion sampling process

Classifier-guidance:

* Recall: Score is derived from the noise prediction model €4 (x;):

1
v:l:t logpg(att) = _MEB(xt)
- G

* Score for “conditional generation”:

Ve, log(po(z¢)pg (y|2t)) = Va, log po(zt) + Ve, log py (y|zt)
1
— —ﬁeg(xt) + th ].ngd)(ylxt)

* Hence, classifier-guidance uses the following modified score:

é(fct) = 69(:1:,5) — VL= Vg, 10gp¢(y|33t)
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Diffusion Models Beat GANs on Image Synthesis

Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

Main idea of classifier guidance:
* 1. Train a classifier pg (y|x¢, t) on noisy images x;
* 2. Use gradients Vy, log py (¥ |x¢, t) to guide the diffusion sampling process

Classifier-guidance:

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (g (x:), X9 (x¢)), classi-
fier py(y|z:), and gradient scale s.

Input: class label y, gradient scale s
x7 < sample from N (0, T)
for all ¢ from 7" to 1 do
p, X pg (@), Xo(t)
xi—1 < sample from N (u + sX V, log py (y|zt), 2)
end for
return z
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Diffusion Models Beat GANs on Image Synthesis

Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

* Classifier guidance indeed improves the image quality (higher IS & precision)

* However, it also shows limited diversity (higer FID & recall)

—e— FID —e— sFID
16
14 _ TS
/"'/—

121 %
10 1

8 p

6 o

4 -

0 2 4 6 8 10

gradient scale

300

2501

200+

150+

100 1

—e— precision

recall

0.9+
0.8+
0.7 1
0.6+
0.5+4
0.4+
0.3 1

L ]

4 6
gradient scale

10

4 6
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Diffusion Models Beat GANs on Image Synthesis

Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
* Classifier-guidance enables to outperform state of the art generative models

Model FID sFID Prec Rec Model FID sFID Prec Rec
LSUN Bedrooms 256 x256 ImageNet 128 x 128

DCTransformer' [42] 640 6.66 0.44 0.56 BigGAN-deep [5] 6.02 7.18 0.86 0.35
DDPM [25] 489 9.07 0.60 0.45 LOGANT [68] 3.36

IDDPM [43] 424 821 0.62 046 ADM 591 5.09 0.70 0.65
StyleGAN [27] 235 6.62 0.59 048 ADM-G (25 steps) 598 7.04 0.78 0.51
ADM (dropout) 190 5.59 0.66 0.51 ADM-G 297 5.09 0.78 0.59
LSUN Horses 256 X256 ImageNet 256 <256

StyleGAN2 [28] 384 646 0.63 048 DCTransformer' [42] 36.51 824 036 0.67
ADM 295 594 0.69 0.55 VQ-VAE-2# [51] 31.11 17.38 0.36 0.57
ADM (dropout) 2.57 6.81 0.71 0.55 IDDPM? [43] 1226 5.42 070 0.62

SR37#[53] 11.30

LSUN Cats 256x256 BigGAN-deep [S] 695 7.36 0.87 0.8
DDPM [25] 17.1 124 0.53 0.48 ADM 10.94 6.02 0.69 0.63
StyleGAN2 [28] 725 6.33 0.58 0.43 ADM-G (25 steps) 544 532 0.81 049
ADM (dropout) 557 6.69 0.63 0.52 ADM-G 459 5.25 0.82 0.52
ImageNet 64 x 64 ImageNet 512x512

BigGAN-deep* [5] 406 396 0.79 0.48 BigGAN-deep [5] 843 813 0.88 0.29
IDDPM [43] 292 3.79 0.74 0.62 ADM 23.24 10.19 0.73 0.60
ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 841 9.67 0.83 047
ADM (dropout) 2.07 429 0.74 0.63 ADM-G 7.72 6.57 0.87 042
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Motivation: Training classifier on noisy sample might be problematic
* Even more problematic with extreme setup (e.g., training CLIP on noisy samples)

Contribution: Introduce class-guidance without training/requiring any classifiers
* Used in most popular foundation diffusion models (e.g., Stable-diffusion)
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Motivation: Training classifier on noisy sample might be problematic
* Even more problematic with extreme setup (e.g., training CLIP on noisy samples)

