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Basic knowledge in machine learning & classic model design are assumed:
(e.g., AI501, AI502, AI601 course)

• Machine Learning
• Problems: classification, regression, etc.
• Optimization: stochastic gradient descent (SGD), regularizations, etc.
• Deep Neural Networks: basic structures, representation learning, etc.

• Classic model designs
• Convolutional Neural Networks (CNNs)

• Basic operations: convolution, spatial pooling, etc.
• Design techniques: skip-connection, normalization, etc.
• Some notable models: AlexNet, Inception, ResNet, etc.

• Transformers
• Transformer architecture: token data structure, self-attention, etc.

Introduction
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Convolutional neural networks have been tremendously successful in practical 
applications;

Overview: Convolutional Neural Networks

3

Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

Classification and retrieval [Krizhevsky et al., 2012]
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Neural networks that use convolution in place of general matrix multiplication
• Sharing parameters across multiple image locations

• Translation equivariant (invariant with pooling) operation

Specialized for processing data that has a known, grid-like topology
• e.g., time-series data (1D grid), image data (2D grid)

Overview: Convolutional Neural Networks

4

*sources : 
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Vision transformers with self-attention for 2D spatial data also emerged recently

• Shares parameters across multiple image locations
• However, self-attention adapts different weights per each location

• Very small inductive-bias towards image data; everything is learned from data!

Overview: Vision Transformers

5
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Part 1.  Basics
• Evolution of CNN architectures
• Batch normalization and ResNet
• Attention module in CNNs
• Vision transformers

Part 2.  Advanced Topics
• Toward automation of network design
• Flexible architectures
• Observational study on network architectures
• Deep spatial-temporal models
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Typically, designing a CNN model requires some effort
• There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, …

• It is costly to measure the performance of each model and choose the best one

Example: LeNet for handwritten digits recognition [LeCun et al., 1998]

• However, LeNet is not enough to solve real-world problems in AI domain
• CNNs are typically applied to extremely complicated domains, e.g. raw RGB images 
• We need to design a larger model to solve them adequately 

Overview: Why do we develop CNN architectures?

9
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Problem: The larger the network, the more difficult it is to design
1. Optimization difficulty

• When the training loss is degraded
• Deeper networks are typically much harder to optimize
• Related to gradient vanishing and exploding

2. Generalization difficulty 
• The training is done well, but the testing error is degraded
• Larger networks are more likely to over-fit, i.e., regularization is necessary

• Good architectures should be scalable that solves both of these problems

Overview: Why do we develop CNN architectures?

10

*sources : 
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
- https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
• ImageNet dataset: a large database of visual objects

• ~14M labeled images, 20K classes
• Human labels via Amazon MTurk

• Classification: 1,281,167 images for training / 1,000 categories

• Annually ran from 2010 to 2017, and now hosted by Kaggle

• For details, see [Russakovsky et al., 2015]

Evolution of CNN Architectures

11*source :  http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png

http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png
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ILSVRC contributed greatly to development of CNN architectures

Evolution of CNN Architectures

12
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Trend on ILSVRC classification top-5 error rates

2012 20152013 2014 2016 ~

AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections
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The first winner to use CNN in ILSVRC, with an astounding improvement
• Top-5 error is largely improved: 25.8% → 15.3%
• The 2nd best entry at that time was 26.2%

• 8-layer CNN (5 Conv + 3 FC) 

• Utilized 2 GPUs (GTX-580 × 2) for training the network
• Split a single network into 2 parts to distribute them into each GPU

Evolution of CNN Architectures: AlexNet [Krizhevsky et al., 2012]

14

Convolutional layer Max pooling Fully-connected layers

*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
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A simple variant of AlexNet, placing the 3rd in ILSVRC’13 (15.3% → 13.5%)
• Smaller kernel at input: 11 × 11 → 7 × 7

• Smaller stride at input: 4 → 2

• The # of hidden filters are doubled

Lessons
1. Design principle: Use smaller kernel, and smaller stride

2. CNN architectures can be very sensitive on hyperparameters

Evolution of CNN Architectures: ZFNet [Zeiler et al., 2014] 

15*source :  Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014
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Networks were getting deeper 
• AlexNet: 8 layers
• VGGNet: 19 layers
• GoogleNet: 24 layers

Both focused on parameter efficiency of each block
• Mainly to allow larger networks computable at that time

Evolution of CNN Architectures: VGGNet and GoogleNet

17

AlexNet

VGGNet

GoogLeNet

*sources : 
- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015

Next, VGGNet
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The 2nd place in ILSVRC’14 (11.7% → 7.33%)
• Designed using only 3 × 3 kernels for convolutions

Lesson: Stacking multiple 3 × 3 is advantageous than using other kernels

Example: ( 3×3 ×3) v.s. (7×7)
• Essentially, they get the same receptive field
• ( 3×3 ×3) have less # parameters

• 3× C× 3×3 ×C = 𝟐𝟕𝐂𝟐

• C× 7×7 ×C = 𝟒𝟗𝐂𝟐

• ( 3×3 ×3) gives more non-linearities

Evolution of CNN Architectures: VGGNet [Simonyan et al., 2014]

18*source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 

Next, GoogLeNet
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The winner of ILSVRC’14 (11.7% → 6.66%)
• Achieved 12× fewer parameters than AlexNet

Inception module
• Multiple operation paths with different receptive fields
• Each of the outputs are concatenated in filter-wise
• Capturing sparse patterns in a stack of features

Evolution of CNN Architectures: GoogleNet [Szegedy et al., 2015]

19*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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Next, BatchNorm
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Training a deep network well had been a delicate task
• It requires a careful initialization, with adequately low learning rate
• Gradient vanishing: networks containing saturating non-linearity

Ioffe et al. (2015): Such difficulties are come from internal covariate shift

Motivation: “The cup game analogy”

• Similar problem happens during training of deep neural networks
• Updates in early layers may shift the inputs of later layers too much 

Batch normalization [Ioffe et al., 2015]

22

“Go water 
the plants!”

“Got water 
in your pants!”

“kite bang eat 
face monkey…”

*sources : 
- Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
- https://www.quora.com/Why-does-batch-normalization-help

http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
https://www.quora.com/Why-does-batch-normalization-help
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Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

Idea: A normalization layer that behaves differently in training and testing

1. During training, input distribution of     only depends on γ and 𝛽
• Training mini-batches are always normalized into mean 0, variance 1

2. There is some gap between       and             (      , resp.) 
• Noise injection effect for each mini-batch ⇒ Regularization effect

Batch normalization [Ioffe et al., 2015]

23

Normalize Affine transform

Trainable

Training

Testing

*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015
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Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

• BN allows much higher learning rates, i.e. faster training
• BN stabilizes gradient vanishing on saturating non-linearities
• BN also has its own regularization effect, so that it allows to reduce weight decay, 

and to remove dropout layers

• BN makes GoogLeNet much easier to train with great improvements

Batch normalization [Ioffe et al., 2015]

24
*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015

Next, ResNet
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The winner of ILSVRC’15 (6.66% → 3.57%)
• ResNet is the first architecture succeeded to train >100-layer networks

• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
• 56-layer net gets higher training error than 20-layers network

• Deeper networks are much harder to optimize even if we use BNs

• It’s not due to overfitting, but optimization difficulty

• Quiz: Why is that?

