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Motivation

* DNNs achieve remarkable success in various applications
* They usually require massive amounts of manually labeled data
* The annotation cost is high because
* |tis time-consuming: e.g., annotating bounding boxes of all objects
* |t requires expert knowledge: e.g., medical diagnosis and retrosynthesis

e |
dining table : 0.879

lefe]

* But, collecting unlabeled samples is extremely easy compared to annotation

* Q. How to utilize the unlabeled samples for learning DNNs?
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Self-supervised Learning

* Self-supervision?
* |tis alabel constructed from only input signals without human-annotation
* Using self-supervision, one can apply supervised learning approaches
* Examples: Predicting relative location of patches?! or rotation degree?

Example:

------------ 90° rotation 270° rotation 180° rotation 0° rotation

 What can we learn from self-supervised learning?

* To predict (well-designed) self-supervision, one might require high-level
understanding of inputs

* E.g., we should know :: is the right ear of the cat for predicting locations
* Thus, high-level representations could be learned w/o human-annotation

Algorithmic Intelligence Lab * source : [Doersch et al., 2015], 2[Gidaris et al., 2018]
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Good Representation is All You Need

* Foundation Models

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

* E.g., linear classifier upon the SImCLR/BERT backbone
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Unsupervised Learning vs. Self-supervised Learning

I now call it “self-supervised learning”, because “unsupervised” is
both a loaded and confusing term. ...

Self-supervised learning uses way more supervisory signals than
supervised learning, and enormously more than reinforcement
learning. That’s why calling it “unsupervised” is totally
misleading.

by Yann LeCun (2019. 04. 30)

* How to define “unsupervised learning” term? (there is no answer ...)
* Q) We need an objective (or loss) for learning; is the objective not a (self-)supervision?
* Q) Unsupervised learning 2 self-supervised learning?
* Q) What are the purely unsupervised learning methods?
* |In classic ML, clustering, grouping and dimensionality reduction ...

* |n this lecture,
* We mainly use the “self-supervised learning” term instead of unsupervised learning
* We learn recent SSL approaches in vision, NLP, and graph domains
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Evaluating Self-supervised Representation

* How to evaluate the quality of self-supervision?
1. Self-supervised learning in a large-scale dataset (e.g., ImageNet)

2. Transfer the pretrained network to various downstream tasks

* Linear probing: freeze the network and training only the linear classifier
= it directly evaluates the learned representation qualities

* Fine-tuning whole parameters

— Pretraining (self-supervised learning)

@Transfer (initialization)

— — Linear evaluation or Fine-tuning

ST TN
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Overview of the Lecture

* For the first part, we mainly follow the history of “SSL for images”
* 2019-2021: Contrastive Learning
« NPID (‘18), MoCo/SimCLR (‘20), BYOL (“20), MoCov3/DINO (‘21)

e 2022-2023: Masked Image Modeling
e BEIT (‘22), MAE (‘22), data2vec (‘22)

* Then, we focus on the recent development of Vision & Language SSL
* |Image-text alignment using CLIP for transferrable visual representation
* Fused transformer for vision-language understanding
* Learning visual representation from frozen Large Language Models (LLMs)
* Unifying Vision-Language pretraining
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SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

Algorithmic Intelligence Lab 11



SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

* A) Positive samples are constructed from
e Similar samples (e.g., in the same cluster)
e Same instance of different data augmentation
* Additional structures (e.g., multi-view images, video)
(negative samples = not positive samples)

Algorithmic Intelligence Lab 12



SSL via Invariance

* Instantiations of invariance-based approach
* Many classes of self-supervised learning can be viewed as invariance-based

* Clustering & pseudo-labeling
e Cluster data into K groups, and assume they are pseudo-labels
 Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
e E.g., DeepCluster, SWAV, DINO

e Consistency regularization
e Attract similar samples
* E.g., MixMatch, UDA, BYOL

e Contrastive learning
e Attract similar samples and dispel dissimilar samples
* E.g., MoCo, SimCLR, CLIP

13



SSL via Invariance

* DeepCluster [Caron et al., 2018]
* |dea: Clustering on embedding space provides pseudo-labels

Input

e

Convnet

e Simple method: Alternate between

1. Clustering the features to produce pseudo-labels

o¥
%,\C\&?‘

/

Classification

T Pseudo-labels

Clustering
;\t o0 : °
o: 3\;\ _

2. Updating parameters by predicting these pseudo-labels

* How to avoid trivial solutions?
* Empty cluster <& feature quantization (it reassigns empty clusters)
* Imbalanced sizes of clusters < over-sampling

Algorithmic Intelligence Lab
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SSL via Invariance
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* DeepCluster [Caron et al., 2018]
* |Is the clustering quality improved during training?
a. Clustering overlap between DeepCluster and ImageNet
b. Clustering overlap between the current and previous epochs
c. Influence of the number of clusters
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20.35 ° / g ../
k- ( 50.66 62
= z [ /
50.30 0.64 60(
20.25 0.62 581 . . ;
0 100 200 300 0 100 200 300 10 10 10 10°
epochs epochs k
(a) Clustering quality (b) Cluster reassignment (c) Influence of k

* Which images activate the target filters in the last convolutional layer?

‘_Filter 0 ] Filter 33 Filter 145 Filter 194

E% %h ,-x_ ‘d

* source : [Caron et al., 2018] 15



SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

CNN backbone 1-th image Vi
$ Vo
low dim L2 norm / H 2-th image V3 /
Non- :
. e |:| —>|:|—> | —— i-th image Ml:mory }
128D 128D \ E n-1 th image N A‘ 3

2¥2 nthi M
& n-th image VAt

Vi = }9<Xi)

128D Unit Sphere

* Non-parameteric classifier
exp(v, v/7)
> i1 exp(v]v/7)

* Each class has only one instance = V; can be used directly as a class prototype

P(ilv) =

Algorithmic Intelligence Lab * source : [Wu et al., 2018] 16



SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

* Non-parameteric classifier

P(ilv) = eXp(V,LTV/T)

Z;”:l eXp(VjTV/T)

« Computing P(i|v) is inefficient because it requires all v; = fo(x;)and VjTV
e Solution 1: Memory bank

e Store all V; in memory and update them for each mini-batch

* To stabilize training, representations in memory bank are momentum-updated
V,L(t) — mvgt_l) + (1 —m)vie"
Representations in memory bank e — Computed by current encoder

Algorithmic Intelligence Lab
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SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

* Non-parameteric classifier

P(ilv) exp(v, v/7)

2?21 eXp(VjTV/T)

Computing P(i|v) is inefficient because it requires all v; = fp(x;)and VjTV
Solution 1: Memory bank

e Store all V; in memory and update them for each mini-batch
* To stabilize training, representations in memory bank are momentum-updated

Solution 2: Noise-Contrastive Estimation [Gutmann & Hyvarinen, 2010]
* |t casts multi-class classification into a set of binary classification problems

" : : exp(v, v)
Positive sample: P(D = 1]i,v) = P(i|v) = VTV 15 exp(vI V)
i k=1 Tk
A

m negative samples
Objective: Lncg = —Ep,[log P(D = 1|i,v)] — mEp_[log P(D = 0], v')]

\ data distribution g noise distribution (uniform) 18



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank
* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
q-k qk qk
q k q k q k
encoder q encoder k encoder sampling encoder Ty
encoder
memory
k bank k
x4 x x4 x4 x
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

Algorithmic Intelligence Lab * source : [He et al., 2019] 19



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:BH}E] EH
exp(q -k /7)
L v =—1
ST g R T) + Sy explg K /T) ®
| ‘ queue
momentum

encoder
encoder

Randomly augmented samples — Dj U

* source : [Chen et al., 2020] 20
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:BH}E] EE
exp(q- k' /T
Low+ k) = —log + ( ) -
exp(q - k*/7) + X2, exp(q -B/7) &
* After encoder is updated, ﬂ ﬂg m
* Momentum encoder is updated by | ‘ queue
emomentum — memomentum + (1 o m)@ momentum
« Add the current positive keys k' into the queue eneoder encoder

Randomly augmented samples — Dj U

* source : [Chen et al., 2020] 21
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
« MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient ? gradient T
{ q-k | Ceoqk Leoqk
F’ ) ( ) | )
q k q k q k
A A A A A A
encoder q encoder k encoder sam:llng encoder m::‘;ir;teurm
ﬁ ﬁ ﬁ memory \A %
bank
x 2" x x4 2"
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

60 -
58.0
58 S8 =
& 73 565 _.—-—""
momentum m‘ 0 0.9 0.99 0.999  0.9999 256 e .=
© - -
accuracy (%) ‘ fail 55.2 57.8 59.0 58.9 §54 55 541~ -
[ B .
‘/
500 —*%—end-to-end
52 Prod —®--memory bank
e MoCo
50.07
50 & 1 L 1 L I
256 512 1024 4096 16384 65536
K (log-scale)
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SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss

3. Large batch sizes and longer training

Algorithmic Intelligence Lab * source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 23



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

e This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
* Strong color distortion degrades supervised learning, but improves SimCLR
* A stronger augmentation (AutoAugment) degrades SimCLR

Crop
-50

Cutout
40

Color

Sobel 30

1st transformation

Noise
20

Blur
10

Rotate

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering GOQ

R G

R R 2nd transformation
Color distortion strength

Methods ‘ 1/8 1/4 1/2 1 1 (+Blur) |AutoAug|

SimCLR 59.6 61.0 62.6 63.2 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 77.1

Algorithmic Intelligence Lab * source : [Chen et al., 2020] 24



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
2. A nonlinear MLLP between the representation and the contrastive loss
* Contrastive learning objective learns z to be invariant to augmentations
exp(sim(z;, z;)/7)
—1 Ljpq exp(sim(z;, Zk)/T)
e g(-) can remove informatlon that may be useful such as color
* Using nonlinear ¢(-) allows h to contain more information

gi,j = —log 2N

Maximize agreement 70
Zi Zj
A A
g9() < Projection — g9() 60 I II II . Representation
) - What to predict? Random guess h ( h)
h; +— Representation — h; 250 Projection g
! [t B Linear Color vs grayscale 80 99.3 97.4
f() IC) 40 | mmm Non-linear Rotation 25 67.6  25.6
pr— None Orig. vs corrupted 50 99.5 59.6
z, Z; 30 = Orig. vs Sobel filtered 50 96.6 56.3
D«
2N T K '\ ’LQD‘%
7 Nt PrOJectlon output d|men5|onaI|ty

Algorithmic Intelligence Lab * source : [Chen et al.,, 2020] 25



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized

architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
3. Large batch sizes and longer training

70.0

67.

