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• DNNs achieve remarkable success in various applications
• They usually require massive amounts of manually labeled data
• The annotation cost is high because

• It is time-consuming: e.g., annotating bounding boxes of all objects
• It requires expert knowledge: e.g., medical diagnosis and retrosynthesis

• But, collecting unlabeled samples is extremely easy compared to annotation 

• Q. How to utilize the unlabeled samples for learning DNNs?

Motivation

4



Algorithmic Intelligence Lab

• Self-supervision?
• It is a label constructed from only input signals without human-annotation
• Using self-supervision, one can apply supervised learning approaches
• Examples: Predicting relative location of patches1 or rotation degree2

• What can we learn from self-supervised learning?
• To predict (well-designed) self-supervision, one might require high-level 

understanding of inputs
• E.g., we should know       is the right ear of the cat for predicting locations
• Thus, high-level representations could be learned w/o human-annotation

Self-supervised Learning

5* source : 1[Doersch et al., 2015], 2[Gidaris et al., 2018]
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• Foundation Models
• Fixing a foundation model (e.g., trained via self-supervised learning) and only 

adapting a simple task-specific model is sufficient for many problems
• E.g., linear classifier upon the SimCLR/BERT backbone

Good Representation is All You Need

6* source : [Bommasani et al., 2021]
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• How to define “unsupervised learning” term? (there is no answer …)

• Q) We need an objective (or loss) for learning; is the objective not a (self-)supervision?
• Q) Unsupervised learning ⊇ self-supervised learning?
• Q) What are the purely unsupervised learning methods?

• In classic ML, clustering, grouping and dimensionality reduction …

• In this lecture,
• We mainly use the “self-supervised learning” term instead of unsupervised learning
• We learn recent SSL approaches in vision, NLP, and graph domains

Unsupervised Learning vs. Self-supervised Learning

7

I now call it “self-supervised learning”, because “unsupervised” is 
both a loaded and confusing term. …

Self-supervised learning uses way more supervisory signals than 
supervised learning, and enormously more than reinforcement 
learning. That’s why calling it “unsupervised” is totally 
misleading.

by Yann LeCun (2019. 04. 30)
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• How to evaluate the quality of self-supervision?
1. Self-supervised learning in a large-scale dataset (e.g., ImageNet)
2. Transfer the pretrained network to various downstream tasks

• Linear probing: freeze the network and training only the linear classifier
⇒ it directly evaluates the learned representation qualities

• Fine-tuning whole parameters

Evaluating Self-supervised Representation

8

ImageNet (1.2M images)

Flowers102 (2k images)

Pretraining (self-supervised learning)

Linear evaluation or Fine-tuning

Transfer (initialization)
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Overview of the Lecture

9

• For the first part, we mainly follow the history of “SSL for images”
• 2019-2021: Contrastive Learning

• NPID (‘18), MoCo/SimCLR (‘20), BYOL (‘20), MoCov3/DINO (‘21)
• Similar idea was also considered in Exemplar-CNN (‘14)

• 2022-2023: Masked Image Modeling
• BEiT (‘22), MAE (‘22), data2vec (‘22)
• Similar idea was also considered in Context Encoder (‘16)

• Then, we focus on the recent development of Vision & Language SSL
• Image-text alignment using CLIP for transferrable visual representation
• Fused transformer for vision-language understanding
• Learning visual representation from frozen Large Language Models (LLMs)
• Unifying Vision-Language pretraining
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Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

• Q) How to construct positive/negative pairs in the unsupervised setting?

SSL via Invariance

11

Positive pair

Negative pair
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Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

• Q) How to construct positive/negative pairs in the unsupervised setting?
• A) Positive samples are constructed from

• Similar samples (e.g., in the same cluster)
• Same instance of different data augmentation
• Additional structures (e.g., multi-view images, video)
(negative samples = not positive samples)

SSL via Invariance

12

Positive pair

Negative pair
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• Instantiations of invariance-based approach
• Many classes of self-supervised learning can be viewed as invariance-based

• Clustering & pseudo-labeling
• Cluster data into 𝐾 groups, and assume they are pseudo-labels
• Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
• E.g., DeepCluster, SwAV, DINO

• Consistency regularization
• Attract similar samples
• E.g., MixMatch, UDA, BYOL

• Contrastive learning
• Attract similar samples and dispel dissimilar samples
• E.g., MoCo, SimCLR, CLIP

SSL via Invariance

13
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• DeepCluster [Caron et al., 2018]
• Idea: Clustering on embedding space provides pseudo-labels

• Simple method: Alternate between
1. Clustering the features to produce pseudo-labels
2. Updating parameters by predicting these pseudo-labels

• How to avoid trivial solutions?
• Empty cluster  ⇐ feature quantization (it reassigns empty clusters)
• Imbalanced sizes of clusters  ⇐ over-sampling

SSL via Invariance

14* source : [Caron et al., 2018]
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• DeepCluster [Caron et al., 2018]
• Is the clustering quality improved during training?

a. Clustering overlap between DeepCluster and ImageNet
b. Clustering overlap between the current and previous epochs
c. Influence of the number of clusters

• Which images activate the target filters in the last convolutional layer?

SSL via Invariance

15* source : [Caron et al., 2018]



Algorithmic Intelligence Lab

• Instance Discrimination [Wu et al., 2018]
• Idea: Each image belongs to an unique class

• Non-parameteric classifier

• Each class has only one instance ⇒ can be used directly as a class prototype

SSL via Invariance

16
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• Instance Discrimination [Wu et al., 2018]
• Idea: Each image belongs to an unique class

• Non-parameteric classifier

• Computing               is inefficient because it requires all                        and
• Solution 1: Memory bank

• Store all       in memory and update them for each mini-batch
• To stabilize training, representations in memory bank are momentum-updated

SSL via Invariance
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• Instance Discrimination [Wu et al., 2018]
• Idea: Each image belongs to an unique class

• Non-parameteric classifier

• Computing               is inefficient because it requires all                        and
• Solution 1: Memory bank

• Store all       in memory and update them for each mini-batch
• To stabilize training, representations in memory bank are momentum-updated

• Solution 2: Noise-Contrastive Estimation [Gutmann & Hyvarinen, 2010]
• It casts multi-class classification into a set of binary classification problems 

SSL via Invariance
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• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning
• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency 
• Queue allows us to use recent and many negative samples

SSL via Invariance

19* source : [He et al., 2019]
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SSL via Invariance

20* source : [Chen et al., 2020]

Randomly augmented samples →
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• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning
• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• MoCo also optimizes contrastive learning objective

• After encoder is updated,
• Momentum encoder is updated by

• Add the current positive keys       into the queue

SSL via Invariance

21* source : [Chen et al., 2020]

Randomly augmented samples →
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• Momentum Contrast (MoCo) [He et al., 2019]
• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency 
• Queue allows us to use recent and many negative samples

SSL via Invariance

22* source : [He et al., 2019]



Algorithmic Intelligence Lab

• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss 
3. Large batch sizes and longer training 

SSL via Invariance

23* source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)

• Strong color distortion degrades supervised learning, but improves SimCLR
• A stronger augmentation (AutoAugment) degrades SimCLR

SSL via Invariance

24* source : [Chen et al., 2020]
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
2. A nonlinear MLP between the representation and the contrastive loss 

• Contrastive learning objective learns     to be invariant to augmentations

• can remove information that may be useful such as color
• Using nonlinear         allows     to contain more information

SSL via Invariance

25* source : [Chen et al., 2020]

← Projection   →
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• This paper founds that contrastive learning benefits from …
3. Large batch sizes and longer training 

SSL via Invariance

26* source : [Chen et al., 2020]
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• SimCLR [Chen et al., 2020]
• A simple framework for contrastive learning without requiring specialized 

architectures or a memory bank

• SimCLR achieves outstanding performance in various downstream tasks

SSL via Invariance

27* source : [Chen et al., 2020]

Linear evaluation in ImageNetSemi-supervised learning in ImageNet

Fine-grained image classification tasks 
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• Limitations in contrastive learning (with negatives)
• It is sensitive to the number of negative ⇒ a large batch size or a queue is required
• Are all the different instances negative?

• Q) can we learn representations without negative samples?

• Simply minimizing                                   leads to mode collapse, i.e., 

• Next: Positive-only approaches

SSL via Invariance

28

Positive pair

Negative pair

This relation might be not true
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• Key components: target (momentum) network, predictor, stop-gradient (sg)

SSL via Invariance

29* source : [Grill et al., 2020]

Objective Update
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• Q) How does BYOL avoid the undesired collapsed solutions?
• is not updated in the direction of
• When the predictor is optimal, i.e.,                              ,
• For any constant c,                                            ⇒ constant equilibria is unstable

SSL via Invariance

30* source : [Grill et al., 2020]

Objective Update

aa’s i-th feature 
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• BYOL is more robust to the choice of batch sizes and augmentations

SSL via Invariance

31* source : [Grill et al., 2020]
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• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations

• BYOL is more robust to the choice of batch sizes and augmentations
• BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

SSL via Invariance

32* source : [Grill et al., 2020]
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• Key components: 
• (self) knowledge-distillation

• Distill the teacher (EMA version of a student) knowledge to the student
• multi-crop: a strategy to generate positive views 
• centering and sharpening: a strategy to avoid collapse

SSL via Invariance

33

Objective
ℒ!"#$ = 𝐻(𝑃% 𝑥 , 𝑃& 𝑥 )
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• DINO constructs a set of views 𝑉 via multi-crop strategy:
• (1) global views: 𝑥!

", 𝑥#
"

• (2) local views with smaller resolution

• All crops are passed through the student; only the global views are passed through 
the teacher: “local-to-global” correspondences
• Therefore, the loss is written as:

SSL via Invariance

34
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• DINO avoids the collapse via centering and sharpening
• Centering: subtracting a bias term c to the teacher

• The center c is updated with an exponential moving average

• Sharpening: using a low value for the temperature 𝜏$ in the teacher softmax
normalization

SSL via Invariance

35
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• DINO [Caron et al., 2021]
• DINO outperforms previous contrastive methods in classification tasks
• Self-supervised ViT features contain explicit information about the semantic 

segmentation of an image

SSL via Invariance

36

Top-1 accuracy for linear and k-NN evaluations
on the validation set of ImageNet

Self-attention map on [CLS] of self-supervised ViT

Video instance segmentation on top of
self-supervised feature
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• Choices for Positive Samples
• We discussed how to make positive samples invariant
• By the way, what are the positive samples?

• Similar data (e.g., by clustering)
• Discussed before (e.g., DeepCluster)

• Same data with different augmentation
• Discussed image domain before (e.g., SimCLR)
• How about other domains (e.g., language, graph, or domain-agnostic)?

• Same data with different modality
• Different channel (e.g., multi-view) or domain (e.g., vision & language)

• Utilize sequential structure
• (a) Predict future state from past states (positive = true future)
• (b) Use states from same sequence as positives (positive = same sequence)

SSL via Invariance

37
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• Choices for Positive Samples
• We discussed how to make positive samples invariant
• By the way, what are the positive samples?

• Similar data (e.g., by clustering)
• Discussed before (e.g., DeepCluster)

• Same data with different augmentation
• Discussed image domain before (e.g., SimCLR)
• How about other domains (e.g., language, graph, or domain-agnostic)?

• Same data with different modality
• Different channel (e.g., multi-view) or domain (e.g., vision & language)

• Utilize sequential structure
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SSL via Invariance – Data Augmentation

38
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• COCO-LM [Meng et al., 2021]
• Idea:

• Corrective Language Modeling: Recover original tokens from corrupted ones
• Sequence Contrastive Learning between corrupted and augmented sentences

• Both CLM and SCL improves Baseline
• Improvements are observed on different tasks, e.g., CLM: CoLA, SCL: RTE

(CoLA: grammatical validity of one sentence, RTE: relation of two sentences)

SSL via Invariance – Data Augmentation

39
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• GraphCL [You et al., 2020]
• This paper studies contrastive learning with diverse graph augmentations 

• Node dropping, edge perturbation, attribute masking, subgraph sampling
• GraphCL’s architecture and objective are almost the same as SimCLR

• The choice of graph augmentations is critical depending on downstream tasks

SSL via Invariance – Data Augmentation

40

Biochemical molecules Social networks
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• i-Mix [Lee et al., 2021]
• Idea: Introduce virtual labels in a batch and apply MixUp or CutMix

• It is a domain-agnostic regularization strategy for contrastive learning

• General form of i-Mix
• Let ℬ = {(𝑥% , .𝑥%)}%&!' be a batch of positive data pairs for contrastive learning

• For each anchor 𝑥%, 1𝑥% is a positive sample, .𝑥%()are negative samples
• Then, i-Mix defines the one-hot virtual label 𝑣% ∈ {0,1}' of 𝑥% and 1𝑥%

• 𝑣%,% = 1 and 𝑣%,)(% = 1
• With virtual labels, we can re-write a general contrastive loss: ℓ(𝑥% , 𝑣%)
• Then, i-Mix loss is defined as:

• i-Mix uses MixUp and CutMix functions as a Mix operator

• i-Mix can be applied for different contrastive objectives, such as SimCLR, MoCo
and BYOL

SSL via Invariance – Data Augmentation

41
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• i-Mix [Lee et al., 2021]
• Idea: Introduce virtual labels in a batch and apply MixUp or CutMix

• It is a domain-agnostic regularization strategy for contrastive learning

• i-Mix consistently improves the classification accuracy on different domains

SSL via Invariance – Data Augmentation

42
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• Choices for Positive Samples
• We discussed how to make positive samples invariant
• By the way, what are the positive samples?

• Similar data (e.g., by clustering)
• Discussed before (e.g., DeepCluster)

• Same data with different augmentation
• Discussed image domain before (e.g., SimCLR)
• How about other domains (e.g., language, graph, or domain-agnostic)?

• Same data with different modality
• Different channel (e.g., multi-view) or domain (e.g., video)

• Utilize sequential structure
• (a) Predict future state from past states (positive = true future)
• (b) Use states from same sequence as positives (positive = same sequence)

SSL via Invariance – Different Modality

43
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• Contrastive Multiview Coding (CMC) [Tian et al., 2019]
• Idea: Use multiple views of the same instance as positive samples

SSL via Invariance – Different Modality

44* source : [Tian et al., 2019]

Neural network

where
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• Contrastive Multiview Coding (CMC) [Tian et al., 2019]
• Idea: Use multiple views of the same instance as positive samples

• By minimizing                                                        ,                       learns to extract 
common information in two different views

• For     >2 views, use                                     or

SSL via Invariance – Different Modality

45* source : [Tian et al., 2019]Core-view Full-graph
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• Contrastive Multiview Coding (CMC) [Tian et al., 2019]
• Idea: Use multiple views of the same instance as positive samples

• Using more views is effective
• NYU-Depth-V2 dataset have 4 views: (1) luminance (L), (2) chrominance (ab), 

(3) depth, (4) surface normal
• Task: semantic segmentation

SSL via Invariance – Different Modality

46

Core-view vs Full-graph 

Number of views

* source : [Tian et al., 2019]
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• VATT [Akbari et al., 2021]
• VATT matches video, audio, and description text via contrastive learning
• Similar to CLIP, but uses Transformer encoder to apply on various data modalities

SSL via Invariance – Different Modality

47
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• VATT [Akbari et al., 2021]
• VATT matches video, audio, and description text via contrastive learning
• Similar to CLIP, but uses Transformer encoder to apply on various data modalities

• VATT is effective on various downstream tasks, e.g., video classification, audio 
classification, image classification, and text-to-video retrieval

SSL via Invariance – Different Modality

48
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• Choices for Positive Samples
• We discussed how to make positive samples invariant
• By the way, what are the positive samples?

• Similar data (e.g., by clustering)
• Discussed before (e.g., DeepCluster)

• Same data with different augmentation
• Discussed image domain before (e.g., SimCLR)
• How about other domains (e.g., language, graph, or domain-agnostic)?

• Same data with different modality
• Different channel (e.g., multi-view) or domain (e.g., vision & language)

• Utilize sequential structure
• (a) Predict future state from past states (positive = true future)
• (b) Use states from same sequence as positives (positive = same sequence)

SSL via Invariance – Sequential Structure

49

(a) Is also related to SSL via generation (sequential prediction)
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• Contrastive Predictive Coding (CPC) [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• : data at time t
• : high-level latent representation of 
• : context latent representation summarizing all 

SSL via Invariance – Sequential Structure

50
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ct = gar(x1, x2, . . . , xt)
<latexit sha1_base64="neiWvy30q1ZI2QR6xCDYwFtpkUk="></latexit>

zt
<latexit sha1_base64="0w3w1Shu5oTIK6jm6pykIFk2E2c="></latexit>

* source : [Oord et al., 2018]



Algorithmic Intelligence Lab

• Contrastive Predictive Coding (CPC) [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• : data at time t
• : high-level latent representation of 
• : context latent representation summarizing all 

SSL via Invariance – Sequential Structure
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xt
<latexit sha1_base64="ZYkWAs/Mp+uULrkb/O8cvj6RJO4="></latexit>

zt = genc(xt)
<latexit sha1_base64="3mYorkge5c+Oh4Q3d90SpHNAHFo="></latexit>

xt
<latexit sha1_base64="ZYkWAs/Mp+uULrkb/O8cvj6RJO4="></latexit>

ct = gar(x1, x2, . . . , xt)
<latexit sha1_base64="neiWvy30q1ZI2QR6xCDYwFtpkUk="></latexit>

zt
<latexit sha1_base64="0w3w1Shu5oTIK6jm6pykIFk2E2c="></latexit>

* source : [Oord et al., 2018]



Algorithmic Intelligence Lab

• Contrastive Predictive Coding (CPC) [Oord et al., 2018]
• Idea: Predicting future information with discarding low-level information

• How to maximize mutual information between          and    ?
• Randomly choose one positive sample           and N-1 negative samples 
• Minimize the following NCE-based loss:

where 

• and it becomes tighter as N becomes larger

SSL via Invariance – Sequential Structure

52

ct
<latexit sha1_base64="urj0iEwt45Xm7gT1HhApR+9goug=">AAAFH3icdVTLbtNAFHWbAMW8Wliysags2ZC2cYoEorJUKW3Fq2qQ+kiViUdjZ5JM6pfsSZswzB/wE/wCW9izQ2y75Uu4dtKkjzCS7etzzz33zIzHbuyzlJfL53PzheKt23cW7qr37j94+Ghx6fFhGvUTjx54kR8ldZek1GchPeCM+7QeJ5QErk+P3JNqlj86pUnKonCfD2PaDEgnZG3mEQ4QXiroHuaq/hkL/uJE5gHyqcYhhITdwYjTARckkcYAW6UBrpSQ34p4CiE3M/6UREMvY2XwPj5TddQlXJzJUv5EccqkjfphC9xQwEs5IhBJOiggA4k20Blr0ZwbEN71iC/eSYnPjPrGNs7IRt0E6VGs6sf2BIVW0wqgH5tv7AmyJcf2PnyURo66rngvkX9IE37xviszkQ7V4D7bhSOMkczWoTSvNIHybegxUW7A5I1BaWg2V5AfdWZwdmWDOuKCJptj/25bnErc0x3Eo3iK6HYbZtClnBgX4ABoYLhmsC9TnnlFhl19m6nBbmrYqJ0QTyA6iI3L9bknbYqsIU76Jmxf2g+w6NmWdELtelXvP1Wqvme4zjriLKCpFq65pr1nhK5TyaaQ74s2sVvHrrlSc55jt4qSLOVU8A7YzhBVb+d5qMrJ2ZRZOK7UbiiBTlUbieAdp5J94T1Vj7FgPWlboFmFC7EQiXLJQtIR4YVDiReXy6vlfGg3A2scLCvjUcOLf1Er8voBDbnnkzRtWOWYN+Ecceb5VKqon9KYeCekQxsQhgT6NEV+nqWmA9LS2lECV8i1HL1cIUiQpsPABWa2tOn1XAbOzLnBtc68/bopWBj3eXZ488btvq/xSMt+FlqLJdTj/hAC4iUMvGtel8AHwuEQq7Ao1vUluBkcVlat9dXKp5fLm5Xx8iwoT5VniqFYyitlU3mr1JQDxSt8LXwv/Cj8LH4r/ir+Lv4ZUefnxjVPlCujeP4PoRS1yQ==</latexit>

xt+k
<latexit sha1_base64="UKqMvp38R109e1Kkw9ZCPovmJlQ="></latexit>

xt+k
<latexit sha1_base64="UKqMvp38R109e1Kkw9ZCPovmJlQ="></latexit>

{x}
<latexit sha1_base64="GBXG2VXtCjumAJjRw+L+/H5tCU0="></latexit>

fk(x, c) = exp(z>Wkc)
<latexit sha1_base64="EK2l/GuEYepLtTAznWBAqXvwwa8="></latexit>

I(xt+k, ct) � log(N)� LN
<latexit sha1_base64="8Jo0nRwTV01WSC2bmp8Xxa464Qw="></latexit>

LN = �EX


log

fk(xt+k, ct)P
x fk(x, ct)

�

<latexit sha1_base64="n88IVHJiaPV58kYC+rQtQe3ZqHQ="></latexit>

* source : [Oord et al., 2018]



Algorithmic Intelligence Lab

• VINCE [Gordon et al., 2019]
• Data augmentations cannot tell the novel views and motions of the objects
• Instead, use video data to provide 3D-aware positive views
• Namely, use different frames from the same video as positive samples

SSL via Invariance – Sequential Structure
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Algorithmic Intelligence Lab

• VINCE [Gordon et al., 2019]
• Data augmentations cannot tell the novel views and motions of the objects
• Instead, use video data to provide 3D-aware positive views
• Namely, use different frames from the same video as positive samples

• Since video has multiple frames, VINCE attracts all positives (not pair-wise)
• Use 4 positive frames per video for experiments

SSL via Invariance – Sequential Structure
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Algorithmic Intelligence Lab

• VINCE [Gordon et al., 2019]
• Data augmentations cannot tell the novel views and motions of the objects
• Instead, use video data to provide 3D-aware positive views
• Namely, use different frames from the same video as positive samples

• Using temporal information provides better positive views
• Same frame: Use same frame images but positives are given by the same 

frame of different image augmentations
• Multi-frame (not multi-pair): Use 2 frames from the same video

SSL via Invariance – Sequential Structure
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Algorithmic Intelligence Lab

• FlowE [Xiong et al., 2021]
• VINCE assumed frames from the same video are invariant
• However, we need to consider their temporal changes

• To this end, FlowE relaxes the assumption that the frames are equivariant
• Let 𝐼# = 𝒯 (𝐼!) where 𝒯 is a transformation between two frames 𝐼!, 𝐼#

• Specifically, 𝒯 is a composition of data augmentations 𝒜!, 𝒜# of each 
frame 𝐼!, 𝐼#, respectively, and ℳ!→# is an optical flow

• Then the spatial features 𝑧!, 𝑧# should satisfy the equivariance 𝑧# = 𝒯(𝑧!)

SSL via Invariance – Sequential Structure
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Algorithmic Intelligence Lab

• FlowE [Xiong et al., 2021]
• VINCE assumed frames from the same video are invariant
• However, we need to consider their temporal changes

• To this end, FlowE relaxes the assumption that the frames are equivariant
• Let 𝐼# = 𝒯 (𝐼!) where 𝒯 is a transformation between two frames 𝐼!, 𝐼#

• Specifically, 𝒯 is a composition of data augmentations 𝒜!, 𝒜# of each 
frame 𝐼!, 𝐼#, respectively, and ℳ!→# is an optical flow

• Then the spatial features 𝑧!, 𝑧# should satisfy the equivariance 𝑧# = 𝒯(𝑧!)