Main idea: Train conditional/unconditional distribution as a single diffusion model
 Conditional model: pgy(z|c) with score €4(2,, )
* Unconditional diffusion model: pg (z) with score €5(z;) = €5(z;, ¢ = 0)

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: puncond: probability of unconditional training

1: repeat

2: (x,c) ~ p(x,c) > Sample data with conditioning from the dataset
3 c < @ with probability pyncond > Randomly discard conditioning to train unconditionally
4 A~ p(A) > Sample log SNR value
5: e ~ N(0,I)

6: Z) = Q) \X + O)\€ > Corrupt data to the sampled log SNR value
7 Take gradient step on Vg ||€g (2, ) — €| > Optimization of denoising model
8: until converged
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Motivation: Training classifier on noisy sample might be problematic
* Even more problematic with extreme setup (e.g., training CLIP on noisy samples)

Main idea: Train conditional/unconditional distribution as a single diffusion model
» Sampling: Use refined score; (linear combination of conditional/unconditional score)

Algorithm 2 Conditional sampling with classifier-free guidance

Require: w: guidance strength

Require: c: conditioning information for conditional sampling

Require: )\q,..., \y: increasing log SNR sequence with Ay = Apin, A7 = Amax
1: 21 ~ N {0.1)
2: fort=1,...,T do

?

> Form the classifier-free guided score at log SNR ),

3 € = (1 4+ w)eg(2zs,c) — wep(zy)
> Sampling step (could be replaced by another sampler, e.g. DDIM)
4. it = (Zt — O\, ét)/(X,\t
3; Zgyq N(ﬂ'/\t+1|/\t (Zt, it), (6-/2\t+1|)\t )1_v(0'/2\t|/\t+1 )U) if t < 7T else Zi1 = it
6: end for

7: return zpq
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Motivation: Training classifier on noisy sample might be problematic
* Even more problematic with extreme setup (e.g., training CLIP on noisy samples)

Main idea: Train conditional/unconditional distribution as a single diffusion model
» Sampling: Use refined score; (linear combination of conditional/unconditional score)

Why it works? It has a role of an generative classifier pt(c|z;) < p(z;|c)/p(zy).
* Note: gradient of the generative classifier (generative classifier):

VZ'A 1ngi(C‘VZ)\)‘ : —%[é*(zk, C) — E*(Z)\)]
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]
* Guidance balances diversity vs. quality of the sample (even without classifiers) well

Method | FID{) | IS(D)
ADM [3] 2.07 -
CDM [6] 1.48 67.95

Ours, no guidance | 1.80 | 53.71

Ours, with guidance
w=0.1 1.55 66.11
w = 0.2 2.04 78.91
w=0.3 3.03 92.8 ‘
w=0.4 4.30 106.2 250
w = 0.5 5.74 119.3
w= 0.6 7.19 131.1 200
w = 0.7 8.62 141.8
w=0.8 10.08 151.6 9
w=0.9 1141 | 161 150
w=1.0 12.6 170.1
w=2.0 21.03 | 225.5 100 |- ’
w = 3.0 24.83 | 250.4
w = 4.0 26.22 | 260.2 50 | | | |
0 5 10 15 20 25
Figure 1: ImageNet 64x64 results FID
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GLIDE [Nichol et al., 2022]

GLIDE: Zero-shot Text-to-image diffusion model with classifier-free guidance

* Some details (for text condition):
* Encode text into a sequence of K tokens and feed it into Transformer model
* Use final token embedding as a class embedding.