[5,]

100 200 300
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* source : [Chen et al., 2020] 26



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* SimCLR achieves outstanding performance in various downstream tasks

Fine-grained image classification tasks
Food CIFARIO CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 60.0 612 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:
SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 848 69.4 64.1 82.7 72.5 92.5
Semi-supervised learning in ImageNet Linear evaluation in ImageNet
Label fraction Method Architecture ~ Param (M) Top1 TopS5
Method Architecture 1% T ;O% Methods using ResNet-50:
op Local Agg. ResNet-50 24 60.2 -
Supervised baseline ResNet-50 48.4 80.4 MoCo ResNet-50 24 60.6 -
Methods usine other label on- PIRL ResNet-50 24 63.6 -
ethods using other tabei-propagarnon. CPC v2 ResNet-50 24 63.8 853
Pseudo-label ResNet-50 16 824 SimCLR (ours) ResNet-50 24 693 89.0
VAT+Entropy Min. ResNet-50 47.0 83.4
UDA (w. RandAug) ResNet-50 - 88.5 Methods using other architectures:
FixMatch (w. RandAug) ResNet-50 - 89.1 Rotation RevNet-50 (4 %) 86 55.4 -
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 BigBiGAN RevNet-50 (4x) 86 61.3 819
Methods usine entation | ing onlv- AMDIM Custom-ResNet 626 68.1 -
ethods using representation learning only: CMC ResNet-50 (2x) 188 684 882
InstDisc ResNet-50 39.2 77.4
o MoCo ResNet-50 (4x) 375 68.6 -
BigBiGAN RevNet-50 (4x) 55.2 78.8
CPC v2 ResNet-161 (x) 305 71.5  90.1
PIRL ResNet-50 57.2 83.8 .
SimCLR (ours) ResNet-50 (2x) 94 742 92.0
CPCv2 ResNet-161(+) ~ 77.9 912 SimCLR (ours) ResNet-50 (4x) 375 765 932
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
Algorithmic Intell SimCLR (ours) ResNet-50 (4x) 858 926 * source : [Chen et al., 2020] 27



SSL via Invariance

 Limitations in contrastive learning (with negatives)
* It is sensitive to the number of negative = a large batch size or a queue is required
* Are all the different instances negative?

Positive pair f (
Negative pair f (

* Q) can we learn representations without negative samples?

 Simply minimizing ||f([&)) — f(E)H leads to mode collapse, i.e., Vz, f(x) = ¢

This relation might be not true

* Next: Positive-only approaches

Algorithmic Intelligence Lab
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SSL via Invariance
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e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

view representation projection prediction

inpu 0 g 0 qe
imI;gi t (Y I f > Z@ I‘ q6(z6) p_ online
1] &l

Y

\
1
loss |

1
1

—Af—> sg(2) ¥ target

Y

= =

f§ gf Sg
Objective Update
q0(z 2 0 < optimizer(6, VoL
LeyoL = H |IqZ zZ)ll ”Z P ( o Lsyor)

e TE+(1—T1)0

* Key components: target (momentum) network, predictor, stop-gradient (sg)

* source : [Grill et al., 2020] 29



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

view representation projection prediction

inpu 0 g 0 q9
imI;gte t (Y I f > ZQ I‘ q6(z6) p_ online
1] &l

Y

\
1
loss |

1
1

—Af—> sg(2) ¥ target

Y

= (8]

f§ gf sg
Objective Update
q0(z 2 0 < optimizer(6, VoL
LeyoL = H IIqZ zZ)II ”Z P ( o Lsyor)

E«—1E4+(1—1)0

* Q) How does BYOL avoid the undesired collapsed solutions?
« {is not updated in the direction of V¢Lgyor %'s i-th feature -
 When the predictor is optimal, i.e., ¢"(z6) = E[2¢|29], Leyor = E[ZZ Var(z¢ ;| 20)]
* For any constant c, Var(z ;|2¢) < Var(z;,/c) = constant equilibria is unstable

Algorithmic Intelligence Lab * source : [Grill et al., 2020] 30



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

prediction

q0(2p) . online
Ay

A}
loss |
.

sg(2¢) ¥ target

view representation projection
. S f 0 — 9o — 4o
mput
image t @ Yo 29
= q
'S ) SR
\ ,
t v Ye Ze
e 9¢ sg

* BYOL is more robust to the choice of batch sizes and augmentations

Algorithmic Intelligence Lab

Decrease of accuracy from baseline

.\
.<.\.
.\ 3
[}
o
[ )
—— BYOL \
= SimCLR (repro) ®
4096 2048 1024 512 256 128

Batch size

Decrease of accuracy from baseline

0@, — BYOL
x’ = SimCLR (repro)
-5 .\
—-10 .\.
\.
—15
—20
o.
-25 \
[ J
—
Baseline Remove Remove Crop + Crop
grayscale  color  bluronly  only

Transformations set

* source : [Grill et al., 2020] 31



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

#

prediction

t

q6(28) |

representation projection
R ) 9o —\ qde
) Yo 0
7|
— | N —
'S
\ ,
' Ye Ze
— 3 58

loss |

sg(2¢) ¥ target

* BYOL is more robust to the choice of batch sizes and augmentations
* BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

Algorithmic Intelligence Lab
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ImageNet top-1 accuracy (%)
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3
=)

(o))
o

BYOL (200-2x) %

*Sup (200-2x)
Sup.- (4x)

F (%YOL 4x)

Su/
o BYOL (2x)

SimCLR (2x)

CMC

SimCLR (4X)

CPCv2-L

o
AMDIM

S50M 100M 200M 400M

Number of parameters

* source : [Grill et al., 2020] 32



SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

@

| softmax |

student ggs

* Key components:

loss:
- p2log pi

c€ma

sg

teacher gg;

e (self) knowledge-distillation
 Distill the teacher (EMA version of a student) knowledge to the student
* multi-crop: a strategy to generate positive views

Objective
Lpivo = H(P:(x), P(x))

Update

O, < optimizer(es, VgSLD,NO)

Ht &« /19t + (1 - /1)95

e centering and sharpening: a strategy to avoid collapse

Algorithmic Intelligence Lab

33



SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
e -p2logpi @
softmax

centering

student ggs — | teacher gy

ema

* DINO constructs a set of views V via multi-crop strategy:

* (1) global views: xl‘g, x‘zg

* (2) local views with smaller resolution

* All crops are passed through the student; only the global views are passed through
the teacher: “local-to-global” correspondences

* Therefore, the loss is written as:
mi Z Z H(Pt(x),Ps(SU,))

05
ze{z], 2§} 2'eV
' #x
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SSL via Invariance

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
e -p2logpi @
softmax

centering

student ggs — | teacher gy

ema

* DINO avoids the collapse via centering and sharpening
e Centering: subtracting a bias term c to the teacher
gt(x) < ge(z) — ¢

* The center c is updated with an exponential moving average
B

1
c—me+(1-— m)E det(xi)
=1

* Sharpening: using a low value for the temperature 7, in the teacher softmax
normalization

Algorithmic Intelligence Lab



SSL via Invariance

 DINO [Caron et al., 2021]
e DINO outperforms previous contrastive methods in classification tasks

* Self-supervised ViT features contain explicit information about the semantic
segmentation of an image

Method Arch. Param. im/s Linear k-NN
Supervised RN50 23 1237 79.3 79.3
SCLR [12] RNS50 23 1237 69.1 60.7
MoCov2 [15] RNS0 23 1237 71.1 61.9
InfoMin [67] RNS50 23 1237 73.0 65.3
BarlowT [81] RNS0 23 1237 732  66.0
OBoW [27] RNS50 23 1237 73.8 61.9
BYOL [30] RNS50 23 1237 744 64.8
DCv2 [10] RNS50 23 1237 75.2 67.1
SwAV [10] RNS50 23 1237 753 65.7
DINO RNS50 23 1237 175.3 67.5
Supervised ViT-S 21 1007 79.8 79.8
BYOL* [30]  ViT-S 21 1007 714 666 Self-attention map on [CLS] of self-supervised ViT
MoCov2* [15] VIiT-S 21 1007 72.7 64.4
SwAV* [10]  ViT-S 21 1007 73.5 66.3 Method Data Arch. (T&F)m JIm  Fm
DINO ViT-S 21 1007 77.0 74.5 .
Supervised
Comparison across architectures ImageNet INet ViT-S/8 66.0 63.9 68.1
SCLR [12] RN50w4 375 117 76.8 69.3 STM [48] I/D/Y RNS50 81.8 79.2 843
Sl meee w7 o E—
30 —
DINO £ VITB/16 85 312 782 761 CT [71] VLOG ~ RN50 48.7 46.4 500
SwAV[10]  RN50wS sse 7 a5 el MAST [40] YT-VOS RNI8 655 633 67.6
BYOL [30] RN50w4 375 117 78.6 _ STC [37] Kinetics RN18 67.6 64.8 70.2
BYOL [30]  RN200w2 250 123 79.6 73.9 DINO INet ViT-5/16 61.8 60.2  63.4
DINO ViT-S/8 21 180 79.7 178.3 DINO INet ViT-B/16 62.3 60.7 63.9
SCLRv2 [13] RNI152w3+SK 794 46 79.8 73.1 DINO INet ViT-S/8 69.9 66.6 73.1
DINO ViT-B/8 85 63 80.1 774 DINO INet ViT-B/8 71.4 67.9 749
Top-1 accuracy for linear and k-NN evaluations Video instance segmentation on top of
on the validation set of ImageNet self-supervised feature
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SSL via Invariance

e Choices for Positive Samples

We discussed how to make positive samples invariant
By the way, what are the positive samples?

Similar data (e.g., by clustering)
* Discussed before (e.g., DeepCluster)

Same data with different augmentation
* Discussed image domain before (e.g., SimCLR)
* How about other domains (e.g., language, graph, or domain-agnostic)?

Same data with different modality
» Different channel (e.g., multi-view) or domain (e.g., vision & language)

Utilize sequential structure
* (a) Predict future state from past states (positive = true future)

* (b) Use states from same sequence as positives (positive = same sequence)
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SSL via Invariance — Data Augmentation

e Choices for Positive Samples

e Same data with different augmentation
* Discussed image domain before (e.g., SimCLR)
* How about other domains (e.g., language, graph, or domain-agnostic)?