• Considering optical flow gives better positive than naïve invariance-based (VINCE)

SSL via Invariance – Sequential Structure
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Algorithmic Intelligence Lab

SSL via Invariance – Sequential Structure

58*source: Huang et al., Self-supervised Video Representation Learning by Context and Motion Decoupling, CVPR 2021

• Context and Motion Decoupling [Huang et al., 2021]
• For video representation learning, many literature often explicitly decouples the 

context and motion supervision in the pretext task
• Jointly optimize two self-supervision

• (Context Matching) Compare global features of key frames and video clips 
under the contrastive learning → (b) different frames

(though using clip = multiple frames as positive)
• (Motion Prediction) Current visual data in a video are used to predict the 

future motion information → (a) future state



Algorithmic Intelligence Lab

• Limitations of invariance-based approaches
1. Specialized for classification

• Invariance-based method clusters similar data into a single point
• It is effective for classifier (or linear probing), less effective for different tasks 

(e.g., detection or segmentation for visual domain) 
• “Dense” contrastive learning methods have thus been proposed

2. Nontrivial choice of positive samples
• Data augmentation for non-image domain is arguable
• Even arguable for non-natural images (e.g., medical or fine-grained)

3. Less scalable for large models and datasets
• Contrastive learning (empirically) less merits the scaling law

• Next: more scalable and domain-agnostic approaches
• Generation-based approaches

SSL via Invariance
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Algorithmic Intelligence Lab

1. Introduction
• Overview of Self-supervised Learning (SSL)

2. SSL via Invariance (and Contrast)
• Clustering, Consistency, Contrastive
• Choices for Positive Samples

3. SSL via Generation
• Classic Approaches
• Masked Autoencoder (e.g., BERT, MAE)
• Sequential Prediction (e.g., GPT, World Model)

4. Multimodal Representation Learning 
• Image-text alignment using Contrastive Language-Image Pretraining (CLIP)
• Fused transformer for Vision-Language understanding
• Learning from frozen Large Language Models (LLMs)
• Unifying Vision-Language model pretraining 

Table of Contents
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Algorithmic Intelligence Lab

• Overview of Generation-based Approaches
• There have been a long attempts to learn representation 𝑍 from data 𝑋
• To this end, many classic ML literature designed a probabilistic model 𝑝(𝑋, 𝑍)

• They are called as generative models with latent variables

• Ancient works (before AlexNet, 2012)
• Early works: probabilistic PCA and latent variable models (LVM)
• In 2006~2009, the first deep learning revolution have arose

• Deep Boltzmann machines (DBM) and deep belief networks (DBN)
• They applied “unsupervised pretraining” to train deep networks

• Though RBM-based approaches was not empirically successful, they 
inspired early modern generative models (e.g., VAE) a lot

• Also, autoencoder-based approaches (e.g., denoising autoencoder; DAE) 
have been proposed → modernized to BigBiGAN, MAE, etc.

SSL via Generation
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Algorithmic Intelligence Lab

• Overview of Generation-based Approaches
• There have been a long attempts to learn representation 𝑍 from data 𝑋
• To this end, many classic ML literature designed a probabilistic model 𝑝(𝑋, 𝑍)

• They are called as generative models with latent variables

• Classic approaches (before contrastive learning, 2020)
• We introduce some notable classic methods

• Context encoder, a CNN version of masked autoencoder
• BigBiGAN, which were SOTA of then

• Recent methods can be categorized into 2 groups:
• BERT-like approach (or masked autoencoder)

• Predict original 𝑋 from perturbed ?𝑋 (learn ?𝑋 → 𝑍 → 𝑋 encoder)

• GPT-like approach (or sequential prediction)
• Predict future state 𝑋$,! from past states 𝑋!:$ (learn 𝑋!:$ → 𝑋$ decoder)

SSL via Generation
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Algorithmic Intelligence Lab

• Context Encoder [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

SSL via Generation – Classic Approaches
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Lrec(x) = kM̂ � (x� F ((1� M̂)� x))k22
<latexit sha1_base64="L2wxwUEII4ccEWC7hik7RpY2hhw="></latexit><latexit sha1_base64="L2wxwUEII4ccEWC7hik7RpY2hhw="></latexit><latexit sha1_base64="L2wxwUEII4ccEWC7hik7RpY2hhw="></latexit><latexit sha1_base64="L2wxwUEII4ccEWC7hik7RpY2hhw="></latexit>

M̂ � x
<latexit sha1_base64="SyLBx4THo8VoRprU9JPaHIOo5fo="></latexit><latexit sha1_base64="SyLBx4THo8VoRprU9JPaHIOo5fo="></latexit><latexit sha1_base64="SyLBx4THo8VoRprU9JPaHIOo5fo="></latexit><latexit sha1_base64="SyLBx4THo8VoRprU9JPaHIOo5fo=">AAAIC3icnVVPj9tEFHcLJMX86RaOXAZWbmxtUuKoCNTKUtmu0B62UhHsdrU7WWtiT5LRTmx3PN466507F74KFw4gxJUvwI1vw7M9SZxshCosJRq/93vv9/7N8yjhLJX9/j937r7z7nut9r33zQ8+/Ojj+zsPPjlJ40wE9DiIeSxORySlnEX0WDLJ6WkiKJmNOH01unxe6l9dUZGyOPpRzhM6nJFJxMYsIBJE/oPW53hKZPFC4TiMJcpNC8+InAaEF0fKx5LmshA0UHbumJaH+QkVEjVN7Lz3nW27PS1ztB/HwaLE+oOLgWnlHd8FYwgrJBUwVz7bA67K/wuWZ4myK8WS/VQpHGTJuvBYAYFgk6kkQsRvGuBOBV7hOuB80/Shh4uaJVN+4XYvVfe17zpdzCHkFCvTyrRVrrw6tG+zyYxGsk5/w/2KvHKc+243abrDeM2kBGWAWbHhiIw4gSJPqSToAHM6lucosec3ebcOvtIop1vJ9oTuxxUJr1S3VupyDPE+m9z42sJrWgPRYYhJkog4x2NBgkLzCqC8KltUCA/nDIWqt0XTV6oALRTkv21rlGmFVRp1eyqLwxBU9dxAHNVQKISqWq8lBCVeRJlFIYwshcl7qi3FYprAO6ZJyngcgVsiJlDhXOGnSFxgGSfoEIlyTjWkjiBbBpBpfqD2+qZ1YAto60OkedGB3Xf2akeLPJuF2KvduaoYqBUd8raKl+1dc1Gy1n1ZDP/RwQ+Q+qKb3ltMwUbnTQtcrDw88W7X9Yn3v0r6VrE0pcuIaoEvOx4mPJkS/V7Inqs6vXJbVGJngdu2dbKIkxHlNFSLtTNeZtlxeqsXvWnKPXMGvVyNX8WBztAeWjFeo+paSsZDWlyrJh6dfbnEXUgYjGufNaCmJT3XtN7Y0oH5yhO79xXApXMxcLaFL2NJuPJ6y+G42b9ROM1mfsEwi9A+DkiCjlTD0gbC7txnjh60kkoVzzcNlS4HoHvL6HxWS8sqzNeiHtuni4uFQDMuN4WNX2ckrP/gdanfqvR3dvuP+tWDbh9cfdg19PPS3/kbh3GQlYsz4CRNz91+IocFEZIFnCoTZylNSHBJJvQcjhGZ0XRYVN8yhSyQhGgcC/hFElXSpkVBZmk6n40AWVYu3dSVwm2680yOvxkWLEoySaOgJhpnHMkYlR9GFDL4zkk+hwMJBINYUTAl0AcJF8eEIribKd8+nAweuXD+/vHus8e6HPeMz4wvDNtwja+NZ8ah8dI4NoLWT61fWr+1fm//3P61/Uf7zxp69462+dRYe9p//Qv82MgX</latexit>

(1� M̂)� x
<latexit sha1_base64="1SnMDHJ7caKy9iUIvl0KPlb1GGE=">AAAID3icnVVLb9tGEGaSVkrYl9Mec1nEYERCYioKKVIkIJA4RuGDA6Ro7Rj2ysSKXEoLr0hmuXQo0/sPeulf6aWHFkWvvfbWf9PhQ08LRVACEpYz3zff7MzscpRwlsp+/59bt+989HGrffee/smnn33+xc79L4/TOBM+PfJjHouTEUkpZxE9kkxyepIISqYjTt+OLl6V/reXVKQsjn6Us4QOp2QcsZD5RILJu98yTMfGEyKL18rCcRBLlOsGnhI58QkvDpWHJc1lIaivzNzSDRfzYyokajgVxczt78ybcSwLixLrDc4HupF3PAfIkFpAKmCuPNYFrSr+a5ZniTIrx0L9RCnsZ8m68UiBgGDjiSRCxO9XwJ0KvMR1IPgm9ZGLi1olU17h9C5U753nWD3MIeUUK93IGlau3Dq1l9l4SiNZb38j/FK8Cpx7Ti9ZDYfxGqUEZYBZquGIjDiBIk+oJGgfcxrKM5SYs+u8VydfeZTVq2xd0fTjkgSXqlc7m3IM8R4bX3sNw11lg9BBgEmSiDjHoSB+0egKkLwsW1QIF+cMBcre4ukrVYAXCvLf3BqlG0G1jbo9FeMgAFc9N5BHNRQKoarWaxuCEs+zzKIAxpbC5D1vmGI+TRAd0yRlPI4gLBFjqHCu8HMkzrGME3SARDmnDaTOIFskkDX6IO32dWPfFNDWR6jRRftm3+rWgeb7XC1Etw7nqGKglnLI3WpetHctRKla92U+/If7P8DW5910P2AKNjqvGxBiGeGZe7Ouz9z/VdIPymXVusioNniy42LCkwlp3gtpO6pjl7dFZbbmuG23ThZxMqKcBmp+7YSLXXYse/nS3DTlPXMKvVyOX6WBTlEXLRWvUHUsJeMBLa7UKh6dfr3AnUsYjCuPrUB1Q7qObrw3pQXzlSem/Q3ApXU+sLalL2NJuHLtxXBc710rnGZTr2CYRWgP+yRBh2qFaYJgb+Yxqxm0UkoVrzaJqikHoO1Fdh6rrWUVZmtZh+bJ/GAh8ITlTWHidxkJ6j94Xfi3Or2d3f7jfvWgmwunWexqzfPG2/kbB7GflRenz0manjn9RA4LIiTzOVU6zlKaEP+CjOkZLCMypemwqL5nChlgCVAYC/hFElXWVUZBpmk6m44AWVYu3fSVxm2+s0yG3w4LFiWZpJFfC4UZRzJG5ccRBQy+c5LPYEF8wSBX5E8I9EHCwdGhCM7mlm8ujgePHVh//2T3xZOmHHe1B9pDzdQc7an2QjvQ3mhHmt/6qfVL67fW7+2f27+2/2j/WUNv32o4X2lrT/uvfwHm98ju</latexit><latexit sha1_base64="1SnMDHJ7caKy9iUIvl0KPlb1GGE="></latexit><latexit sha1_base64="1SnMDHJ7caKy9iUIvl0KPlb1GGE="></latexit><latexit sha1_base64="1SnMDHJ7caKy9iUIvl0KPlb1GGE=">AAAID3icnVVLb9tGEGaSVkrYl9Mec1nEYERCYioKKVIkIJA4RuGDA6Ro7Rj2ysSKXEoLr0hmuXQo0/sPeulf6aWHFkWvvfbWf9PhQ08LRVACEpYz3zff7MzscpRwlsp+/59bt+989HGrffee/smnn33+xc79L4/TOBM+PfJjHouTEUkpZxE9kkxyepIISqYjTt+OLl6V/reXVKQsjn6Us4QOp2QcsZD5RILJu98yTMfGEyKL18rCcRBLlOsGnhI58QkvDpWHJc1lIaivzNzSDRfzYyokajgVxczt78ybcSwLixLrDc4HupF3PAfIkFpAKmCuPNYFrSr+a5ZniTIrx0L9RCnsZ8m68UiBgGDjiSRCxO9XwJ0KvMR1IPgm9ZGLi1olU17h9C5U753nWD3MIeUUK93IGlau3Dq1l9l4SiNZb38j/FK8Cpx7Ti9ZDYfxGqUEZYBZquGIjDiBIk+oJGgfcxrKM5SYs+u8VydfeZTVq2xd0fTjkgSXqlc7m3IM8R4bX3sNw11lg9BBgEmSiDjHoSB+0egKkLwsW1QIF+cMBcre4ukrVYAXCvLf3BqlG0G1jbo9FeMgAFc9N5BHNRQKoarWaxuCEs+zzKIAxpbC5D1vmGI+TRAd0yRlPI4gLBFjqHCu8HMkzrGME3SARDmnDaTOIFskkDX6IO32dWPfFNDWR6jRRftm3+rWgeb7XC1Etw7nqGKglnLI3WpetHctRKla92U+/If7P8DW5910P2AKNjqvGxBiGeGZe7Ouz9z/VdIPymXVusioNniy42LCkwlp3gtpO6pjl7dFZbbmuG23ThZxMqKcBmp+7YSLXXYse/nS3DTlPXMKvVyOX6WBTlEXLRWvUHUsJeMBLa7UKh6dfr3AnUsYjCuPrUB1Q7qObrw3pQXzlSem/Q3ApXU+sLalL2NJuHLtxXBc710rnGZTr2CYRWgP+yRBh2qFaYJgb+Yxqxm0UkoVrzaJqikHoO1Fdh6rrWUVZmtZh+bJ/GAh8ITlTWHidxkJ6j94Xfi3Or2d3f7jfvWgmwunWexqzfPG2/kbB7GflRenz0manjn9RA4LIiTzOVU6zlKaEP+CjOkZLCMypemwqL5nChlgCVAYC/hFElXWVUZBpmk6m44AWVYu3fSVxm2+s0yG3w4LFiWZpJFfC4UZRzJG5ccRBQy+c5LPYEF8wSBX5E8I9EHCwdGhCM7mlm8ujgePHVh//2T3xZOmHHe1B9pDzdQc7an2QjvQ3mhHmt/6qfVL67fW7+2f27+2/2j/WUNv32o4X2lrT/uvfwHm98ju</latexit>

F
<latexit sha1_base64="fD/Qab1CQUXiJPqptynozDYSZdY="></latexit><latexit sha1_base64="fD/Qab1CQUXiJPqptynozDYSZdY="></latexit><latexit sha1_base64="fD/Qab1CQUXiJPqptynozDYSZdY="></latexit><latexit sha1_base64="fD/Qab1CQUXiJPqptynozDYSZdY=">AAAH/nicnVVLb9tGEGbSVkrYR5w2t1wWNRiRkJiKQooGCQikjhH44AApWjuGvTKxIlfSwiuSWS4dyvQC/Su99NCi6LW/o7f+mw4fkihZKIISkLCc+Wa+ee1wFHOWyH7/n1u3P/r4k1b7zl39088+/+Lezv0vj5MoFT498iMeiZMRSShnIT2STHJ6EgtKZiNO344uXhb6t5dUJCwKf5LzmA5nZBKyMfOJBJF3v/XglW7gGZFTn/D8UHlY0kzmgvrKzCzdcDE/pkIiPCUyf61wFETSzOxXpunYtcwqhSizLCwKrDc4H+hG1vEcMIZIAlICM+WxLnCV/l+zLI2VWSqW7CdKYT+N14VHCggEm0wlESJ63wB3SvAK1wHnm6aPXJxXLKnycqd3oXrvPMfqYQ4hJ1jpRlpbZcqtQvs+ncxoKKv0N9yvyEvHmef04qY7jNdMClAKmBUbDsmIEyjylEqC9jGnY3mGYnN+nfWq4EuNsnqlrCvqflyS4FL1KmVdjiHeY5Nrr7Zwm9ZAdBBgEsciyvBYED+veQVQXhYtyoWLM4YCZW/R9JXKQQsF+W/bCqUbQZlG1Z7S4iAAVTU3EEc5FAqhstZrCUGJF1GmYQBTSmHynteWYjFN4B3TOGE8CsEtEROocKbwcyTOsYxidIBEMac1pIogXQaQ1vxA7fZ1Y98U0NZHqOZF+2bf6laOFnk2C9Gt3DkqH6gVHXK3ipftXXNRsFZ9WQz/4f6PkPqim+4HTMFG53UDXKw8PHNv1vWZ+79K+kGxNKXLiCqBJzsuJjyekvo9l7ajOnaxLUqxtcBt2zppyMmIchqoxdoZL7PsWPbqpd40xZ45hV6uxq/kQKeoi1aMV6i8lpLxgOZXqolHp98scecSBuPKYw2obkjX0Y33prRgvrLYtL8FuLTOB9a28GUkCVeuvRyO671rhZN05uUMsxDtYZ/E6FA1LE0g7M09ZtWDVlCp/OWmoarLAWh7GZ3HKmlRhfla1GPzZHGxEGjGxaYw8buUBNUfvC71W5Xezm7/cb980M2DUx92tfp54+38jYPIT4vF6XOSJGdOP5bDnAjJfE6VjtOExsS/IBN6BseQzGgyzMvPl0IGSAI0jgT8QolKadMiJ7Mkmc9GgCwql2zqCuE23Vkqx0+HOQvjVNLQr4jGKUcyQsW3EAUMvnOSz+FAfMEgVuRPCfRBwsXRoQjOZso3D8eDxw6cf3iy++JJXY472kPta83UHO077YV2oL3RjjS/lbd+af3W+r39c/vX9h/tPyvo7Vu1zVfa2tP+61+7y8JT</latexit>
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Algorithmic Intelligence Lab

• Context Encoder [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

• With adversarial loss, reconstruction quality is improved further

SSL via Generation – Classic Approaches
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Algorithmic Intelligence Lab

• Context Encoder [Pathak et al., 2016]
• Task: Predict the masked region using its surrounding information

• The auto-encoder is trained via reconstruction loss

• With adversarial loss, reconstruction quality is improved further

• How to construct the masks?

SSL via Generation – Classic Approaches
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Algorithmic Intelligence Lab

• BigBiGAN [Donahue et al., 2019]
• After the success of GAN for image generation, numerous work attempted to 

extend the applicability of GAN for representation learning

• To this end, ALI/BiGAN (2017) learned a joint distribution 𝑝(𝑋, 𝑍) with GAN
• ALI/BiGAN performed well on low-resolution images 

SSL via Generation – Classic Approaches
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Algorithmic Intelligence Lab

• BigBiGAN [Donahue et al., 2019]
• After the success of GAN for image generation, numerous work attempted to 

extend the applicability of GAN for representation learning

• To this end, ALI/BiGAN (2017) learned a joint distribution 𝑝(𝑋, 𝑍) with GAN
• Leveraging the power of BigGAN on high-resolution image generation, 

BigBiGAN achieved SOTA representation learning performance
• It was the SOTA before the dominance of contrastive learning
• Cf. ContraD (2021) combined BigBiGAN and contrastive learning

SSL via Generation – Classic Approaches
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Algorithmic Intelligence Lab

• Overview of Generation-based Approaches
• There have been a long attempts to learn representation 𝑍 from data 𝑋
• To this end, many classic ML literature designed a probabilistic model 𝑝(𝑋, 𝑍)

• They are called as generative models with latent variables

• Classic approaches (before contrastive learning, 2020)
• We introduce some notable classic methods

• Context encoder, a CNN version of masked autoencoder
• Deep InfoMax and BigBiGAN, which were SOTA of then

• Recent methods can be categorized into 2 groups:
• BERT-like approach (or masked autoencoder)

• Predict original 𝑋 from perturbed ?𝑋 (learn ?𝑋 → 𝑍 → 𝑋 encoder)

• GPT-like approach (or sequential prediction)
• Predict future state 𝑋$,! from past states 𝑋!:$ (learn 𝑋!:$ → 𝑋$ decoder)

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• BERT [Devlin et al., 2018]
• As encoders get bidirectional context, language modeling can’t be used anymore
• Instead, masked language modeling is used for pre-training

• Replace some fraction of words (15%) in the input, then predict these words 

SSL via Generation – Masked Autoencoder

45*reference: http:// http://jalammar.github.io/illustrated-bert



Algorithmic Intelligence Lab

• BERT [Devlin et al., 2018]
• As encoders get bidirectional context, language modeling can’t be used anymore
• Instead, masked language modeling is used for pre-training
• Additionally, next sentence prediction (NSP) task is used for pre-training

• Decide whether two input sentences are consecutive or not

SSL via Generation – Masked Autoencoder

45*reference: http:// http://jalammar.github.io/illustrated-bert



Algorithmic Intelligence Lab

• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction

• Similar to BERT in NLP, BEiT randomly masks image patches and trains to 
recover the visual tokens of masked patches (instead of the raw pixels)

• Visual token: a discretized vocabulary for the image patch

• BEiT training procedure is consist of two stages:
1. Learning visual tokens
2. Masked image modeling

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
1. Learning visual tokens

• In this stage, a discrete variational autoencoder (dVAE) is trained to represent each 
224 × 224 image into a 14 × 14 grid of discrete image tokens, each element of whic
h can assume 8192 possible values
• The tokenizer 𝑞.(𝒛|𝒙) maps image image pixels into a visual codebook
• The decoder 𝑝/(𝒙|𝒛) learns to reconstruct the input image

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
2. Masked Image Modeling

• The standard ViT is used as the backbone network
• Some image patches are randomly masked (approx. 40%), and then the visual 

tokens that corresponds to the masked patches are predicted
• The objective is maximizing the log-likelihood of the correct visual tokens 𝑧%

given the corrupted image 𝑥ℳ with the masked positions ℳ

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• BEiT [Bao et al., 2022]
• Task: Masked visual tokens prediction
• BEiT training procedure is consist of two stages:
2. Masked Image Modeling

• During masked image modeling, block-wise masking strategy is used
• A block with the minimum number of patches to 16 is masked
• Repeat masking until obtaining enough masked patches (total 40% of patches)

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Objective: MSE loss of masked patches

• Key components: 
• High masking ratio (75%):

• BERT masks 15% of tokens, MAE needs higher masking ratio
• Asymmetric encoder-decoder architecture:

• MAE allows to train very large transformer encoder by using the 
lightweight decoder => it significantly reduces the pre-training time

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder

• The decoder depth is less influential for improving fine-tuning
• Only a single transformer block decoder can perform strongly with fine-tuning

• MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9% 
FLOPs per token vs. ViT-L

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Other intriguing properties of MAE 

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder
• It is more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation
• MAE behaves decently even if using no data augmentation

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch
• Other intriguing properties of MAE 

(f) Random patch masking is better than block-wise and grid-wise sampling
• Block-wise sampling: Removes large random blocks
• Grid-wise sampling: Keeps one of every four patches

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality

• Modality-unified algorithm:
• 1) Build representations of the full input data with the teacher model

• The teacher is an exponentially decaying average of the student
• 2) Encode the masked version of the input sample with the student model and 

predict the representations of original input

• Modality-specified data processing and masking strategies are used

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality

• The objective is predicting the representation for time-steps which are masked
• data2vec uses the standard transformer architecture
• Training targets are the output of the top K blocks of the teach network

• D𝑎$1 : the normalized output of block 𝑙 at time-step 𝑡
• Training target: 𝑦$ =

!
2
∑1&342,!3 D𝑎$1

• The objective is smooth-L1 loss between 𝑦$ and the prediction 𝑓$(𝑥) at 𝑡:

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• data2vec [Baevski et al., 2022]
• data2vec is a framework for general self-supervised learning for images, speech, 

and text where the learning objective is identical in each modality
• Modality-specified data processing and masking strategy
• Image processing

• (Input embed) Embed images of 224 × 224 pixels as patches of 16 × 16 pixel 
• (Masking) Apply BEiT masking strategy with 60% masking ratio

• Speech processing
• (Input embed) Sample with 16kHz then forward seven temporal convolutions
• (Masking) Mask 49% of all time-steps

• NLP processing
• (Input embed) The input data is tokenized using a byte-pair encoding (BPE)
• (Masking) Apply BERT masking strategy to 15% of uniformly selected tokens

• 80% are replaced by a learned mask token, [M]
• 10% are left unchanged
• 10% are replaced by randomly selected vocabulary token

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• data2vec [Baevski et al., 2022]
• data2vec shows a new state of the art or competitive performance to predominant 

approaches on three domains
• Vision task: ImageNet classification
• Speech task: Word error rate (smaller is better) on the Librispeech dataset
• NLP task: GLEU benchmark

SSL via Generation – Masked Autoencoder
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Algorithmic Intelligence Lab

• Overview of Generation-based Approaches
• There have been a long attempts to learn representation 𝑍 from data 𝑋
• To this end, many classic ML literature designed a probabilistic model 𝑝(𝑋, 𝑍)

• They are called as generative models with latent variables

• Classic approaches (before contrastive learning, 2020)
• We introduce some notable classic methods

• Context encoder, a CNN version of masked autoencoder
• Deep InfoMax and BigBiGAN, which were SOTA of then

• Recent methods can be categorized into 2 groups:
• BERT-like approach (or masked autoencoder)

• Predict original 𝑋 from perturbed ?𝑋 (learn ?𝑋 → 𝑍 → 𝑋 encoder)

• GPT-like approach (or sequential prediction)
• Predict future state 𝑋$,! from past states 𝑋!:$ (learn 𝑋!:$ → 𝑋$ decoder)

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• GPT [Radford et al., 2018]

• Pre-training by language modeling over 7000 unique books (unlabeled data)
• Contains long spans of contiguous text, for learning long-distance 

dependencies
• Fine-tuning by training a classifier with target task-specific labeled data

• Classifier is added on the final transformer block’s last word’s hidden state

SSL via Generation – Sequential Prediction

42*reference: http://web.stanford.edu/class/cs224n/
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Algorithmic Intelligence Lab

• iGPT [Chen et al., 2020]
• Task: Auto-regressively predict pixels, without incorporating 2D structure of image

• Similar to NLP domain, iGPT considers two pre-training objectives:
• Auto-regressive modeling (like GPT)
• BERT objective

• When fine-tuning, iGPT average pool all tokens in a sequence and use it as a 
feature vector, then learn a projection layer

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• iGPT [Chen et al., 2020]
• Task: Auto-regressively predict pixels, without incorporating 2D structure of image

• Input data format: 9-bit color palette
• iGPT down-samples an image into one of 32 × 32, 48 × 48, or 64 × 64 RGB data
• iGPT clusters all (R, G, B) values in training dataset using k-means with k=512, 

which is 9-bit color palette
• It further reduces input sequence length 3 times
• It also discretizes the input data and output target

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• iGPT [Chen et al., 2020]
• Task: Auto-regressively predict pixels, without incorporating 2D structure of image

• iGPT is not only successful for (conditional) image generation, but also show 
notable representation learning performance (Comparable with SimCLR)

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• World Model 
• Autoregressive modeling can be also applied for more complex domains such as 

video or action-conditioned videos (called “transition model”)

• Recurrent world model [Ha & Schmidhuber, 2018]:
• Encoder and decoder that converts data 𝑋$ to representation 𝑍$
• Transition model that predicts action-conditioned future 𝑍$,! = 𝑓(𝑍$ , 𝐴$)

• Objective: Given trajectory 𝑋!:$ , 𝐴!:$ , the model (a) encodes them to 𝑍!:$,
(b) predict 𝑍$,! with transition model, and (c) decode 𝑋$,!

