Introduction to Al602: Recent Advances in Deep Learning

Jinwoo Shin

KAIST AI

- Goal: Cover a very partial subset of recent advances in deep learning
- Course homepage: <u>https://alinlab.kaist.ac.kr/ai602_2023.html</u>
 - Slides are made by students in Algorithmic Intelligence Laboratory
 - Reference papers will be uploaded for each class (we have no textbook)
- Zoom link for the class
 - <u>https://kaist.zoom.us/j/87239786758?pwd=eUZZWGN3OWZPL1Z0eXFZNEx0K2dOZz0</u>
 <u>9</u>
- Office hours: Every Monday, 10:15am-11am, after the class (on demand)

- Instructor: Jinwoo Shin
 - Professor, KAIST AI and EE
 - Email: jinwoos@kaist.ac.kr
- TA
 - Kyungmin Lee, kyungmnlee@kaist.ac.kr

Prerequisites

- How much backgrounds do I need?
 - This course is not an introductory course to deep learning
 - I will cover some backgrounds quickly, but not spend too much time
 - For example, I will not teach how to use TensorFlow or PyTorch
 - Very sorry, but if you worry about this, please drop the class
- For example, I assume all students know the following concepts
 - Supervised, unsupervised and reinforcement learning
 - Popular neural architectures (e.g., RNN, CNN, LSTM, GNN, ResNet, Transformer)
 - Stochastic gradient descent
 - Batch normalization
 - Overfitting, underfitting and regularization
 - Reparameterization tricks
 - Popular generative models (e.g., GAN, VAE)

(Tentative) Schedule

- Each Lecture X (X>0) would take a day (or often two or more days)
 - Between lectures, there would be paper presentations by students
 - Lecture 0: Introduction to AI602
 - Lecture 1: Recent neural architectures for vision I: Discriminative models
 - Lecture 2: Recent neural architectures for vision II: Generative models
 - Lecture 3: Recent neural architectures for language
 - Lecture 4: Foundation models for language
 - Lecture 5: Foundation models for vision
 - Lecture 6: ML Safety and out-of-distribution detection
 - Lecture 7: Neural fields and high-dimensional vision

- We will provide a list of papers in a Google Sheet by **09/01**.
 - You have to choose a paper
 - The paper is used for your presentation and report
 - You cannot choose a paper chosen by another student (first-come-first-serve)
 - If you do not choose your paper until **09/04**, you will be assigned to a random paper.
- Presentation (free format)
 - Present the paper's contents, e.g., motivation, problem, contribution, method, experiments, etc.
 - Your talk would be around 10-15 minutes, i.e., 10-20 slides.
 - You do not need to include your own experimental results
 - Presentation schedules will be announced on **09/06**.

- Report (free format, e.g., use NeurIPS or CVPR format)
 - Try to reproduce some results of the paper
 - Try to criticize the weakness of the paper.
 - Try to improve the results of the paper
 - Due is on **12/15** (send your pdf to TA)
- How to criticize the paper?
 - You can criticize the paper upon your reproduced results
 - You can criticize the method fails in a different setup/problem, e.g., if some assumption does not hold
 - You can criticize the method in a way that it is suboptimal, i.e., there is a better method for the same problem
- How to improve the paper?
 - Try to resolve one of criticisms you found by your own idea, with supporting experimental results
 - At least, you can find better hyper-parameters to improve the results

Grading Policy

- Presentation 20% + Report 60% + Attendance 20%
 - You will be graded by the absolute scores, and not by the relative rankings. You will not compete with anybody.
 - You should attend at least 70% of classes (otherwise, 0 credit for attendance).
 - For the attendance criteria, one is considered as "attended" if his/her zoom access log is more than 50 minutes and your video is on (for showing your face). Otherwise, it is considered as "absent".
 - When you enter in Zoom session, please set your Zoom-name as "[student ID] [Name]" (e.g., 20217018 Junsu Kim)