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

e COCO-LM [Meng et al., 2021]
* |dea:

* Corrective Language Modeling: Recover original tokens from corrupted ones
* Sequence Contrastive Learning between corrupted and augmented sentences

Corrective Language Modeling

;  CA B c D IF ) —(fes1)_ A J(B JCc J( D JCE)
: COCO-LM Pretraining Tasks: Lo T o T """ T omming t T T t t t
« Corrective Language Modeling (CLM) . s Contrasti .
. Sequence Contrastive Learning (SCL) Auxiliary Transformer : eque’,’_:m?:gras e
: - ' b+ + t %
-------------------------------------- t } 3 $ 4 N IO -, S
(A Jousk)( ¢ ) D J(mmask] HaJls Jle o LE)
A Input ———»{[CLS]

--------------- Main Transformer

--------------- . it Ff f 1 ¢
Random Crop ‘ Cropped Sequence: BCD } -------------------------------- > B J_ c J(_ D )(frapl}(rpaD])

Original Sequence: ABCDE

* Both CLM and SCL improves Baseline

* Improvements are observed on different tasks, e.g., CLM: ColLA, SCL: RTE
(CoLA: grammatical validity of one sentence, RTE: relation of two sentences)

Group Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B | AVG
Baseline RoBERTa (Ours) 85.61/85.51 91.34 91.80 93.86 58.64 69.03 87.50 86.53 83.03
ELECTRA (Ours) 86.92/86.72 91.86 9256 93.64 6650 7528 88.46 88.04 85.39
Original COCO-LM Base 88.67/88.35 92.02 93.00 94.08 6541 85.42 91.51 88.61 87.05
Pretraining Task CLM Only 88.64/88.40 92.03 93.14 9386 66.95 8090 89.90 88.45 86.72
SCL Only 88.62/88.14 92.14 9345 9386 64.70 82.57 90.38 89.35 86.86

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

e GraphCL [You et al., 2020]
* This paper studies contrastive learning with diverse graph augmentations

* Node dropping, edge perturbation, attribute masking, subgraph sampling

* GraphCl’s architecture and objective are almost the same as SimCLR

Add & Delete Edge

Drop Node & Edge

Node Dropping

s(o)~T

Input Graph e

g \im—> ...
& o..

$Augmenfcmons¢

...... .(.m NT/dge Perturbation

Shared 6NN-bas

\D Embeddings

ed Encoder

7 0w

s Projection

B
-\

Head “'

Maximize
Agreement

Pr'q]echon ﬁx

Heu N

* The choice of graph augmentations is critical depending on downstream tasks
Biochemical molecules

Social networks

NCI1 PROTEINS COLLAB RDT-B High
Identical{ 0.42 1.25 -0.17 -1.44 2.47 2.27 1.01 1.07 -0.74 1.66 1.39 0.85 0.17 -0.26
AttrMask{0.03 1.20 -0.62 -1.05 -1.14 2.43 1.89 0.85 1.15 1.51 1.37 1.53 0.47 -0.36 0.25
EdgePert{-1.26 1.95 .-1.18- 1.28 2.97 0.71 1.37 0.96 H 1.74 1.52 0.97 0.34 0.71
Subgraph{1.63 1.17 2.10 1.90 1.62 2.54 2.30 2.20 2.67. 1.13 1.50 1.25 1.06 1.39
NodeDrop{0.85 1.57 -0.86 -0.59 -0.17 2.00 2.27 1.62 1.31 1.30 1.85 1.45 1.66 1.53 1.31
Low
S Qé& & & S <2Q'<£ 2 \(;z} S QQ}‘ & &L I Q?}‘ S '\CZ}
a&o \@ o v§\ e,& N oé o @\ z& e;?/o o@ o ‘é@ e& e,?/o oé & ‘s“ e&
R A OSSR SR S S S
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SSL via Invariance — Data Augmentation

* i-Mix [Lee et al., 2021]
* ldea: Introduce virtual labels in a batch and apply MixUp or CutMix
* It is a domain-agnostic regularization strategy for contrastive learning

* General form of i-Mix
* Let B = {(x;,%;)})., be a batch of positive data pairs for contrastive learning
* For each anchor x;, X; is a positive sample, X; ;are negative samples
* Then, i-Mix defines the one-hot virtual label v; € {0,1}" of x; and &;
* vi;=landv; =1
* With virtual labels, we can re-write a general contrastive loss: £(x;, v;)
* Then, i-Mix loss is defined as:

CMX (25, v3), (z5,v5); B, A) = £Mix (2, z5; N), Av; + (1 — A)vj; B)

* i-Mix uses MixUp and CutMix functions as a Mix operator

* i-Mix can be applied for different contrastive objectives, such as SimCLR, MoCo
and BYOL
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SSL via Invariance — Data Augmentation

* i-Mix [Lee et al., 2021]
* ldea: Introduce virtual labels in a batch and apply MixUp or CutMix
* |t is a domain-agnostic regularization strategy for contrastive learning

* i-Mix consistently improves the classification accuracy on different domains

Domain Dataset N-pair +i-Mix MoCov2 +-Mix BYOL + 1-Mix

CIFAR-10 933 +01 95.6+02 935+02 961 +01 942 +02 96.3 +o02
CIFAR-100 70.8 +04 758 +03 71.6+01 781 +03 727 +to04 78.6+02

Speech Commands 94.9 +01 983 +01 963 +01 984 +00 948 +02 98.3+00
Tabular Covlype 685+03 721+02 705+02 731+01 72.1+02 741 +02

Image

Table 1: Comparison of contrastive representation learning methods and ¢-Mix in different domains.

Algorithmic Intelligence Lab
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SSL via Invariance — Different Modality

e Choices for Positive Samples

* Same data with different modality
* Different channel (e.g., multi-view) or domain (e.g., video)

Algorithmic Intelligence Lab
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SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* ldea: Use multiple views of the same instance as positive samples

1); e Vs U'Lg eV

Unmatching view

Matching views

Loz =-E

contrast

o he({o]u3})
{vl 0}, vh 1} e g— h 1 .
Zj:l o({vi,v})

fou (V1) " fo, (v2) 1)
[ for () |1 fos (v2) | 7

\ Neural network

Algorithmic Intelligence Lab * source : [Tian et al,, 2019] 44
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SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* |dea: Use multiple views of the same instance as positive samples

N

Unmatching view

Matching views

« By minimizing £(Vi,V5) = £¥u¥2 o2V 0 fy (¢), fo.(-) learns to extract

contrast contrast’/

common information in two different views
* For M >2 views, use L = Z;‘il LW1,V;) or L= ZKK].SM L(V;, V)

2 ®
)

Algorithmic Intelligence Lab Core-view Ful |—gra ph * source : [Tian et al., 2019] 45




SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* |dea: Use multiple views of the same instance as positive samples

* Using more views is effective

* NYU-Depth-V2 dataset have 4 views: (1) luminance (L), (2) chrominance (ab),
(3) depth, (4) surface normal

* Task: semantic segmentation

6T T P Core-view vs Full-graph
34<'_//‘ 5 561 / Pixel Accuracy (%) mloU (%)

o] e 2541 —— CMC Random 45.5 21.4

> 28 ' Supervised ha :+ Supervised CMC (core-view) 57.1 34.1

= 26 3 jz CMC (full-graph) 57.0 34.4
241 = Supervised 57.8 35.9
2 A6 i iiiinniaaa

1 2 3 a4 1 2 3 4

Number of views

Algorithmic Intelligence Lab * source : [Tian et al,, 2019] 46



SSL via Invariance — Different Modality

e VATT [Akbari et al., 2021]
e VATT matches video, audio, and description text via contrastive learning

e Similar to CLIP, but uses Transformer encoder to apply on various data modalities

VATT

Extra Learnable
[AGG] Embedding

4,[ Multimodal Projection Head ]

Transformer Encoder
Modality-Specific OR Modality-Agnostic

00000000

Modality-Specific Patch + Position Embedding

Linear Projection
(3D RGB voxels)

(1D waveform)

] [ Linear Projection ] [ Linear Projection ]

(1-hot word vectors)

Input Video

Algorithmic Intelligence Lab

v

Input Audio Waveform

“Sled dogs running on the
snow pulling the sled.”

Input Text

Transformer Encoder

Embedding

Multimodal
Projection Head

video audio
feature feature

O £ [ B E O | £ [ [ ) [

Wl
v

O T le——{TTT]

MIL-NCE
loss
EEEEEE

text
feature
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SSL via Invariance — Different Modality

e VATT [Akbari et al., 2021]
* VATT matches video, audio, and description text via contrastive learning
e Similar to CLIP, but uses Transformer encoder to apply on various data modalities

* VATT is effective on various downstream tasks, e.g., video classification, audio
classification, image classification, and text-to-video retrieval

Kinetics-400 Kinetics-600 Moments in Time
METHOD Top-1 Top-5 Topr-1 Topr-5 Topr-1 Topr-5 TFLOPs
13D [13] 71.1 89.3 71.9 90.1 29.5 56.1 -
R(2+1)D [26] 72.0 90.0 - - - - 17.5
bLVNet [27] 73.5 91.2 - - 314 59.3 0.84
S3D-G [96] 74.7 93.4 - - - - -
Oct-I3D+NL [20] 75.7 - 76.0 - - - 0.84
D3D [83] 759 - 77.9 - - - -
I3D+NL [93] 71.7 93.3 - - - - 10.8
ip-CSN-152 [87] 77.8 92.8 - - - - 33
AttentionNAS [92] - - 79.8 94.4 32.5 60.3 1.0
AssembleNet-101 [77] - - - - 34.3 62.7 -
MoViNet-AS [47] 78.2 - 82.7 - 39.1 - 0.29
LGD-3D-101 [69] 79.4 94.4 81.5 95.6 - - -
SlowFast-R101-NL [30] 79.8 93.9 81.8 95.1 - - 7.0
X3D-XL [29] 79.1 93.9 81.9 95.5 - - 1.5
X3D-XXL [29] 80.4 94.6 - - - - 5.8
TimeSFormer-L [9] 80.7 94.7 82.2 95.6 - - 7.14
VATT-Base 79.6 94.9 80.5 95.5 38.7 67.5 9.09
VATT-Medium 81.1 95.6 82.4 96.1 39.5 68.2 15.02
VATT-Large 82.1 95.5 83.6 96.6 41.1 67.7 29.80
VATT-MA-Medium 79.9 94.9 80.8 95.5 37.8 65.9 15.02
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SSL via Invariance — Sequential Structure

e Choices for Positive Samples

» Utilize sequential structure
* (a) Predict future state from past states (positive = true future)
* (b) Use states from same sequence as positives (positive = same sequence)

(a) Is also related to SSL via generation (sequential prediction)

Algorithmic Intelligence Lab
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SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* |dea: Predicting future information with discarding low-level information

* T¢:dataattimet
* 2t = genc(Tt): high-level latent representation of
e Ct = Gar(®1, T2, ..., %) : context latent representation summarizing all 2<t¢

Ct Predictions
i
‘—;—;— (m)—(o)—(=) ™ NN
A \ \
+ + + + Zt41 Zt+42 2r.+3 Zt+4
/ genc \ / genc \ / genc \ / genc \ / genc \ / genc \ / genc \ / genc \
Tt-3 Tt4+1 Tt42 Tt+3 Tt+4

W\WM WW [ wﬁ\A\W\.\.,,. - Wmm ——— Wﬂ -
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SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* |dea: Predicting future information with discarding low-level information

e Tt:dataattimet

* 2t = genc(Tt): high-level latent representation of

o ¢t = Gar(T1,To,...