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”
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3. Other Generative Models
* Scaling Variational autoencoders (VAEs)
* Autoregressive modeling
* Generative Transformers with masked modeling
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Variational Autoencoder (VAE)

Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable
* e.g., standard Normal distribution

p(z) = N(2;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(Z; faec(2), 1)

* Resulting generative distribution (to optimize):

log p0(2) = log | pale|2)p(z)dz = 1og Exyop(a]2)]

z
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Variational Autoencoder (VAE)

Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013]

“encoding”

distribution => E Q¢(Z|CB) — N(Z; fenc,u(w)a fenc,a(w))

representation

data

Each log py(x) term is replaced by its lower bound:

log pg(x) = log py(x) — min KL(gs(2|2)[|ps(2|2))
= logpg(@) + max K, g, (2| [log po (2]z) —log gy (2|x)

— mgx EZNq¢(z|m) [lngg(a?) + logpe(z‘w) — log ng(Z‘ﬂ})]

= maXExvy, sfa) 08 po(@]2)] — KL(gs (/)] [p(2)

Bound becomes equality when  g¢(2|x) =~ po(z|x)
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Variational Autoencoder (VAE)

The training objective becomes:
tractable between two Gaussian distributions

N V
max ) _logpp(x™) > max max Bz g, (z1a) log po (2)] — KL(g(2[2)]Ip(2))
n=1
N N
A max max Z Z log pg ('™ |2(™*)) — KL(gy(z]2™)||p(2))
n=1k=1
(n,k)

where latent variables are sampled by =z ~ Q¢(Z|$(n))

However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =) ) — e logps(x™[2"M) + 73 KL(gg(2]2™)][p(2))
n=1 k=1 {L

Since z(™*) is fixed after being sampled, ¢ log p(x™|z™*) =07?

Algorithmic Intelligence Lab 152



Variational Autoencoder (VAE)

Reparameterization trick is based on the change-of-variables formula:

EQNN(€2|M,O') & g2 =+ oe, €0 NN(€0|O,1)

N N

{) 61<—050<_/'\ Eo €1+ W
=> =>

scaling shifting
o ~ N(e0/0,1) e1 ~ N(e1]0,0) g2 ~ N(ez2|p, o)

Latent variable z(™*)can be similarly parameterized by encoder network:

Z(n’k) ~ N(Z; fenc,u(w(n)>7 fenC>U(w(n)))

s

20 = fone (@) + faneo (@) @ ™F, B L A(e]0,1)
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Improving VAEs

Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

» Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)
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Vector-quantized VAE (VQ-VAE)

VQ-VAE [Oord et al., 2017]

* Each data is embedded into combination of ‘discrete’ latent vectors: {e1,--- ,ex}
* i.e.) each encoder output is quantized to the nearest vector among K codebook
vectors
Codebook Embedding

Space

€4
\ q(z|x) >l %9
CNN —_— .’\/>_\ 5

Encoder g DecoderJ ¢

e Restriction of latent space achieves high generation quality including:
* Images, videos, audios, etc.
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Vector-quantized VAE (VQ-VAE)

VQ-VAE [Oord et al., 2017]

* The objective of VQ-VAE composed of three terms:
* Reconstruction loss (1)
* VQloss (2):
* Optimization of codebook vectors
 Commitment loss (3):
* Regularization to get encoder outputs and codebook close

£:

90(€) = all3 + Ilsg(fo(w)) — ell3 + Bl fo(x) — sg(e) 3

T T

) 2) 3)

VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:

* DALL-E (text-image generative model) —image is encoded via VQ-VAE
* Many audio self-supervised learning method

Algorithmic Intelligence Lab
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Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

VQ-VAE-2 [Razavi et al., 2019b]
* Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
* For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training

LLC:/F;I D SR > iiii For global features

Encoder T l Decoder

Bottom
Level / /_>/ /“’ﬁggggf For local features
vVQ
Encoder T l Decoder
\

Original Reconstruction
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Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

VQ-VAE-2 [Razavi et al., 2019b]
e After VQ-VAE-2 training, train two pixelCNN priors for new image generation
* They autoregressively fill out each quantized latent vector space

Image Generation

o
Via learned PixelCNN priors@ _____ >iiii

l Condition

Via learned PixelCNN priors o égggﬁgﬁ

l Decoder

Generation

* Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)
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Improving VAEs

Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models
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Nouveau VAE (NVAE)

NVAE [Vahdat et al., 2020]
* Hierarchical VAEs use the factorized latent space pg(z) = [1; g (21|2<;)
* Here, the ELBO objective is given by