• The learned model can be
utilized for visual planning
(for both training and inference)

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• World Model 
• Recall that it is similar to the CPC objective in the SSL via Invariance section

• Generation: Predict the target 𝑋$,! directly
• Contrastive: Find the positive 𝑋$,! from negative samples 𝑋$,!5

• One can interchange them arbitrarily ⇒ Q. Which one is better?

SSL via Generation – Sequential Prediction
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Algorithmic Intelligence Lab

• World Model 
• Recall that it is similar to the CPC objective in the SSL via Invariance section

• Generation: Predict the target 𝑋$,! directly
• Contrastive: Find the positive 𝑋$,! from negative samples 𝑋$,!5

• One can interchange them arbitrarily ⇒ Q. Which one is better?

• Contrastive structured world model (C-SWM) [Kipf et al., 2020]:
• Generation objective distracts the model by focusing on low-level styles
• Contrastive objective more focus on high-level semantics

• Learning a proper invariance is also essential for planning!
• Contrastive learning (𝑍 projects low-level styles from 𝑋) can be beneficial

SSL via Generation – Sequential Prediction

42*reference: https://jacobbuckman.com/2019-10-25-three-paradigms-of-reinforcement-learning/



Algorithmic Intelligence Lab

• We discussed 2 types of self-supervised learning
1. Invariance: Maximize MI of representations of positive samples
2. Generation: Maximize MI of representation and (perturbed) data

• Generation-based approach is currently the most promising direction
• BERT/MAE for encoder, and GPT for encoder-decoder models
• Large-scale & multimodal foundation models are being stronger!

• invariance-based method is still effective at learning semantic tasks
• Leverage the additional prior knowledge of positive samples
• Thus, one may need to choose an appropriate backbone for the task

• Self-supervised learning have shown its effectiveness on various domains
• Image, video, language, audio, graph, tabular, etc.
• Recent works discover that visual SSL is also effective for the planning tasks

• Now, we’ll focus on recent trends on multimodal SSL methods

Interim Summary
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1. Introduction
• Overview of Self-supervised Learning (SSL)

2. SSL via Invariance (and Contrast)
• Clustering, Consistency, Contrastive
• Choices for Positive Samples

3. SSL via Generation
• Classic Approaches
• Masked Autoencoder (e.g., BERT, MAE)
• Sequential Prediction (e.g., GPT, World Model)

4. Multimodal Representation Learning 
• Image-text alignment using Contrastive Language-Image Pretraining (CLIP)
• Fused transformer for Vision-Language understanding
• Learning from frozen Large Language Models (LLMs)
• Unifying Vision-Language model pretraining 

Table of Contents
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• There have been a long attempts to learn vision-language (VL) models
• Different objective, different methods have been studied

• We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation

• Enables zero-shot classification & high robustness
2. Fused transformer for vision-language understanding

• Better vision-language understanding tasks, e.g., Visual Question Answering
3. Learning visual representation from frozen Large Language Models (LLMs)

• Leveraging the power of LLMs for visual in-context learning
4. Unifying Vision-Language pretraining

• Learning Vision-Language model from scratch for all tasks

Multimodal SSL: Overview
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CLIP [Radford et al., 2020]
• Simple contrastive learning between image and text embeddings

• Trained on large-scale  web image-text pairs

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 2
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find
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CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels
• Prompt Engineering: ”A photo of a [MASK]”
• Choose class that maximizes similarity with respect to image

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 2
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find
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CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels
• Prompt Engineering: ”A photo of a [MASK]”
• Choose class that maximizes similarity with respect to image

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 42

Figure 21. Visualization of predictions from 36 CLIP zero-shot classifiers. All examples are random with the exception of reselecting
Hateful Memes to avoid offensive content. The predicted probability of the top 5 classes is shown along with the text used to represent
the class. When more than one template is used, the first template is shown. The ground truth label is colored green while an incorrect
prediction is colored orange.
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CLIP [Radford et al., 2020]

• A zero-shot CLIP classifier shows a competitive performance with a fully 
supervised linear classifier fitted on ResNet-50 features

• Linear-probing with CLIP image features outperform the best ImageNet model

CLIP: Contrastive Language-Image Pre-training 

Learning Transferable Visual Models From Natural Language Supervision 8

Similar to the “prompt engineering” discussion around GPT-
3 (Brown et al., 2020; Gao et al., 2020), we have also
observed that zero-shot performance can be significantly
improved by customizing the prompt text to each task. A
few, non exhaustive, examples follow. We found on several
fine-grained image classification datasets that it helped to
specify the category. For example on Oxford-IIIT Pets, us-
ing “A photo of a {label}, a type of pet.”
to help provide context worked well. Likewise, on Food101
specifying a type of food and on FGVC Aircraft a type of
aircraft helped too. For OCR datasets, we found that putting
quotes around the text or number to be recognized improved
performance. Finally, we found that on satellite image classi-
fication datasets it helped to specify that the images were of
this form and we use variants of “a satellite photo

of a {label}.”.

We also experimented with ensembling over multiple zero-
shot classifiers as another way of improving performance.
These classifiers are computed by using different context
prompts such as ‘A photo of a big {label}” and
“A photo of a small {label}”. We construct the
ensemble over the embedding space instead of probability
space. This allows us to cache a single set of averaged text
embeddings so that the compute cost of the ensemble is the
same as using a single classifier when amortized over many
predictions. We’ve observed ensembling across many gen-
erated zero-shot classifiers to reliably improve performance
and use it for the majority of datasets. On ImageNet, we
ensemble 80 different context prompts and this improves
performance by an additional 3.5% over the single default
prompt discussed above. When considered together, prompt
engineering and ensembling improve ImageNet accuracy
by almost 5%. In Figure 4 we visualize how prompt engi-
neering and ensembling change the performance of a set of
CLIP models compared to the contextless baseline approach
of directly embedding the class name as done in Li et al.
(2017).

3.1.5. ANALYSIS OF ZERO-SHOT CLIP PERFORMANCE

Since task-agnostic zero-shot classifiers for computer vision
have been understudied, CLIP provides a promising oppor-
tunity to gain a better understanding of this type of model.
In this section, we conduct a study of various properties of
CLIP’s zero-shot classifiers. As a first question, we look
simply at how well zero-shot classifiers perform. To con-
textualize this, we compare to the performance of a simple
off-the-shelf baseline: fitting a fully supervised, regularized,
logistic regression classifier on the features of the canonical
ResNet-50. In Figure 5 we show this comparison across 27
datasets. Please see Appendix A for details of datasets and
setup.

Zero-shot CLIP outperforms this baseline slightly more of-

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

ten than not and wins on 16 of the 27 datasets. Looking at
individual datasets reveals some interesting behavior. On
fine-grained classification tasks, we observe a wide spread
in performance. On two of these datasets, Stanford Cars and
Food101, zero-shot CLIP outperforms logistic regression
on ResNet-50 features by over 20% while on two others,
Flowers102 and FGVCAircraft, zero-shot CLIP underper-
forms by over 10%. On OxfordPets and Birdsnap, per-
formance is much closer. We suspect these difference are
primarily due to varying amounts of per-task supervision
between WIT and ImageNet. On “general” object classifica-
tion datasets such as ImageNet, CIFAR10/100, STL10, and
PascalVOC2007 performance is relatively similar with a
slight advantage for zero-shot CLIP in all cases. On STL10,
CLIP achieves 99.3% overall which appears to be a new
state of the art despite not using any training examples. Zero-
shot CLIP significantly outperforms a ResNet-50 on two
datasets measuring action recognition in videos. On Kinet-
ics700, CLIP outperforms a ResNet-50 by 14.5%. Zero-
shot CLIP also outperforms a ResNet-50’s features by 7.7%
on UCF101. We speculate this is due to natural language
providing wider supervision for visual concepts involving
verbs, compared to the noun-centric object supervision in
ImageNet.

Looking at where zero-shot CLIP notably underperforms,

Learning Transferable Visual Models From Natural Language Supervision 13

Figure 11. CLIP’s features outperform the features of the best
ImageNet model on a wide variety of datasets. Fitting a linear
classifier on CLIP’s features outperforms using the Noisy Student
EfficientNet-L2 on 21 out of 27 datasets.

low for both approaches.

3.3. Robustness to Natural Distribution Shift

In 2015, it was announced that a deep learning model ex-
ceeded human performance on the ImageNet test set (He
et al., 2015). However, research in the subsequent years
has repeatedly found that these models still make many sim-
ple mistakes (Dodge & Karam, 2017; Geirhos et al., 2018;
Alcorn et al., 2019), and new benchmarks testing these sys-
tems has often found their performance to be much lower
than both their ImageNet accuracy and human accuracy
(Recht et al., 2019; Barbu et al., 2019). What explains this
discrepancy? Various ideas have been suggested and stud-
ied (Ilyas et al., 2019; Geirhos et al., 2020). A common
theme of proposed explanations is that deep learning models
are exceedingly adept at finding correlations and patterns
which hold across their training dataset and thus improve
in-distribution performance. However many of these corre-
lations and patterns are actually spurious and do not hold for
other distributions and result in large drops in performance
on other datasets.

We caution that, to date, most of these studies limit their
evaluation to models trained on ImageNet. Recalling the
topic of discussion, it may be a mistake to generalize too
far from these initial findings. To what degree are these
failures attributable to deep learning, ImageNet, or some

combination of the two? CLIP models, which are trained via
natural language supervision on a very large dataset and are
capable of high zero-shot performance, are an opportunity
to investigate this question from a different angle.

Taori et al. (2020) is a recent comprehensive study mov-
ing towards quantifying and understanding these behaviors
for ImageNet models. Taori et al. (2020) study how the
performance of ImageNet models change when evaluated
on natural distribution shifts. They measure performance
on a set of 7 distribution shifts: ImageNetV2 (Recht et al.,
2019), ImageNet Sketch (Wang et al., 2019), Youtube-BB
and ImageNet-Vid (Shankar et al., 2019), ObjectNet (Barbu
et al., 2019), ImageNet Adversarial (Hendrycks et al., 2019),
and ImageNet Rendition (Hendrycks et al., 2020a). They
distinguish these datasets, which all consist of novel images
collected from a variety of sources, from synthetic distri-
bution shifts such as ImageNet-C (Hendrycks & Dietterich,
2019), Stylized ImageNet (Geirhos et al., 2018), or adver-
sarial attacks (Goodfellow et al., 2014) which are created by
perturbing existing images in various ways. They propose
this distinction because in part because they find that while
several techniques have been demonstrated to improve per-
formance on synthetic distribution shifts, they often fail to
yield consistent improvements on natural distributions.3

Across these collected datasets, the accuracy of ImageNet
models drop well below the expectation set by the Ima-
geNet validation set. For the following summary discussion
we report average accuracy across all 7 natural distribution
shift datasets and average accuracy across the correspond-
ing class subsets of ImageNet unless otherwise specified.
Additionally, for Youtube-BB and ImageNet-Vid, which
have two different evaluation settings, we use the average
of pm-0 and pm-10 accuracy.

A ResNet-101 makes 5 times as many mistakes when eval-
uated on these natural distribution shifts compared to the
ImageNet validation set. Encouragingly however, Taori et al.
(2020) find that accuracy under distribution shift increases
predictably with ImageNet accuracy and is well modeled
as a linear function of logit-transformed accuracy. Taori
et al. (2020) use this finding to propose that robustness
analysis should distinguish between effective and relative
robustness. Effective robustness measures improvements
in accuracy under distribution shift above what is predicted
by the documented relationship between in-distribution and
out-of-distribution accuracy. Relative robustness captures
any improvement in out-of-distribution accuracy. Taori et al.
(2020) argue that robustness techniques should aim to im-
prove both effective robustness and relative robustness.

Almost all models studied in Taori et al. (2020) are trained
3We refer readers to Hendrycks et al. (2020a) for additional

experiments and discussion on this claim.



Algorithmic Intelligence Lab

CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift
• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even 

at small scale

CLIP: Contrastive Language-Image Pre-training 

Effective 
Robustness
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CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift
• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even 

at small scale

• Few-shot CLIP classifier also shows high effective robustness, but less than zero-
shot CLIP classifier

CLIP: Contrastive Language-Image Pre-training 
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Follow-up studies showed scaling dataset size improves performance

• CLIP uses carefully filtered 400M image-text pairs from web

• ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP
• BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

Scaling Up dataset size for improved CLIP
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However, those datasets and implementations are not publicly available

• OpenCLIP [Ilharco et al., 2021]: open-source implementation of CLIP

• LAION [Schuhmann et al., 2022]: publicly available 400M & 5B size of dataset that 
shows competitive results of CLIP

Open-source Implementation

Trained with OpenCLIP on LAION 400M & 2B datasets
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However, those datasets and implementations are not publicly available

• OpenCLIP [Ilharco et al., 2021]: open-source implementation of CLIP

• LAION [Schuhmann et al., 2022]: publicly available 400M & 5B size of dataset that 
shows competitive results of CLIP
• They used pre-trained CLIP features to filter the dataset

Open-source Implementation

Data acquisition pipeline of LAION
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Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

• For systematic study, they considered two datasets
• ImageNet-Captions: Captions for ImageNet dataset to do CLIP
• YFCC-Classification: Labeled YFCC dataset to do original training

Dataset Design and Distributional Robustness
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• Size of training dataset do not affect effective robustness
• CLIP on YFCC shows similar effective robustness as original CLIP

• CLIP model is not robust than classification models on same dataset
• CLIP on ImageNet-Caption does not show high effective robustness

• It follows the trend of other ImageNet models
• SimCLR on labeled YFCC shows similar effective robustness as YFCC CLIP

• YFCC CLIP follows the trend of original CLIP model
• Data distribution affects the effective robustness!

Dataset Design and Distributional Robustness
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Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

Dataset Design and Distributional Robustness
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• Prompt-tuning does not have correlation on effective robustness
• Prompt variation act as interpolation with a random classifier

• Various contrastive learning methods do not affect effective robustness
• SwAV [Caron et al., 2020], SimSiam [Chen et al., 2021], SimCLR v2 [Chen et al., 2021] 

on ImageNet dataset follows the trend on ImageNet models

Dataset Design and Distributional Robustness

YFCC-15M, results in an accuracy of 35.7%, which we found surprisingly close to CLIP. Further, as shown in
Figure 1 (“YFCC SimCLR + Classification”), our baseline model’s e↵ective robustness is similar to that of
CLIP.

Appendix L provides figures that plot the above results on various distribution shifts, as well as a model trained
on YFCC-15M-Cls from scratch. Since the training set is now about nine times smaller than YFCC-15M, the
resulting models trained from scratch achieve much lower accuracy and are hard to compare to CLIP.

Overall, we find that despite largely eschewing language, and training on a fraction of the supervision, our
baseline model results in high e↵ective robustness, similar to CLIP. These results indicate that image-only
pre-training followed by classification fine-tuning can match the robustness of CLIP, and that language
pre-training is not necessary for e↵ective robustness. Models trained on YFCC consistently achieve higher
e↵ective robustness than models trained on ImageNet, which shows that di↵erent training distributions have
di↵erent levels of e↵ective robustness.

6 E↵ect of test time prompts
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Figure 6: E↵ect of prompting strategies and contrastive objectives on robustness. (Left) On
most natural distribution shifts, e↵ect of prompting on e↵ective robustness is similar to that
of random interpolation. (Right) Models pre-trained with various contrastive objectives on
ImageNet do not achieve the same e↵ective robustness as CLIP models.

As another hypothesis, we study whether natural language prompts a↵ect CLIP’s robustness. Recall that
prompts consist of a template (e.g., “a photo of ”) and the name of a class in the dataset. Radford et al.
[27] showed how to use multiple templates by averaging their text representations. Similarly, it is also possible
to use multiple class names for each class if synonyms exist (e.g. microwave and microwave oven). To
investigate the influence of specific prompts in the robustness of CLIP, we conduct a series of experiments
using a trained CLIP model and multiple prompting strategies. Specifically, we vary:

• The templates used, using one of the following three options:

i) Templates from Radford et al. [27];

ii) No templates (i.e., only the class names);

iii) Random words appended before and after the class name.5

• The names of the classes, using one of the following three sources:

5Templates are composed by one to ten random words along with the class name, in an arbitrary position. Random words
are drawn using https://pypi.org/project/Random-Word/.

11



Algorithmic Intelligence Lab

Motivation: What causes CLIP’s unprecedented robustness?

• [Fang et al., 2022] examined following sources of CLIP
1. Size of training dataset
2. Distribution of training data
3. Language supervision at training
4. Prompt-tuning as test-time
5. Contrastive learning objectives

• Conclusion
• The effective robustness of CLIP is not from language supervision
• The choice of training data distribution matters in effective robustness

• But then, how to choose the training dataset?

Dataset Design and Distributional Robustness
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Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset

Dataset Design and Distributional Robustness
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Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset
• The robustness of a mixed dataset is not additive

• Effective robustness of mixed dataset interpolates between that of two datasets
• Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

Dataset Design and Distributional Robustness
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Motivation: Why don’t we simply gather all image-text pairs for training data?

• [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
• Distributional robustness is determined by the training data distribution

• 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC), 
RedCaps, Shutterstock and WIT

• For each shift, the level of robustness vary by the choice of dataset
• The robustness of a mixed dataset is not additive

• ImageNet accuracy increases by mixing dataset 
• Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

• However, this does not give us how to choose effective dataset for CLIP
• Their theoretical analysis show that filtering with pretrained model is beneficial

• E.g., LAION filters image-text pairs by using pre-trained CLIP

Dataset Design and Distributional Robustness
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• There have been a long attempts to learn vision-language (VL) models
• Different objective, different methods have been studied

• We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation

• Enables zero-shot classification & high robustness
2. Fused transformer for vision-language understanding

• Better vision-language understanding tasks, e.g., Visual Question Answering
3. Learning visual representation from frozen Large Language Models (LLMs)

• Leveraging the power of LLMs for visual in-context learning
4. Unifying Vision-Language pretraining

• Learning Vision-Language model from scratch for all tasks

Multimodal SSL: Overview
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• So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet
classification

• Concurrently, many Vision-Language Pretrained (VLP) models are studied to do 
better on vision-language understanding tasks, e.g.,
• Visual Question Answering (VQA) [Goyal et al., 2017]

Vision-Language Understanding Benchmarks
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• So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet 
classification

• Concurrently, many Vision-Language Pretrained (VLP) models are studied to do 
better on vision-language understanding tasks, e.g.,
• Visual Question Answering (VQA) [Goyal et al., 2017]
• Natural Language Visual Reasoning (NLVR) [Suhr et al., 2018]

Vision-Language Pretraining Models
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• So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet 
classification

• Concurrently, many Vision-Language Pretrained (VLP) models are studied to do 
better on vision-language understanding tasks, e.g.,
• Visual Question Answering (VQA) [Goyal et al., 2017]
• Natural Language Visual Reasoning (NLVR) [Suhr et al., 2018]
• Visual-Entailment (SNLI-VE) [Xie et al., 2019]

Vision-Language Pretraining Models
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• So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet 
classification

• Concurrently, many Vision-Language Pretrained (VLP) models are studied to do 
better on vision-language understanding tasks, e.g.,
• Visual Question Answering (VQA) [Goyal et al., 2017]
• Natural Language Visual Reasoning (NLVR) [Suhr et al., 2017]
• Visual-Entailment (SNLI-VE) [Xie et al., 2019]

• Here, we follow the history of the VLP models by following:
• Development of visual encoder architectures

• Object detector -> CNN -> Vision Transformer (ViT)
• Multimodality fusion mechanism

• Co-attention and Merged-Attention
• Pre-training objectives

• Image-Text Matching, Masked Language Modeling, Masked Image Modeling

Vision-Language Pretraining Models
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Earlier works focused on fusing visual and text features using attention
• Co-attention: transformer fuse vision and language encoder outputs independently

• ViLBERT [Lu et al., 2019], LXMERT [Tan & Bansal, 2019]

• Merged attention: fuse image patches and text features into unified transformer
• VisualBERT [Li et al., 2020], VL-BERT [Su et al., 2019], UNITER [Chen et al., 2020]
• OSCAR [Li et al., 2020] uses object tags as inputs additionally
• VinVL uses 3-way contrastive loss for VQA and image-text matching

• Pretrained (and frozen) object detectors (e.g., Faster R-CNN) are used for visual features

Earlier works on Vision-Language Pretraining Models

use AdamW [37] for transformer and SGD for CNN. Re-
cent work on vision transformers (ViTs) has also shown that
CNN can achieve slightly worse accuracy/FLOPs trade-offs
than their ViT counterparts [36], motivating researchers to
develop ViT-based VLP models.

ViT-based Patch Features. ViLT [25] directly feeds im-
age patch features and text token embeddings into a pre-
trained ViT model, and fine-tunes the model on image-
caption datasets. More recently, visual parsing [60] and
ALBEF [29] use ViT as the image encoder and design dif-
ferent pre-training objectives for ViT-based VLP models.
However, all these models lag behind the state-of-the-art
performance on downstream tasks such as visual question
answering. In this paper, we investigate how to pre-train a
ViT-based model in an end-to-end manner that closes the
performance gap while maintaining fast inference speed.

3. The METER Framework
Based on the previous work, we identify several impor-

tant modules in VLP models as in Figure 1. In this section,
we first illustrate our METER framework, then our default
settings, which paves the way for our analyses hereinafter.

Overview. Given a text sentence l and an image v, a VLP
model first extracts both text features l = hl1, · · · , lN i and
visual features v = hv1, · · · , vM i via a text encoder and a
vision encoder. The text and visual features are then fed into
a multimodal fusion module to produce cross-modal repre-
sentations, which are then optionally fed into a decoder be-
fore generating the final outputs.