64 px

Algorithmic Intelligence Lab

50% overlap

YGenc - OutPUt

-

Rt+2| (e
Rt+3| (et
Zt+4| e

4

input image

.

,Tt) : context latent representation summarizing all 2<t¢

gay - output

R

A
- ’//
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SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* |dea: Predicting future information with discarding low-level information

* How to maximize mutual information between ¢+« and ¢:?
« Randomly choose one positive sample Zt+k and N-1 negative samples {x}
* Minimize the following NCE-based loss:

fk($t+k,ct)
5T, fila, ct>]

EN = —EX [10

where f,.(x, ¢) = exp(z' Wie)

o I(x4yr,ct) >1og(N) — Ly and it becomes tighter as N becomes larger

Algorithmic Intelligence Lab * source : [Oord et al., 2018] 52



SSL via Invariance — Sequential Structure

* VINCE [Gordon et al., 2019]
e Data augmentations cannot tell the novel views and motions of the objects
* Instead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

Standard Contrastive Loss Video Noise Contrastive Estimation

I il S
! - A
: ~ 7-2“‘-; ]
- : II : N r o)
§ Image Augmentations I N - ;,‘:
; colon Crop. T ' E . Temporal Changes
| Deformation, New Views, Related Objects v
I
j
I
I
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SSL via Invariance — Sequential Structure

* VINCE [Gordon et al., 2019]

e Data augmentations cannot tell the novel views and motions of the objects
* Instead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

* Since video has multiple frames, VINCE attracts all positives (not pair-wise)
* Use 4 positive frames per video for experiments

Multi-Frame NCE Multi-Frame Multi-Pair NCE
Multi Frame Positives Current Positives MoCo MemBank

5 o T O
FEsE (e -

4 o
i 1% Y (N [N, | NN

Anchors

from same vide

T ERGEY
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SSL via Invariance — Sequential Structure

* VINCE [Gordon et al., 2019]
e Data augmentations cannot tell the novel views and motions of the objects
* |nstead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

* Using temporal information provides better positive views

e Same frame: Use same frame images but positives are given by the same
frame of different image augmentations

* Multi-frame (not multi-pair): Use 2 frames from the same video

Test Task
Images Per Video ImageNet SUN Scene Kinetics 400 OTB 2015 Precision OTB 2015 Success
1: Same Frame 0.358 0.450 0.318 0.555 0.403
2: Multi-Frame 0.381 0.478 0.361 0.622 0.464
8: Multi-Frame Multi-Pair 0.400 0.495 0.362 0.629 0.465

Algorithmic Intelligence Lab
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SSL via Invariance — Sequential Structure

* FlowE [Xiong et al., 2021]
* VINCE assumed frames from the same video are invariant
* However, we need to consider their temporal changes

* To this end, FlowE relaxes the assumption that the frames are equivariant
* Letl, =T (I;) where T is a transformation between two frames I, I,

* Specifically, " is a composition of data augmentations A, A, of each
frame I, I,, respectively, and M} _,, is an optical flow

e Then the spatial features z,, z, should satisfy the equivariance z, = 7(z;)

U1 h, Z1 P1
W Alﬁb‘ fo_, g, 9% _,
Z I 4 ; \

TZAl_] oMi4p0A, L= ”f)l - f)2||§

fe 9 |/

V2 hy Zo P2

- A
1—52
| A

-
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SSL via Invariance — Sequential Structure

* FlowE [Xiong et al., 2021]
* VINCE assumed frames from the same video are invariant
* However, we need to consider their temporal changes

* To this end, FlowE relaxes the assumption that the frames are equivariant
* Letl, =T (I;) where T is a transformation between two frames I, I,

* Specifically, " is a composition of data augmentations A, A, of each
frame I, I,, respectively, and M} _,, is an optical flow

e Then the spatial features z,, z, should satisfy the equivariance z, = 7(z;)

* Considering optical flow gives better positive than naive invariance-based (VINCE)

Method UrbanCity BDD100K

mloU mAP mloU" mAP' | mloU mAP mloU' mAPf
Rand Init 9.4 0.0 27.3 6.4 9.8 0.0 22.0 55
CRW [22] 190 0.0 31.6 152 | 194 1.7 34.7 22.9
VINCE [16] 306 0.9 47.4 17.8 | 232 0.1 39.5 23.8
FlowE (Ours) 49.6 5.8 61.7 190 | 376 58 49.8 24.9
End-to-end supervised | 63.3 2.2 67.0 16.5 52.0 8.0 56.6 20.0

Algorithmic Intelligence Lab
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SSL via Invariance — Sequential Structure

* Context and Motion Decoupling [Huang et al., 2021]

* For video representation learning, many literature often explicitly decouples the
context and motion supervision in the pretext task

* Jointly optimize two self-supervision

* (Context Matching) Compare global features of key frames and video clips
under the contrastive learning — (b) different frames

(though using clip = multiple frames as positive)
* (Motion Prediction) Current visual data in a video are used to predict the
future motion information — (a) future state

@ Context features S Motion features

________________________________________________________________________________________________________________________________________

o ©.1 |

I-frame (Cy, Hyy W) Contrastive learning

r iy S—
i t=1 V-Network ’
,‘.‘_'_'_'_‘_'_'_‘_‘_'_‘_‘_‘_'. t=2 é I

i mt:'r, -

RGB video clip

i Context
| supervision
i

|
'
|
'
'
|
|

(Cy, Ty, Hy, W)
Transformer + MLP

M-Network MLP
t=T,+1 —_— _—
. t=T,+2
Motion -

(C, Tav HB’ W3) Pointwisg )
contrastive learning

i supervision t= i}rs ¥ (Cy Ty Hay W) (C, Ty Hy W,)

Motion vectors Motion prediction ,E
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SSL via Invariance

* Limitations of invariance-based approaches
1. Specialized for classification
* |nvariance-based method clusters similar data into a single point

* |t is effective for classifier (or linear probing), less effective for different tasks
(e.g., detection or segmentation for visual domain)

* “Dense” contrastive learning methods have thus been proposed

2. Nontrivial choice of positive samples
* Data augmentation for non-image domain is arguable
* Even arguable for non-natural images (e.g., medical or fine-grained)

3. Less scalable for large models and datasets
* Contrastive learning (empirically) less merits the scaling law

* Next: more scalable and domain-agnostic approaches
* Generation-based approaches
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Table of Contents

3. SSL via Generation
* Classic Approaches
* Masked Autoencoder (e.g., BERT, MAE)
* Sequential Prediction (e.g., GPT, World Model)
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SSL via Generation

* Overview of Generation-based Approaches

* There have been a long attempts to learn representation Z from data X

* To this end, many classic ML literature designed a probabilistic model p(X, Z)
* They are called as generative models with latent variables

* Ancient works (before AlexNet, 2012)
* Early works: probabilistic PCA and latent variable models (LVM)
* |In 200672009, the first deep learning revolution have arose
* Deep Boltzmann machines (DBM) and deep belief networks (DBN)
* They applied “unsupervised pretraining” to train deep networks

 Though RBM-based approaches was not empirically successful, they
inspired early modern generative models (e.g., VAE) a lot

» Also, autoencoder-based approaches (e.g., denoising autoencoder; DAE)
have been proposed — modernized to BigBiGAN, MAE, etc.

61



SSL via Generation

* Overview of Generation-based Approaches
* There have been a long attempts to learn representation Z from data X
 To this end, many classic ML literature designed a probabilistic model p(X, Z)
* They are called as generative models with latent variables

* Classic approaches (before contrastive learning, 2020)
* We introduce some notable classic methods
* Context encoder, a CNN version of masked autoencoder
* BigBiGAN, which were SOTA of then

* Recent methods can be categorized into 2 groups:
* BERT-like approach (or masked autoencoder)
* Predict original X from perturbed X (learn X = Z — X encoder)

* GPT-like approach (or sequential prediction)
e Predict future state X;, 1 from past states X;.; (learn X;.; — X; decoder)
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SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrec(x) = |M O (z = F((1 - M) 0 z))|l3

(723 [

' o o

2 8 =

~ . 2 | Channel-wise |3

(1 — M) Encoder) | & Fully & |[Decoder >£

- o Connected o L
3 g |
— | © |
= (7] |

w| e——— |0
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SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
e Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lree(x) = |M © (z — F(1- M) © )3
e With adversarial loss, reconstruction quality is improved further

Laae = max Evex |log D(x) +log(1 = D(F((1 — M) & z)

(a) Input context (b) Human artist (c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Algorithmic Intelligence Lab * source : [Pathak et al., 2016] 64



SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrce(z) = |[M © (z — F(1 - M) © x))ll3
* With adversarial loss, reconstruction quality is improved further

Laav = max Evex [log D(x) +log(1 = D(F((1 ~ M) @)

* How to construct the masks? A segmentation mask in other dataset

Algorithmic Intelligence Lab (a) Central region (b) Random block (c) Random region * source : [Pathak et al., 2016] 65



SSL via Generation — Classic Approaches

* BigBiGAN [Donahue et al., 2019]

* After the success of GAN for image generation, numerous work attempted to
extend the applicability of GAN for representation learning