LyaE(®) := Ey(ziz) [log p(z|2)] — KL(q(21|2)|[p(21)) — D> Eya_, i) [KL(q(21l2, 2<1)||p(21]2<1))]

However, prior attempts on hierarchical VAE were not so successful due to:
1. Long-range correlation: upper latents often forget the data information

@ —» Forgets x
e + e =
Deep Bottom-up VAE with
generative model inference model bottom-up inference

2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since they
jointly learn the prior distribution pg (2)
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Nouveau VAE (NVAE)

NVAE [Vahdat et al., 2020]

Idea 1. Bidirectional encoder (originally from [Kingma et al., 2016])

* Enforce upper latents (e.g., z3) to predict the lower latents (e.g., z4)
— Improve the long-range correlation issue Better remembers x

/
A~ e
+ | ~@® = 22 AL

@
e S

Deep Bidirectional VAE with
generative model inference model bidirectional inference

(should reconstruct z;)

X

* Training: posterior g4 (z|x) is inferred by both encoder and decoder
(aggregate them) and prior pg(2) is jointly inferred by decoder
* Recall that the KL term is a function of g4 (z|x) and pg(2)

* Inference: Sample prior pgy (z) from decoder and generate sample x
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Nouveau VAE (NVAE)

NVAE [Vahdat et al., 2020]
Idea 2. Taming the unstable KL term

1. Residual normal distribution
* For each factorized prior distribution

p(zli|z<l) = N(pi(z<1), 0i(2<1)),
define approximate posterior as (instead of directly predict y;, ;)
q(z|z<t, ) == N (ni(z<))+Api(2<1, ), 0i(2<1)-Aoi (24, ),
* Then, the KL term of ELBO is given by

1 (Au?

KL(q(2'|2)llp(")) =

2. Spectral regularization
* Enforce Lipschitz smoothness of encoder to bound KL divergence

2
2 ok

+ Ac? —log Ac? — 1)

* Regularize the largest singular value of convolutional layers (estimated by power iteratio
n [Yoshida & Miyato, 2017])
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Nouveau VAE (NVAE)

NVAE [Vahdat et al., 2020]

Experiments:
* Generate high-resolution (256x256) images

* SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28 %28 32%32 32. %32 64 x64 256x256 256 %256
NVAE w/o flow 78.01 2.93 - 2.04 - 0.71
NVAE w/ flow 78.19 291 3.92 2.03 0.70 0.69
VAE Models with an Unconditional Decoder
BIVA [36] 78.41 3.08 3.96 2.48 - -
IAF-VAE [4] 79.10 311 - - - -
DVAE++ [20] 78.49 3.38 - - - -
Conv Draw [42] - 3.58 4.40 - - -
Flow Models without any Autoregressive Components in the Generative Model
VFlow [59] - 2.98 - - - -
ANF [60] - 3.05 3.92 - 0.72 -
Flow++ [61] - 3.08 3.86 - - -
Residual flow [50] - 3.28 4.01 - 0.99 -
GLOW [62] - 3.35 4.09 - 1.03 -
Real NVP [63] - 3.49 4.28 3.02 - -

163




Very Deep VAE (VD-VAE)

VD-VAE [Child, 2021]
* Autoregressive models have outperformed VAEs (will be covered later)
* Main idea: However, very deep VAEs generalize autoregressive models

Latent variables are identical to observed variables
Observation 1: Hierarchical VAEs with N layers
= po(2) (N = dimension of data D) generalizes
ﬁ autoregressive models
- ~_ m * e.g.)learns deterministic identity function
Input Output

Latent variables allow for parallel generation

po(z)
Observation 2: VAEs with fewer layers (N < D) can
R still model data by learning efficient hierarchies of
/ po(x|z) latent variables
/ 4 SRR  e.g.) learns conditional independence
N N |
Input Output
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Very Deep VAE (VD-VAE)

VD-VAE [Child, 2021]

Empirically, deep VAEs often suffer from unstable training
* Recap: NVAE requires complex techniques to stabilize KL

Q: How to make VAE deeper?