3.1. Model Architecture
Vision Encoder. In this paper, we focus on patch features,
and study the use of vision transformers (ViTs) [12] for
vision encoder. Specifically, in ViT, an image is first seg-
mented into patches, and then the patches are fed into a
transformer model. ViT has become a popular research
topic recently [2, 12, 36, 52, 52, 53, 64], and has been intro-
duced into VLP [25,29,60]. However, all these models only
achieve inferior performance compared to state-of-the-art
region-feature-based models (e.g., VinVL [65]). Also, dif-
ferent pre-trained ViTs are used, lacking a systematic study
of which ViTs are the best for VLP. In this work, we com-
pare the original ViT [12], DeiT [52], Distilled-DeiT [52],
CaiT [53], VOLO [64], BEiT [2], Swin Transformer [36]
and CLIP-ViT [41], to provide a comprehensive analysis on
the role of vision transformers.

Text Encoder. Following BERT [11] and RoBERTa [35],
VLP models [6, 30, 32, 38, 49, 51] first segment the input
sentence into a sequence of subwords [46], then insert two
special tokens at the beginning and the end of the sentence
to generate the input text sequence. After we obtain the text
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Figure 2. Illustration of two types of multimodal fusion modules:
(a) co-attention, and (b) merged attention.

embeddings, existing works either feed them directly to the
multimodal fusion module [6,30], or to several text-specific
layers [38, 51] before the fusion. For the former, the fusion
module is typically initialized with BERT, and the role of
text encoding and multimodal fusion is therefore entangled
and absorbed in a single BERT model. Here, we aim to
disentangle the two modules, and use a text encoder first
before sending the features into the fusion module.

Language model (LM) pre-training has demonstrated
impressive performance across tasks and different pre-
trained LMs have been proposed; however, most VLP mod-
els still only use BERT for initialization [6]. In this work,
we study the use of BERT [11], RoBERTa [35], ELEC-
TRA [8], ALBERT [28], and DeBERTa [16] for text encod-
ing. Besides, we also experiment on only using a simple
word embedding look-up layer initialized with the BERT
embedding layer as used in many previous works [6, 65].

Multimodal Fusion. We study two types of fusion mod-
ules, namely, merged attention and co-attention [17], as il-
lustrated in Figure 2. In the merged attention module, the
text and visual features are simply concatenated together,
then fed into a single transformer block. In the co-attention
module, on the other hand, the text and visual features
are fed into different transformer blocks independently, and
techniques such as cross-attention are used to enable cross-
modal interaction. For region-based VLP models, as shown
in [4], the merged attention and co-attention models can
achieve comparable performance. Yet, the merged atten-
tion module is more parameter-efficient, as the same set
of parameters are used for both modalities. Since end-to-
end VLP models are becoming increasingly popular, in this
work, we re-examine the impact of both types of fusion
modules in our new context.

Encoder-Only vs. Encoder-Decoder. Many VLP mod-
els such as VisualBERT [30] adopt the encoder-only archi-
tecture, where the cross-modal representations are directly
fed into an output layer to generate the final outputs. Re-
cently, VL-T5 [7] and SimVLM [58], on the other hand,
advocate the use of a transformer encoder-decoder archi-
tecture, where the cross-modal representations are first fed
into a decoder and then to an output layer. In their models,
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End-to-end pretraining with CNN visual encoder 
• PixelBERT [Huang et al., 2020] uses CNN based visual encoder and sentence encoder, and 

fed to transformer via cross-modality alignment

• SimVLM [Wang et al., 2021] uses CNN and text token embedding along with encoder-
decoder architecture

• MDETR [Kamath et al., 2021] uses CNN and RoBERTa for image and text feature extraction, 
and pass to transformer with Image-Text-Box annotated data

Earlier works on Vision-Language Pretraining Models

SimVLM architecture
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Incorporating Vision Transformers (ViT) [Dosovitskiy et al., 2021] for VLP models

• Vision-Language Transformer (ViLT) [Kim et al., 2021]
• Minimal VLP models for efficiency and expressive power

ViLT: Vision-Language Transformer
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Incorporating Vision Transformers (ViT) [Dosovitskiy et al., 2021] for VLP models

• Vision-Language Transformer (ViLT) [Kim et al., 2021]
• Minimal VLP models for efficiency and expressive power
• Image patches and Text tokens are fed into unified transformer encoder
• Pretraining objectives 

• Image Text Matching (ITM)
• Masked Language Modeling (MLM)
• Word-Patch Alignment (WPA): use optimal transport to align words & patches

ViLT: Vision-Language Transformer
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Motivation: Image features and word tokens may not be aligned

Align Before Fuse (ALBEF) [Li et al., 2021]

• Use additional multimodal encoder to fuse information
• Image-Text Contrastive Loss (i.e., CLIP) to align unimodal representation before fusion
• ITM and MLM loss to learn multimodal interactions between image and text

Align Before Fuse: VLP model with Momentum Distillation
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Figure 1: Illustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder.
We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before
fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a
masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to
improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average
version of the base model) as additional supervision during training.

3.1 Model Architecture

As illustrated in Figure 1, ALBEF contains an image encoder, a text encoder, and a multimodal
encoder. We use a 12-layer visual transformer ViT-B/16 [38] as the image encoder, and initialize it
with weights pre-trained on ImageNet-1k from [31]. An input image I is encoded into a sequence of
embeddings: {vcls,v1, ...,vN}, where vcls is the embedding of the [CLS] token. We use a 6-layer
transformer [39] for both the text encoder and the multimodal encoder. The text encoder is initialized
using the first 6 layers of the BERTbase [40] model, and the multimodal encoder is initialized using
the last 6 layers of the BERTbase. The text encoder transforms an input text T into a sequence of
embeddings {wcls,w1, ...,wN}, which is fed to the multimodal encoder. The image features are
fused with the text features through cross attention at each layer of the multimodal encoder.

3.2 Pre-training Objectives

We pre-train ALBEF with three objectives: image-text contrastive learning (ITC) on the unimodal
encoders, masked language modeling (MLM) and image-text matching (ITM) on the multimodal
encoder. We improve ITM with online contrastive hard negative mining.

Image-Text Contrastive Learning aims to learn better unimodal representations before fusion. It
learns a similarity function s = gv(vcls)

>gw(wcls), such that parallel image-text pairs have higher
similarity scores. gv and gw are linear transformations that map the [CLS] embeddings to normalized
lower-dimensional (256-d) representations. Inspired by MoCo [24], we maintain two queues to
store the most recent M image-text representations from the momentum unimodal encoders. The
normalized features from the momentum encoders are denoted as g0v(v0

cls) and g0w(w
0
cls). We define

s(I, T ) = gv(vcls)
>g0w(w

0
cls) and s(T, I) = gw(wcls)

>g0v(v
0
cls).

For each image and text, we calculate the softmax-normalized image-to-text and text-to-image
similarity as:

pi2tm (I) =
exp(s(I, Tm)/⌧)

PM
m=1 exp(s(I, Tm)/⌧)

, pt2im (T ) =
exp(s(T, Im)/⌧)

PM
m=1 exp(s(T, Im)/⌧)

(1)

where ⌧ is a learnable temperature parameter. Let yi2t
(I) and yt2i

(T ) denote the ground-truth
one-hot similarity, where negative pairs have a probability of 0 and the positive pair has a probability
of 1. The image-text contrastive loss is defined as the cross-entropy H between p and y:

Litc =
1

2
E(I,T )⇠D

⇥
H(yi2t

(I),pi2t
(I)) + H(yt2i

(T ),pt2i
(T ))

⇤
(2)
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Motivation: Image features and word tokens may not be aligned

Align Before Fuse (ALBEF) [Li et al., 2021]

• Use additional multimodal encoder to fuse information 
• Image-Text Contrastive Loss (i.e., CLIP) to align unimodal representation before fusion
• ITM and MLM loss to learn multimodal interactions between image and text

• Momentum Distillation to deal with noisy image-text pair

• Application to VQA and NLVR tasks:

Align Before Fuse: VLP model with Momentum Distillation
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Figure 3: The model architecture for VQA and NLVR2. For VQA, we append an auto-regressive decoder to
generate the answer given the image-question embeddings. For NLVR2, we replicate the transformer block
within each layer of multimodal encoder to enable reasoning over two images.

The answer decoder is initialized using the pre-trained weights from the multimodal encoder, and
finetuned with a conditional language-modeling loss. For a fair comparison with existing methods,
we constrain the decoder to only generate from the 3,192 candidate answers [55] during inference.

Natural Language for Visual Reasoning (NLVR2 [19]) requires the model to predict whether a text
describes a pair of images. We extend our multimodal encoder to enable reasoning over two images.
As shown in Figure 3b, each layer of the multimodal encoder is replicated to have two consecutive
transformer blocks, where each block contains a self-attention layer, a cross-attention layer, and a
feed-forward layer (see Figure 1). The two blocks within each layer are initialized using the same
pre-trained weights, and the two cross-attention layers share the same linear projection weights for the
keys and values. During training, the two blocks receive two sets of image embeddings for the image
pair. We append a MLP classifier on the multimodal encoder’s [CLS] representation for prediction.

For NLVR2, we perform an additional pre-training step to prepare the new multimodal encoder for
encoding an image-pair. We design a text-assignment (TA) task as follows: given a pair of images and
a text, the model needs to assign the text to either the first image, the second image, or none of them.
We consider it as a three-way classification problem, and use a FC layer on the [CLS] representation
to predict the assignment. We pre-train with TA for only 1 epoch using the 4M images (Section 3.4).

Visual Grounding aims to localize the region in an image that corresponds to a specific textual
description. We study the weakly-supervised setting, where no bounding box annotations are available.
We perform experiments on the RefCOCO+ [56] dataset, and fine-tune the model using only image-
text supervision following the same strategy as image-text retrieval. During inference, we extend
Grad-CAM [9] to acquire heatmaps, and use them to rank the detected proposals provided by [53].

6 Experiments
6.1 Evaluation on the Proposed Methods

First, we evaluate the effectiveness of the proposed methods (i.e. image-text contrastive learning,
contrastive hard negative mining, and momentum distillation). Table 1 shows the performance of
the downstream tasks with different variants of our method. Compared to the baseline pre-training
tasks (MLM+ITM), adding ITC substantially improves the pre-trained model’s performance across

#Pre-train Training tasks TR IR SNLI-VE NLVR2 VQA
Images (flickr test) (test) (test-P) (test-dev)

4M

MLM + ITM 93.96 88.55 77.06 77.51 71.40
ITC + MLM + ITM 96.55 91.69 79.15 79.88 73.29
ITC + MLM + ITMhard 97.01 92.16 79.77 80.35 73.81
ITCMoD + MLM + ITMhard 97.33 92.43 79.99 80.34 74.06
Full (ITCMoD + MLMMoD + ITMhard) 97.47 92.58 80.12 80.44 74.42
ALBEF (Full + MoDDownstream) 97.83 92.65 80.30 80.50 74.54

14M ALBEF 98.70 94.07 80.91 83.14 75.84

Table 1: Evaluation of the proposed methods on four downstream V+L tasks. For text-retrieval (TR) and
image-retrieval (IR), we report the average of R@1, R@5 and R@10. ITC: image-text contrastive learning.
MLM: masked language modeling. ITMhard: image-text matching with contrastive hard negative mining. MoD:
momentum distillation. MoDDownstream: momentum distillation on downstream tasks.
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• ALBEF achieved SOTA in various VL tasks (VQA, NLVR, SNLI-VE)

Align Before Fuse: VLP model with Momentum Distillation

Method # Pre-train Flickr30K (1K test set) MSCOCO (5K test set)
Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
ALIGN 1.2B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
ALBEF 14M 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5

Table 2: Fine-tuned image-text retrieval results on Flickr30K and COCO datasets.

Method # Pre-train Flickr30K (1K test set)
Images TR IR

R@1 R@5 R@10 R@1 R@5 R@10
UNITER [2] 4M 83.6 95.7 97.7 68.7 89.2 93.9
CLIP [6] 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN [7] 1.2B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 4M 90.5 98.8 99.7 76.8 93.7 96.7
ALBEF 14M 94.1 99.5 99.7 82.8 96.3 98.1

Table 3: Zero-shot image-text retrieval results on Flickr30K.

Method VQA NLVR2 SNLI-VE
test-dev test-std dev test-P val test

VisualBERT [13] 70.80 71.00 67.40 67.00 - -
VL-BERT [10] 71.16 - - - - -
LXMERT [1] 72.42 72.54 74.90 74.50 - -
12-in-1 [12] 73.15 - - 78.87 - 76.95
UNITER [2] 72.70 72.91 77.18 77.85 78.59 78.28
VL-BART/T5 [54] - 71.3 - 73.6 - -
ViLT [21] 70.94 - 75.24 76.21 - -
OSCAR [3] 73.16 73.44 78.07 78.36 - -
VILLA [8] 73.59 73.67 78.39 79.30 79.47 79.03
ALBEF (4M) 74.54 74.70 80.24 80.50 80.14 80.30
ALBEF (14M) 75.84 76.04 82.55 83.14 80.80 80.91

Table 4: Comparison with state-of-the-art methods on downstream vision-language tasks.

all tasks. The proposed hard negative mining improves ITM by finding more informative training
samples. Furthermore, adding momentum distillation improves learning for both ITC (row 4), MLM
(row 5), and on all downstream tasks (row 6). In the last row, we show that ALBEF can effectively
leverage more noisy web data to improve the pre-training performance.

6.2 Evaluation on Image-Text Retrieval
Table 2 and Table 3 report results on fine-tuned and zero-shot image-text retrieval, respectively. Our
ALBEF achieves state-of-the-art performance, outperforming CLIP [6] and ALIGN [7] which are
trained on orders of magnitude larger datasets. Given the considerable amount of improvement of
ALBEF when the number of training images increases from 4M to 14M, we hypothesize that it has
potential to further grow by training on larger-scale web image-text pairs.

6.3 Evaluation on VQA, NLVR, and VE
Table 4 reports the comparison with existing methods on other V+L understanding tasks. With 4M
pre-training images, ALBEF already achieves state-of-the-art performance. With 14M pre-training
images, ALBEF substantially outperforms existing methods, including methods that additionally
use object tags [3] or adversarial data augmentation [8]. Compared to VILLA [8], ALBEF achieves
absolute improvements of 2.37% on VQA test-std, 3.84% on NLVR2 test-P, and 1.88% on SNLI-VE
test. Because ALBEF is detector-free and requires lower resolution images, it also enjoys much faster
inference speed compared to most existing methods (>10 times faster than VILLA on NLVR2).

6.4 Weakly-supervised Visual Grounding
Table 5 shows the results on RefCOCO+, where ALBEF substantially outperforms existing meth-
ods [57, 58] (which use weaker text embeddings). The ALBEFitc variant computes Grad-CAM

8
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• ALBEF achieved SOTA in various VL tasks (VQA, NLVR, SNLI-VE)

• Also, it outperforms other methods in image-text retrieval
• In both zero-shot and fine-tuned cases

Align Before Fuse: VLP model with Momentum Distillation

Method # Pre-train Flickr30K (1K test set) MSCOCO (5K test set)
Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
ALIGN 1.2B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
ALBEF 14M 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5

Table 2: Fine-tuned image-text retrieval results on Flickr30K and COCO datasets.

Method # Pre-train Flickr30K (1K test set)
Images TR IR

R@1 R@5 R@10 R@1 R@5 R@10
UNITER [2] 4M 83.6 95.7 97.7 68.7 89.2 93.9
CLIP [6] 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN [7] 1.2B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 4M 90.5 98.8 99.7 76.8 93.7 96.7
ALBEF 14M 94.1 99.5 99.7 82.8 96.3 98.1

Table 3: Zero-shot image-text retrieval results on Flickr30K.

Method VQA NLVR2 SNLI-VE
test-dev test-std dev test-P val test

VisualBERT [13] 70.80 71.00 67.40 67.00 - -
VL-BERT [10] 71.16 - - - - -
LXMERT [1] 72.42 72.54 74.90 74.50 - -
12-in-1 [12] 73.15 - - 78.87 - 76.95
UNITER [2] 72.70 72.91 77.18 77.85 78.59 78.28
VL-BART/T5 [54] - 71.3 - 73.6 - -
ViLT [21] 70.94 - 75.24 76.21 - -
OSCAR [3] 73.16 73.44 78.07 78.36 - -
VILLA [8] 73.59 73.67 78.39 79.30 79.47 79.03
ALBEF (4M) 74.54 74.70 80.24 80.50 80.14 80.30
ALBEF (14M) 75.84 76.04 82.55 83.14 80.80 80.91

Table 4: Comparison with state-of-the-art methods on downstream vision-language tasks.

all tasks. The proposed hard negative mining improves ITM by finding more informative training
samples. Furthermore, adding momentum distillation improves learning for both ITC (row 4), MLM
(row 5), and on all downstream tasks (row 6). In the last row, we show that ALBEF can effectively
leverage more noisy web data to improve the pre-training performance.

6.2 Evaluation on Image-Text Retrieval
Table 2 and Table 3 report results on fine-tuned and zero-shot image-text retrieval, respectively. Our
ALBEF achieves state-of-the-art performance, outperforming CLIP [6] and ALIGN [7] which are
trained on orders of magnitude larger datasets. Given the considerable amount of improvement of
ALBEF when the number of training images increases from 4M to 14M, we hypothesize that it has
potential to further grow by training on larger-scale web image-text pairs.

6.3 Evaluation on VQA, NLVR, and VE
Table 4 reports the comparison with existing methods on other V+L understanding tasks. With 4M
pre-training images, ALBEF already achieves state-of-the-art performance. With 14M pre-training
images, ALBEF substantially outperforms existing methods, including methods that additionally
use object tags [3] or adversarial data augmentation [8]. Compared to VILLA [8], ALBEF achieves
absolute improvements of 2.37% on VQA test-std, 3.84% on NLVR2 test-P, and 1.88% on SNLI-VE
test. Because ALBEF is detector-free and requires lower resolution images, it also enjoys much faster
inference speed compared to most existing methods (>10 times faster than VILLA on NLVR2).

6.4 Weakly-supervised Visual Grounding
Table 5 shows the results on RefCOCO+, where ALBEF substantially outperforms existing meth-
ods [57, 58] (which use weaker text embeddings). The ALBEFitc variant computes Grad-CAM

8
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R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
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VL-BART/T5 [54] - 71.3 - 73.6 - -
ViLT [21] 70.94 - 75.24 76.21 - -
OSCAR [3] 73.16 73.44 78.07 78.36 - -
VILLA [8] 73.59 73.67 78.39 79.30 79.47 79.03
ALBEF (4M) 74.54 74.70 80.24 80.50 80.14 80.30
ALBEF (14M) 75.84 76.04 82.55 83.14 80.80 80.91

Table 4: Comparison with state-of-the-art methods on downstream vision-language tasks.
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Abstract
Vision-Language Pre-training (VLP) has ad-
vanced the performance for many vision-language
tasks. However, most existing pre-trained mod-
els only excel in either understanding-based tasks
or generation-based tasks. Furthermore, perfor-
mance improvement has been largely achieved
by scaling up the dataset with noisy image-text
pairs collected from the web, which is a subop-
timal source of supervision. In this paper, we
propose BLIP, a new VLP framework which trans-
fers flexibly to both vision-language understand-
ing and generation tasks. BLIP effectively uti-
lizes the noisy web data by bootstrapping the
captions, where a captioner generates synthetic
captions and a filter removes the noisy ones. We
achieve state-of-the-art results on a wide range of
vision-language tasks, such as image-text retrieval
(+2.7% in average recall@1), image captioning
(+2.8% in CIDEr), and VQA (+1.6% in VQA
score). BLIP also demonstrates strong general-
ization ability when directly transferred to video-
language tasks in a zero-shot manner. Code, mod-
els, and datasets are released.

1. Introduction
Vision-language pre-training has recently received tremen-
dous success on various multimodal downstream tasks.
However, existing methods have two major limitations:

(1) Model perspective: most methods either adopt an
encoder-based model (Radford et al., 2021; Li et al., 2021a),
or an encoder-decoder (Cho et al., 2021; Wang et al., 2021)
model. However, encoder-based models are less straightfor-
ward to directly transfer to text generation tasks (e.g. image
captioning), whereas encoder-decoder models have not been
successfully adopted for image-text retrieval tasks.

(2) Data perspective: most state-of-the-art methods (e.g.,
CLIP (Radford et al., 2021), ALBEF (Li et al., 2021a),
SimVLM (Wang et al., 2021)) pre-train on image-text pairs

Cap

“chocolate cake 
with cream frosting 
and chocolate 
sprinkles on top”

“blue sky bakery in 
sunset park ” 

Filt

Filt

Figure 1. We use a Captioner (Cap) to generate synthetic captions
for web images, and a Filter (Filt) to remove noisy captions.

collected from the web. Despite the performance gain ob-
tained by scaling up the dataset, our paper shows that the
noisy web text is suboptimal for vision-language learning.

To this end, we propose BLIP: Bootstrapping Language-
Image Pre-training for unified vision-language understand-
ing and generation. BLIP is a new VLP framework which
enables a wider range of downstream tasks than existing
methods. It introduces two contributions from the model
and data perspective, respectively:

(a) Multimodal mixture of Encoder-Decoder (MED): a new
model architecture for effective multi-task pre-training and
flexible transfer learning. An MED can operate either as
a unimodal encoder, or an image-grounded text encoder,
or an image-grounded text decoder. The model is jointly
pre-trained with three vision-language objectives: image-
text contrastive learning, image-text matching, and image-
conditioned language modeling.

(b) Captioning and Filtering (CapFilt): a new dataset boos-
trapping method for learning from noisy image-text pairs.
We finetune a pre-trained MED into two modules: a cap-
tioner to produce synthetic captions given web images, and
a filter to remove noisy captions from both the original web
texts and the synthetic texts.

We perform extensive experiments and analysis, and make
the following key observations.

• We show that the captioner and the filter work together to
achieve substantial performance improvement on various
downstream tasks by bootstrapping the captions. We also
find that more diverse captions yield larger gains.

• BLIP achieves state-of-the-art performance on a wide
range of vision-language tasks, including image-text re-
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• Contrastive loss for unimodal encoder outputs
• Image-grounded Text Encoder & Decoder
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Self Attention

Feed Forward

N× Cross Attention

Feed Forward

Bi Self-Att

Cross Attention

Feed Forward

Bi Self-Att

Cross Attention

Feed Forward

Causal Self-Att

ITMITC LM

N×

“[CLS] +           ”  

“a little girl holding a kitten next to a blue fence”

“[Encode] +           ”  “[Decode] +           ”  
Text
Encoder

Image
Encoder

Image-grounded 
Text encoder

Image-grounded 
Text decoder

Figure 2. Pre-training model architecture and objectives of BLIP (same parameters have the same color). We propose multimodal mixture
of encoder-decoder, a unified vision-language model which can operate in one of the three functionalities: (1) Unimodal encoder is
trained with an image-text contrastive (ITC) loss to align the vision and language representations. (2) Image-grounded text encoder uses
additional cross-attention layers to model vision-language interactions, and is trained with a image-text matching (ITM) loss to distinguish
between positive and negative image-text pairs. (3) Image-grounded text decoder replaces the bi-directional self-attention layers with
causal self-attention layers, and shares the same cross-attention layers and feed forward networks as the encoder. The decoder is trained
with a language modeling (LM) loss to generate captions given images.

trieval, image captioning, visual question answering, vi-
sual reasoning, and visual dialog. We also achieve state-of-
the-art zero-shot performance when directly transferring
our models to two video-language tasks: text-to-video
retrieval and videoQA.

2. Related Work
2.1. Vision-language Pre-training
Vision-language pre-training (VLP) aims to improve per-
formance of downstream vision and language tasks by pre-
training the model on large-scale image-text pairs. Due to
the prohibitive expense of acquiring human-annotated texts,
most methods (Chen et al., 2020; Li et al., 2020; 2021a;
Wang et al., 2021; Radford et al., 2021) use image and
alt-text pairs crawled from the web (Sharma et al., 2018;
Changpinyo et al., 2021; Jia et al., 2021), Despite the use of
simple rule-based filters, noise is still prevalent in the web
texts. However, the negative impact of the noise has been
largely overlooked, shadowed by the performance gain ob-
tained from scaling up the dataset. Our paper shows that the
noisy web texts are suboptimal for vision-language learning,
and proposes CapFilt that utilizes web datasets in a more
effective way.