ResNet [He et al., 2016a]

25

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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The winner of ILSVRC’15 (6.66% → 3.57%)
• ResNet is the first architecture succeeded to train >100-layer networks

• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
• It’s not due to overfitting, but optimization difficulty

• Quiz: Why is that?

• If the 56-layer model optimized well, then it must be better than the 20-layer
• There is a trivial solution for the 36-layer: identity

ResNet [He et al., 2016a]

26

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Motivation: A non-linear layer may struggle to represent an identity function
• Due to its internal non-linearities, e.g. ReLU
• This may cause the optimization difficulty on large networks

Idea: Reparametrize each layer to make them easy to represent an identity
• When all the weights are set to zero, the layer represents an identity

ResNet [He et al., 2016a]

27*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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ResNet [He et al., 2016a]

28

Plain nets v.s. ResNets

• Deeper ResNets can be trained without any difficulty

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
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ResNet [He et al., 2016a] 

29

• Identity connection resolved a major difficulty on optimizing large networks

Revolution of depth: Training >100-layer network without difficulty
• Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b] 

• ResNet also shows good generalization ability as well

Revolution of 
depth 

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
- He et al. "Identity mappings in deep residual networks.", ECCV 2016
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ResNet oriented architectures

30

Various architectures now are based on ResNet
• ResNet with stochastic depth [Huang et al., 2016]
• Wide ResNet [Zagoruyko et al., 2016]
• ResNet in ResNet [Targ et al., 2016]
• ResNeXt [Xie et al., 2016]
• PyramidNet [Han et al., 2016]
• Inception-v4  [Szegedy et al., 2017]
• DenseNet [Huang et al., 2017]
• Dual Path Network [Chen et al., 2017]

Transition of design paradigm: Optimization ⇒ Generalization 
• People are now less concerned about optimization problems in a model 
• Instead, they now focus more on its generalization ability
• “How well does an architecture generalize as its scale grows?”

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Wide Residual Networks [Zagoruyko et al., 2016]
• Residuals can also work to enlarge the width, not only its depth
• Residual blocks with ×k wider filters 
• Increasing width instead of depth can be more computationally efficient

• GPUs are much better on handling "wide-but-shallow" than "thin-but-deep“
• WRN-50 outperforms ResNet-152

Deep Networks with Stochastic Depth [Huang et al., 2016]
• Randomly drop a subset of layers during training
• Bypassing via identity connections
• Reduces gradient vanishing, and training time as well

ResNet oriented architectures

31*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a 

residual block (“cardinality”)
• Increasing cardinality is more effective than 

going deeper or wider

DenseNet [Huang et al. 2017]
• Passing all the previous representation 

directly via concatenation of features
• Strengthens feature propagation and 

feature reuse

ResNet oriented architectures

32*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University



Algorithmic Intelligence Lab

ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a residual block (“cardinality”)
• Increasing cardinality is more effective than going deeper or wider

DenseNet [Huang et al. 2017]
• Passing all the previous representation directly via concatenation of features
• Strengthens feature propagation and feature reuse

ResNet oriented architectures 

33*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

Squeeze and Excitation Network [Hu et al., 2018] 
• It selectively emphasizes informative feature maps and suppress less useful ones via 

global information in two steps
• Squeeze step: obtaining global information by shrinking feature maps

• Global average pooling
• Excitation step: recalibrating weights of features by learning channel-wise weights

• MLP of two fully-connected layers

Squeeze and Excitation Module [Hu et al., 2018]

35*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

SE block integrates to Inception and ResNet module
• SENet ranked first in the ILSVRC’17 (2.99% → 2.25%)

Squeeze and Excitation Module [Hu et al., 2018]

36*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

SE block integrates to Inception and ResNet module
• SENet ranked first in the ILSVRC’17 (2.99% → 2.25%)

Squeeze and Excitation Module [Hu et al., 2018]

37

Next, Convolutional Block Attention Module
*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018



Algorithmic Intelligence Lab

Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Convolutional Block Attention Module (CBAM) [Woo et al., 2018]
• Learning ‘what’ and ‘where’ to attend in the channel and spatial axes respectively
• Channel and Spatial attention modules

Convolutional Block Attention Module [Woo et al., 2018]

38*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Channel attention module: It helps “what” to focus
• Both average-pooling and max-pooling are important
• Max-pooling provides the information of distinctive object features
• Both pooled features share a MLP with two fully-connected layers

Convolutional Block Attention Module [Woo et al., 2018]

39*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Spatial attention module: It helps “where” to focus
• Again, Both average-pooling and max-pooling are important
• It aggregates channel information of feature maps by using two pooling operations
• Capturing spatial locality via convolution

Convolutional Block Attention Module [Woo et al., 2018]

40*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

• CBAM module integrated with ResNet outperforms SE module

Convolutional Block Attention Module [Woo et al., 2018]

41*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018Grad-CAM visualization
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Success of Transformer in Language: GPT-3
• In 2020, GPT-3 achieved near-human results in various tasks

• OpenAI even trained a model with 175 billion parameters (350 GB of memory) and 
showed near-human performance on various few-shot tasks

Shift in Vision Architectures: Transformer architecture

43
*source : https://youtu.be/CSe3_u9P-RM
Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018

https://youtu.be/CSe3_u9P-RM
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What is Transformer?
• Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are 

composed of multiple block with self-attention module

Shift in Vision Architectures: Transformer architecture

44*source: http:// http://jalammar.github.io/illustrated-transformer
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What is Transformer?
• Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are 

composed of multiple block with self-attention module

• The self-attention is a function of query (e.g., “Je”) and key/value (e.g., “I”)
• It shows powerful performances in learning sequential input-output relations

Shift in Vision Architectures: Transformer architecture

45

Query

Key/value
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Attention mechanism can be used for other type of input data, e.g. image
• Self-attention operation scales quadratically with the sequence length

Question: How to transform an image to sequence data?
• Dosovitskiy et al. (2021): splits an image into patches

Shift in Vision Architectures: Transformer architecture

46
*source: [Chen et al. 2020] Generative Pretraining from Pixels, ICML 2020

[Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Sequence of patch images
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Vision Transformer [Dosovitskiy et al., 2021]
• Splitting an image into fixed-size patches (16x16)

• Linearly embedding each of them
• Adding position embedding & [class] token

Vision Transformer [Dosovitskiy et al., 2021]

47*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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Vision Transformer [Dosovitskiy et al., 2021]
• Splitting an image into fixed-size patches (16x16)