Idea 1: Top-down architecture with bottleneck residual blocks

Bottom-up path Top-down path

res block
(input)
!
topdown block
(input)
(from bottom-up) conv 1xl
pool unpool e B N S
res block topdown block 0 T I
res block topdown block conv 1xl pg(z; |zi)
res block topdown block " I‘ 9
conv 1x1
- - . SIOCK
Input Reconstruction
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Very Deep VAE (VD-VAE)

VD-VAE [Child, 2021]

Empirically, deep VAEs often suffer from unstable training
* Recap: NVAE requires complex techniques to stabilize KL

Q: How to make VAE deeper?

Idea 2: Additional simple techniques
* Transposed CNNs => Nearest-neighbor upsampling
e Scale down weight initialization of final layer in residual block
* Gradient skipping: skip updates when gradient norm is above threshold
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Very Deep VAE (VD-VAE)

VD-VAE [Child, 2021]

Experiment: Very deep VAEs (>50 layers) can outperform autoregressive models
with fewer parameters while maintaining fast sampling

Model type Params Depth Sampling NLL
CIFAR-10
Pixel CNN++ (Salimans et al., 2017) AR 53M* D 2.92
PixelSNAIL (Chen et al..2017) AR D 2.85
Sparse Transformer (Child et al..2019) AR S59M D 2.80
VLAE (Chen et al., 2016 VAE D <295
IAF-VAE (Kingma et al.[ 2016) VAE 12 1 <3.11
Flow++ (Ho et al..[2019 Flow 31IM 1 < 3.08
BIVA (Maalge et al.[[2019, VAE 103M 15 1 <3.08
NVAE (Vahdat & Kautz][2020) VAE 13IM 30 1 <291
Very Deep VAE (ours) VAE 39M 45 1 <2.87
ImageNet-32
Gated Pixel CNN AR 177M* 10 D 3.83
Image Transformer (Parmar et al|2018) AR D 3.77
BIVA VAE 103M* 15 1 <3.96
NVAE VAE 268M 28 1 <392
Flow++ Flow 169M 1 <3.86
Very Deep VAE (ours) VAE 119M 78 1 < 3.80
ImageNet-64
Gated Pixel CNN AR 177M* D 3.57
SPN (Menick & Kalchbrenner,2018) AR 150M D 3.52
Sparse Transformer AR 152M D 3.44
Glow (Kingma & Dhariwall[2018) Flow 1 3.81
Flow++ Flow 73M 1 < 3.69
Very Deep VAE (ours) VAE 125M 75 1 <3.52
FFHQ-256 (5 bit)
NVAE VAE 36 1 <0.68
Very Deep VAE (ours) VAE 115M 62 1 < 0.61
FFHQ-1024 (8 bit)
Very Deep VAE (ours) VAE 115M 72 1 <242
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ImageGPT

Generative Pretraining from Pixels [Chen et al., 2020]
* Apply GPT [Brown et al., 2020] to image domain by flattening image to 1D.

* Train autoregressive transformer which predicts the pixels without knowledge of
2D input structure.

n
LAR — IEX[— logp(x)] Where p(m) — Hp(xﬂilm’ﬁl?‘“’xﬂ'i_lﬁe)
il i=1
I ’" 2 (a) Autoregressive 3 (a) Linear Probe
k&: v (COOO0 ))'
5 °e_sceece eccococes -
. . ‘ . . ‘ . (b) Finetune
00000 O
v
HEE BN
Target
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ImageGPT

Generative Pretraining from Pixels [Chen et al., 2020]
* |t even outperforms supervised representation with ImageNet in transfer learning.

Model Acc  Unsup Transfer ~ Sup Transfer Model Acc  Unsup Transfer = Sup Transfer
BeeNot 1 22 94 v SLEARSTO
CsINet-
SimCLR 953 v A.utoAugment 98.5
iGPT-L 96.3 v SimCLR 98.6 v
GPipe 99.0 V4
CIFAR-100 iGPT-L 99.0 V4
ResNet-152  78.0 V4
SimCLR 80.2 Vv CIFAR-100
iGPTL 828 v iGPT-L 88.5 \/
STL-10 SimCLR 89.0 Y
AMDIM-L 942 Vv AutoAugment 89.3
iGPT-L 95.5 Vv EfficientNet 91.7 V4
Linear probing Full finetuning