 To this end, ALI/BiGAN (2017) learned a joint distribution p(X, Z) with GAN
* ALI/BiGAN performed well on low-resolution images

features data

aCa®)
)@

DR
T

Semi-supervised learning on CIFAR-10

A

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83 +2.01 19.61+2.09 18.63+232 17.72+1.82
ALI (ours, no feature matching) 1998 +0.89 19.09+044 17.99+1.62 17.05+1.49

Algorithmic Intelligence Lab
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SSL via Generation — Classic Approaches

* BigBiGAN [Donahue et al., 2019]

* After the success of GAN for image generation, numerous work attempted to
extend the applicability of GAN for representation learning

 To this end, ALI/BiGAN (2017) learned a joint distribution p(X, Z) with GAN

* Leveraging the power of BigGAN on high-resolution image generation,
BigBiGAN achieved SOTA representation learning performance

* It was the SOTA before the dominance of contrastive learning
e Cf. ContraD (2021) combined BigBiGAN and contrastive learning

Method Architecture Feature | Top-1 Top-5
BiGAN [7, 42] AlexNet Conv3 31.0 -
SS-GAN [4] ResNet-19 Block6 38.3 -
Motion Segmentation (MS) [30, 6] ResNet-101 AvePool 27.6 48.3
Exemplar (Ex) [&, 6] ResNet-101 AvePool 31.5 53.1
Relative Position (RP) [5, 6] ResNet-101 AvePool 36.2 59.2
Colorization (Col) [41, 6] ResNet-101 AvePool 39.6 62.5
Combination of MS+Ex+RP+Col [6] ResNet-101 AvePool - 69.3
CPC [39] ResNet-101 AvePool 48.7 73.6
Rotation [11, 24] RevNet-50 x4  AvePool 554 -
Efficient CPC [17] ResNet-170 AvePool 61.0 83.0
ResNet-50 AvePool 554 717.4
o ResNet-50 BN+CReLU | 56.6 78.6
BigBIGAN (ours) RevNet-50 x4  AvePool 608  81.4
RevNet-50 x4 BN+CReLU | 61.3 81.9
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SSL via Generation — Masked Autoencoder

* Overview of Generation-based Approaches

e BERT-like approach (or masked autoencoder)
* Predict original X from perturbed X (learn X = Z = X encoder)

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder

 BERT [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore
* |nstead, masked language modeling is used for pre-training
* Replace some fraction of words (15%) in the input, then predict these words

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax ]

BERT

Randomly mask coe

15% of tokens
[CLS] [MASK]

Input

[CLS]

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-bert 45



SSL via Generation — Masked Autoencoder

e BERT [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore

* |nstead, masked language modeling is used for pre-training
* Additionally, next sentence prediction (NSP) task is used for pre-training
* Decide whether two input sentences are consecutive or not

Predict likelihood

1% | IsNext
that sentence B
belongs after

99% NotNext
sentence A

[ FFNN + Softmax ]
o 00
BERT

Tokenized vy
Input [CLS] [MASK]
Input [CLS) [MASK] [MASK]

Sentence A Sentence B
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SSL via Generation — Masked Autoencoder

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

e Similar to BERT in NLP, BEiT randomly masks image patches and trains to
recover the visual tokens of masked patches (instead of the raw pixels)

* Visual token: a discretized vocabulary for the image patch

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Visual Tokens i Unused During Reconstructed ‘
i Pre-Training Image
[ 123 234 456 567 g——— [
=, | @ | et
p e . 4 987 876 765 543 E | e, 4
Original s — - ---»! | Decoder | ---» o
Image . /112 223 334 445 b | |
‘ | | . | |
NS I/ 21 a2 4.13 544 | g s
b ;l 234 i;ss 876; 765 T *322
= Pl ;‘ I I ' ] I
Image .' s | Masked Image Modeling Head I

Patches R | |
NS b} |/ n} n || hi,

snockwisel BEIT Encoder

Masking
=

- [o]lri(=]lz](e] jWI—jITHW 1] [12] sa] (8] [s5] (s8] erpasdng

—
- Patch

1
— FI
e =2 (s ". M M M | ™) ‘-’ B Embedding

* BEIT training procedure is consist of two stages:
1. Learning visual tokens
2. Masked image modeling
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SSL via Generation — Masked Autoencoder

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction
* BEIT training procedure is consist of two stages:
1. Learning visual tokens

______________________________________________

______________________________________________

Visual Tokens i Unused During Reconstructed
Pre-Training Image
i | i
%,.:,._Q 123 234 456 567 - : %"-’.‘
s e e 4 987 876 765 543 ¥ | ey . 4
Original - P — —_— | S : ---» ! Decoder | ---» 5P
Image /112 223334 445 P |
< : -. L B :
"l-““: 21 32_?_5133 544 ; e | e
i /

!

* In this stage, a discrete variational autoencoder (dVAE) is trained to represent each
224 x 224 image into a 14 x 14 grid of discrete image tokens, each element of whic
h can assume 8192 possible values

* The tokenizer q4(z|x) maps image image pixels into a visual codebook
* The decoder py,(x|z) learns to reconstruct the input image
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SSL via Generation — Masked Autoencoder

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

B 234 ¢456 876" . 322
——- L1 || 1
Image - | Masked Image Modeling Head |
Patches ’ 1
EEN bt )t @
Blockwise
Aockues| BEIT Encoder
-~
Tjﬁf WW WWWTEW 14 ﬁ 18] Embadding
- J_“‘; Flatten ’—\b M oM [Ml 1 = [M] 3 Patch

ar 1§ ¥ o Embedding

* The standard ViT is used as the backbone network

* Some image patches are randomly masked (approx. 40%), and then the visual
tokens that corresponds to the masked patches are predicted

* The objective is maximizing the log-likelihood of the correct visual tokens z;
given the corrupted image x™ with the masked positions M

max Z E s [Z lOgPMIM(Zi|$M)]

z€D ieM
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SSL via Generation — Masked Autoencoder

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

£ TE T
Image - | Masked Image Modeling Head |
Patches .2 | (_H
TENE bt |[n} nt, |
Blockwise
Aockues| BEIT Encoder
|
fjﬁf WW WWWTEW 14 ﬁ 18] Embadding
= D_“-\ Flatten ,—‘b- M M M [M] -~ 1 - [M] \’ Patch

r 10 Embedding

* During masked image modeling, block-wise masking strategy is used
* A block with the minimum number of patches to 16 is masked
* Repeat masking until obtaining enough masked patches (total 40% of patches)
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SSL via Generation — Masked Autoencoder

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Objective: MSE loss of masked patches

encoder -

>
Vi
=
v
i
.
R

* Key components:
* High masking ratio (75%):
* BERT masks 15% of tokens, MAE needs higher masking ratio
* Asymmetric encoder-decoder architecture:

* MAE allows to train very large transformer encoder by using the
lightweight decoder => it significantly reduces the pre-training time

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder

* MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder
dim ft lin

128 84.9 69.1
256 84.8 71.3

blocks ft lin

1 84.8 65.5
2 84.9 70.0

4 84.9 71.9 512 84.9 73.5

8 84.9 73.5 768 84.4 75.1

12 84.4 73.3 1024 843 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
prove linear probing accuracy. rower than the encoder (1024-d).

* The decoder depth is less influential for improving fine-tuning
* Only a single transformer block decoder can perform strongly with fine-tuning

* MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9%
FLOPs per token vs. ViT-L

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder

« MAE [He et al., 2022]

e Task: Predicting the pixel values for each masked patch

e Other intriguing properties of MAE

case ft lin FLOPs case ft lin
encoder w/ [M] 842 59.6 33X pixel (w/o norm) 84.9 735
encoder w/o [M] 849 735 1x pixel (W/ norm) 85.4 73.9
PCA 84.6 72.3
dVAE token 85.3 71.6

(c) Mask token. An encoder without mask to- (d) Reconstruction target. Pixels as recon-

kens is more accurate and faster (Table 2). struction targets are effective.

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder

case ft lin

none 84.0 65.7
crop, fixed size 84.7 73.1
crop, rand size 849 735
crop + color jit 84.3 71.9

* |tis more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation

* MAE behaves decently even if using no data augmentation

Algorithmic Intelligence Lab

(e) Data augmentation. Our MAE works with
minimal or no augmentation.
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SSL via Generation — Masked Autoencoder

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
e Other intriguing properties of MAE

case ratio ft lin

random 75 849 735
block 50 839 723
block 75 828 639
grid 75 84.0 66.0

(f) Mask sampling. Random sampling works _ s !
the best. See Figure 6 for visualizations. Pe—r “block 50%

(f) Random patch masking is better than block-wise and grid-wise sampling
* Block-wise sampling: Removes large random blocks
* Grid-wise sampling: Keeps one of every four patches

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* Modality-unified algorithm:

e 1) Build representations of the full input data with the teacher model
* The teacher is an exponentially decaying average of the student

* 2) Encode the masked version of the input sample with the student model and
predict the representations of original input

* Modality-specified data processing and masking strategies are used

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* The objective is predicting the representation for time-steps which are masked

* data2vec uses the standard transformer architecture
* Training targets are the output of the top K blocks of the teach network

. ai: the normalized output of block [ at time-step t

—~~

" 1
» Training target: y, = - r L _keial

e The objective is smooth-L1 loss between y; and the prediction f;(x) at t:

3@ — £@)/B v — fu(@) < B
Ly, fe(z)) = {(|yt @)~ 1) otherwise
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SSL via Generation — Masked Autoencoder

* data2vec [Baevski et al., 2022]

data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Modality-specified data processing and masking strategy

Image processing
* (Input embed) Embed images of 224 x 224 pixels as patches of 16 x 16 pixel
* (Masking) Apply BEIT masking strategy with 60% masking ratio

Speech processing

* (Input embed) Sample with 16kHz then forward seven temporal convolutions
e (Masking) Mask 49% of all time-steps

NLP processing
* (Input embed) The input data is tokenized using a byte-pair encoding (BPE)
* (Masking) Apply BERT masking strategy to 15% of uniformly selected tokens
* 80% are replaced by a learned mask token, [M]
* 10% are left unchanged
* 10% are replaced by randomly selected vocabulary token
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SSL via Generation — Masked Autoencoder

* data2vec [Baevski et al., 2022]

* data2vec shows a new state of the art or competitive performance to predominant
approaches on three domains

* Vision task: ImageNet classification

* Speech task: Word error rate (smaller is better) on the Librispeech dataset
* NLP task: GLEU benchmark

Table 1. Computer vision: top-1 validation accuracy on ImageNet-

1K with ViT-B and ViT-L models. data2vec ViT-B was trained

for 800 epochs and ViT-L for 1,600 epochs. We distinguish be-

tween individual models and setups composed of multiple models
(BEiT/PeCo train separate visual tokenizers and PeCo also distills
two MoCo-v3 models).