• Linearly embedding each of them
• Adding position embedding & [class] token

• Dosovitskiy et al. (2021) pre-trains models on larger datasets (14M-300M images)
• Vision Transformer achieves competitive performances compared to CNNs

Vision Transformer [Dosovitskiy et al., 2021]

48*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Vision Transformer CNNs
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Sequence of patch images

Vision Transformers

49

Various architectures now are based on Vision Transformer
1. Modification for patch splitting

• Token-to-Token Vision Transformer [Li et al., 2021]
• Swin Transformer [Liu et al., 2021]

2. Modification for hierarchical structure
• Pooling-based Vision Transformer [Heo et al., 2021]
• Swin Transformer [Liu et al., 2021]

Question: What's a good way to split an image into a sequence of patches?
• Vision Transformer splits an image into a fixed grid-shape of non-overlapping patches

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Token-to-Token Vision Transformer [Li et al., 2021]
• (Soft-split) Splitting an image into overlapping patches
• (Re-structurization) Rearranging patch sequences into 2D image shape
• Iterating re-structurization and soft-split before Transformer backbone

Token-to-Token Vision Transformer [Li et al., 2021]

50*source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
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Token-to-Token Vision Transformer [Li et al., 2021]
• (Soft-split) Splitting an image into overlapping patches
• (Re-structurization) Rearranging patch sequences into 2D image shape
• Iterating re-structurization and soft-split before Transformer backbone

Token-to-Token Vision Transformer [Li et al., 2021]

51*source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
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Pooling-based Vision Transformer [Heo et al., 2021]
• Design of a hierarchical structure

• Motivation: ResNet gradually downsamples
the features from the input to the output

• Downsampling via the pooling layer based on 
depth-wise convolution 

• Spatial reduction with small parameters

Pooling-based Vision Transformer [Heo et al., 2021]

52*source: [Heo et al. 2021] Rethinking Spatial Dimensions of Vision Transformers , ICCV 2021
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Swin Transformer [Liu et al., 2021]
• Design of a hierarchical structure
• Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
• Efficient self-attention computation by using shifted windows scheme
• Concatenating 2 × 2 neighboring patches for downsampling operation
• Powerful performances in dense prediction tasks 

e.g., object detection and semantic segmentation

Swin Transformer [Liu et al., 2021]

53*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021

Shifted window scheme
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Question: Do vision transformers need some inductive bias under small data?
• Vision transformers achieved state-of-the-art performances but…

• Required gigantic-scale training with JFT-300M data
• Sub-optimal performance under the ImageNet-scale training

• Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

DeiT lll [Touvron et al., 2022]

54*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017
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Motivation: Do vision transformers need some inductive bias under small data?
• Vision transformers achieved state-of-the-art performances but…

• Required gigantic-scale training with JFT-300M data
• Sub-optimal performance under the ImageNet-scale training

• Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

DeiT lll [Touvron et al., 2022] finds that vanilla vision transformer can outperform 
CNNs in ImageNet-scale:
• The problem was in the sub-optimal optimization designs

• LayerScale
• Improved data augmentations
could solve the optimization issues

Check the paper for details!

DeiT lll [Touvron et al., 2022]

55*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017
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Motivation: Do vision transformers need some inductive bias under small data?
• Vision transformers achieved state-of-the-art performances but…

• Required gigantic-scale training with JFT-300M data
• Sub-optimal performance under the ImageNet-scale training

• Injecting some inductive bias (e.g., Swin, PiT) was needed for ImageNet-scale

DeiT lll [Touvron et al., 2022] finds that vanilla vision transformer can outperform 
CNNs in ImageNet-scale:

DeiT lll [Touvron et al., 2022]

56*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017
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Although the CNN architecture has evolved greatly, our design principles are still 
relying on heuristics

• Smaller kernel and smaller stride, increase cardinality instead of width ...

Recently, there have been works on automatically finding a structure which can 
outperform existing human-crafted architectures

1. Search space: Naïvely searching every model is nearly impossible
2. Searching algorithm: Evaluating each model is very costly, and black-boxed

Toward Automation of Network Design

59

A sample architecture found in [Brock et al., 2018]

*source :  Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

Motivation: modern architectures are built simply: a repeated modules
• Try not to search the whole model, but only cells modules
• Normal cell and Reduction cell (cell w/ stride 2)

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

60

CIFAR

ImageNet

*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks

• Each block is determined by selecting methods
1. Select two hidden states from ℎ", ℎ"#$ or of existing block
2. Select methods to process for each of the selected states
3. Select a method to combine the two states

• (1) element-wise addition or (2) concatenation

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

61*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks
• Example: 𝐵 = 4

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

62*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Set of methods to be selected based on their prevalence in the CNN literature

Any searching methods can be used
• Random search [Bergstra et al., 2012] could also work
• RL-based search [Zoph et al., 2016] is mainly used in this paper

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

63*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10
• NASNet-A: State-of-the-art error rates could be achieved
• NASNet-B/C: Extremely parameter-efficient models were also found

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

64*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10
• NASNet-A: State-of-the-art error rates could be achieved
• NASNet-B/C: Extremely parameter-efficient models were also found

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

65

NASNet-A
*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10

Cells found in CIFAR-10 could also transferred well into ImageNet

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

66*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10

Cells found in CIFAR-10 could also transferred well into ImageNet

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

67*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Although Scaling up CNNs is widely used to achieve better generalization, the 
process of scaling has never been understood

• The common way is scaling model depth, width, and image resolution

Question: Is there a principled scaling method for better accuracy and efficiency?

Toward Automation of Network Design: Principle of Network Scaling

68*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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The state-of-the-art ILSVRC classification in 2019 (top-5 error rate 2.9%)
• EfficientNet uniformly scales network width, depth, and resolution with a set of fixed 

scaling coefficients (called “compound scaling”)

Motivation: There exists certain relationship between network width, depth and 
image resolution

• Scaling single dimension has a limitation
• Gain diminishes for bigger models.