* |t also shows inpainting ability

Model Input Completions & Original
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Scaling Autoregressive Video Models (Video Transformer)

Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible
* e.g.) 32x32 video of length 16 has 16 * 32 * 32 * 3 =49,152 pixels
* Much longer than the input length of GPT3 (=2048), ImageGPT (=3072)

Main idea: Reduce the complexity of autoregressive video generation by

* 1) Designing an efficient self-attention layer for videos
* 2) Operating on sub-sampled videos instead of pixels

Algorithmic Intelligence Lab
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Scaling Autoregressive Video Models (Video Transformer)

Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible

Idea 1: Video Transformer with multiple stacked block-local self-attention
* Reduces the computation cost of self-attention over videos, by
1. Decompose avideo of (T, H,W) inton, =t - h-w blocks of (¢, h,w)
2. Separately apply self attentions over n, blocks
* Attention complexity (T - H - W)?> = n, - (t - h - w)*
3. Concatenate the outputs and process through a fully connected layer

* For the connectivity between all pixels, use different block sizes at every layer

Algorithmic Intelligence Lab
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Scaling Autoregressive Video Models (Video Transformer)

Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible

Idea 2: Divide the video into non-overlapping 3D blocks
* Further reduces the complexity by decomposing the video itself

* Introduce a subscale factor s = (s¢, sy, S,,) that divides a video into
s = (8¢ - S Sy ) sub-sampled videos (slices)
* Then, each slice is processed through the block-local self-attention layers

Subscale Slices

5888

L(0.0.0) I(0,0.1) I(0.1.0) T(1.0.0)

* And sequentially generate x 9 0,0y, X(0,0,1) --
* e.g)Ifweuses = (4,2,2), each slice consists of 4 * 16 * 16 * 3 = 3072 pixels
« Attention complexity: 491522 => 30722 (256 times lower)
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VideoGPT

VideoGPT [Yan et al., 2021]

* Other approach for autoregressive video generation
* Learns downsampled discrete representations over space-time

Main idea of VideoGPT

1. Train a VQ-VAE with 3D CNNs on the video data to learn discrete latent
representations downsampled over space-time

2. Train autoregressive transformer (Image-GPT architecture) in the latent space for
learning a prior

3. Decode the predicted discrete latents using the VQ-VAE decoder

Dls(.rele Latents . 4 ]
Conv3D Conv3D
Transformer
Codebook

/N

P Rt Flattened sequence
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MaskGIT: Masked Generative Image Transformer

MaskGIT [Chang et al., 2022]
* Non-autoregressive generative modeling based on VQ-VAE + Transformer
* Enables parallel decoding and thus much faster sampling

Sequential
Decoding

with Autoregressive
Transformers

t=200 t=255

Scheduled
Parallel

Decoding
with MaskGIT

Algorithmic Intelligence Lab 176



MaskGIT: Masked Generative Image Transformer

MaskGIT [Chang et al., 2022]
* Stage 1. Tokenization of images to discrete visual tokens

e Stage 2. Masked modeling via bidirectional Transformer

For sampling, MaskGiT starts from a blank canvas withall the tokens masked out

Reconstruction

Input Visual Tokens

Tokenization

L
B am
l L]
L]
Gy
Decoder

Masked Tokens

Masked Visual Token i . - : s Bidirectional
Modeling (MVTM) :: i " . Transformer

Scheduled
Parallel

Decoding
with MaskGIT
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MaskGIT: Masked Generative Image Transformer

Experiment: It achieves state-of-the-art results with faster inference time
* |n particular, on classifier accuracy score (CAS) score

* Compared with autoregressive modeling (e.g., VQGAN), much faster (=8 step)

Model FID| ISt Prect Rect # params  # steps CAS x100 1
ImageNet 256256 Top-1(76.6)  Top-5 (93.1)
DCTransformer [32] ° 36.51 n/a 0.36 0.67 738M >1024

BigGAN-deep [4] 6.95 198.2 0.87 0.28 160M 1 43.99 67.89
Improved DDPM [33]” 12.26 n/a 0.70 0.62 280M 250