ViT-B  ViT-L
Multiple models
BEIT (Bao et al., 2021) 832 852
PeCo (Dong et al., 2022) 84.5 865
Single models
MoCo v3 (Chenet al., 2021b)  83.2  84.1
DINO (Caron et al., 2021) 82.8 -
MAE (He et al., 2021) 83.6 859
SimMIM (Xie et al., 2021) 83.8 -
iBOT (Zhou et al., 2021) 83.8 -
MaskFeat (Wei et al., 2021) 84.0 857
data2vec 842  86.6

Vision

Algorithmic Intelligence Lab

Table 2. Speech processing: word error rate on the Librispeech test-other test set when fine-tuning pre-trained models on the Libri-light
low-resource labeled data setups (Kahn et al., 2020) of 10 min, 1 hour, 10 hours, the clean 100h subset of Librispeech and the full 960h of
Librispeech. Models use the 960 hours of audio from Librispeech (LS-960) as unlabeled data. We indicate the language model used
during decoding (LM). Results for all dev/test sets and other LMs can be found in the supplementary material (Table 5).

Unlabeled IM Amount of labeled data
data 10m 1h 10h 100h 960h
wav2vec 2.0 (Baevski et al., 2020b)  LS-960  4-gram 156 113 95 80 6.1
HuBERT (Hsu et al., 2021) LS-960 4-gram 153 113 94 8.1 -
WavLM (Chen et al., 2021a) LS-960  4-gram - 108 92 17
data2vec LS-960 4-gram 123 91 81 68 55
Speech

Table 3. Natural language processing: GLUE results on the development set for single-task fine-tuning of individual models. For MNLI
we report accuracy on both the matched and unmatched dev sets, for MRPC and QQP, we report the unweighted average of accuracy and
F1, for STS-B the unweighted average of Pearson and Spearman correlation, for CoLA we report Matthews correlation and for all other
tasks we report accuracy. BERT Base results are from Wu et al. (2020) and our baseline is ROBERTa re-trained in a similar setup as BERT.
We also report results with wav2vec 2.0 style masking of spans of four BPE tokens with no unmasked tokens or random targets.

MNLI QNLI RTE MRPC QQP STS-B CoLA SST Avg

BERT (Devlin et al., 2019)  84.0/84.4  89.0 61.0 863 89.1 895 573 93.0 807
Baseline (Liu et al., 2019)  84.1/83.9 904 69.3 80.0 893 889 568 923 825

data2vec 83.2/83.0 909 67.0 902 89.1 872 622 918 827
+ wav2vec 2.0 masking 82.8/834 91.1 699 900 8.0 8.7 603 924 829
NLP
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SSL via Generation — Sequential Prediction

* Overview of Generation-based Approaches

* GPT-like approach (or sequential prediction)
e Predict future state X;,1 from past states X;.; (learn X;.; = X; decoder)

Algorithmic Intelligence Lab
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SSL via Generation — Sequential Prediction

 GPT [Radford et al., 2018]
arg max log p(x Z po(Tpn|T1, . Tpn_1)

* Pre-training by language modeling over 7000 unique books (unlabeled data)

* Contains long spans of contiguous text, for learning long-distance
dependencies
* Fine-tuning by training a classifier with target task-specific labeled data
* Classifier is added on the final transformer block’s last word’s hidden state
©/€? softmax(h,, Wy)

Linear vy,

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 42



SSL via Generation — Sequential Prediction

* iGPT [Chen et al., 2020]
* Task: Auto-regressively predict pixels, without incorporating 2D structure of image

’“ 2 (a) Autoregressive (b) BERT (a) Linear Probe
- ¥ Ml B
; : < (oooooom)<
o0 0 0000 o0 O 0000 Cat
——— T —
. .... . .. . ‘ (b) Finetune
T—e————— R
000000000
000000000 00000000 et
: g ‘ ¢ ©00000000
HE B HE B [ | L] ™
Target Target Cat  Dog

Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

e Similar to NLP domain, iGPT considers two pre-training objectives:
* Auto-regressive modeling (like GPT)
* BERT objective

* When fine-tuning, iGPT average pool all tokens in a sequence and use it as a
feature vector, then learn a projection layer
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SSL via Generation — Sequential Prediction

* iGPT [Chen et al., 2020]
* Task: Auto-regressively predict pixels, without incorporating 2D structure of image

g’ " 2 (a) Autoregressive (b) BERT (a) Linear Probe
’ ' < (oooooom)<
o0 0 0000 o0 00000 Cat
. .... . .... (b) Finetune
000000000)
00000 O 00000 O 000000000
: i : 4 ©00000000
HE B HE B ] [] ™
Target Target Cat  Dog

Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

* Input data format: 9-bit color palette
* iGPT down-samples an image into one of 32 x 32, 48 x 48, or 64 x 64 RGB data

* iGPT clusters all (R, G, B) values in training dataset using k-means with k=512,
which is 9-bit color palette

* |t further reduces input sequence length 3 times
* |t also discretizes the input data and output target
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SSL via Generation — Sequential Prediction

* iGPT [Chen et al., 2020]
* Task: Auto-regressively predict pixels, without incorporating 2D structure of image

* iGPT is not only successful for (conditional) image generation, but also show
notable representation learning performance (Comparable with SimCLR)

Model Input Completions - Original
Model Acc  Unsup Transfer  Sup Transfer
CIFAR-10
ResNet-152 94 Vv
SimCLR 95.3 Vv
iGPT-L 96.3 Vv
CIFAR-100
ResNet-152  78.0 Vv
SimCLR 80.2 Vv
iGPT-L 82.8 Vi
STL-10
AMDIM-L 942 Vv
iGPT-L 95.5 Vv
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SSL via Generation — Sequential Prediction

 World Model

* Autoregressive modeling can be also applied for more complex domains such as
video or action-conditioned videos (called “transition model”)

* Recurrent world model [Ha & Schmidhuber, 2018]:
* Encoder and decoder that converts data X; to representation Z;
* Transition model that predicts action-conditioned future Z; ., = f(Z;, 4;)

* Objective: Given trajectory {X;.;, A1.+}, the model (a) encodes them to Z; .,
(b) predict Z;, 1 with transition model, and (c) decode X;,1

— y
« The learned model can be ‘ environment | action |
utilized for visual planning

(for both training and inference) v

VAE (V)

V4 \
Y
<

z
observation 1
( C
world model MDN-RNN (M) J
h

y

Y

- J/

‘L action
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SSL via Generation — Sequential Prediction

* World Model
* Recall that it is similar to the CPC objective in the SSL via Invariance section
* Generation: Predict the target X;,; directly
* Contrastive: Find the positive X;,; from negative samples X/,
* One can interchange them arbitrarily = Q. Which one is better?

Algorithmic Intelligence Lab
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SSL via Generation — Sequential Prediction

* World Model
* Recall that it is similar to the CPC objective in the SSL via Invariance section
* Generation: Predict the target X;,; directly
* Contrastive: Find the positive X;,, from negative samples X/,
* One can interchange them arbitrarily = Q. Which one is better?

e Contrastive structured world model (C-SWM) [Kipf et al., 2020]:
* Generation objective distracts the model by focusing on low-level styles
e Contrastive objective more focus on high-level semantics

* Learning a proper invariance is also essential for planning!
* Contrastive learning (Z projects low-level styles from X) can be beneficial

You are here v Target You are here v Target

1
LI

Algorithmic Intelligence Lab *reference: https://jacobbuckman.com/2019-10-25-three-paradigms-of-reinforcement-learning/ 42




Interim Summary

* We discussed 2 types of self-supervised learning
1. Invariance: Maximize Ml of representations of positive samples
2. Generation: Maximize Ml of representation and (perturbed) data

* Generation-based approach is currently the most promising direction
* BERT/MAE for encoder, and GPT for encoder-decoder models
* Large-scale & multimodal foundation models are being stronger!
* invariance-based method is still effective at learning semantic tasks
* Leverage the additional prior knowledge of positive samples
* Thus, one may need to choose an appropriate backbone for the task

e Self-supervised learning have shown its effectiveness on various domains
* Image, video, language, audio, graph, tabular, etc.
* Recent works discover that visual SSL is also effective for the planning tasks

* Now, we’ll focus on recent trends on multimodal SSL methods
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4. Multimodal Representation Learning
* Image-text alignment using Contrastive Language-lmage Pretraining (CLIP)
e Fused transformer for Vision-Language understanding
* Learning from frozen Large Language Models (LLMs)
* Unifying Vision-Language model pretraining

Algorithmic Intelligence Lab
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Multimodal SSL: Overview

* There have been a long attempts to learn vision-language (VL) models
» Different objective, different methods have been studied

* We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation
* Enables zero-shot classification & high robustness
2. Fused transformer for vision-language understanding
* Better vision-language understanding tasks, e.g., Visual Question Answering
3. Learning visual representation from frozen Large Language Models (LLMs)
* Leveraging the power of LLMs for visual in-context learning
4. Unifying Vision-Language pretraining
* Learning Vision-Language model from scratch for all tasks
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Multimodal SSL: Overview

* There have been a long attempts to learn vision-language (VL) models
» Different objective, different methods have been studied

* We discuss four approaches in achieving various VL representations
1. Image-text alignment using CLIP for transferrable visual representation
* Enables zero-shot classification & high robustness
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]
* Simple contrastive learning between image and text embeddings

* Trained on large-scale web image-text pairs
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer
* Transfer learning without seeing the images or labels
* Prompt Engineering: “"A photo of a [MASK]”

* Choose class that maximizes similarity with respect to image

(1) Contrastive pre-training

\?‘

Pepper the
aussie pup

’ﬁ
D

(2) Create dataset classifier from label text

plane

car

dog

ﬁ
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer

* Transfer learning without seeing the images or labels
* Prompt Engineering: “"A photo of a [MASK]”

* Choose class that maximizes similarity with respect to image

Food101
correct label: guacamole

correct rank: 1/101  correct probability: 90.15%

photo of ceviche, a type of food.

photo of edamame, a type of food.

a photo of hummus, a type of food.

la photo of tuna tartare, a type of food.