• Scaling all together with a fixed ratio

Principle of Network Scaling: EfficientNet [Tan et al., 2019]
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Depth 𝒘 Width 𝒅 Resolution 𝒓

*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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• Compound scaling: Scaling all together with a fixed ratio 𝜙 in a principled way
• Depth 𝑑 = 𝛼%, 𝛼 ≥ 1
• Width 𝑤 = 𝛽%, 𝛽 ≥ 1
• Resolution 𝑟 = 𝛾%, 𝛾 ≥ 1
• Finding 𝛼, 𝛽, 𝛾 under compound constraint 𝛼 ⋅ 𝛽& ⋅ 𝛾& ≈ 2

• Why? Such scaling approximately increases total FLOPS by 𝛼 ⋅ 𝛽& ⋅ 𝛾& % ≈ 2%

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

70*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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Having a good baseline network is also critical!
• Multi-objective neural architecture search

• Optimizing both accuracy and FLOPS
• Search space is the same as MnasNet [Tan et al., 2019]

• Mobile-size baseline, called EfficientNet-B0
• Main building block is mobile inverted bottleneck, MBConv
• Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

71*source : Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile”, CVPR 2019

Factorized Hierarchical Search SpaceMBConv
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Having a good baseline network is also critical!
• Multi-objective neural architecture search

• Optimizing both accuracy and FLOPS
• Search space is the same as MnasNet [Tan et al., 2019]

• Mobile-size baseline, called EfficientNet-B0
• Main building block is mobile inverted bottleneck, MBConv
• Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]
• DWConv denotes depthwise convolution [Howard et al ., 2017]

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

72

Architecture of EfficientNet-B0

*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile”, CVPR 2019

MBConv
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From EfficientNet-B0 to B7
• EfficientNet-B0: Baseline model with 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15
• EfficientNet-B1 to B7: Scaling up EfficientNet-B0 with different 𝜙

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

73*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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From EfficientNet-B0 to B7
• EfficientNet-B0: Baseline model with 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15
• EfficientNet-B1 to B7: Scaling up EfficientNet-B0 with different 𝜙

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

74*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018

EfficientNet-B7 achieves 
new state-of-the-art 84.3% 
top-1 accuracy but being 
1.3x smaller than NASNet-A. 

EfficientNet-B1 is 7.6x 
smaller and 5.7x faster than 
ResNet-152
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A searched architecture at each scale requires re-training from scratch
• Can we share weights between architecture instances?

• BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)
• A child-network can be evaluated and deployed without re-training!
• How to train such a super-network?

Automation of networks at different scales: BigNAS [Yu et al., 2020]

75*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018

BigNASNAS

Super-network

Child-networks
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A searched architecture at each scale requires re-training from scratch
• Can we share weights between architecture instances?

• BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)
• Sandwich Training Rule (each iteration)

• Sample the biggest, smallest, and N random-sized children
• Gradients are averaged between all children

• Inplace Distillation
• Soft labels predicted by the biggest child model supervises all other child 

models

Automation of networks at different scales: BigNAS [Yu et al., 2020]

76*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018



Algorithmic Intelligence Lab

A searched architecture at each scale requires re-training from scratch
• Can we share weights between architecture instances?

• BigNAS trains a single set of parameters (super-network), then sample its subset (child-
network)
• BigNAS sampled at different scale outperforms existing models without re-training
• Training & evaluating BigNAS takes only 1300 TPU-hours (c.f., 60000 GPU-hours in original NAS)

Automation of networks at different scales: BigNAS [Yu et al., 2020]

77*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Architecture searching is still an active research area
• AmoebaNet [Real et al., 2018]
• NAONet [Luo et al., 2018]
• BigNAS [Yu et al., 2020]
• NASViT [Gong et al., 2022]

• Specifically, NAS for vision transformers is emerging
• Careful NAS design is required due to architectural differences
• e.g., Vision transformers are instable during the early training stage due to the lack

of inductive bias for images

Toward Automation of Network Design

78*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018
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Objects in real-world often contain sophisticated spatial information
• Multiple scales
• Irregular shapes

Drawbacks: geometric transformations are assumed fixed and known
• Different size and shape of kernels may be required
• But, regular kernels have fixed-size and shape

Dilated and Deformable Convolution

80*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Objects in real-world often contain sophisticated spatial information
• Multiple scales
• Irregular shapes

Drawbacks: geometric transformations are assumed fixed and known
• Different size and shape of kernels may be required
• But, regular kernels have fixed-size and shape

Dilated and Deformable Convolution

81*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Motivation: Images in real-world usually contain multi-scale objects
• Regular convolution has a fixed-size of field of view
• Different size of kernels are required for multi-scale objects
• But, large-size of kernels may increase computational costs

Dilated convolution: Filling with zero values inside of large-size of kernels for 
efficient computation

• It can enlarge field-of-view to incorporate multi-scale context

Dilated Convolution [Chen et al., 2017]

82*source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019
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Motivation: Images in real-world usually contain multi-scale objects
• Regular convolution has a fixed-size of field of view
• Different size of kernels are required for multi-scale objects
• But, large-size of kernels may increase computational costs

• Example: Dilated convolution in semantic segmentation

Dilated Convolution [Chen et al., 2017]

83

Image
Dilated Convolution

*source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

84*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf

Different types of sampling locations
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

85*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf

(offset field)
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

86*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Learned offsets in the deformable convolution layers are highly adaptive to the 
image content

• Different size and shape of kernels for multiple objects

Deformable Convolution [Dai et al., 2017]

87*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017

Visualizations of sampling locations
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Motivation: Make image patches in vision transformers deformable! 

Square patches in the vision transformers could be too restrictive for localization 
(e.g., object detection, segmentation)

• Deformable DETR [Zhu et al., 2020] additionally learns the offset of pixels in a patch

Deformable Transformers [Zhu et al., 2021]

88*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017

Regular attention

Deformable attention
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Motivation: Make image patches in vision transformers deformable! 

Square patches in the vision transformers could be too restrictive for localization 
(e.g., object detection, segmentation)

• Deformable DETR [Zhu et al., 2021] additionally learns the offset of pixels in a patch
• Self-attention is regularized around the localization of objects

Deformable Transformers [Zhu et al., 2021]

89*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017
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Motivation: Not all patches are equivalently important 

Some image patches could contain redundant and less important information
• EViT [Liang et al., 2022], ATS [Fayyaz et al., 2022] merges these patches
• Less important patches (e.g., background) are identified at each attention layer

• Attention & value-norms are used as importance scores

Adaptive Patches for Transformers [Liang et al et al., 2022]

90*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017



Algorithmic Intelligence Lab

Motivation: Not all patches are equivalently important 

Some image patches could contain redundant and less important information
• EViT [Liang et al., 2022], ATS [Fayyaz et al., 2022] merges these patches

• ATS [Fayyaz et al., 2022] achieves the comparable accuracy at 37% reduced 
computations (GFLOPs) than DeiT

Adaptive Patches for Transformers [Liang et al et al., 2022]

91*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017

ImageNet classification accuracy per GFLOP 
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ResNet improved generalization by revolution of depth

Quiz: But, does it fully explain why deep ResNets generalize well?

Increasing depth does not always mean better generalization
• Naïve CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

93*source : Eigen et al., “Understanding Deep Architectures using a Recursive Convolutional Network”, Arxiv 2014
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Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of 
a single ultra-deep network

• Each module in a ResNet receives a mixture of 𝟐𝒏#𝟏 different distributions

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

94*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016



Algorithmic Intelligence Lab

Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of 
a single ultra-deep network

• Deleting a module in ResNet has a minimal effect on performance
• Similar effect as removing 2)#$ paths out of 2): still 2)#$ paths alive!

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]
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Next, visualizing loss functions in CNN

*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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Trainability of neural nets is highly dependent on network architecture
• However, the effect of each choice on the underlying loss surface is unclear

• Why are we able to minimize highly non-convex neural loss?
• Why do the resulting minima generalize?