There have been many attempts to unify various vision
and language tasks into a single framework (Zhou et al.,
2020; Cho et al., 2021; Wang et al., 2021). The biggest
challenge is to design model architectures that can perform
both understanding-based tasks (e.g. image-text retrieval)
and generation-based tasks (e.g. image captioning). Neither

encoder-based models (Li et al., 2021a;b; Radford et al.,
2021) nor encoder-decoder models (Cho et al., 2021; Wang
et al., 2021) can excel at both types of tasks, whereas a single
unified encoder-decoder (Zhou et al., 2020) also limits the
model’s capability. Our proposed multimodal mixture of
encoder-decoder model offers more flexibility and better
performance on a wide range of downstream tasks, in the
meantime keeping the pre-training simple and efficient.

2.2. Knowledge Distillation
Knowledge distillation (KD) (Hinton et al., 2015) aims to
improve the performance of a student model by distilling
knowledge from a teacher model. Self-distillation is a spe-
cial case of KD where the teacher and student have equal
sizes. It has been shown to be effective for image classi-
fication (Xie et al., 2020), and recently for VLP (Li et al.,
2021a). Different from mostly existing KD methods which
simply enforce the student to have the same class predic-
tions as the teacher, our proposed CapFilt can be interpreted
as a more effective way to perform KD in the context of
VLP, where the captioner distills its knowledge through
semantically-rich synthetic captions, and the filter distills
its knowledge by removing noisy captions.

2.3. Data Augmentation
While data augmentation (DA) has been widely adopted in
computer vision (Shorten & Khoshgoftaar, 2019), DA for
language tasks is less straightforward. Recently, generative
language models have been used to synthesize examples
for various NLP tasks (Kumar et al., 2020; Anaby-Tavor
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Figure 3. Learning framework of BLIP. We introduce a captioner to produce synthetic captions for web images, and a filter to remove
noisy image-text pairs. The captioner and filter are initialized from the same pre-trained model and finetuned individually on a small-scale
human-annotated dataset. The bootstrapped dataset is used to pre-train a new model.

We propose Captioning and Filtering (CapFilt), a new
method to improve the quality of the text corpus. Figure 3
gives an illustration of CapFilt. It introduces two modules:
a captioner to generate captions given web images, and a
filter to remove noisy image-text pairs. Both the captioner
and the filter are initialized from the same pre-trained MED
model, and finetuned individually on the COCO dataset.
The finetuning is a lightweight procedure.

Specifically, the captioner is an image-grounded text de-
coder. It is finetuned with the LM objective to decode texts
given images. Given the web images Iw, the captioner gen-
erates synthetic captions Ts with one caption per image.
The filter is an image-grounded text encoder. It is finetuned
with the ITC and ITM objectives to learn whether a text
matches an image. The filter removes noisy texts in both
the original web texts Tw and the synthetic texts Ts, where
a text is considered to be noisy if the ITM head predicts it
as unmatched to the image. Finally, we combine the filtered
image-text pairs with the human-annotated pairs to form a
new dataset, which we use to pre-train a new model.

4. Experiments and Discussions
In this section, we first introduce pre-training details. Then
we provide a detailed experimental analysis on our method.

4.1. Pre-training Details
Our models are implemented in PyTorch (Paszke et al.,
2019) and pre-trained on two 16-GPU nodes. The im-
age transformer is initialized from ViT pre-trained on Ima-
geNet (Touvron et al., 2020; Dosovitskiy et al., 2021), and
the text transformer is initialized from BERTbase (Devlin
et al., 2019). We explore two variants of ViTs: ViT-B/16
and ViT-L/16. Unless otherwise specified, all results re-
ported in this paper as “BLIP” uses ViT-B. We pre-train the
model for 20 epochs using a batch size of 2880 (ViT-B) /

2400 (ViT-L). We use AdamW (Loshchilov & Hutter, 2017)
optimizer with a weight decay of 0.05. The learning rate
is warmed-up to 3e-4 (ViT-B) / 2e-4 (ViT-L) and decayed
linearly with a rate of 0.85. We take random image crops of
resolution 224⇥ 224 during pre-training, and increase the
image resolution to 384 ⇥ 384 during finetuning. We use
the same pre-training dataset as Li et al. (2021a) with 14M
images in total, including two human-annotated datasets
(COCO and Visual Genome (Krishna et al., 2017)), and
three web datasets (Conceptual Captions (Changpinyo et al.,
2021), Conceptual 12M (Changpinyo et al., 2021), SBU cap-
tions (Ordonez et al., 2011)). We also experimented with an
additional web dataset, LAION (Schuhmann et al., 2021),
which contains 115M images with more noisy texts1. More
details about the datasets can be found in the appendix.

4.2. Effect of CapFilt
In Table 1, we compare models pre-trained on different
datasets to demonstrate the efficacy of CapFilt on down-
stream tasks, including image-text retrieval and image cap-
tioning with finetuned and zero-shot settings.

When only the captioner or the filter is applied to the dataset
with 14M images, performance improvement can be ob-
served. When applied together, their effects compliment
each other, leading to substantial improvements compared
to using the original noisy web texts.

CapFilt can further boost performance with a larger dataset
and a larger vision backbone, which verifies its scalability
in both the data size and the model size. Furthermore, by
using a large captioner and filter with ViT-L, performance
of the base model can also be improved.

1We only download images whose shorter edge is larger than
256 pixels from the original LAION400M. Due to the large size of
LAION, we only use 1/5 of it each epoch during pre-training.
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Pre-train
dataset

Bootstrap Vision
backbone

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
C F TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

COCO+VG
+CC+SBU
(14M imgs)

7 7

ViT-B/16

78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
7 3B 79.1 61.5 94.1 82.8 38.1 128.2 102.7 14.0
3B 7 79.7 62.0 94.4 83.6 38.4 128.9 103.4 14.2
3B 3B 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

COCO+VG
+CC+SBU
+LAION
(129M imgs)

7 7
ViT-B/16

79.6 62.0 94.3 83.6 38.8 130.1 105.4 14.2
3B 3B 81.9 64.3 96.0 85.0 39.4 131.4 106.3 14.3
3L 3L 81.2 64.1 96.0 85.5 39.7 133.3 109.6 14.7

7 7 ViT-L/16 80.6 64.1 95.1 85.5 40.3 135.5 112.5 14.7
3L 3L 82.4 65.1 96.7 86.7 40.4 136.7 113.2 14.8

Table 1. Evaluation of the effect of the captioner (C) and filter (F) for dataset bootstrapping. Downstream tasks include image-text retrieval
and image captioning with finetuning (FT) and zero-shot (ZS) settings. TR / IR@1: recall@1 for text retrieval / image retrieval. 3B/L:
captioner or filter uses ViT-B / ViT-L as vision backbone.

!!: “from bridge 
near my house”

!": “a flock of birds 
flying over a lake at 
sunset”

!!: “in front of a house 
door in Reichenfels, 
Austria” 

!": “a potted plant sitting 
on top of a pile of rocks”

!!: “the current castle was 
built in 1180, replacing a 9th 
century wooden castle”

!": “a large building with a lot 
of windows on it” 

Figure 4. Examples of the web text Tw and the synthetic text Ts. Green texts are accepted by the filter, whereas red texts are rejected.

Generation
method

Noise
ratio

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

None N.A. 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
Beam 19% 79.6 61.9 94.1 83.1 38.4 128.9 103.5 14.2
Nucleus 25% 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 2. Comparison between beam search and nucleus sampling for synthetic caption generation. Models are pre-trained on 14M images.

Layers shared #parameters Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

All 224M 77.3 59.5 93.1 81.0 37.2 125.9 100.9 13.1
All except CA 252M 77.5 59.9 93.1 81.3 37.4 126.1 101.2 13.1
All except SA 252M 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
None 361M 78.3 60.5 93.6 81.9 37.8 127.4 101.8 13.9

Table 3. Comparison between different parameter sharing strategies for the text encoder and decoder during pre-training.

In Figure 4, we show some example captions and their
corresponding images, which qualitatively demonstrate the
effect of the captioner to generate new textual descriptions,
and the filter to remove noisy captions from both the original
web texts and the synthetic texts. More examples can be
found in the appendix.

4.3. Diversity is Key for Synthetic Captions
In CapFilt, we employ nucleus sampling (Holtzman et al.,
2020) to generate synthetic captions. Nucleus sampling is a
stochastic decoding method, where each token is sampled
from a set of tokens whose cumulative probability mass
exceeds a threshold p (p = 0.9 in our experiments). In
Table 2, we compare it with beam search, a deterministic
decoding method which aims to generate captions with the

highest probability. Nucleus sampling leads to evidently
better performance, despite being more noisy as suggested
by a higher noise ratio from the filter. We hypothesis that the
reason is that nucleus sampling generates more diverse and
surprising captions, which contain more new information
that the model could benefit from. On the other hand, beam
search tends to generate safe captions that are common in
the dataset, hence offering less extra knowledge.

4.4. Parameter Sharing and Decoupling
During pre-training, the text encoder and decoder share all
parameters except for the self-attention layers. In Table 3,
we evaluate models pre-trained with different parameter
sharing strategies, where pre-training is performed on the
14M images with web texts. As the result shows, sharing all
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Captioner &
Filter

Noise
ratio

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

Share parameters 8% 79.8 62.2 94.3 83.7 38.4 129.0 103.5 14.2
Decoupled 25% 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 4. Effect of sharing parameters between the captioner and filter. Models are pre-trained on 14M images.

Method Pre-train COCO (5K test set) Flickr30K (1K test set)
# Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER (Chen et al., 2020) 4M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VILLA (Gan et al., 2020) 4M - - - - - - 87.9 97.5 98.8 76.3 94.2 96.8
OSCAR (Li et al., 2020) 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
UNIMO (Li et al., 2021b) 5.7M - - - - - - 89.4 98.9 99.8 78.0 94.2 97.1
ALIGN (Jia et al., 2021) 1.8B 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
ALBEF (Li et al., 2021a) 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9

BLIP 14M 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100.0 87.2 97.5 98.8
BLIP 129M 81.9 95.4 97.8 64.3 85.7 91.5 97.3 99.9 100.0 87.3 97.6 98.9
BLIPCapFilt-L 129M 81.2 95.7 97.9 64.1 85.8 91.6 97.2 99.9 100.0 87.5 97.7 98.9
BLIPViT-L 129M 82.4 95.4 97.9 65.1 86.3 91.8 97.4 99.8 99.9 87.6 97.7 99.0

Table 5. Comparison with state-of-the-art image-text retrieval methods, finetuned on COCO and Flickr30K datasets. BLIPCapFilt-L pre-trains
a model with ViT-B backbone using a dataset bootstrapped by captioner and filter with ViT-L.

Method Pre-train Flickr30K (1K test set)
# Images TR IR

R@1 R@5 R@10 R@1 R@5 R@10
CLIP 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN 1.8B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 14M 94.1 99.5 99.7 82.8 96.3 98.1

BLIP 14M 94.8 99.7 100.0 84.9 96.7 98.3
BLIP 129M 96.0 99.9 100.0 85.0 96.8 98.6
BLIPCapFilt-L 129M 96.0 99.9 100.0 85.5 96.8 98.7
BLIPViT-L 129M 96.7 100.0 100.0 86.7 97.3 98.7

Table 6. Zero-shot image-text retrieval results on Flickr30K.

layers except for SA leads to better performance compared
to not sharing, while also reducing the model size thus
improveing training efficiency. If the SA layers are shared,
the model’s performance would degrade due to the conflict
between the encoding task and the decoding task.

During CapFilt, the captioner and the filter are end-to-end
finetuned individually on COCO. In Table 4, we study the
effect if the captioner and filter share parameters in the same
way as pre-training. The performance on the downstream
tasks decreases, which we mainly attribute to confirmation
bias. Due to parameter sharing, noisy captions produced by
the captioner are less likely to be filtered out by the filter, as
indicated by the lower noise ratio (8% compared to 25%).

5. Comparison with State-of-the-arts
In this section, we compare BLIP to existing VLP methods
on a wide range of vision-language downstream tasks2. Next

2we omit SNLI-VE from the benchmark because its test data
has been reported to be noisy (Do et al., 2020)

we briefly introduce each task and finetuning strategy. More
details can be found in the appendix.

5.1. Image-Text Retrieval
We evaluate BLIP for both image-to-text retrieval (TR) and
text-to-image retrieval (IR) on COCO and Flickr30K (Plum-
mer et al., 2015) datasets. We finetune the pre-trained model
using ITC and ITM losses. To enable faster inference speed,
we follow Li et al. (2021a) and first select k candidates
based on the image-text feature similarity, and then rerank
the selected candidates based on their pairwise ITM scores.
We set k = 256 for COCO and k = 128 for Flickr30K.

As shown in Table 5, BLIP achieves substantial performance
improvement compared with existing methods. Using the
same 14M pre-training images, BLIP outperforms the pre-
vious best model ALBEF by +2.7% in average recall@1
on COCO. We also perform zero-shot retrieval by directly
transferring the model finetuned on COCO to Flickr30K.
The result is shown in Table 6, where BLIP also outperforms
existing methods by a large margin.

5.2. Image Captioning
We consider two datasets for image captioning: No-
Caps (Agrawal et al., 2019) and COCO, both evaluated
using the model finetuned on COCO with the LM loss. Sim-
ilar as Wang et al. (2021), we add a prompt “a picture of”
at the beginning of each caption, which leads to slightly
better results. As shown in Table 7, BLIP with 14M pre-
training images substantially outperforms methods using
a similar amount of pre-training data. BLIP with 129M
images achieves competitive performance as LEMON with
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• Effect of bootstrapping with CapFilt

• BLIP achieves SOTA in Image-Text Retrieval

• BLIP achieves comparable performance with SOTA in Image Captioning

BLIP: Bootstrapping Language-Image Pretraining 

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Method Pre-train
#Images

NoCaps validation COCO Caption
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

Enc-Dec (Changpinyo et al., 2021) 15M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1 - 110.9
VinVL† (Zhang et al., 2021) 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
LEMONbase† (Hu et al., 2021) 12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8 - -
LEMONbase† (Hu et al., 2021) 200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1 40.3 133.3
BLIP 14M 111.3 15.1 104.5 14.4 102.4 13.7 105.1 14.4 38.6 129.7
BLIP 129M 109.1 14.8 105.8 14.4 105.7 13.7 106.3 14.3 39.4 131.4
BLIPCapFilt-L 129M 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7 39.7 133.3

LEMONlarge† (Hu et al., 2021) 200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0 40.6 135.7
SimVLMhuge (Wang et al., 2021) 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
BLIPViT-L 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7

Table 7. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. All methods optimize the cross-
entropy loss during finetuning. C: CIDEr, S: SPICE, B@4: BLEU@4. BLIPCapFilt-L is pre-trained on a dataset bootstrapped by captioner
and filter with ViT-L. VinVL† and LEMON† require an object detector pre-trained on 2.5M images with human-annotated bounding
boxes and high resolution (800⇥1333) input images. SimVLMhuge uses 13⇥ more training data and a larger vision backbone than ViT-L.
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Figure 5. Model architecture for the downstream tasks. Q: ques-
tion; C: caption; QA: question-answer pair.

200M images. Note that LEMON requires a computational-
heavy pre-trained object detector and higher resolution
(800⇥1333) input images, leading to substantially slower
inference time than the detector-free BLIP which uses lower
resolution (384⇥384) input images.

5.3. Visual Question Answering (VQA)
VQA (Antol et al., 2015) requires the model to predict an an-
swer given an image and a question. Instead of formulating
VQA as a multi-answer classification task (Chen et al., 2020;

Method Pre-train
#Images

VQA NLVR2

test-dev test-std dev test-P

LXMERT 180K 72.42 72.54 74.90 74.50
UNITER 4M 72.70 72.91 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 76.37 77.32
VILLA 4M 73.59 73.67 78.39 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04 82.55 83.14
SimVLMbase† 1.8B 77.87 78.14 81.72 81.77

BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPCapFilt-L 129M 78.25 78.32 82.15 82.24

Table 8. Comparison with state-of-the-art methods on VQA and
NLVR2. ALBEF performs an extra pre-training step for NLVR2.
SimVLM† uses 13⇥ more training data and a larger vision back-
bone (ResNet+ViT) than BLIP.

Li et al., 2020), we follow Li et al. (2021a) and consider it as
an answer generation task, which enables open-ended VQA.
As shown in Figure 5(a), during finetuning, we rearrange the
pre-trained model, where an image-question is first encoded
into multimodal embeddings and then given to an answer
decoder. The VQA model is finetuned with the LM loss
using ground-truth answers as targets.

The results are shown in Table 8. Using 14M images,
BLIP outperforms ALBEF by +1.64% on the test set. Us-
ing 129M images, BLIP achieves better performance than
SimVLM which uses 13⇥ more pre-training data and a
larger vision backbone with an additional convolution stage.

5.4. Natural Language Visual Reasoning (NLVR2)
NLVR2 (Suhr et al., 2019) asks the model to predict whether
a sentence describes a pair of images. In order to enable rea-
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• Effect of bootstrapping with CapFilt

• BLIP achieves SOTA in Image-Text Retrieval

• BLIP achieves comparable performance with SOTA in Image Captioning
• BLIP shows strong empirical performance on various VL understanding tasks

BLIP: Bootstrapping Language-Image Pretraining 

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Method Pre-train
#Images

NoCaps validation COCO Caption
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

Enc-Dec (Changpinyo et al., 2021) 15M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1 - 110.9
VinVL† (Zhang et al., 2021) 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
LEMONbase† (Hu et al., 2021) 12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8 - -
LEMONbase† (Hu et al., 2021) 200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1 40.3 133.3
BLIP 14M 111.3 15.1 104.5 14.4 102.4 13.7 105.1 14.4 38.6 129.7
BLIP 129M 109.1 14.8 105.8 14.4 105.7 13.7 106.3 14.3 39.4 131.4
BLIPCapFilt-L 129M 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7 39.7 133.3

LEMONlarge† (Hu et al., 2021) 200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0 40.6 135.7
SimVLMhuge (Wang et al., 2021) 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
BLIPViT-L 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7

Table 7. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. All methods optimize the cross-
entropy loss during finetuning. C: CIDEr, S: SPICE, B@4: BLEU@4. BLIPCapFilt-L is pre-trained on a dataset bootstrapped by captioner
and filter with ViT-L. VinVL† and LEMON† require an object detector pre-trained on 2.5M images with human-annotated bounding
boxes and high resolution (800⇥1333) input images. SimVLMhuge uses 13⇥ more training data and a larger vision backbone than ViT-L.
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Figure 5. Model architecture for the downstream tasks. Q: ques-
tion; C: caption; QA: question-answer pair.

200M images. Note that LEMON requires a computational-
heavy pre-trained object detector and higher resolution
(800⇥1333) input images, leading to substantially slower
inference time than the detector-free BLIP which uses lower
resolution (384⇥384) input images.

5.3. Visual Question Answering (VQA)
VQA (Antol et al., 2015) requires the model to predict an an-
swer given an image and a question. Instead of formulating
VQA as a multi-answer classification task (Chen et al., 2020;

Method Pre-train
#Images

VQA NLVR2

test-dev test-std dev test-P

LXMERT 180K 72.42 72.54 74.90 74.50
UNITER 4M 72.70 72.91 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 76.37 77.32
VILLA 4M 73.59 73.67 78.39 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04 82.55 83.14
SimVLMbase† 1.8B 77.87 78.14 81.72 81.77

BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPCapFilt-L 129M 78.25 78.32 82.15 82.24

Table 8. Comparison with state-of-the-art methods on VQA and
NLVR2. ALBEF performs an extra pre-training step for NLVR2.
SimVLM† uses 13⇥ more training data and a larger vision back-
bone (ResNet+ViT) than BLIP.

Li et al., 2020), we follow Li et al. (2021a) and consider it as
an answer generation task, which enables open-ended VQA.
As shown in Figure 5(a), during finetuning, we rearrange the
pre-trained model, where an image-question is first encoded
into multimodal embeddings and then given to an answer
decoder. The VQA model is finetuned with the LM loss
using ground-truth answers as targets.

The results are shown in Table 8. Using 14M images,
BLIP outperforms ALBEF by +1.64% on the test set. Us-
ing 129M images, BLIP achieves better performance than
SimVLM which uses 13⇥ more pre-training data and a
larger vision backbone with an additional convolution stage.

5.4. Natural Language Visual Reasoning (NLVR2)
NLVR2 (Suhr et al., 2019) asks the model to predict whether
a sentence describes a pair of images. In order to enable rea-

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Method Pre-train
#Images

NoCaps validation COCO Caption
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

Enc-Dec (Changpinyo et al., 2021) 15M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1 - 110.9
VinVL† (Zhang et al., 2021) 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
LEMONbase† (Hu et al., 2021) 12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8 - -
LEMONbase† (Hu et al., 2021) 200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1 40.3 133.3
BLIP 14M 111.3 15.1 104.5 14.4 102.4 13.7 105.1 14.4 38.6 129.7
BLIP 129M 109.1 14.8 105.8 14.4 105.7 13.7 106.3 14.3 39.4 131.4
BLIPCapFilt-L 129M 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7 39.7 133.3

LEMONlarge† (Hu et al., 2021) 200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0 40.6 135.7
SimVLMhuge (Wang et al., 2021) 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
BLIPViT-L 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7

Table 7. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. All methods optimize the cross-
entropy loss during finetuning. C: CIDEr, S: SPICE, B@4: BLEU@4. BLIPCapFilt-L is pre-trained on a dataset bootstrapped by captioner
and filter with ViT-L. VinVL† and LEMON† require an object detector pre-trained on 2.5M images with human-annotated bounding
boxes and high resolution (800⇥1333) input images. SimVLMhuge uses 13⇥ more training data and a larger vision backbone than ViT-L.
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Figure 5. Model architecture for the downstream tasks. Q: ques-
tion; C: caption; QA: question-answer pair.

200M images. Note that LEMON requires a computational-
heavy pre-trained object detector and higher resolution
(800⇥1333) input images, leading to substantially slower
inference time than the detector-free BLIP which uses lower
resolution (384⇥384) input images.

5.3. Visual Question Answering (VQA)
VQA (Antol et al., 2015) requires the model to predict an an-
swer given an image and a question. Instead of formulating
VQA as a multi-answer classification task (Chen et al., 2020;

Method Pre-train
#Images

VQA NLVR2

test-dev test-std dev test-P

LXMERT 180K 72.42 72.54 74.90 74.50
UNITER 4M 72.70 72.91 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 76.37 77.32
VILLA 4M 73.59 73.67 78.39 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04 82.55 83.14
SimVLMbase† 1.8B 77.87 78.14 81.72 81.77

BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPCapFilt-L 129M 78.25 78.32 82.15 82.24

Table 8. Comparison with state-of-the-art methods on VQA and
NLVR2. ALBEF performs an extra pre-training step for NLVR2.
SimVLM† uses 13⇥ more training data and a larger vision back-
bone (ResNet+ViT) than BLIP.

Li et al., 2020), we follow Li et al. (2021a) and consider it as
an answer generation task, which enables open-ended VQA.
As shown in Figure 5(a), during finetuning, we rearrange the
pre-trained model, where an image-question is first encoded
into multimodal embeddings and then given to an answer
decoder. The VQA model is finetuned with the LM loss
using ground-truth answers as targets.

The results are shown in Table 8. Using 14M images,
BLIP outperforms ALBEF by +1.64% on the test set. Us-
ing 129M images, BLIP achieves better performance than
SimVLM which uses 13⇥ more pre-training data and a
larger vision backbone with an additional convolution stage.