0 20 40 60 80

PatchCamelyon (PCam)
correct label: healthy lymph node tissue

correct rank: 2/2  correct probability: 22.81%

100

tissue

oto of healthy lymph node tissue
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100

SUN397

correct label: television studio

correct rank: 1/397  correct probability: 90.22%

Youtube-BB
correct label(s): airplane,person

correct rank: 1/23  correct probability: 88.98%

photo of a podium indoor.

photo of a conference room.

photo of a lecture room.

a photo of a control room.

b photo of a bird.

h photo of a bear.

b photo of a giraffe.

a photo of a car.

0 20 40 60

ImageNet-A (Adversarial)
correct label: lynx

80

correct rank: 5/200  correct probability: 4.18%

100

hoto of a skunk.

photo of a lynx.

e
Camera Name 30.011nt 37F @

0 20 40 60

80

100

0 20 40 60 80

CIFAR-10
correct label: bird

correct rank: 1/10  correct probability: 40.86%

100

to of a deer.

hoto of a frog.

hoto of a dog.

0 20 40 60 80

100



CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

* A zero-shot CLIP classifier shows a competitive performance with a fully
supervised linear classifier fitted on ResNet-50 features

* Linear-probing with CLIP image features outperform the best ImageNet model

StanfordCars +28.9 SST2 +23.6

Country211 +23.2 Country211 +22.7
Food101 +22.5 HatefulMemes
Kinetics700 StanfordCars
SST2 GTSRB
SUN397 SUN397
UCF101 Kinetics700
HatefulMemes RESISC45
CIFAR10 . FER2013
CIFAR100 |3+3.0 Food101

STL10 |3+ 3.0 FGVCAircraft .
FER2013 |§f+2.8 UCF101 +3.1
Caltech101 j§+2.0 KITTI Distance
ImageNet i|+1.9 Birdsnap

+1.1 Flowers102 |+ 1.4
+0.5 Caltech101 jj+1.3
Birdsnap EuroSAT |i|+0.9
MNIST MNIST j§+0.6
FGVCAircraft DTD |§+0.5
RESISC45 VOC2007 ||+0.5
Flowers102 STL10[+0.0

DTD -0.5] OxfordPets

OxfordPets
PascalvVOC2007

CLEVRCounts -0.8 CIFAR10
GTSRB -1.2 8| PatchCamelyon
PatchCamelyon -1.788 CIFAR100
KITTI Distance -2.4 CLEVRCounts
EuroSIAT : : : : -31.0 Imaqe!\let : : : .
-40 -30 -20 -10 O 10 20 30 40 -10 -5 0 5 10 15 20 25
A Score (%) A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50 Logistic Regression on CLIP vs. EfficientNet L2 NS
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [llharco et al., 2021] show that CLIP have high effective robustness even
at small scale

ImageNet Zero-Shot
ResNet101  CLIP A Score

100

== |deal robust model (y = x) V4

951 @ Zero-Shot CLIP /K"’
® Standard ImageNet training -

901 Exisiting robustness techniques

85 A

80
75 PR

ImageNet & 76.2 76.2 0%

ImageNetV2 64.3 70.1 +5.8%

70 1 -7
65 17

60 -
55 1
50 1
45 4
40 A
354
30 1
25 A1
20

ImageNet-R 377 88.9 +51.2%

ObjectNet | 326 723 +39.7%

ImageNet

252 60.2 +35.0%
Sketch kS

Effective
Robustness

65 70 75 80 85 90 95 10
Average on class subsampled ImageNet (top-1, %)

Average on 7 natural distribution shift datasets (top-1, %)

» ImageNet-A VAl <o sﬂ‘ A 2.7 774 +74.4%
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [lIharco et al., 2021] show that CLIP have high effective robustness even
at small scale

* Few-shot CLIP classifier also shows high effective robustness, but less than zero-
shot CLIP classifier

35 1

= Ideal robust model (y = x)
® Few-Shot CLIP (best model)
® Zero-Shot CLIP (best model)
® Standard ImageNet training
® Robustness intervention
® Trained with more data

30 1

25 4

Average on 7 natural distribution shift datasets (top-1, %)

20

65 70 75 80 85 90 95
Average on class subsampled ImageNet (top-1, %)
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Scaling Up dataset size for improved CLIP

Follow-up studies showed scaling dataset size improves performance

* CLIP uses carefully filtered 400M image-text pairs from web

* ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP

* BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

i Ideal robustness (y=x)

01 ___ 7 logistic fit ' ' 7
< === Non-ZS logistic fit ool
‘_,- *  BASIC /,*
330' ALIGN/CLIP 1 Jrate
Nad) ® Non-ZS models ,/
n .
] e
-§ 701 [ [ ,’// o ¢ ./
(2] 7
o e ' 4 4}
&£ 1 3 /
& ,’/ 'Y N
< 60 i o P —
S /‘/ * . ‘///
.-3 ,/’ [} &
"E Rad ’
0 50 g @,
< - ,’“
T:E r”’ .’.
2 »°
a0 | . |
Lo @ ’
p °
o o °
a0 'Y _
g 30 b s o o
> @ [
< g o 9

o o ,/"’
20+—=—~ | | |
60 65 70 75 80 85 90

ImageNet (top-1, %)
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Open-source Implementation

However, those datasets and implementations are not publicly available
e OpenCLIP [llharco et al., 2021]: open-source implementation of CLIP

* LAION [Schuhmann et al., 2022]: publicly available 400M & 5B size of dataset that
shows competitive results of CLIP

ImageNet Zero-Shot Accuracy by Epoch

65.0 A
60 o
62.5 1
& 551 X 60.0 1
> >
® ®
— — 55.0 A
g 5
F 45 = 52.5 -
40 —l— Ours (LAION-400M) 50.0 A —— ViT-B/32 (LAION-2B)
~~- OpenAl (WIT-400M) ~~~ OpenAl (WIT-400M)
T T T T T T T 47'5 - T T T T T T T T
0 5 10 15 20 25 30 2 4 6 8 10 12 14 16

LAION-400M Epoch LAION-2B Epoch

Trained with OpenCLIP on LAION 400M & 2B datasets
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Open-source Implementation

However, those datasets and implementations are not publicly available
e OpenCLIP [llharco et al., 2021]: open-source implementation of CLIP

* LAION [Schuhmann et al., 2022]: publicly available 400M & 5B size of dataset that
shows competitive results of CLIP

* They used pre-trained CLIP features to filter the dataset

1. Feed in 2. Webpage 3. Download 4. Content 5. Store Data
Common Crawl Filtering Image-Text Pairs Filtering
=] >
{ ' iT

Data acquisition pipeline of LAION
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Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP

1.

vk wnN

Size of training dataset
Distribution of training data
Language supervision at training
Prompt-tuning as test-time
Contrastive learning objectives

* For systematic study, they considered two datasets
* ImageNet-Captions: Captions for ImageNet dataset to do CLIP
* YFCC-Classification: Labeled YFCC dataset to do original training

ImageNet-Captions

caption:
class: @ A Phone Call at Night
payphone Flickr API phone pay phone
telephone

YFCC-Classification
caption:

Muchenley church ; class:

= across the ruins of church
8 part of the Abbey. Label search
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Dataset Design and Distributional Robustness

 Size of training dataset do not affect effective robustness

e CLIP on YFCC shows similar effective robustness as original CLIP

e CLIP model is not robust than classification models on same dataset
e CLIP on ImageNet-Caption does not show high effective robustness

* |t follows the trend of other ImageNet models

* SimCLR on labeled YFCC shows similar effective robustness as YFCC CLIP

* YFCC CLIP follows the trend of original CLIP model
* Data distribution affects the effective robustness!

Average over 4 shifts (top-1, %)

w

w H» U1 O
(2O N O, B O |

N
S,

=
(9]
L

Robustness under distribution shift

10

200 30 40 50 60
ImageNet (top-1, %)

70

y=x
ImageNet Classification
Linear fit (ImageNet Classification)

CLIP zero-shot

Linear fit (CLIP zero-shot)
YFCC CLIP
ImageNet-Captions CLIP
YFCC SimCLR + Classification



Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP
L Cire of trainined

2. Distribution of training data

3 - ..
4. Prompt-tuning as test-time

5. Contrastive learning objectives
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Dataset Design and Distributional Robustness

* Prompt-tuning does not have correlation on effective robustness

* Prompt variation act as interpolation with a random classifier

* Various contrastive learning methods do not affect effective robustness
* SwAV [Caron et al., 2020], SimSiam [Chen et al., 2021], SimCLR v2 [Chen et al., 2021]

Average over 4 shifts (top-1, %)

=
o1

on ImageNet dataset follows the trend on ImageNet models

Effect of test time prompts

~
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ImageNet (top-1, %)
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Average over 4 shifts (top-1, %)

Effect of contrastive training losses
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ImageNet Classification

Linear fit (ImageNet Classification)
CLIP zero-shot

Linear fit (CLIP zero-shot)

Prompt variations
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SimSiam
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Dataset Design and Distributional Robustness

Motivation: What causes CLIP’s unprecedented robustness?

* [Fang et al., 2022] examined following sources of CLIP

L Cire of trainined

2. Distribution of training data

2 - "
- . .
c ¢ o loarning obioet

e Conclusion
* The effective robustness of CLIP is not from language supervision
* The choice of training data distribution matters in effective robustness

* But then, how to choose the training dataset?
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset

=
= = " oy
R 354 R Bl
2 - g 20
Q 254 a £
2 e =1l
~ b= o
Q
i 5 B
o)) o =2
© © ]
E £ 2
y =
5 . - . . ———— — = . ;
5 15 25 35 5 15 25 35 45 55 65 75 5 15 25 35
ImageNet (top-1, %) ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)
9 y=x Standard ImageNet models
n Linear fit (standard ImageNet models) m YFCC15m
~
a ~—— Linear fit (YFCC15m) % LAION15m
é’, Linear fit (LAION15m) ® RedCapsl2m
1] Linear fit (RedCaps12m) CC12m
% Linear fit (CC12m) WITSm
Q Linear fit (WIT5Sm) v ShutterStock15M
'8 = Linear fit (ShutterStock15M)
1l

5 15 25 35 45 55
ImageNet (class-subsampled) (top-1, %)
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset

* The robustness of a mixed dataset is not additive
» Effective robustness of mixed dataset interpolates between that of two datasets
* Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

w
i
L
|

; o
ust = Linear fit (YFCC15m)

Linear fit (LAION15m)
Linear fit (YFCC15m+LAION15m)
Linear fit (YFCC7.5m+LAION7.5m)
m YFCCl5m
% LAION15m
YFCC15m+LAION15m
YFCC7.5m+LAION7.5m

N
=
L

[y
[}
1

ImageNet-R (top-1, %)
ImageNet Sketch (top-1, %)

=

5 T T T T T T T T
25 35 45 55 65 75 20 30 40
ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)

=
o
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Dataset Design and Distributional Robustness

Motivation: Why don’t we simply gather all image-text pairs for training data?