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• 𝛿 and 𝜂 are sampled from a random Gaussian distribution
• To remove some scaling effect, 𝛿 and 𝜂 are normalized filter-wise

Visualizing the loss landscape of neural nets [Li et al., 2018]
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Local minima Random directions

𝒊𝐭𝐡 layer, 𝒋𝐭𝐡 filter

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]
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ResNet-56

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

98*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

99

ResNet, no shortcuts ⇒ sharp minima

ResNet ⇒ flat minima

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Wide-ResNet lead the network toward more flat minimizer
• WideResNet-56 with width-multiplier 𝑘 = 1, 2, 4, 8
• Increased width flatten the minimizer in ResNet

Visualizing the loss landscape of neural nets [Li et al., 2018]
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WRN-56

WRN-56, no shortcuts

Next, minimum energy paths in CNNs
*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Draxler et al. (2018) analyzes minimum energy paths [Jónsson et al., 1998] 
between two local minima 𝜃! and  𝜃" of a given model: 

- They found a path 𝜃$ → 𝜃& with almost zero barrier
• A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures
• e.g. ResNet, DenseNet

• Minima of a loss of deep neural networks 
are perhaps on a single connected manifold

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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DenseNet-40-12

*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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For a given model with two local minima 𝜃! and 𝜃", they applied AutoNEB
[Kolsbjerg et al., 2016] to find a minimum energy path 

• A state-of the-art for connecting minima from molecular statistical mechanics

• The deeper and wider an architecture, 
the lower are the saddles between minima 

• They essentially vanish for current-day 
deep architectures

• The test accuracy is also preserved
• CIFAR-10: < +0.5%
• CIFAR-100: < +2.2%

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

102*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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• The deeper and wider an architecture, the lower are the barriers 

• They essentially vanish for current-day deep architectures

Why do this phenomenon happen?
• Parameter redundancy may help to flatten the neural loss

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

103*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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Raghu et al. (2021) analyzes representation similarity in transformer layers:
• ViT tends to have uniform representation over different layers

• All layers in ViT show much greater similarity than ResNet
• In ResNet, similarity is divided into different (lower/higher) stages

• ViT and ResNet features are similar in lower stages, but significantly different in 
higher stages

Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]

104*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018

Cosine similarity of representations in layers
within ViT and ResNet

Cosine similarity of representations in layers
between ViT vs. ResNet
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Raghu et al. (2021) analyzes representation similarity in transformer layers:
• ViT tends to have uniform representation over different layers

• All layers in ViT show much greater similarity than ResNet
• In ResNet, similarity is divided into different (lower/higher) stages

• This is mainly due to stronger skip-connection in ViT

• 𝒛𝒊
+"(𝒛")

: norm ratio of 𝒛𝒊 (skip-connection) and 𝒇𝒊 (MLP or Self-Attention)

• The skip-connection in ViT is even stronger in deeper layers

Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]
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Raghu et al. (2021) analyzes representation similarity in transformer layers:
• ViT tends to have uniform representation over different layers

• All layers in ViT show much greater similarity than ResNet
• In ResNet, similarity is divided into different (lower/higher) stages

• This is mainly due to stronger skip-connection in ViT

• 𝒛𝒊
+"(𝒛")

: norm ratio of 𝒛𝒊 (skip-connection) and 𝒇𝒊 (MLP or Self-Attention)

• The skip-connection in ViT is even stronger in deeper layers

• When skip-connection removed at a middle-block (e.g., 𝑖 = 7) the cosine 
similarity of ViT becomes similar to that of ResNets

Do Vision Transformers See Like Convolutional Neural Networks? [Raghu et al., 2021]
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Cosine similarity over the layers
(ViT with skip-connection removed at 𝑖 = 7)

Cosine similarity over the layers
(ResNet)
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Park et al. (2022) analyzes frequency domain of vision transformer layers:
• Self-attention layer keeps high-frequency information

• MLPs variants (e.g., CNNs, MLP in transformers) act as high-pass filters
• However, self-attention tend to act as low-pass filters

• ViT deals with both high- and low-frequency information
(while CNNs simply pass high-frequency information)

How do vision transformers work? [Park et al., 2022]

107*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018

Amplitude of high-frequency signals in Fourier space of feature maps
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Park et al. (2022) analyzes frequency domain of vision transformer layers:
• Self-attention layer keeps high-frequency information

• MLPs variants (e.g., CNNs, MLP in transformers) act as high-pass filters
• However, self-attention tend to act as low-pass filters

• Processing both low- and high-frequency information contributes to robustness
against high-frequency noises in ViT vs. ResNet
• Frequency-specific noise with Gaussian noise 𝜹 and Fourier transform 𝓕

How do vision transformers work? [Park et al., 2022]
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Deep spatial-temporal model as an extension of spatial models

• 3D convolutional neural networks and video vision transformers

Overview: Deep Spatial-Temporal Models

*source: https://github.com/Zhongdao/Towards-Realtime-MOT

Deep Object Tracking [Wang et al., 2020]Video Action Recognition [Karpathy et al., 2014]

*source: https://towardsdatascience.com/downloading-the-kinetics-dataset-for-human-action-recognition-in-deep-learning-500c3d50f776 

3D Convolutional Neural Networks Video Vision Transformers
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Problem: The curse of dimensionality
• Spatial-temporal data is high-dimensional (e.g., channels × height × width × time)

• Brute-force extension of spatial models is often intractable

• Data sub-sampling & approximated network architectures are typically employed:
• How to fuse information from spatial cue (appearance) and temporal cue (motion) 
• Long-range modeling

Good models should be computationally scalable (e.g., linear complexity to temporal dimension) and 
should deal with information fusion & long-range modeling problems

Overview: Deep Spatial-Temporal Models
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Evolution of CNN Architectures for Video: 3D CNNs

112

• Raw video data structure
• Video is a 3D tensor with 2 spatial and 1 time axes
• How to learn good representation for video?