5.4. Natural Language Visual Reasoning (NLVR2)
NLVR2 (Suhr et al., 2019) asks the model to predict whether
a sentence describes a pair of images. In order to enable rea-
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Multimodal End-to-end TransformER (METER) [Dou et al., 2022]

• Extensive study on design of end-to-end transformer for VLP

• Three components that METER considered:
• Architecture of Vision & Text encoders
• Multimodal fusion method
• Pretraining objectives

METER: Multimodal End-to-End Vision-Language Transformer 

An Empirical Study of Training End-to-End Vision-and-Language Transformers

Zi-Yi Dou1*, Yichong Xu2, Zhe Gan2, Jianfeng Wang2, Shuohang Wang2, Lijuan Wang2,
Chenguang Zhu2, Pengchuan Zhang2, Lu Yuan2, Nanyun Peng1, Zicheng Liu2, Michael Zeng2
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Abstract

Vision-and-language (VL) pre-training has proven to be
highly effective on various VL downstream tasks. While
recent work has shown that fully transformer-based VL
models can be more efficient than previous region-feature-
based methods, their performance on downstream tasks
often degrades significantly. In this paper, we present
METER, a Multimodal End-to-end TransformER frame-
work, through which we investigate how to design and
pre-train a fully transformer-based VL model in an end-
to-end manner. Specifically, we dissect the model designs
along multiple dimensions: vision encoders (e.g., CLIP-
ViT, Swin transformer), text encoders (e.g., RoBERTa, De-
BERTa), multimodal fusion module (e.g., merged attention
vs. co-attention), architectural design (e.g., encoder-only
vs. encoder-decoder), and pre-training objectives (e.g.,
masked image modeling). We conduct comprehensive ex-
periments and provide insights on how to train a perfor-
mant VL transformer. METER achieves an accuracy of
77.64% on the VQAv2 test-std set using only 4M images for
pre-training, surpassing the state-of-the-art region-feature-
based model by 1.04%, and outperforming the previous best
fully transformer-based model by 1.6%. Notably, when fur-
ther scaled up, our best VQA model achieves an accuracy
of 80.54%. Code and pre-trained models are released at
https://github.com/zdou0830/METER.

1. Introduction
Vision-and-language (VL) tasks, such as visual ques-

tion answering (VQA) [1] and image-text retrieval [33, 40],
require an AI system to comprehend both the input im-
age and text contents. Vision-and-language pre-training
(VLP) has now become the de facto practice to tackle these
tasks [6, 30, 32, 38, 49, 51]. Specifically, large amounts of
image-caption pairs are fed into a model that consumes both
images and texts to pretrain representations that contain rich

* Work was done when the author interned at Microsoft.

CLIP-ViT, Swin,
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Masked Image Modeling,
...a man hitting a 

tennis ball with 
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Text Encoder
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Pretraining Objec-
tives

METER

Figure 1. An overview of the proposed METER framework. We
systematically investigate how to train a performant vision-and-
language transformer, and dissect the model designs along multi-
ple dimensions: vision encoder, text encoder, multimodal fusion
module, architectural design (encoder-only vs. encoder-decoder),
and pre-training objectives.

multimodal knowledge and is helpful for downstream tasks.
Transformers [55] are prevalent in natural language pro-

cessing and have recently shown promising performance
in computer vision [12, 36]. While almost all the existing
VLP models adopt transformers for their multimodal fusion
module, most of them [6, 30, 32, 38, 49, 51] use pre-trained
object detectors (e.g., Faster RCNN [44]) on the vision side
to extract region features from images. This can lead to
several problems: first, the object detectors are not perfect,
but are usually kept frozen during VLP, which limits the ca-
pacity of the VLP models; second, it is time-consuming to
extract region features [25]. On the other hand, vision trans-
formers (ViTs) have been an increasingly active research
topic in computer vision and have shown great potential
in vision feature extraction. Therefore, a natural question
arises: can we train a fully transformer-based VLP model
with ViTs as the image encoder?

Recent works [25,29,60] that tried to adopt vision trans-
formers have not shown satisfactory performance and typ-
ically underperform state-of-the-art region-feature-based
VLP models (e.g., VinVL [65]). To close the perfor-
mance gap, we present METER, a Multimodal End-to-end
TransformER framework, through which we thoroughly in-
vestigate how to design and pre-train a fully transformer-
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Exp 1. Effect of Vision & Text encoders without VLP

• Impact of Text Encoders
• No significant difference between pretrained text encoders
• Pretrained text encoders are better than embedding only

• Impact of Vision Encoders
• Impact of vision encoders vary more than text encoders

• Better unimodal task performance (e.g. ImageNet Acc or MNLI) does not 
guarantee better VL performance

METER: Multimodal End-to-End Vision-Language Transformer 

sentations of the input patches, and the model is then trained
to reconstruct the discrete tokens. Specifically, we first use
the VQ-VAE [54] model in DALL-E [43] to tokenize each
image into a sequence of discrete tokens. We resize each
image so that the number of patches is equal to the number
of tokens, and thus each patch corresponds to a discrete to-
ken. Then, we randomly mask 15% of the patches and feed
the masked image patches to the model as before, but now
the model is trained to predict the discrete tokens instead of
the masked patches.

3.3. Our Default Settings for METER

There are many different model designs under METER,
and we detail our default settings in this part.

Model Architecture. The default setting of model archi-
tecture is shown in Figure 2a. In the bottom part, there are
one pre-trained visual encoder and one pre-trained text en-
coder. On top of each encoder, we stack M = 6 transformer
encoding layers, with each layer consisting of one self-
attention block, one cross-attention block, and one feed-
forward network block. Unless otherwise stated, the hidden
size is set to 768, and the number of heads is set to 12 for the
top layers. Note that there is no decoder and no parameter
sharing between the vision and language branches.

Pre-training Objectives. Unless otherwise stated, we pre-
train the models with masked language modeling (MLM)
and image-text matching (ITM) only. For MLM, we mask
15% of the input text tokens, and the model tries to recon-
struct the original tokens. For ITM, we feed the model with
either matched or mismatched image-caption pairs with
equal probability, and the model needs to identify whether
the input is a match.

Pre-training Datasets. Following previous work [6, 25,
29], we pre-train models on four commonly used datasets,
including COCO [33], Conceptual Captions [47], SBU
Captions [39], and Visual Genome [26]. The statistics of
these datasets is shown in Appendix. The combined train-
ing data consists of about 4M images in total.

Downstream Tasks. For ablation and analysis, we mainly
focus on VQAv2 [1], arguably the most popular dataset for
VLP evaluation. We also test on Flickr30k zero-shot image-
text retrieval to remove any confounders that may be intro-
duced during finetuning [17]. For VQAv2, we follow the
standard practice [6] to train the models with both training
and validation data, and test the models on the test-dev set.
For Flickr30k, we follow the standard splits.

For comparison with state of the arts, we also evaluate
models on visual reasoning (NLVR2 [50]), visual entail-
ment (SNLI-VE [59]), and image-text retrieval (COCO [33]
and Flickr30k [40]) tasks. For retrieval tasks, we evaluate
models in both zero-shot and finetuning settings.

Text Enc. VQAv2 VE IR TR SQuAD MNLI
Acc. Acc. R@1 R@1 EM Acc.

Emb-only 67.13 74.85 49.06 68.20 - -
ELECTRA 69.22 76.57 41.80 58.30 86.8 88.8
CLIP 69.31 75.37 54.96 73.80 - -
DeBERTa 69.40 76.74 51.50 67.70 87.2 88.8
BERT 69.56 76.27 49.60 66.60 76.3 84.3
RoBERTa 69.69 76.53 49.86 68.90 84.6 87.6
ALBERT 69.94 76.20 52.20 68.70 86.4 87.9

Table 2. Comparisons of different text encoders without VLP.
CLIP-ViT-224/32 is used as the vision encoder. All the text en-
coders are in base model size, except ALBERT, which is xlarge.
Emb-only: only using word embeddings as text encoder. IR/TR:
Flickr30k image/text retrieval. EM: exact match. The results of
SQuAD and MNLI are copied from their corresponding papers.
All the results on VL tasks are from their test-dev/val sets.

Vision Encoder VQAv2 VE IR TR ImageNet
Dis. DeiT B-384/16 67.84 76.17 34.84 52.10 85.2

BEiT B-224/16 68.45 75.28 32.24 59.80 85.2
DeiT B-384/16 68.92 75.97 33.38 50.90 82.9
ViT B-384/16 69.09 76.35 40.30 59.80 83.97

CLIP B-224/32 69.69 76.53 49.86 68.90 -
VOLO 4-448/32 71.44 76.42 40.90 61.40 86.8
CaiT M-384/32 71.52 76.62 38.96 61.30 86.1
CLIP B-224/16 71.75 77.54 57.64 76.90 -
Swin B-384/32 72.38 77.65 52.30 69.50 86.4

Table 3. Comparisons of different vision encoders without
VLP. RoBERTa is used as the default text encoder. IR/TR:
Flickr30k image/text retrieval; B: Base. The results of ImageNet
classification are copied from their corresponding papers. All the
results on VL tasks are from their test-dev/val sets. N and M in
ViT-N/M denote the image resolution and patch size, respectively.

Implementation Details. We pre-train our models using
AdamW [37] for 100k steps. The learning rates for the bot-
tom and top layers are set to 1e-5 and 5e-5 respectively dur-
ing pre-training. The warm-up ratio is set to 10%, and the
learning rate is linearly decayed to 0 after 10% of the total
training steps. We use center-crop to resize each image into
the size of 224⇥224 or 384⇥384 depending on the adopted
vision transformers.

4. Experiments
In this section, we provide comprehensive analysis of

each individual module design. Specifically, (i) we study
the impact of vision and language encoders in Section 4.1,
(ii) we perform analysis on multimodal fusion designs in
Section 4.2, (iii) we compare encoder-only and encoder-
decoder architectures in Section 4.3, and (iv) we ablate pre-
training objectives in Section 4.4. Finally, we compare with
state of the arts in Section 4.5.

4.1. Impact of Vision and Language Encoders
4.1.1 Explorations without VLP

Since pre-training is time-consuming, we first perform an
exploration study by comparing different text and visual en-

sentations of the input patches, and the model is then trained
to reconstruct the discrete tokens. Specifically, we first use
the VQ-VAE [54] model in DALL-E [43] to tokenize each
image into a sequence of discrete tokens. We resize each
image so that the number of patches is equal to the number
of tokens, and thus each patch corresponds to a discrete to-
ken. Then, we randomly mask 15% of the patches and feed
the masked image patches to the model as before, but now
the model is trained to predict the discrete tokens instead of
the masked patches.

3.3. Our Default Settings for METER

There are many different model designs under METER,
and we detail our default settings in this part.

Model Architecture. The default setting of model archi-
tecture is shown in Figure 2a. In the bottom part, there are
one pre-trained visual encoder and one pre-trained text en-
coder. On top of each encoder, we stack M = 6 transformer
encoding layers, with each layer consisting of one self-
attention block, one cross-attention block, and one feed-
forward network block. Unless otherwise stated, the hidden
size is set to 768, and the number of heads is set to 12 for the
top layers. Note that there is no decoder and no parameter
sharing between the vision and language branches.

Pre-training Objectives. Unless otherwise stated, we pre-
train the models with masked language modeling (MLM)
and image-text matching (ITM) only. For MLM, we mask
15% of the input text tokens, and the model tries to recon-
struct the original tokens. For ITM, we feed the model with
either matched or mismatched image-caption pairs with
equal probability, and the model needs to identify whether
the input is a match.

Pre-training Datasets. Following previous work [6, 25,
29], we pre-train models on four commonly used datasets,
including COCO [33], Conceptual Captions [47], SBU
Captions [39], and Visual Genome [26]. The statistics of
these datasets is shown in Appendix. The combined train-
ing data consists of about 4M images in total.

Downstream Tasks. For ablation and analysis, we mainly
focus on VQAv2 [1], arguably the most popular dataset for
VLP evaluation. We also test on Flickr30k zero-shot image-
text retrieval to remove any confounders that may be intro-
duced during finetuning [17]. For VQAv2, we follow the
standard practice [6] to train the models with both training
and validation data, and test the models on the test-dev set.
For Flickr30k, we follow the standard splits.

For comparison with state of the arts, we also evaluate
models on visual reasoning (NLVR2 [50]), visual entail-
ment (SNLI-VE [59]), and image-text retrieval (COCO [33]
and Flickr30k [40]) tasks. For retrieval tasks, we evaluate
models in both zero-shot and finetuning settings.

Text Enc. VQAv2 VE IR TR SQuAD MNLI
Acc. Acc. R@1 R@1 EM Acc.

Emb-only 67.13 74.85 49.06 68.20 - -
ELECTRA 69.22 76.57 41.80 58.30 86.8 88.8
CLIP 69.31 75.37 54.96 73.80 - -
DeBERTa 69.40 76.74 51.50 67.70 87.2 88.8
BERT 69.56 76.27 49.60 66.60 76.3 84.3
RoBERTa 69.69 76.53 49.86 68.90 84.6 87.6
ALBERT 69.94 76.20 52.20 68.70 86.4 87.9

Table 2. Comparisons of different text encoders without VLP.
CLIP-ViT-224/32 is used as the vision encoder. All the text en-
coders are in base model size, except ALBERT, which is xlarge.
Emb-only: only using word embeddings as text encoder. IR/TR:
Flickr30k image/text retrieval. EM: exact match. The results of
SQuAD and MNLI are copied from their corresponding papers.
All the results on VL tasks are from their test-dev/val sets.

Vision Encoder VQAv2 VE IR TR ImageNet
Dis. DeiT B-384/16 67.84 76.17 34.84 52.10 85.2

BEiT B-224/16 68.45 75.28 32.24 59.80 85.2
DeiT B-384/16 68.92 75.97 33.38 50.90 82.9
ViT B-384/16 69.09 76.35 40.30 59.80 83.97

CLIP B-224/32 69.69 76.53 49.86 68.90 -
VOLO 4-448/32 71.44 76.42 40.90 61.40 86.8
CaiT M-384/32 71.52 76.62 38.96 61.30 86.1
CLIP B-224/16 71.75 77.54 57.64 76.90 -
Swin B-384/32 72.38 77.65 52.30 69.50 86.4

Table 3. Comparisons of different vision encoders without
VLP. RoBERTa is used as the default text encoder. IR/TR:
Flickr30k image/text retrieval; B: Base. The results of ImageNet
classification are copied from their corresponding papers. All the
results on VL tasks are from their test-dev/val sets. N and M in
ViT-N/M denote the image resolution and patch size, respectively.

Implementation Details. We pre-train our models using
AdamW [37] for 100k steps. The learning rates for the bot-
tom and top layers are set to 1e-5 and 5e-5 respectively dur-
ing pre-training. The warm-up ratio is set to 10%, and the
learning rate is linearly decayed to 0 after 10% of the total
training steps. We use center-crop to resize each image into
the size of 224⇥224 or 384⇥384 depending on the adopted
vision transformers.

4. Experiments
In this section, we provide comprehensive analysis of

each individual module design. Specifically, (i) we study
the impact of vision and language encoders in Section 4.1,
(ii) we perform analysis on multimodal fusion designs in
Section 4.2, (iii) we compare encoder-only and encoder-
decoder architectures in Section 4.3, and (iv) we ablate pre-
training objectives in Section 4.4. Finally, we compare with
state of the arts in Section 4.5.

4.1. Impact of Vision and Language Encoders
4.1.1 Explorations without VLP

Since pre-training is time-consuming, we first perform an
exploration study by comparing different text and visual en-

Impact of Text Encoders Impact of Vision Encoders
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Exp 2. Effect of Vision & Text encoders with VLP

• Using pretrained Vision & Text encoder is better

• Impact of Multimodal Fusion Module
• Co-attention is better than Merged-attention(contradict to previous region-based VLP)

• Impact of Decoder
• Using Only-Encoder is better than Encoder-Decoder 
• But decoder can be used for image captioning, e.g. BLIP

METER: Multimodal End-to-End Vision-Language Transformer 

Text Enc. Vision Enc. VQAv2 Flickr-ZS
IR TR

Emb-only CLIP-32 73.99 60.32 74.10

BERT CLIP-32 74.98 66.08 78.10
CLIP-16 76.70 74.52 87.20

RoBERTa
CLIP-32 74.67 65.50 76.60
CLIP-16 77.19 76.64 89.60

Swin 76.43 71.68 85.30

Table 4. Comparisons of different vision and text encoders
with VLP. Results on VQAv2 are on test-dev set. ZS: zero-shot.

coders without VLP for efficiency. Concretely, we initial-
ize the bottom layers with specific pre-trained vision and
text encoders, and randomly initialize the top layers. Then,
we directly finetune the models on three tasks, including
VQAv2, SNLI-VE, and Flickr30k retrieval. The learning
rates for the bottom and top layers are set to 1e-5 and 1e-
4, and the number of training epochs is set to 10 for all the
tasks. We choose CLIP-ViT-224/32 [41] and RoBERTa [35]
as the default encoders. Here, N and M in ViT-N/M denote
image resolution and patch size, respectively.

Impact of Text Encoders. As shown in Table 2, there are
no significant differences between the model performance
of different text encoders. RoBERTa seems to achieve the
most robust performance in this setting. Also, as can be
seen from the Emb-only results, it is necessary to have a
pre-trained encoder because otherwise the downstream task
performance will be degraded.

Impact of Vision Encoders. As summarized in Table 3,
both CLIP-ViT-224/16 and Swin Transformer can achieve
decent performance in this setting. Notably, Swin Trans-
former can achieve an VQA score of 72.38 on the test-dev
set without any VLP, which is already comparable to some
VLP models after pre-training.

Conclusion. If we directly finetune the models on down-
stream tasks without any VLP, RoBERTa and Swin Trans-
former or CLIP-ViT perform the best. While models such
as DeBERTa and BEiT can achieve better performance than
the two models on pure language or vision tasks such as
MNLI [56] or ImageNet classification [10], that does not
necessarily indicate that they are more suitable for VL tasks.

4.1.2 Results with VLP

Now, we follow the default setting in Section 3.3, and
compare different vision/text encoders with VLP. Based on
the previous results, we compare Embed-only, BERT, and
RoBERTa on the text side, and CLIP-ViT-224/32, CLIP-
ViT-224/16, and Swin Transformer on the image side.

Results. As shown in Table 4, after VLP, the difference be-
tween BERT and RoBERTa seems to be diminished, but it
is still important to have a pre-trained text encoder on the
bottom (Embed-only vs. RoBERTa). For vision encoder,

Bottom LR Top LR VQAv2 Flickr-ZS
IR TR

1e-5 1e-5 73.16 48.80 63.70
2e-5 2e-5 73.66 53.14 67.20
3e-5 3e-5 73.77 56.48 70.90
5e-5 5e-5 73.54 52.48 65.90
1e-5 5e-5 74.98 66.08 78.10

Table 5. Using different learning rates for the randomly-initialized
and pre-trained parameters is better than using the same learning
rate. Results on VQAv2 are on test-dev set. ZS: zero-shot.

Figure 5. Increasing the image resolution during finetuning
greatly improves the performance on the VQAv2 test-dev set.

both CLIP-ViT-224/16 and Swin Transformer can achieve
pretty good performance. Especially, CLIP-ViT-224/16 can
achieve a VQA score of 77.19/77.20 on the test-dev/test-std
sets, respectively, outperforming the previous state-of-the-
art region-based VinVL [65] models.

Useful Tricks. In experiments, we found two tricks for
ViT-based VLP models that can greatly boost the perfor-
mance. First, it is better to use a larger learning rate for the
randomly initialized parameters than parameters initialized
with pre-trained models, which is also found useful in some
other NLP tasks [34]. As shown in Table 5, using the same
learning rate for all parts of the model will lead to degraded
performance, possibly because the pre-trained parameters
already contain certain amounts of knowledge about vision
and language, and finetuning them aggressively can result
in the loss of these valuable information.

Second, similar to several previous work [25,64], we find
that increasing the image resolution during finetuning can
improve the model performance by a large margin, espe-
cially when the ratio of image resolution to patch size is
low. Figure 5 shows that increasing the image resolution
from 224 to 576 can improve the VQA score by about 3
and 1 points for the CLIP-ViT-224/32 and CLIP-ViT-224/16
model, respectively.

4.2. Analysis of the Multimodal Fusion Module
Now, following the default setting in Section 3.3, we per-

form investigations on multimodal fusion. First, we design
both merged attention and co-attention models and inves-
tigate their performance. For the merged attention model
(Figure 2b), the top transformer consists of Mmerged encod-

Fusion Decoder VQAv2 Flickr-ZS
IR TR

Merged attention
7

74.00 57.46 73.10

Co-attention 74.98 66.08 78.10
3 74.73 48.96 71.60

Table 6. Co-attention performs better than merged attention in our
setting, and adding a decoder is not helpful for our discriminative
VL tasks. Results on VQAv2 are on test-dev set. ZS: zero-shot.

ing layer, with each layer consisting of one self-attention
block and one feed-forward network block. To help the
model distinguish between the two modalities, we add a
modality embedding to the input features before feeding
them to the top transformer. For the co-attention model
(Figure 2a), we feed the text and visual features to two Mco-
layer transformers separately, and each top transformer en-
coding layer consists of one self-attention block, one cross-
attention block, and one feed-forward network block. Com-
pared with merged attention, co-attention allows separate
transformation functions for the vision and language modal-
ities. We set Mmerged = 12 and Mco = 6 so that the
numbers of parameters of the two models are roughly com-
parable to each other.

Results. Table 6 reports the downstream performance of
the two models. The co-attention model performs better
than the merged attention model in our setting, indicating
that it is important to have different sets of parameters for
the two modalities. Note that this contradicts with the find-
ings in region-based VLP models [4], possibly because (i)
findings of region-based VLP models cannot directly ap-
ply to ViT-based VLP models; (ii) most region-based VLP
models only use pre-trained visual encoders, and also do not
have a pre-trained text encoder included, thus the inconsis-
tency between the two modalities will not favor symmetri-
cal architecture like the co-attention model.

4.3. Encoder-Only vs. Encoder-Decoder
We then compare the encoder-only and encoder-decoder

architecture. For the encoder-only model, we use the same
co-attention model as in Section 4.2. For the encoder-
decoder model, we set the number of layers to 3 for both the
encoder and decoder, and each decoding layer has two sepa-
rate cross-attention blocks that attend to the vision and text
representations, respectively. According to [7], we adopt
T5-style [42] language modeling objective as it works well
for their model. Specifically, we mask 15% of input text to-
kens and replace contiguous text span with sentinel tokens,
and the decoder is trained to reconstruct the masked tokens.
For image-text matching, we feed the decoder with a special
class token and it generates a binary output.

Results. As shown in Table 6, the encoder-only model can
outperform the encoder-decoder model on our two discrim-
inative tasks, which is consistent with the findings in [7].

Pre-training Objectives VQAv2 Flickr-ZS
IR TR

MLM 74.19 - -
ITM 72.63 53.74 71.00
MLM+ITM 74.98 66.08 78.10
MLM+ITM + MIM (In-batch Negatives) 74.01 62.12 76.90
MLM+ITM + MIM (Discrete Code) 74.21 59.80 76.30

Table 7. Masked language modeling (MLM) and image-text
matching (ITM) can both improve the model performance, but
both of our designed masked image modeling (MIM) objectives
lead to degraded performance on downstream tasks. Results on
VQAv2 are on test-dev set. ZS: zero-shot.

However, it should be noted that the encoder-decoder ar-
chitecture is more flexible, as it can perform tasks such as
image captioning which may not be that straightforward for
an encoder-only model to be applied to.

4.4. Ablations on Pre-training Objectives
In all the previous experiments, we pre-train our mod-

els with different objectives, following the default setting
in Section 3.3. Now, we alter the pre-training objectives.

Results. As summarized in Table 7, both masked language
modeling and image-text matching can bring performance
improvements on downstream tasks. However, both of our
masked image modeling objectives can lead to degraded
performance on both VQAv2 and Flickr30k retrieval tasks.
This further indicates that conclusions in region-based VLP
models may not necessarily hold in vision transformer-
based models. We hypothesize that the performance drop is
due to the conflicts between different objectives, and some
techniques in multi-task optimization [57, 62] may be bor-
rowed to resolve the conflicts, which we list as one of the
future directions. Another possible reason is that image
patches can be noisy, thus the supervisions on reconstruct-
ing these noisy patches can be uninformative.