ADM [12]° 10.94 101.0 0.69 0.63 554M 250

VQVAE-2 [37]° 31.11  ~45 0.36 0.57 13.5B1 5120 54.83 77.59
VQGAN [15]° 15.78  78.3 n/a n/a 1.4B 256

VQGAN* 18.65 804 0.78 0.26 227M 256 53.10 76.18
MaskGIT (Ours) 6.18 182.1 0.80 0.51 227M 8 63.14 84.45
ImageNet 512 x 512

BigGAN-deep [4] 8.43 2325 0.88 0.29 160M 1 44.02 68.22
ADM [12]° 23.24 58.06 0.73 0.60 559M 250

VQGAN* 26.52  66.8 0.73 0.31 227M 1024 51.29 74.24
MaskGIT (Ours) 732  156.0 0.78 0.50 227M 12 63.43 84.79
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MaskGIT: Masked Generative Image Transformer

Experiment: It achieves state-of-the-art results with faster inference time
* In particular, on classifier accuracy score (CAS) score
* Compared with autoregressive modeling (e.g., VQGAN), much faster (=8 step)

Training Set
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MaskGIT: Masked Generative Image Transformer

MaskGIT [Chang et al., 2022]
* Non-autoregressive generative modeling based on VQ-VAE + Transformer
* Enables parallel decoding and thus much faster sampling

Sequential
Decoding

with Autoregressive
Transformers

t=200 t=255

Scheduled
Parallel

Decoding
with MaskGIT

Algorithmic Intelligence Lab 180



Muse & MAGVIT: Masked Generative Transformers in Other domains

Muse: Scaling up MaskGiT for text-to-image generation task

* To scale-up the generation to high-resolution images, use hierarchical architecture
* Hence, it generates resolution beyond 256x256

" Text Embedding
Text Prompt: “A cat
looking at a dog” —> Text Encoder —HMI W = ~
Input Masked Reconstructed
Image: Tokens Tokens
H N [ | ] |
: > @ 5] Base EECE ___
e 3 C I Transformer %l=l
G [ +
256x256
Cross Entropy
Loss
Masked Reconstructed
Input |
- npu mag High-Res Tokens HighRes Tokens
A B & \ / [ | [ |
: = .l.l 2 .l.=ll
R . Ay . = SuperRes
T\ —> VQTokenizer —»| 81— S & R
. = - mm Transformer -
' EE E N EEE
e 120 ‘" = nm H EN EEE
512x512 *

Cross Entropy
Loss
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Muse & MAGVIT: Masked Generative Transformers in Other domains

Muse: Scaling up MaskGiT for text-to-image generation task

* To scale-up the generation to high-resolution images, use hierarchical architecture
* Hence, it generates resolution beyond 256x256

Text Embedding

i
[ [ [ 3
o
Low-Res & ]
Tokens 8x
mEE [ c »
[ [ | @ 55 a 0
mEE (e85 |=5
. i} g O
16x16
Masked
High-Res Tokens K|V
.- [ |
[ ] [ ] 8c c
E N ) 82 Qg2
HEE E £ 58
[ | = < |+ <
| |
[ || |
64x64

Step = 16

Step = 14

Algorithmic Intelligence Lab

Step = 18

32x

Predicted
High-Res Tokens

Text

A bear riding a bicycle,
with a bird perched on
the handlebars.

LowRes 256x256

A high contrast portrait photo
of a fluffy hamster wearing an
orange beanie and sunglasses
holding a sign that says
"Let's PAINT!"
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Muse & MAGVIT: Masked Generative Transformers in Other domains

Muse: Scaling up MaskGiT for text-to-image generation task
* In particular, on classifier accuracy score (CAS) score
* Compared with autoregressive modeling (e.g., VQGAN), much faster (=8 step)

/
A fluffy baby sloth with A sheep in a wine glass. A large array of color-

a knitted hat trying to ful cupcakes, arranged
figure out a laptop, on a maple table to
close up. spell MUSE.