• 3D CNN directly extends convolution with cuboid (3D) kernel

• Some early works employed 3D CNNs for video, however:
• 3D-Conv [Ji et al., 2012] and C3D [Tran et al., 2015]
• Their performances were unsatisfactory due to optimization difficulty of 3D CNNs

• Can we leverage pre-trained representation for images? i.e., transfer learning

*source :  https://towardsdatascience.com/a-comprehensive-introduction

Video Tensor

3D convolution in video data

2D convolution

3D convolution



Algorithmic Intelligence Lab

Evolution of CNN Architectures for Video: 3D CNNs

113

• Inflated 3D (I3D) [Carreira and Zisserman, 2017]
• Adapting a pre-trained 2D CNN model for 3D CNN

• I3D utilizes the Inception architecture
• Instead of training from scratch, I3D leverages ImageNet-pretraining

• Weight inflating technique for initializing 3D kernels with 2D kernels
1. Extend a dimension by stacking existing 2D kernel
2. Divide weights by the stack length to ensure the same output scale

*source :  https://chacha95.github.io/2019-07-04-VideoUnderstanding3/
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Evolution of CNN Architectures for Video: 3D CNNs

• Inflated 3D (I3D) [Carreira and Zisserman, 2017]
• 3D Convolutional feature map learned by I3D

• Top row: the 3D filter trained with I3D networks
• Bottom row: the original 2D filter from Inception

• 3D kernel sliced at each time resembles geometric patterns of the 2D filter
• Representation of 2D CNN is effectively transferred to 3D

*source : [Carreira and Zisserman, 2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

I3D RGB filters time

Original 2D filters from Inception

t=1 t=2 t=3 t=4 t=5 t=6 t=7
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Evolution of CNN Architectures for Video: 3D CNNs

• Inflated 3D (I3D) [Carreira and Zisserman, 2017]
• I3D beats hand-craft video representations (e.g., optical flow) by a large margin
• Transferring the architecture of 2D CNN models is the key idea

• ResNet3D [Hara et al., 2018]
• Residual connections for 3D CNN
• Transfers ResNet [He et al., 2016] architecture to 3D CNN

• ResNeXt for 3D [Chen et al., 2018]
• Multi-Fiber Networks for Video Recognition
• Translates the multiple parallel path to 3D CNN

• STCNet [Diba et al., 2018]
• Spatio-Temporal Channel correlation networks
• Translates the Sequeeze-and-Excitation mechanism to 3D CNN
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Evolution of CNN Architectures for Video: Efficient 3D CNNs

116

• Executing 3D CNNs is computationally expensive
• I3D [Carreira and Zisserman, 2017] demands computation burden comparable to 

the state-of-the-art transformer models (100+ GFLOPs)
• A line of research pursuing efficient 3D CNN architectures

• Factorization of 3D kernel
• A 3D CNN kernel of size 𝑷×𝑴×𝑵 can be factorized to two convolutions;

• A spatial 2D kernel (1×𝑀×𝑁) and a temporal 1D kernel (𝑃×1×1)
• R2+1D [Tran et al., 2018] and P3D [Qiu et al., 2017] directly adopts this idea to 

largely save FLOPs

• Application of channel-wise separated convolutions 
• CSN [Tran et al., 2019] shows the efficacy of  separating channel interactions and 

spatiotemporal interactions
• State-of-the-art performance is achieved with ×3 less computations than I3D 

[Carreira and Zisserman, 2017]
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• ViViT is a pure transformer framework for video classification
• Tubelet embedding (3D extension of ViT)

- Extract non-overlapping, spatial-temporal tubes from input volume
- Linearly project them into ℝ/

Transformers for spatial-temporal data : Extension of ViT - ViViT

117*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
1. Joint Spatio-temporal attention

- Simply forwards all pairwise interactions between all spatio-temporal tokens through 
transformer encoder

- Unlike CNN, it can model long-range interactions across the video from the 1st layer
- Requires quadratic complexity, 𝒪 (𝑛" ) 𝑛#) 𝑛$ %), with number of tokens

Transformers for spatial-temporal data : Extension of ViT - ViViT

118*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
2. Factorized encoder

- Spatial encoder models interactions between tokens from the same temporal index
- Temporal encoder models interactions between tokens from different temporal indices
- Requires more transformer layers (i.e., more parameters) than the joint design
- But less complexity, 𝒪( 𝑛" ) 𝑛# % + 𝑛$%)

Transformers for spatial-temporal data : Extension of ViT - ViViT

119*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• The factorized encoder design shows the best accuracy-to-FLOPs ratio
• However, the joint-design performs better and requires smaller number of 

parameters.

• Instead of factorizing the model, can we design approximate attention for both 
performance and FLOPs efficiency?

Transformers for spatial-temporal data : Extension of ViT - ViViT

120*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021

Kinetics-400 dataset benchmarkComparison between model variants
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Brute-force joint spatial-temporal attention is intractable for transformers
• Due to the quadratic complexity with respect to inputs
• This motivates the development of more efficient attention scheme

• Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]
• Video Swin Transformer [Liu et al., 2021]

Transformers for spatial-temporal data : Approximated Attentions

121

Video classification cost in TFLOPs
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Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

• Proposes divided space-time attention
• Instead of exhaustively comparing all pairs of patches (i.e., joint space-time attention), 

it separately applies temporal attention and spatial attention one after the other
• Temporal attention

• Each patch (blue) is compared only with the patches at the same spatial location in 
other frames (green) 

• Initialized to zero (so that function as identity mapping in early training stages)
• Spatial attention

• Each patch (blue) is compared only with the patches within the same frame (red)

• Designs may look similar to ViViT (model 3) in a big picture, however, implementation 
details differ including 1) time– then–space att., 2) zero initializations for temporal layers

Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

122*source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021
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Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

• Divided space-time attention leads to dramatic computational savings with 
respect to spatial resolution/video length

• Outperforms SOTA models while requiring less computational complexity
• 𝑂 𝑆&𝑇 + 𝑂(𝑆𝑇&) instead of 𝑂(𝑆&𝑇&)

Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

123*source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021

3D CNNs

TimeSformer

Kinetics-400 dataset benchmark
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Video Swin Transformer [Liu et al., 2021]

• Recall: Swin Transformer [Liu et al., 2021]

• Design of a hierarchical structure
• Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
• Efficient self-attention computation by using shifted windows scheme
• Concatenating 2 × 2 neighboring patches for downsampling operation
• Powerful performances in dense prediction tasks 

e.g., object detection and semantic segmentation

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

124

Shifted window scheme

*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
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Video Swin Transformer [Liu et al., 2021]

• In videos, pixels that are closer to each other in spatiotemporal distance are more 
likely to be correlated (i.e., spatiotemporal locality)

• Thus, local attention computation well approximates spatiotemporal self-attention
• Video Swin Transformer is a spatial-temporal adaptation of Swin Transformer

i.e., extension from spatial locality to spatial-temporal locality

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

125*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
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Video Swin Transformer [Liu et al., 2021]

• Outperforms SOTA 3D CNN models while requiring smaller computation costs for 
inference

• Also outperforms SOTA transformer-based models while requiring half less 
computational costs

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

126*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021

Ours

Transformer-
based models

3D CNNs
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X-ViT [Bulat et al., 2021]

• Space-time mixing attention—𝑶 𝑻𝑺𝟐 complexity 
• The following architectural changes in X-ViT reduce the full quadratic complexity 
𝑶 𝑻𝟐𝑺𝟐 to the proposed 𝑶 𝑻𝑺𝟐

1. Restricting attentions within a temporal window of 𝑡 − 𝑡#, 𝑡 + 𝑡# for each 𝑞',$
à The complexity becomes 𝑂(𝑇 2𝑡! + 1 "𝑆")