4.5. Comparison with Prior Arts
In this section, we evaluate our best-performing mod-

els (i.e., RoBERTa-base+Swin Transformer and RoBERT-
base+CLIP-ViT-224/16 with co-attention fusion module,
and with image resolutions set to 384 and 288, respec-
tively), and compare them with previous work. We eval-
uate the models on visual question answering (VQAv2),
visual reasoning (NLVR2), visual entailment (SNLI-VE),
Flickr30k retrieval tasks in zero-shot and finetuning set-
tings, and COCO retrieval tasks in the finetuning setting.

Main Results. As in Table 8 and 9, compared with models
pre-trained with fewer than 10M images, our CLIP-based
model (METER-CLIP-ViTBASE) can achieve either the best
or the second best scores on all the downstream tasks. No-
tably, our model can achieve a VQA score of 77.64% on the
VQAv2 test-std set using only 4M images for pre-training,

Fine-tuning with VLP Effect of attention fusion & decoder
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Exp 3. Effect of Pretraining Objectives

• MLM + ITM helps VLP

• Masked Image Modeling is not helpful in VLP
• Masked Patch Classification with In-batch Negatives (i.e., Contrastive loss)
• Masked Patch Classification with Discrete Code (i.e., VQ-VAE, DALL-E)

METER: Multimodal End-to-End Vision-Language Transformer 

Fusion Decoder VQAv2 Flickr-ZS
IR TR

Merged attention
7

74.00 57.46 73.10

Co-attention 74.98 66.08 78.10
3 74.73 48.96 71.60

Table 6. Co-attention performs better than merged attention in our
setting, and adding a decoder is not helpful for our discriminative
VL tasks. Results on VQAv2 are on test-dev set. ZS: zero-shot.

ing layer, with each layer consisting of one self-attention
block and one feed-forward network block. To help the
model distinguish between the two modalities, we add a
modality embedding to the input features before feeding
them to the top transformer. For the co-attention model
(Figure 2a), we feed the text and visual features to two Mco-
layer transformers separately, and each top transformer en-
coding layer consists of one self-attention block, one cross-
attention block, and one feed-forward network block. Com-
pared with merged attention, co-attention allows separate
transformation functions for the vision and language modal-
ities. We set Mmerged = 12 and Mco = 6 so that the
numbers of parameters of the two models are roughly com-
parable to each other.

Results. Table 6 reports the downstream performance of
the two models. The co-attention model performs better
than the merged attention model in our setting, indicating
that it is important to have different sets of parameters for
the two modalities. Note that this contradicts with the find-
ings in region-based VLP models [4], possibly because (i)
findings of region-based VLP models cannot directly ap-
ply to ViT-based VLP models; (ii) most region-based VLP
models only use pre-trained visual encoders, and also do not
have a pre-trained text encoder included, thus the inconsis-
tency between the two modalities will not favor symmetri-
cal architecture like the co-attention model.

4.3. Encoder-Only vs. Encoder-Decoder
We then compare the encoder-only and encoder-decoder

architecture. For the encoder-only model, we use the same
co-attention model as in Section 4.2. For the encoder-
decoder model, we set the number of layers to 3 for both the
encoder and decoder, and each decoding layer has two sepa-
rate cross-attention blocks that attend to the vision and text
representations, respectively. According to [7], we adopt
T5-style [42] language modeling objective as it works well
for their model. Specifically, we mask 15% of input text to-
kens and replace contiguous text span with sentinel tokens,
and the decoder is trained to reconstruct the masked tokens.
For image-text matching, we feed the decoder with a special
class token and it generates a binary output.

Results. As shown in Table 6, the encoder-only model can
outperform the encoder-decoder model on our two discrim-
inative tasks, which is consistent with the findings in [7].

Pre-training Objectives VQAv2 Flickr-ZS
IR TR

MLM 74.19 - -
ITM 72.63 53.74 71.00
MLM+ITM 74.98 66.08 78.10
MLM+ITM + MIM (In-batch Negatives) 74.01 62.12 76.90
MLM+ITM + MIM (Discrete Code) 74.21 59.80 76.30

Table 7. Masked language modeling (MLM) and image-text
matching (ITM) can both improve the model performance, but
both of our designed masked image modeling (MIM) objectives
lead to degraded performance on downstream tasks. Results on
VQAv2 are on test-dev set. ZS: zero-shot.

However, it should be noted that the encoder-decoder ar-
chitecture is more flexible, as it can perform tasks such as
image captioning which may not be that straightforward for
an encoder-only model to be applied to.

4.4. Ablations on Pre-training Objectives
In all the previous experiments, we pre-train our mod-

els with different objectives, following the default setting
in Section 3.3. Now, we alter the pre-training objectives.

Results. As summarized in Table 7, both masked language
modeling and image-text matching can bring performance
improvements on downstream tasks. However, both of our
masked image modeling objectives can lead to degraded
performance on both VQAv2 and Flickr30k retrieval tasks.
This further indicates that conclusions in region-based VLP
models may not necessarily hold in vision transformer-
based models. We hypothesize that the performance drop is
due to the conflicts between different objectives, and some
techniques in multi-task optimization [57, 62] may be bor-
rowed to resolve the conflicts, which we list as one of the
future directions. Another possible reason is that image
patches can be noisy, thus the supervisions on reconstruct-
ing these noisy patches can be uninformative.

4.5. Comparison with Prior Arts
In this section, we evaluate our best-performing mod-

els (i.e., RoBERTa-base+Swin Transformer and RoBERT-
base+CLIP-ViT-224/16 with co-attention fusion module,
and with image resolutions set to 384 and 288, respec-
tively), and compare them with previous work. We eval-
uate the models on visual question answering (VQAv2),
visual reasoning (NLVR2), visual entailment (SNLI-VE),
Flickr30k retrieval tasks in zero-shot and finetuning set-
tings, and COCO retrieval tasks in the finetuning setting.

Main Results. As in Table 8 and 9, compared with models
pre-trained with fewer than 10M images, our CLIP-based
model (METER-CLIP-ViTBASE) can achieve either the best
or the second best scores on all the downstream tasks. No-
tably, our model can achieve a VQA score of 77.64% on the
VQAv2 test-std set using only 4M images for pre-training,
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Figure 3. Illustration of the encoder-only and encoder-decoder
model architectures for VLP.

the decoder attends to both the encoder representations and
the previously generated tokens, producing the outputs au-
toregressively. Figure 3 shows the difference between them
when performing the masked language modeling task. For
the encoder-decoder model, when performing classification
tasks such as VQA, we feed the text inputs into its encoder
and feed a classification token into the decoder, and the de-
coder then generates the output class accordingly.

3.2. Pre-training Objectives
Now, we introduce how we pre-train our models. Specif-

ically, we will first briefly review masked language model-
ing and image-text matching, which have been used exten-
sively in almost every VLP model. Then, we will shift our
focus to how we can design and explore interesting masked
image modeling tasks.

Masked Language Modeling. The masked language mod-
eling (MLM) objective is first introduced in pure language
pre-training [11, 35]. In VLP, MLM with images has also
proven to be useful. Specifically, given an image-caption
pair, we randomly mask some of the input tokens, and the
model is trained to reconstruct the original tokens given the
masked tokens lmask and its corresponding visual input v.

Image-Text Matching. In image-text matching, the model
is given a batch of matched or mismatched image-caption
pairs, and the model needs to identify which images and
captions correspond to each other. Most VLP models treat
image-text matching as a binary classification problem.
Specifically, a special token (e.g., [CLS]) is inserted at the
beginning of the input sentence, and it tries to learn a global
cross-modal representation. We then feed the model with
either a matched or mismatched image-caption pair hv, li
with equal probability, and a classifier is added on top of
the [CLS] token to predict a binary label y, indicating if
the sampled image-caption pair is a match.

Masked Image Modeling. Similar to the MLM objective,
researchers have tried masked image modeling (MIM) on
the vision side. For example, many previous work, such
as LXMERT [51] and UNITER [6], mask some of the in-
put regions, and the model is trained to regress the original

a man hitting a 
tennis ball with 
a racquet.
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Figure 4. Illustration of masked patch classification with in-batch
negatives and with discrete code.

region features. Formally, given a sequence of visual fea-
tures v = hv1, · · · , vM i, where vi is typically a region fea-
ture, we randomly mask some of the visual features, and the
model outputs the reconstructed visual features ov given the
rest of the visual features and the unmasked tokens t, and
regression aims to minimize the mean squared error loss.
Researchers [6, 38, 51] have also tried to first generate ob-
ject label for each region using a pre-trained object detector,
which can contain high-level semantic information, and the
model is trained to predict the object labels for the masked
regions instead of the original region features.

Notably, recent state-of-the-art models (e.g., AL-
BEF [29], VinVL [65]) do not apply MIM during VLP.
In addition, in ViLT [25], the authors also demonstrate
that masked patch regression is not helpful in their setting.
These results make it questionable whether MIM is truly ef-
fective for VLP models. To further investigate this, we treat
masked image modeling as a masked patch classification
task, and propose two ways of implementing the idea.

1) Masked Patch Classification with In-batch Negatives.
By imitating MLM which uses a text vocabulary, we first
propose to let the model reconstruct input patches by using
a dynamically constructed vocabulary constructed with in-
batch negatives. Concretely, at each training step, we sam-
ple a batch of image-caption pairs {hvk, lki}Bk=1, where B
is the batch size. We treat all the patches in {vk}Bk=1 as can-
didate patches, and for each masked patch, we mask 15% of
the input patches, and the model needs to select the original
patch within this candidate set. Denoting the original patch
representations and our model’s output representations of
{vk}Bk=1 as {c(vk)}Bk=1 and {h(vk)}Bk=1, respectively, we
can represent the output probability at position i for the k-th
instance as:

p(vk
i |[vk,mask; lk]) =

eh(v
k
i )

Tc(vk
i )

P
j,k0 e

h(vk
i )

Tc(vk0
j )

. (1)

The model is trained to maximize its probability similar to
noise contrastive estimation [15, 23].

2) Masked Patch Classification with Discrete Code. In-
spired by BEiT [2], we also propose to obtain discrete repre-

Masked Image Modeling Effect of Pretraining Objectives
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Final METER setup

• METER-Swin: RoBERTa-Base + Swin Transformer + Co-attention

• METER-CLIP: RoBERTa-Base + CLIP-ViT-Base + Co-attention

METER: Multimodal End-to-End Vision-Language Transformer 

Model VQAv2 NLVR2 SNLI-VE Flickr-ZS
test-dev test-std dev test dev test IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [29] 75.84 76.04 82.55 83.14 80.80 80.91 82.8 96.3 98.1 94.1 99.5 99.7
SimVLMBASE (1.8B) [58] 77.87 78.14 81.72 81.77 84.20 84.15 - - - - - -
SimVLMHUGE (1.8B) [58] 80.03 80.34 84.53 85.15 86.21 86.32 - - - - - -
Pre-trained with <10M images
UNITERLARGE [6] 73.82 74.02 79.12 79.98 79.39 79.38 68.74 89.20 93.86 83.60 95.70 97.70
VILLALARGE [14] 74.69 74.87 79.76 81.47 80.18 80.02 - - - - - -
UNIMOLARGE [31] 75.06 75.27 - - 81.11 80.63 - - - - - -
VinVLLARGE [65] 76.52 76.60 82.67 83.98 - - - - - - - -
PixelBERT [20] 74.45 74.55 76.5 77.2 - - - - - -
CLIP-ViL (ResNet50x4) [48] 76.48 76.70 - - 80.61 80.20 - - - - - -
ViLT [65] 71.26 - 75.70 76.13 - - 55.0 82.5 89.8 73.2 93.6 96.5
Visual Parsing [60] 74.00 74.17 77.61 78.05 - - - - - - - -
ALBEF (4M) [29] 74.54 74.70 80.24 80.50 80.14 80.30 76.8 93.7 96.7 90.5 98.8 99.7
METER-SwinBASE 76.43 76.42 82.23 82.47 80.61 80.45 71.68 91.80 95.30 85.30 97.70 99.20
METER-CLIP-ViTBASE 77.68 77.64 82.33 83.05 80.86 81.19 79.60 94.96 97.28 90.90 98.30 99.50

Table 8. Comparisons with models pre-trained with <10M images on visual question answering, visual reasoning, visual entailment, and
zero-shot image retrieval (IR) and text retrieval (TR) tasks. The best scores are in bold, and the second best scores are underlined.

Model Flickr COCO
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [29] 85.6 97.5 98.9 95.9 99.8 100.0 60.7 84.3 90.5 77.6 94.3 97.2
Pre-trained with <10M images

UNITERLARGE [6] 75.56 94.08 96.76 87.30 98.00 99.20 52.93 79.93 87.95 65.68 88.56 93.76
VILLALARGE [14] 76.26 94.24 96.84 87.90 97.50 98.80 - - - - - -
UNIMOLARGE [31] 78.04 94.24 97.12 89.40 98.90 99.80 - - - - - -
VinVLLARGE [65] - - - - - - 58.8 83.5 90.3 75.4 92.9 96.2
PixelBERT [20] 71.5 92.1 95.8 87.0 98.9 99.5 50.1 77.6 86.2 63.6 87.5 93.6
ViLT [65] 64.4 88.7 93.8 83.5 96.7 98.6 42.7 72.9 83.1 61.5 86.3 92.7
Visual Parsing [60] 73.5 93.1 96.4 87.0 98.4 99.5 - - - - - -
ALBEF (4M) [29] 82.8 96.7 98.4 94.3 99.4 99.8 56.8 81.5 89.2 73.1 91.4 96.0
METER-SwinBASE 79.02 95.58 98.04 92.40 99.00 99.50 54.85 81.41 89.31 72.96 92.02 96.26
METER-CLIP-ViTBASE 82.22 96.34 98.36 94.30 99.60 99.90 57.08 82.66 90.07 76.16 93.16 96.82

Table 9. Comparisons with models pre-trained with <10M images on Flickr30k and COCO image retrieval (IR) and text retrieval (TR)
tasks in the finetuning setting. The best scores are in bold, and the second best scores are underlined.

Model (#Pre-training Images) test-dev test-std
SimVLMBASE (1.8B) 77.87 78.14
SimVLMHUGE (1.8B) 80.03 80.34
METER-CoSwinHUGE (14M) 80.33 80.54

Table 10. Pre-training a huge model under the METER frame-
work with 14M images can lead to state-of-the-art performance
on VQAv2, surpassing previous models trained with 1.8B images.

surpassing the state-of-the-art region-feature-based VinVL
model by 1.04%, and outperforming the previous best fully
transformer-based model (i.e., ALBEF) by 1.6%. In addi-
tion, while ALBEF has specially-designed objectives for re-
trieval, our model can still outperform ALBEF on text and
image retrieval tasks, further demonstrating the effective-
ness of METER. Also, as shown in Appendix, we can main-
tain the fast inference speed of ViT-based models.

Scaling the Model. We also investigate if the METER
framework is scalable. To this end, we pre-train our model
with more images and larger vision backbone. Specifically,
we pre-train the model with COCO, CC, CC12M [5], SBU,
and VG datasets, consisting of about 14M images and 20M

image-caption pairs in total. We use CoSwin-Huge [63] as
our vision backbone and RoBERTa-base as our text back-
bone. The hidden size of the fusion module remains un-
changed. As shown in Table 10, our model can achieve
state-of-the-art performance on VQAv2, surpassing previ-
ous models trained with 1.8B images. The results indicate
that our METER framework is scalable.

Further Analysis. We also conduct experiments on image
captioning, investigate multi-scale feature fusion, study the
model performance on unimodal tasks after VLP, and pro-
vide visualization of learned attention maps. All these re-
sults are provided in Appendix.

5. Conclusion
We present METER, through which we systematically in-

vestigate how to train a fully-transformer VLP model in an
end-to-end manner. Experiments demonstrate that we can
achieve competitive performance with state-of-the-art mod-
els with only 4M images for pre-training. When further
scaled up, METER achieves new state of the art on VQA.

Performance on VL understanding tasks
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Final METER setup

• METER-Swin: RoBERTa-Base + Swin Transformer + Co-attention

• METER-CLIP: RoBERTa-Base + CLIP-ViT-Base + Co-attention

METER: Multimodal End-to-End Vision-Language Transformer 

Performance on Image-Text retrieval 

Model VQAv2 NLVR2 SNLI-VE Flickr-ZS
test-dev test-std dev test dev test IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [29] 75.84 76.04 82.55 83.14 80.80 80.91 82.8 96.3 98.1 94.1 99.5 99.7
SimVLMBASE (1.8B) [58] 77.87 78.14 81.72 81.77 84.20 84.15 - - - - - -
SimVLMHUGE (1.8B) [58] 80.03 80.34 84.53 85.15 86.21 86.32 - - - - - -
Pre-trained with <10M images
UNITERLARGE [6] 73.82 74.02 79.12 79.98 79.39 79.38 68.74 89.20 93.86 83.60 95.70 97.70
VILLALARGE [14] 74.69 74.87 79.76 81.47 80.18 80.02 - - - - - -
UNIMOLARGE [31] 75.06 75.27 - - 81.11 80.63 - - - - - -
VinVLLARGE [65] 76.52 76.60 82.67 83.98 - - - - - - - -
PixelBERT [20] 74.45 74.55 76.5 77.2 - - - - - -
CLIP-ViL (ResNet50x4) [48] 76.48 76.70 - - 80.61 80.20 - - - - - -
ViLT [65] 71.26 - 75.70 76.13 - - 55.0 82.5 89.8 73.2 93.6 96.5
Visual Parsing [60] 74.00 74.17 77.61 78.05 - - - - - - - -
ALBEF (4M) [29] 74.54 74.70 80.24 80.50 80.14 80.30 76.8 93.7 96.7 90.5 98.8 99.7
METER-SwinBASE 76.43 76.42 82.23 82.47 80.61 80.45 71.68 91.80 95.30 85.30 97.70 99.20
METER-CLIP-ViTBASE 77.68 77.64 82.33 83.05 80.86 81.19 79.60 94.96 97.28 90.90 98.30 99.50

Table 8. Comparisons with models pre-trained with <10M images on visual question answering, visual reasoning, visual entailment, and
zero-shot image retrieval (IR) and text retrieval (TR) tasks. The best scores are in bold, and the second best scores are underlined.

Model Flickr COCO
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [29] 85.6 97.5 98.9 95.9 99.8 100.0 60.7 84.3 90.5 77.6 94.3 97.2
Pre-trained with <10M images

UNITERLARGE [6] 75.56 94.08 96.76 87.30 98.00 99.20 52.93 79.93 87.95 65.68 88.56 93.76
VILLALARGE [14] 76.26 94.24 96.84 87.90 97.50 98.80 - - - - - -
UNIMOLARGE [31] 78.04 94.24 97.12 89.40 98.90 99.80 - - - - - -
VinVLLARGE [65] - - - - - - 58.8 83.5 90.3 75.4 92.9 96.2
PixelBERT [20] 71.5 92.1 95.8 87.0 98.9 99.5 50.1 77.6 86.2 63.6 87.5 93.6
ViLT [65] 64.4 88.7 93.8 83.5 96.7 98.6 42.7 72.9 83.1 61.5 86.3 92.7
Visual Parsing [60] 73.5 93.1 96.4 87.0 98.4 99.5 - - - - - -
ALBEF (4M) [29] 82.8 96.7 98.4 94.3 99.4 99.8 56.8 81.5 89.2 73.1 91.4 96.0
METER-SwinBASE 79.02 95.58 98.04 92.40 99.00 99.50 54.85 81.41 89.31 72.96 92.02 96.26
METER-CLIP-ViTBASE 82.22 96.34 98.36 94.30 99.60 99.90 57.08 82.66 90.07 76.16 93.16 96.82

Table 9. Comparisons with models pre-trained with <10M images on Flickr30k and COCO image retrieval (IR) and text retrieval (TR)
tasks in the finetuning setting. The best scores are in bold, and the second best scores are underlined.

Model (#Pre-training Images) test-dev test-std
SimVLMBASE (1.8B) 77.87 78.14
SimVLMHUGE (1.8B) 80.03 80.34
METER-CoSwinHUGE (14M) 80.33 80.54

Table 10. Pre-training a huge model under the METER frame-
work with 14M images can lead to state-of-the-art performance
on VQAv2, surpassing previous models trained with 1.8B images.

surpassing the state-of-the-art region-feature-based VinVL
model by 1.04%, and outperforming the previous best fully
transformer-based model (i.e., ALBEF) by 1.6%. In addi-
tion, while ALBEF has specially-designed objectives for re-
trieval, our model can still outperform ALBEF on text and
image retrieval tasks, further demonstrating the effective-
ness of METER. Also, as shown in Appendix, we can main-
tain the fast inference speed of ViT-based models.

Scaling the Model. We also investigate if the METER
framework is scalable. To this end, we pre-train our model
with more images and larger vision backbone. Specifically,
we pre-train the model with COCO, CC, CC12M [5], SBU,
and VG datasets, consisting of about 14M images and 20M

image-caption pairs in total. We use CoSwin-Huge [63] as
our vision backbone and RoBERTa-base as our text back-
bone. The hidden size of the fusion module remains un-
changed. As shown in Table 10, our model can achieve
state-of-the-art performance on VQAv2, surpassing previ-
ous models trained with 1.8B images. The results indicate
that our METER framework is scalable.

Further Analysis. We also conduct experiments on image
captioning, investigate multi-scale feature fusion, study the
model performance on unimodal tasks after VLP, and pro-
vide visualization of learned attention maps. All these re-
sults are provided in Appendix.

5. Conclusion
We present METER, through which we systematically in-

vestigate how to train a fully-transformer VLP model in an
end-to-end manner. Experiments demonstrate that we can
achieve competitive performance with state-of-the-art mod-
els with only 4M images for pre-training. When further
scaled up, METER achieves new state of the art on VQA.
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• There have been a long attempts to learn vision-language (VL) models
• Different objective, different methods have been studied

• We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation

• Enables zero-shot classification & high robustness
2. Fused transformer for vision-language understanding

• Better vision-language understanding tasks, e.g., Visual Question Answering
3. Learning visual representation from frozen Large Language Models (LLMs)

• Leveraging the power of LLMs for visual in-context learning
4. Unifying Vision-Language pretraining

• Learning Vision-Language model from scratch for all tasks

Multimodal SSL: Overview
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Frozen [Tsimpoukelli et al., 2020]
• Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020] 

• How we can leverage the ability of LLMs for visual few-shot learning? 

Frozen: Multimodal Few-Shot Learning with Frozen Language Models 



Algorithmic Intelligence Lab

Frozen [Tsimpoukelli et al., 2020]
• Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020] 

• How we can leverage the ability of LLMs for visual few-shot learning? 

• Given pretrained vision encoder (e.g., ResNet50) and LLMs (e.g., GPT-3), Frozen only 
updates vision encoder for image-text alignment
• Use linear mapping to embed into LLM
• Autoregressive captioning loss is used for training

Frozen: Multimodal Few-Shot Learning with Frozen Language Models 
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Frozen [Tsimpoukelli et al., 2020]
• Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020] 

• How we can leverage the ability of LLMs for visual few-shot learning? 