— %

E” / - |
Manhattan skyline made Astronauts kicking a Two cats doing research. 3D mesh of Titanic
of bread. football in front of floating on a water
Eiffel tower. lily pond 1in the style
of Monet.
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Muse & MAGVIT: Masked Generative Transformers in Other domains

Muse: Scaling up MaskGiT for text-to-image generation task
* In particular, on classifier accuracy score (CAS) score
* Compared with autoregressive modeling (e.g., VQGAN), much faster (=8 step)

Input

Inpainting

3 1 (:'fa»-t - “"‘?-S:

A‘fUnﬁy big inflatable Hot air balloons A fdtﬁ?istic Streamline

yellow duck Moderne building
r

Outpainting

A wildflower bloom at On the ring;of Saturn
Mountain Rainier

London skyline
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Muse & MAGVIT: Masked Generative Transformers in Other domains

MAGVIT: MaskGiT for video generation

* Demonstrates diverse applications as well as generation, e.g., prediction
* All applications can be achieved with a single model

Main idea: Considers diverse masking suitable for each task during training

Tasks: Frame Prediction

Task
inputs

Central Outpainting  Dynamic Inpainting Frame Interpolation

@mwmmm

3D-VQ
Encoder

- H
— N

- as

Sample one of the tasks per step

Algorithmic Intelligence Lab

L

Raw Video

3D- VQ
Encoder 3D- VQ

Deood
~

Task prompt [
Class token ﬁ

Refine condition

Predict masked tokens

L

Condition tokens

\

|
|
/.

an)

[MASK] tokens

Target tokens

Random combination at a sampled ratio )

 Bidirectional
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Muse & MAGVIT: Masked Generative Transformers in Other domains

MAGVIT: MaskGiT for video generation

* Demonstrates diverse applications as well as generation, e.g., prediction
* All applications can be achieved with a single model

(a) Quality UCF-101CG FVDJ, UCF-101 CG IS Frame Prediction (FP)

(c) Flexibility “
(] Video Diffusion : 57.0 ;
e e 10 tasks e

TATS :
WS ) 33 (iorveyy ) 793 | in one model

(prior best)

(—— 89.3 :
vAGwIT D 76 MAGVIT e Frame Interpolation
-77% S
0 200 400 0.0 45.0 90.0
BAIR FP FVD{, Kinetics-600 FP FVD{,
NOWA ) g7 RaMViD : 16.5
RaMViD Video Diffusion :
(prior best) ) 84 (prior best) 16.2
62 9.9
wao () IYEVLEN S—
-26% -39%
30 60 90 0 10 20

(b) Efficiency Estimated Relative Inference Runtime  Inference Throughput
At 128x128 native resolution d

Video Diffusion ) 250x
L i MAGVIT-B MAGVIT-L
TATS el 60x 37 fps 65 fps
MAGVIT ' 1 ?rl‘lllxl ??Illxl (CG) B
EE EE Squeezing Something 4
0 100 200 300 - - = - ]

And other tasks ...
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Muse & MAGVIT: Masked Generative Transformers in Other domains

MAGVIT: MaskGiT for video generation
* Demonstrates diverse applications as well as generation, e.g., prediction

* All applications can be achieved with a single model

Video prediction Video interpolation
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1. Generative Adversarial Networks (GANs)
 Towards better, scalable GANs
* Recent techniques to mitigate overfitting

2. Generative Diffusion Processes
* Formulations: Score-based models and diffusion models
e Efficient solvers and distillation
* Guidance techniques

3. Other Generative Models
e Scaling Variational autoencoders (VAEs)
* Autoregressive modeling
* Generative Transformers with masked modeling

4. Summary
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Summary

* We discussed 3 different categories of generative models
1. GANs: Implicit generative modeling
2. Generative diffusion process: Related to score-matching or diffusion process
3. Others: VAEs, autoregressive models, and masked modeling

e Each of them has its own drawback, but they have been remarkably mitigated:
 GANSs: Recently showed strong scalability
* Generative diffusion process: Faster synthesis with efficient solver and distillation

* Currently, generative diffusion process is the dominant generative model due to:
e Open-sourced foundation models: Such as Stable-diffusion models
e Strong generalization power: Much less suffer from mode collapse problem
* But still, other generative models can be a game changer in the future!
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