2. Instead of individual space-time keys, the time compression 𝒇 is applied such that 
a single attention is considered over time with 4𝑘'# ≜ 𝑓( 𝑘'#,$)$$; … ; 𝑘'#,$*$$ )

3. Instead of general affine transforms, “shift trick” is employed as the implementatio
n of 𝑓 to further save computations:
• Given a key 𝑘'#,$# ∈ ℝ+, split its channels into (2𝑡# + 1) segments, then pick t

he 𝑡, ∈ [1, 2𝑡# + 1]th index to form the final 4𝑘'# à The complexity becomes 𝑂(𝑇(2𝑡! + 1)𝑆")

Transformers for spatial-temporal data : Approximated Attentions - X-ViT

127*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021

*Red is the query vector
*Orange is the key vector that the query vector attends to

X-ViT

⃜

𝑡! = 1 𝑡! = 2 𝑡! = 3 𝑡! = 2𝑡" + 1

𝑘##,%#&' 𝑘##,%#&"$%('⃜

𝑓

⃜

-𝑘##

Can be disregarded as 𝟐𝒕𝒘 + 𝟏 is a small constant

The shift trick in X-ViT

𝑑-dimension
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X-ViT [Bulat et al., 2021]

• Achieves comparable performance to SOTA models while requiring significantly 
lower computational complexity
- X-ViT (16-frames, 850 GFLOPs) achieves performance comparable to heavy-weight variants 

of TimeSformer (96-frames, 7140 GFLOPs) and ViViT (32 frames, 4340 GFLOPs)

• Allows for an efficient approximation of local space-time attention at no extra cost

Transformers for spatial-temporal data : Approximated Attentions - X-ViT

128*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021



Algorithmic Intelligence Lab

3D convolutions vs. Vision Transformers
• 3D convolutions

• Pro: Can capture detailed local spatiotemporal features to suppress local redundancy
• Con: Inefficient to capture global (long-range) dependency due to limited receptive field

• Vision Transformers
• Pro: Can capture global (long-range) dependency by self-attention mechanism
• Con: Inefficient to encode spatiotemporal feature in shallow layers (local redundancy) and 

requires explicit position embedding (which could be sub-optimal for videos)

Integrating merits of both, a unified model has been proposed

Transformers for spatial-temporal data : Unified transformer-CNN model

129

- Vision transformer learns local repre
sentations with redundant global at
tention

- This wastes large computation to en
code only very local spatiotemporal 
representations 

Visualizations of TimeSformer [Bertasius et al., 2021]
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UniFormer [Li et al., 2022] 

• Dynamic Position Embedding (DPE)
• Instead of explicit position embedding, dynamic position embedding (DPE) is used:

• DPE dynamically integrates 3D position information into all tokens
• 𝑫𝑾𝑪𝒐𝒏𝒗 is a simple 3D depth-wise convolution with zero paddings

- Shared parameters & locality of convolution tackles permutation-invariance
- In CPE, zero paddings help tokens on the borders be aware of their absolute positions
- That is, all tokens progressively encode their position information via querying their neighbor

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

130*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)
1) Local MHRA (for shallow layers)
- Aim for shallow layers is to learn detailed video representation from local 

spatiotemporal context to reduce redundancy
- Design token affinity to be local learnable parameter matrix, which depends only on 

relative 3D position between tokens
- RA learns local spatiotemporal affinity between one anchor token 𝑋- and other 

tokens in the small tube

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

131*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)
2) Global MHRA (for deep layers)
- Aim for deep layers is to capture long-term token dependency in global video clip
- Design token affinity via comparing content similarity among all tokens in global view

- 𝑋. can be any token in global 3D tube Ω/×1×2
- 𝑄3()) and 𝐾3()) are two different linear transformations

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

132*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022



Algorithmic Intelligence Lab

UniFormer [Li et al., 2022] 

• Uniformer outperforms existing models with much fewer computational cost
• Achieves a preferable balance between computation and accuracy

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

133*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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Question: Is the success of Vision Transformers due to 
1. the powerful Transformer architecture?
2. using patches as the input representation?

General Patch-based Architectures: MLP architectures 

136*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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• Tolstikhin et al. (2021) suggests MLP module as an alternative of self-attention module
• For a given Image 𝐼,

General Patch-based Architectures: MLP architectures 

137*source : [Yu et al., 2021] MetaFormer is Actually What You Need for Vision, arxiv 2021

Transformer architectures MLP architectures

𝑍 = MLP Norm 𝑌 + 𝑌
= 𝜎 Norm 𝑌 𝑊% 𝑊& + 𝑌

𝑌 = SelfAttn Norm 𝑋 + 𝑋

𝑋 = InputEmbed 𝐼

𝑍 = MLP Norm 𝑌 + 𝑌
= 𝜎 Norm 𝑌 𝑊% 𝑊& + 𝑌

𝑌 = MLP Norm 𝑋 + 𝑋

𝑋 = InputEmbed 𝐼
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MLP-Mixer [Tolstikhin et al., 2021]
• Replacing the self-attention into MLP layers
• Removing position embedding & [class] token
• Mixing spatial & channel dimension separately

General Patch-based Architectures: MLP-Mixer [Tolstikhin et al., 2021]
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MLP-Mixer [Tolstikhin et al., 2021]
• Replacing the self-attention into MLP layers
• Removing position embedding & [class] token
• Mixing spatial & channel dimension separately

• MLP-Mixer shows competitive performances compared to Vision Transformers

General Patch-based Architectures: MLP-Mixer [Tolstikhin et al., 2021]
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• MetaFormers [Yu et al, 2022] reveals that patch-based architecture with any token-
mixing method can work well

• For example, replacing self-attention with sophisticated average pooling (PoolFormer) 
allows light-weight model in terms of both computations and # parameters

General Patch-based Architectures: MetaFormers

140*source : [Yu et al., 2022] MetaFormer is Actually What You Need for Vision, arxiv 2021
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• MetaFormers [Yu et al, 2022] reveals that patch-based architecture with any token-
mixing method can work well

• For example, replacing self-attention with sophisticated average pooling (PoolFormer) 
allows light-weight model in terms of both computations and # parameters
• Sophisticated design of token-mixing is important such as pooling sizes
• Mixing different strategies (e.g., pooling + attention) is also effective

General Patch-based Architectures: MetaFormers

141*source : [Yu et al., 2022] MetaFormer is Actually What You Need for Vision, arxiv 2021
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• ConvNext [Liu et al, 2022] reveals that introducing X-former (e.g., transformers) 
architectural characteristic to CNNs is effective

• Patch-based input projection
• In the input layer of ResNet, a 7×7 convolution is applied (overlapping patches)
• In vision transformers, a more aggressive strategy is used:

• A linear transform of patch as tokens (i.e., non-overlapping convolution)

• Wide feed-forward MLP
• Note that FFN in ViT is effectively 1×1 convolution with 4× channel width as the input
• Design principle is opposite to that of ResNet (i.e., the bottleneck block)