• Given pretrained vision encoder (e.g., ResNet50) and LLMs (e.g., GPT-3), Frozen only 
updates vision encoder for image-text alignment
• Use linear mapping to embed into LLM
• Autoregressive captioning loss is used for training

• Frozen enables few-shot classification as well as few-shot VQA

Frozen: Multimodal Few-Shot Learning with Frozen Language Models 
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Flamingo [Alayrac et al., 2022]
• Better VL models for few-shot learning by 

• Bridging pre-trained vision-only and language-only models 
• Can handle sequences of arbitrary visual and textual data
• Seamlessly ingest images or videos as inputs

Flamingo: a Visual Language Model for Few-Shot Learning

Multimodal In-Context Learning Multimodal visual dialogue
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Flamingo [Alayrac et al., 2022]
• Better pretrained vision and language model

• Vision encoder pretrained from CLIP-like objective with more data 
• Used 1.4B, 7B, 70B Chinchilla model for LLM
• New Perceiver-Resampler module for vision-language alignment
• Gated Cross-attention dense (GATED XATTN-DENSE) layers for vision-language fusion

Flamingo: a Visual Language Model for Few-Shot Learning

Perceiver-Resampler Architecture GATED-XATTN-DENSE layer
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Flamingo [Alayrac et al., 2022]
• MultiModal MassiveWeb (M3W) dataset – Mixture of datasets

• Extract text and images from HTML of 43M webpages
• Special tokens: Use <image> token to determine locations of images and <EOC> prior to image 

and end of document
• Also use 1.8B image-text pairs from ALIGN and 27M video-text pairs
• Use autoregressive captioning loss, weighted per dataset

Flamingo: a Visual Language Model for Few-Shot Learning
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Flamingo [Alayrac et al., 2022]
• Flamingo outperforms (6 out of 16) existing SOTA fine-tuned models with no fine-tuning

• When fine-tuned, it achieves SOTA various tasks

Flamingo: a Visual Language Model for Few-Shot Learning
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BLIP-2 [Li et al., 2023]
• Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

• Propose two-stage alignment using Q-former
• Stage 1: Representation learning with Q-former

• Q-former: BERT initialized transformer that encodes visual information given query
• Various learning objectives used

• Image-Text Matching (binary classification loss)
• Image-Text Contrastive Learning (i.e., CLIP loss)
• Image-grounded text generation (i.e., captioning loss)

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

• Propose two-stage alignment using Q-former
• Stage 1: Representation learning with Q-former
• Stage 2: Bootstrapping with Frozen LLM

• Can be applied to both decoder-based / encoder-decoder-based LLM

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• BLIP-2 achieves SOTA on zero-shot VL tasks

BLIP-2: BLIP with Frozen Image Encoders and LLM
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BLIP-2 [Li et al., 2023]
• BLIP-2 achieves SOTA on zero-shot VL tasks

• Also it achieves SOTA on image-text retrieval tasks, outperforming various dual encoder-
based (e.g., CLIP) or fusion-encoder based models

BLIP-2: BLIP with Frozen Image Encoders and LLM
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• There have been a long attempts to learn vision-language (VL) models
• Different objective, different methods have been studied

• We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation

• Enables zero-shot classification & high robustness
2. Fused transformer for vision-language understanding

• Better vision-language understanding tasks, e.g., Visual Question Answering
3. Learning visual representation from frozen Large Language Models (LLMs)

• Leveraging the power of LLMs for visual in-context learning
4. Unifying Vision-Language pretraining

• Learning Vision-Language model from scratch for all tasks

Multimodal SSL: Overview

150
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One For ALL (OFA) [Wang et al., 2022]

• A unified transformer model for various modalities (image, text, location)

• Pretrain with all Vision, Language, and Vision-Language tasks
• Incorporate all available images (with labels), texts, image-text pairs

OFA: Unifying Architectures, Tasks and Modalities

Tasks
Visual Grounding

Grounded Captioning
Image-Text Matching

Image Captioning
Visual Question Answering

Object Detection
Image Infilling
Text Infilling

Detection: What are the objects in the 
image? 

ITM: Does the image describe “Two boys 
playing frisbee on the grass” ? 

Image Captioning: What does the image 
describe? 

VQA: How many people are there in the 
picture? 

VG: Which region does the text “Man in 
white shirt” describe? 

Image Infilling: What is the image in the 
middle part?

A beautiful woman

Yes

Visualize

Decoder
…

Image vocab.Text vocab. Location vocab.

Unified Vocab.

+

<loc187><loc47><loc381><loc74>car<loc
299><loc126><loc282><loc159>person …

Text Infilling: What is the complete text of   
“A <mask> woman” ? 

Two boys playing frisbee on the grass 

<img123><img756><img311>…<img521> 

Two

Vision & Language Tasks

+

Masking 

Visualize

Vision Tasks Language Tasks

do
on

person

is

… …

<img1>
<img2>
<img3>

<img8192>

… …

<loc1>
<loc2>
<loc3>

<loc1000>

…

GC: What does the region describe"�UHJLRQ��
<loc299> <loc126> <loc282> <loc159> Man in white shirt

 

 <loc299> <loc126> <loc282> <loc159>

OFA

Figure 2: A demonstration of the pretraining tasks, including visual grounding, grounded captioning, image-text
matching, image captioning, VQA, object detection, image infilling as well as text infilling.

2 Related Work

Language Pretraining & Vision Pretraining Natural language pretraining has revolutionized the whole NLP
research community. A representation of this track is the birth of BERT [2] and GPT [24]. A number of studies have
been progressively advancing pretraining by improving pretraining tasks and designing more sophisticated model
architectures [25, 26, 27, 28, 29, 30, 31]. Having witnessed the success of natural language pretraining, researchers
have promoted self-supervised learning (SSL) in computer vision [32, 33, 34, 35]. Recently, mirroring masked language
modeling (MLM) in language pretraining, generative pretraining [36, 37] with ViT architecture [6] further boosts
downstream performance.

Multimodal Pretraining Multimodal pretraining has been developing rapidly [38, 13, 39, 40, 14, 41, 42, 43, 44, 15,
16, 17, 45, 46, 47]. Researchers have applied the masking strategies and the encoder-decoder architecture to adapt
models to generation tasks [15, 17, 18, 22]. Besides, to simplify preprocessing, patch projection has received attention
and helped Transformer achieve SOTA performance in downstream tasks [22, 48]. To make full use of large-scale
weakly supervised data, [49] trains a bi-encoder on 400 million pairs and demonstrates excellent performance in retrieval
tasks. Another line of work is text-to-image synthesis. A bunch of works [50, 51, 18, 52] incorporate Transformer with
VQVAE [53] or VQGAN [54] to generate high-quality images with high resolution. However, the previously mentioned
methods are limited in processing a single type of data, such as cross-modal data only or limited in their capabilities.
Also, the discrepancy between pretraining and finetuning behaviors limits the transferability to open-ended data.

Unified Frameworks To pursue the unified models, [55] demonstrate a uniform format to represent tasks. In NLP,
recent studies unify diverse tasks covering natural language understanding and generation to text-to-text transfer [30] or
language modeling [3]. Following this idea, [56] and [57] demonstrate text-generation-based multimodal pretrained
models. [7] and [58] propose a simple framework that can process information from multiple modalities with a uniform
byte-sequence representation. [59] and [60] unify tasks of different modalities by designing various task-specific layers.
[61] explores to employ a retrieval-based unified paradigm. However, these multimodal pretrained models suffer from
performance degradation in downstream tasks, e.g., VQA, image captioning, etc., and they have no image generation
capability.

3 OFA

In this work, we propose OFA, a unified Seq2Seq framework for the unification of I/O & architectures, tasks, and
modalities. The overall framework is illustrated in Figure 2.

2This work is the latest one of our M6 series [18, 19, 20, 21].
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One For ALL (OFA) [Wang et al., 2022]

• A unified transformer model for various modalities (image, text, location)

• Pretrain with all Vision, Language, and Vision-Language tasks
• Incorporate all available images (with labels), texts, image-text pairs

• OFA supports various unimodal and multimodal tasks with decent performance

OFA: Unifying Architectures, Tasks and Modalities

OFA: UNIFYING ARCHITECTURES, TASKS, AND MODALITIES
THROUGH A SIMPLE SEQUENCE-TO-SEQUENCE LEARNING

FRAMEWORK

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai

Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, Hongxia Yang

DAMO Academy, Alibaba Group ⇤

{zheluo.wp, ya235025, menrui.mr, junyang.ljy, baishuai.bs,

zhikang.lzk, jason.mjx, ericzhou.zc, jingren.zhou, yang.yhx}@alibaba-inc.com

Figure 1: Examples of various tasks supported by OFA.

ABSTRACT

In this work, we pursue a unified paradigm for multimodal pretraining to break the scaffolds of
complex task/modality-specific customization. We propose OFA, a Task-Agnostic and Modality-
Agnostic framework that supports Task Comprehensiveness. OFA unifies a diverse set of cross-
modal and unimodal tasks, including image generation, visual grounding, image captioning, image
classification, language modeling, etc., in a simple sequence-to-sequence learning framework. OFA
follows the instruction-based learning in both pretraining and finetuning stages, requiring no extra
task-specific layers for downstream tasks. In comparison with the recent state-of-the-art vision
& language models that rely on extremely large cross-modal datasets, OFA is pretrained on only
20M publicly available image-text pairs. Despite its simplicity and relatively small-scale training
data, OFA achieves new SOTAs in a series of cross-modal tasks while attaining highly competitive
performances on uni-modal tasks. Our further analysis indicates that OFA can also effectively
transfer to unseen tasks and unseen domains. Our code and models are publicly available at https:
//github.com/OFA-Sys/OFA.

Keywords Unified frameworks · Multimodal pretraining · Multitask learning · Zero-shot learning

⇤Correspondence to: Chang Zhou<ericzhou.zc@alibaba-inc.com>.
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One For ALL (OFA) [Wang et al., 2022]

• A unified transformer model for various modalities (image, text, location)

• Pretrain with all Vision, Language, and Vision-Language tasks
• Incorporate all available images (with labels), texts, image-text pairs

• OFA supports various multimodal and unimodal tasks with decent performance

OFA: Unifying Architectures, Tasks and Modalities

Table 2: Experimental results on cross-modal understanding tasks including VQA and visual entailment. Note that
we report the best results from the previous SOTAs, and specifically SimVLM is a huge-size model comparable to
ViT-Huge pretrained on 1.8B image-text pairs, and Florence is built with CoSwin-H and RoBERTa and it is pretrained
on 900M image-text pairs.

Model VQA SNLI-VE
test-dev test-std dev test

UNITER [14] 73.8 74.0 79.4 79.4
OSCAR [15] 73.6 73.8 - -
VILLA [16] 74.7 74.9 80.2 80.0
VL-T5 [56] - 70.3 - -
VinVL [17] 76.5 76.6 - -
UNIMO [46] 75.0 75.3 81.1 80.6
ALBEF [69] 75.8 76.0 80.8 80.9
METER [70] 77.7 77.6 80.9 81.2
VLMo [48] 79.9 80.0 - -
SimVLM [22] 80.0 80.3 86.2 86.3
Florence [23] 80.2 80.4 - -

OFATiny 70.3 70.4 85.3 85.2
OFAMedium 75.4 75.5 86.6 87.0
OFABase 78.0 78.1 89.3 89.2
OFALarge 80.3 80.5 90.3 90.2
OFA 82.0 82.0 91.0 91.2

Table 3: Experimental results on MSCOCO Image Captioning. We report the results on the Karpathy test split. Note
that SimVLM and LEMON are huge-size models.

Model Cross-Entropy Optimization CIDEr Optimization
BLEU@4 METEOR CIDEr SPICE BLEU@4 METEOR CIDEr SPICE
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UNICORN [57] 35.8 28.4 119.1 21.5 - - - -
VinVL [17] 38.5 30.4 130.8 23.4 41.0 31.1 140.9 25.2
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4 Experiments

This section provides experimental details and analyses to demonstrate our model’s effectiveness. See Appendix A for
implementation details.

4.1 Results on Cross-modal Tasks

We evaluate our models on different cross-modal downstream tasks, covering cross-modal understanding and generation.
Specifically, we implement experiments on multimodal understanding datasets including VQAv2 for visual question
answering and SNLI-VE [73] for visual entailment, and multimodal generation including MSCOCO Image Caption [74]
for image captioning, RefCOCO / RefCOCO+ / RefCOCOg [75, 76] for referring expression comprehension as this
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One For ALL (OFA) [Wang et al., 2022]

• A unified transformer model for various modalities (image, text, location)

• Pretrain with all Vision, Language, and Vision-Language tasks
• Incorporate all available images (with labels), texts, image-text pairs

• OFA supports various multimodal and unimodal tasks with decent performance

OFA: Unifying Architectures, Tasks and Modalities

Language tasks Image classification task

Table 6: Experimental results on the GLUE benchmark datasets [79]. For comparison, we list the performance of
multimodal pretrained models as well the recent SOTA models that were pretrained on natural language data only.
Following [28], we finetune RTE and MRPC starting from the checkpoint finetuned on MNLI.

Model SST-2 RTE MRPC QQP MNLI QNLI

Multimodal Pretrained Baseline Models

VisualBERT [38] 89.4 56.6 71.9 89.4 81.6 87.0
UNITER [14] 89.7 55.6 69.3 89.2 80.9 86.0
VL-BERT [8] 89.8 55.7 70.6 89.0 81.2 86.3
VilBERT [13] 90.4 53.7 69.0 88.6 79.9 83.8
LXMERT [40] 90.2 57.2 69.8 75.3 80.4 84.2
Uni-Perceiver [61] 90.2 64.3 86.6 87.1 81.7 89.9
SimVLM [22] 90.9 63.9 75.2 90.4 83.4 88.6
FLAVA [60] 90.9 57.8 81.4 90.4 80.3 87.3
UNIMO [46] 96.8 - - - 89.8 -

Natural-Language-Pretrained SOTA Models

BERT [2] 93.2 70.4 88.0 91.3 86.6 92.3
RoBERTa [28] 96.4 86.6 90.9 92.2 90.2 93.9
XLNet [25] 97.0 85.9 90.8 92.3 90.8 94.9
ELECTRA [82] 96.9 88.0 90.8 92.4 90.9 95.0
DeBERTa [83] 96.8 88.3 91.9 92.3 91.1 95.3

Ours

OFA 96.6 91.0 91.7 92.5 90.2 94.8

Table 7: Experimental results on Gigaword abstractive summarization. We report performance on the ROUGE
evaluation [84].

Model Gigaword
ROUGE-1 ROUGE-2 ROUGE-L

BERTSHARE [85] 38.13 19.81 35.62
MASS [86] 38.73 19.71 35.96
UniLM [29] 38.45 19.45 35.75
PEGASUS [87] 39.12 19.86 36.24
ProphetNet [88] 39.55 20.27 36.57
UNIMO [46] 39.71 20.37 36.88

OFA 39.81 20.66 37.11

understanding, typically text classification, we regard them as generation tasks where labels are essentially word
sequences. Additionally, for each task, we design a manual instruction to indicate the model what types of questions it
should answer. We list our instruction design in Appendix A.3.

We demonstrate that even a unified multimodal pretrained model can achieve highly competitive performance in natural
language tasks. Specifically, in the evaluation of natural language understanding, OFA surpasses multimodal pretrained
models by large margins in all tasks. In comparison with the state-of-the-art natural language pretrained models,
including RoBERTa [28], XLNET [25], ELECTRA [82], and DeBERTa [83], OFA reaches a comparable performance.
In the evaluation of natural language generation, OFA even reaches a new state-of-the-art performance on the Gigaword
dataset.

Also, OFA can reach a competitive performance in image classification. Table 8 shows the performance of OFA on
image classification. OFALarge achieves higher accuracy than previous backbone models such as EfficientNet-B7 [89]
and ViT-L [6]. We also compare OFA with self-supervised pretraining models based on contrastive learning and masked
image modeling. OFA outperforms contrastive-based models such as SimCLR [32] and MoCo-v3 [33, 35] with similar
parameters. Compared with pretrained models based on masked image modeling, e.g., BEiT-L [36] and MAE-L [37],
OFA can achieve similar performance.
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Table 8: ImageNet-1K finetuning results. All the listed models do not use extra labeled image classification samples
during training for fair comparison. We report the results of OFALarge.

Model Top-1 Acc.

EfficientNet-B7 [89] 84.3
ViT-L/16 [6] 82.5
DINO [90] 82.8
SimCLR v2 [32] 82.9
MoCo v3 [35] 84.1
BEiT384-L/16 [36] 86.3
MAE-L/16 [37] 85.9

OFA 85.6

Table 9: Zero-shot performance on 6 GLUE tasks and SNLI-VE.

Model SST-2 RTE MRPC QQP QNLI MNLI SNLI-VE
Acc. Acc. F1 F1 Acc. Acc. Acc. (dev/test)

Uni-Perceiver 70.6 55.6 76.1 53.6 51.0 49.6 -

OFABase 71.6 56.7 79.5 54.0 51.4 37.3 49.71 / 49.18

These aforementioned results in both natural language and vision tasks indicate that a unified multimodal pretrained
model is not only effective in multimodal tasks but also capable of tackling unimodal tasks, and in the future, it might
be sufficient for such a model to solve complex tasks concerning different modality combinations.

4.3 Zero-shot Learning & Task Transfer

The instruction-guided pretraining enables OFA to perform zero-shot inference. Following Uni-Perceiver [61], we
evaluate our model on the 6 tasks of the GLUE benchmark, including single-sentence classification and sentence pair
classification. Table 9 demonstrates that OFA generally outperforms Uni-Perceiver. However, both models do not
achieve satisfactory performance in sentence-pair classification (with Acc. < 60%). We hypothesize that the missing
sentence-pair data in the pretraining dataset attributes to the performance.

Also, we find that the model performance is highly sensitive to the design of instructions. To obtain the best result,
one should search a proper instruction template possibly from a large pool of candidates. A slight change to manual
prompts or model parameters may drastically influence the model performance, which is not robust. We leave this issue
to the future work.

We observe that the model can transfer to unseen tasks well with new task instructions. We design a new task called
grounded question answering and present examples in Figure 4. In this scenario, given a question about a certain region
on the image, the model should provide a correct answer. We find that the model can achieve a satisfactory performance
in this new task, which reflects its strong transferability. Besides, OFA can solve tasks with the out-of-domain input
data. For example, OFA without finetuning achieves satisfactory performance in VQA for the out-of-domain images.
Examples are demonstrated in Figure 5. OFA can also perform accurate visual grounding on the out-of-domain images,
e.g., anime pictures, synthetic images, etc., and we demonstrate more examples on Figure 11 in Appendix C.

4.4 Ablation on Multitask Pretraining

Thanks to the unified framework, OFA has been pretrained on multiple tasks and thus endowed with comprehensive
capabilities. However, the effects of each task are still undiscovered. We verify their effects on multiple downstream
tasks, including image captioning, VQA, image classification, and text-to-image generation.

We first evaluate how uni-modal pretraining tasks influence the performance in both cross-modal and uni-modal
tasks. Table 10 demonstrates our experimental results. We observe some interesting phenomena about the effects of
uni-modal pretraining tasks. Text infilling brings improvement on image caption (+0.8 CIDEr) and VQA (+0.46 Acc.).
Natural language pretraining betters the contextualized representation of language and thus enhances performance in
cross-modal tasks. However, it is noticed that the language pretraining task may degrade the performance in image

10
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• Also, OFA can generate image from text 
• Showing better performance than DALLE, NUWA

OFA: Unifying Architectures, Tasks and Modalities

G
LI

DE
O

FA
C

og
Vi

ew

Normal Query Counterfactual Query

A brown horse in the 
street.

A banana in the shape of 
the bird.

Cattle grazing on grass 
near a lake surrounded 
by mountain.

A street scene with a 
double-decker bus on 
the road.

An orange clock in the 
water.

A white computer in the 
sky.

Figure 3: Qualitative comparison with state-of-the-art models for text-to-image generation task. We present more
qualitative examples of text-to-image generation for better demonstration in Appendix C.

Table 5: Experimental results on text-to-image generation. Models are evaluated on FID, CLIPSIM, and IS scores.
OFA outperforms the baselines, including the concurrent SOTA NÜWA. We report the results of OFALarge. Note that
GLIDE additionally has 1.5B parameters for upsampling except for the 3.5B parameters.

Model FID# CLIPSIM" IS"
DALLE [50] 27.5 - 17.9
CogView [51] 27.1 33.3 18.2
GLIDE [77] 12.2 - -
Unifying [78] 29.9 30.9 -
NÜWA [52] 12.9 34.3 27.2

OFA 10.5 34.4 31.1

details of objects, say the horse and the double-decker bus. For counterfactual queries, we find that OFA is the only one
that can generate the three imaginary scenes, which indicates its imaginative power based on its strong capability to
align text to the image. See Appendix C for more qualitative examples.

4.2 Results on Uni-modal Tasks

As the design of OFA unifies different modalities, we evaluate its performance on unimodal tasks, namely tasks
of natural language and computer vision. For natural language tasks, we evaluate OFA on 6 tasks of the GLUE
benchmark [79] for natural language understanding and Gigaword abstractive summarization [80] for natural language
generation. For computer vision, we evaluate OFA on the classic ImageNet-1K [81] dataset for image classification.
More details are provided in Appendix A.3.

As OFA has been pretrained on plain text data, it can be directly transferred to natural language downstream tasks.
For natural language generation, it is essentially a sequence-to-sequence generation task, and for natural language
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• Also, OFA can generate image from text 
• Showing better performance than DALLE, NUWA

OFA: Unifying Architectures, Tasks and Modalities

Figure 7: Examples of text-to-image generation. For better demonstration, we continue finetuning OFA on a subset of
LAION-400M [117].
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BEiT v3 [Wang et al., 2022]

• The Big Convergence
• Unification of architecture to Transformer
• Pretraining task based on masked data modeling

• Scaling up the vision, language, vision-language transformers with masked data
modeling pretraining
• Pretraining with interleaved image and texts, and image-caption pairs

BEiT-3: BEiT Pretraining for All Vision and Vision-Language Tasks
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BEiT v3 [Wang et al., 2022]

• Scaling up the vision, language, vision-language transformers with masked data 
modeling pretraining

• BEiT v3 can be adapted to various vision and vision-language tasks

BEiT-3: BEiT Pretraining for All Vision and Vision-Language Tasks



Algorithmic Intelligence Lab

BEiT v3 [Wang et al., 2022]

• As a result, BEiT v3 achieves SOTA performance on various tasks including
• Vision tasks: Classification, Segmentation, Detection
• Vision-Language tasks: Retrieval, VQA, Visual Reasoning

BEiT-3: BEiT Pretraining for All Vision and Vision-Language Tasks
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KOSMOS-1 [Huang et al., 2023]

• LLMs are great at following instructions and learn in context

• KOSMOS-1 is Multimodal Large Language Model (MLLM) that can perceive 
general modalities that follows instruction and learn in context
• Language models as general-purpose interfaces: other modalities are embedded into 

language models
• As LLMs, KOSMOS-1 conduct instruction tuning for better human alignment

Language Is Not All You Need: Aligning Perception with Language Models
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KOSMOS-1 [Huang et al., 2023]

• Capabilities of KOSMOS-1
• Zero-shot / Few-shot multimodal learning, outperforming Flamingo

Language Is Not All You Need: Aligning Perception with Language Models

Zero-shot Image Captioning Zero-shot Visual Question Answering

Few-shot Image Captioning Few-shot Visual Question Answering
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KOSMOS-1 [Huang et al., 2023]

• Capabilities of KOSMOS-1
• Zero-shot / Few-shot multimodal learning, outperforming Flamingo
• Nonverbal visual reasoning: Raven IQ-Test

• First attempt of DNN model for IQ-test, but still large gap between human

Language Is Not All You Need: Aligning Perception with Language Models
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KOSMOS-1 [Huang et al., 2023]

• Capabilities of KOSMOS-1
• Zero-shot / Few-shot multimodal learning, outperforming Flamingo
• Nonverbal visual reasoning: Raven IQ-Test
• Prompting for Image classification: KOSMOS-1 benefits from Chain-of-Thought (CoT) 

prompting for visual recognition task

Language Is Not All You Need: Aligning Perception with Language Models

Effect of prompting on Rendered SST2 dataset
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GPT-4 [OpenAI, 2023]

• The new GPT-4 supports visual prompts
• It supports various input; natural images, documents, OCR, etc.

GPT-4

Image captioning / VQA Document understanding
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GPT-4 [OpenAI, 2023]

• The new GPT-4 supports visual prompts
• It supports various input; natural images, documents, OCR, etc.

• It shows comparable performance on various vision-language understanding tasks
• However, the model is unknown (e.g., architecture, training method, data used)

GPT-4
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• We discussed four approaches in vision-language pretraining
1. Image-text alignment using CLIP for transferrable visual representation
2. Fused transformer for vision-language understanding
3. Learning visual representation from frozen Large Language Models (LLMs)
4. Unifying Vision-Language pretraining

• The development of LLMs have affected the visual representation learning
• Zero-shot / Few-shot classification as instruction / in-context learning
• Scaling up foundation models showing emergent capabilities

• But still, understanding and designing better learning method is important problem
• Scaling is not the only way to improve performance!

Summary
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