General Patch-based Architectures: ConvNext

142



Algorithmic Intelligence Lab

• ConvNext [Liu et al, 2022] reveals that introducing X-former (e.g., transformers) 
architectural characteristic to CNNs is effective

• There are various design transfers from X-former to CNN in ConvNext
(refer to the paper for details)

• Simply transferring design principles from X-former to CNNs could make them outperfor
m vision transformers

General Patch-based Architectures: ConvNext
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• VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
• Grid (and sequence) of image patches can be views a s a special case of graph
• VisionGNN represents images as a graph (𝑽, 𝑬) with image patch as nodes (𝑽) and learnable 

edges (𝑬)

New design paradigms
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• VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
• Grid (and sequence) of image patches can be views a s a special case of graph
• VisionGNN represents images as a graph (𝑽, 𝑬) with image patch as nodes (𝑽) and learnable 

edges (𝑬)

• For modeling graph-based representation, a new graph model base-on Graph Convolution 
Networks is proposed
• Graph Convolution Networks

• Graph convolutional operation aggregates value of the node features of neighbors
(Note that there is no ordering between nodes)

New design paradigms
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• VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
• Grid (and sequence) of image patches can be views a s a special case of graph
• VisionGNN represents images as a graph (𝑽, 𝑬) with image patch as nodes (𝑽) and learnable 

edges (𝑬)

• VisionGNN can outperform vision transformers and CNNs

New design paradigms
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• VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
• Grid (and sequence) of image patches can be views a s a special case of graph
• VisionGNN represents images as a graph (𝑽, 𝑬) with image patch as nodes (𝑽) and learnable 

edges (𝑬)

• More importantly, the graph structure naturally provides interpretability in the hidden 
layers 
• Earlier blocks connects low-level features (e.g., colors) and local features
• Later blocks connect semantically-related (e.g., same category) features

New design paradigms
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• VisionGNN [Han et al, 2022]

Motivation: Can we go beyond grid-based representation of images?
• Grid (and sequence) of image patches can be views a s a special case of graph
• VisionGNN represents images as a graph (𝑽, 𝑬) with image patch as nodes (𝑽) and learnable 

edges (𝑬)

• More importantly, the graph structure naturally provides interpretability in the hidden 
layers 
• Earlier blocks connects low-level features (e.g., colors) and local features
• Later blocks connect semantically-related (e.g., same category) features

• However, nodes are still regular-shaped in VisionGNN
• Can we make more flexible model?
• Treating each pixel as a node which will result in too many nodes (>10K)

New design paradigms
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• Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
• Context Clusters view an image as a set of unorganized points and extract features via 

simplified clustering algorithm

• n points 𝑷 ∈ ℝ𝒏×𝒅 are clustered using SuperPixel method
• SuperPixel SLIC [Achanta et al., 2013]

• For inputs, n is the number of all pixels, however, an initial 𝟒×𝟒 convolution 
projects them to feature space, reducing # points to 𝒏

𝟏𝟔
• For clustering 𝒄 centers are evenly proposed, and each point is assigned to the 

nearest center (feature cosine similarity is used as the distance metric)
• After clustering, each cluster can have variable number of points (even 0 is possible)

New design paradigms
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• Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
• Context Clusters view an image as a set of unorganized points and extract features via 

simplified clustering algorithm

• Assuming a cluster has 𝒎 points, aggregation and dispatching are done within the cluster
• The cosine similarity 𝒔 ∈ ℝ8 between 𝒎 points and the cluster center is used as weights:

• Feature aggregation (g)
• (note that 𝑣- is MLP projection of each point 𝑝- and 𝛼, 𝛽 are learnable scalars)

• Feature dispatching

New design paradigms
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• Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
• Context Clusters view an image as a set of unorganized points and extract features via 

simplified clustering algorithm

• Assuming a cluster has 𝒎 points, aggregation and dispatching are done within the cluster
• Finally, additional MLP block is applied for channel-wise mixing in each point

New design paradigms
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• Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
• Context Clusters view an image as a set of unorganized points and extract features via 

simplified clustering algorithm

• Assuming a cluster has 𝒎 points, aggregation and dispatching are done within the cluster
• Finally, additional MLP block is applied for channel-wise mixing in each point

• To save the computation, some stages of Points Reducer is applied
• Reducing is simply done by regular convolution operations (e.g., 4×4) over the spatial grid
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• Context Clusters (CoC) [Ma et al, 2023]

Motivation: Can we go beyond grid-based patches of images?
• Context Clusters view an image as a set of unorganized points and extract features via 

simplified clustering algorithm
• CoC can outperform CNNs and Transformers

• More importantly, CoC shows clustering with the semantics in image

New design paradigms
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• RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
• Deep networks (left) are built on the Information Bottleneck

• Layers close to the input contain more low-level information
• Features close to the output are rich in semantics

• However, downstream tasks may suffer if the learned features are over-compressed
e.g., Transfer learning for object detection

New design paradigms
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• RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
• Deep networks (left) are built on the Information Bottleneck

• Layers close to the input contain more low-level information
• Features close to the output are rich in semantics

• Instead, RevCol suggests a design where information in the earlier layer could be 
(approximately) restored with information in the later layers
• Then, how is the network designed?

New design paradigms
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• RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
• Inspired by invertible neural networks in Normalizing Flow, reversible operations are defined:

• 𝑡 is the depth index, 𝑭$ is the layer at 𝑡, 𝛾 is a simple channel-wise scaling

• Specifically, the output 𝑥$ is the weighted sum of 𝑥$)8 and non-linear transform of 
intermediate states 𝑥$)9, … , 𝑥$)8*9
• Note that the operation is invertible
• Any deep networks can implement 𝑭$ (e.g., ConvNext is employed)

New design paradigms
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• RevCol: Reversible Column Networks [Cai et al, 2023]

Motivation: Can we go beyond Information Bottleneck (IB) principle?
• Inspired by invertible neural networks in Normalizing Flow, reversible operations are defined:

• 𝑡 is the depth index, 𝑭$ is the layer at 𝑡, 𝛾 is a simple channel-wise scaling

• Despite the restrictive design, ConvNext with RevCol is comparable to the vanilla model
• More importantly, transfer learning is improved in object detection

New design paradigms
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• The larger the network, the more difficult it is to design
1. Optimization difficulty
2. Generalization difficulty
• ResNet: Optimization ⇒ Generalization

• Many variants of ResNet have been emerged 
• Very recent trends towards network design and scaling

• Recently, various types of patch-based architectures are explored
• Vision transformers, MLP-mixing models, etc. 

• Many types of architectures are explored to capture good representation
• Automated network designs and flexible model architectures
• Many observational study supports the advantages of each architecture
• Spatial-temporal models (e.g., 3D CNNs and video transformers)

• A new architectural paradigms are actively searched
e.g., Graph-based architectures and Reversible networks

Summary
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