* [Nguyen et al., 2022] claimed that simply merging dataset is not an option!
* Distributional robustness is determined by the training data distribution

* 6 image-text datasets by web-crawling: YFCC, LAION, Conceptual Captions (CC),
RedCaps, Shutterstock and WIT

* For each shift, the level of robustness vary by the choice of dataset
* The robustness of a mixed dataset is not additive

* |ImageNet accuracy increases by mixing dataset

* Robustness(YFCC) < Robustness(YFCC+LAION) < Robustness(LAION)

* However, this does not give us how to choose effective dataset for CLIP
* Their theoretical analysis show that filtering with pretrained model is beneficial
* E.g., LAION filters image-text pairs by using pre-trained CLIP
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Multimodal SSL: Overview

* There have been a long attempts to learn vision-language (VL) models
» Different objective, different methods have been studied

* We discuss four approaches in achieving various VL representations

2. Fused transformer for vision-language understanding
* Better vision-language understanding tasks, e.g., Visual Question Answering

Algorithmic Intelligence Lab 112



Vision-Language Understanding Benchmarks

» So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet
classification

e Concurrently, many Vision-Language Pretrained (VLP) models are studied to do
better on vision-language understanding tasks, e.g.,

* Visual Question Answering (VQA) [Goyal et al., 2017]

Is the TV on? How many pets are present?

What sign is this? Is the computer a laptop or a desktop?

handicap one way desktop laptop
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Vision-Language Pretraining Models

» So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet
classification

e Concurrently, many Vision-Language Pretrained (VLP) models are studied to do
better on vision-language understanding tasks, e.g.,

* Visual Question Answering (VQA) [Goyal et al., 2017]
* Natural Language Visual Reasoning (NLVR) [Suhr et al., 2018]

There are two towers with the same height but their base

is not the same in color.

\

A A
®

There is a box with 2 triangles of same color nearly

touching each other.
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Vision-Language Pretraining Models

» So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet
classification

e Concurrently, many Vision-Language Pretrained (VLP) models are studied to do
better on vision-language understanding tasks, e.g.,

* Visual Question Answering (VQA) [Goyal et al., 2017]
* Natural Language Visual Reasoning (NLVR) [Suhr et al., 2018]
* Visual-Entailment (SNLI-VE) [Xie et al., 2019]

e The man wearing the black e Entailment
shirt plays a game of golf.

e A man plays on a golf course

to relax. e Neutral
+ —
e The man in the black shirt
trades Pokemon cards with e Contradiction
his girlfriend.
Premise Hypothesis Answer

Algorithmic Intelligence Lab



Vision-Language Pretraining Models

» So far, we’ve considered the performance on vision-only tasks, e.g., ImageNet
classification

e Concurrently, many Vision-Language Pretrained (VLP) models are studied to do
better on vision-language understanding tasks, e.g.,

* Visual Question Answering (VQA) [Goyal et al., 2017]

* Natural Language Visual Reasoning (NLVR) [Suhr et al., 2017]
* Visual-Entailment (SNLI-VE) [Xie et al., 2019]

* Here, we follow the history of the VLP models by following:
* Development of visual encoder architectures
* Object detector -> CNN -> Vision Transformer (ViT)
* Multimodality fusion mechanism
e Co-attention and Merged-Attention
* Pre-training objectives
* |Image-Text Matching, Masked Language Modeling, Masked Image Modeling



Earlier works on Vision-Language Pretraining Models

Earlier works focused on fusing visual and text features using attention

* Co-attention: transformer fuse vision and language encoder outputs independently
* VILBERT [Lu et al., 2019], LXMERT [Tan & Bansal, 2019]

 Merged attention: fuse image patches and text features into unified transformer

* VisualBERT [Li et al., 2020], VL-BERT [Su et al., 2019], UNITER [Chen et al., 2020]

* OSCAR [Li et al., 2020] uses object tags as inputs additionally
* VinVL uses 3-way contrastive loss for VQA and image-text matching

* Pretrained (and frozen) object detectors (e.g., Faster R-CNN) are used for visual features

[\

~

Feedforward

Cross-Attn

N

g )

Feedforward

Cross-Attn
01 K,T v,

g 1) L

< Self-Attn
QL )
‘ Visual Feature>

( Self-Attn
\_ LS -/

‘ Text Feature ’

(a) Co-attention model.
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Earlier works on Vision-Language Pretraining Models

End-to-end pretraining with CNN visual encoder

* PixelBERT [Huang et al., 2020] uses CNN based visual encoder and sentence encoder, and
fed to transformer via cross-modality alignment

* SimVLM [Wang et al., 2021] uses CNN and text token embedding along with encoder-
decoder architecture

« MDETR [Kamath et al., 2021] uses CNN and RoBERTa for image and text feature extraction,
and pass to transformer with Image-Text-Box annotated data

running happily on a dirt road </s>

N Y Y Y N

Transformer Encoder - Transformer Decoder
rtTrtrtrrTrrTrTT O TTTTT T T T T T T T
E] E] <s>  running happily on a dirt road
+ + + + + + + + + + + + +
FoE) 6 60 ) B @ 6 () 62 () () (9
T 177 T T 1T 17 71 ’|T T 7T

Conv Stage Token Embedding
T T
| TR . Two | |brown| |and| |white| |dogs
n‘bﬂiﬁ positional embedding
:L .»’ \ patch/text embedding

SimVLM architecture
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VIiLT: Vision-Language Transformer

Incorporating Vision Transformers (ViT) [Dosovitskiy et al., 2021] for VLP models

 Vision-Language Transformer (ViLT) [Kim et al., 2021]
* Minimal VLP models for efficiency and expressive power

Modality
Interaction

~900 ms

I

~15 ms

(BERT-base-like)

Visual Embedding Schema
Region Feature Image Region | .
(VILBERT, UNITER, ...) | g Backbone Operations ) |
Grid Feature Image CNN '
(Pixel-BERT) g k Backbone | :
Patch Projection I [ Linear ||
(Ours) Tage *| Embedding | |
R Linear
Text ™| Embedding >
Running Time
(Performances : NLVR2 test-P Acc. / F30K TR R@1 / F30K IR R@1)
UNITER-Base ~75 ms ~810 ms
(75.8 / 85.9/72.5) (R101) (RPN, Rol Align, NMS, and Rol Heads)
Pixel- BERT-R50 | sms
(72.4/75.7/53.4) ()
ViLT-B/32 (Ours) 15 ms
(76.1/83.5/64.4) odms
— (Linear lémbedding)
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VIiLT: Vision-Language Transformer

Incorporating Vision Transformers (ViT) [Dosovitskiy et al., 2021] for VLP models

 Vision-Language Transformer (ViLT) [Kim et al., 2021]
* Minimal VLP models for efficiency and expressive power
* Image patches and Text tokens are fed into unified transformer encoder
* Pretraining objectives
* Image Text Matching (ITM)
* Masked Language Modeling (MLM)
* Word-Patch Alignment (WPA): use optimal transport to align words & patches

Image Text Matching Masked Language Modeling Word Patch Alignment
..... p PR
Pooler H FC . True MLP . Qfﬁce 1 27, 2,
----- 1 -- o
| D ; ZDI

@@ Extra learnable [class] embedding

Modal-type embedding

O Token position embedding
90 88 08 l" 28/006]008]008]008
Patch position embedding

Word Embedding Llnear Projection of Flattened Patches

e o
| T | > ‘ ﬂﬁ ﬁ %i.&i
a stone statue near an [MASK] @ Prad ﬁ 5 s
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Align Before Fuse: VLP model with Momentum Distillation

Motivation: Image features and word tokens may not be aligned
Align Before Fuse (ALBEF) [Li et al., 2021]

e Use additional multimodal encoder to fuse information
* Image-Text Contrastive Loss (i.e., CLIP) to align unimodal representation before fusion
* |TM and MLM loss to learn multimodal interactions between image and text

------- >[ ITM ][ MLM ] \\‘: 7 emLCeLdS<]jing

|
I |
har.d ! multimodal ! [y momentum
negatives Feed forward encoder update
|
! R . momentum
| ] A distillation
! Self Attention T
i ‘ : N i
| image (LT () @ N :
' encoder : i Momentum
7 - 17 encoder | : Model
Feed forward negatives Feed forward i i
Self Attention Image-Text Self Attention . :
T Contrastive Loss T— '
image input text input
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Align Before Fuse: VLP model with Momentum Distillation

Motivation: Image features and word tokens may not be aligned
Align Before Fuse (ALBEF) [Li et al., 2021]

e Use additional multimodal encoder to fuse information
* Image-Text Contrastive Loss (i.e., CLIP) to align unimodal representation before fusion
* |TM and MLM loss to learn multimodal interactions between image and text

* Momentum Distillation to deal with noisy image-text pair
* Application to VQA and NLVR tasks:

E) cross-attention input

( ( N\
Image Multimodal
share all parameters i MLP
‘ P . image #2=  gncoder }E:> Block
$ share cross-attention layer h - 4
L % |
Image Multimodal Answer ) Image Multimodal )
[ Encoder }:{ Encoder }:{ Decoder} image #1=  gncoder = Block Multimodal
. } " \—f—%} Encoder
image [CLS] ( |
Text Encoder Text Encoder
1 (. 1 J
guestion text
(a) VQA (b) NLVR?
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Align Before Fuse: VLP model with Momentum Distillation

* ALBEF achieved SOTA in various VL tasks (VQA, NLVR, SNLI-VE)

Algorithmic Intelligence Lab

VQA NLVR? SNLI-VE
Method test-dev  test-std dev test-P val test
VisualBERT [13] 70.80 71.00 67.40 67.00 - -
VL-BERT [10] 71.16 - - - - -
LXMERT [1] 72.42 72.54 74.90 74.50 - -
12-in-1 [12] 73.15 - - 78.87 - 76.95
UNITER [2] 72.70 7291 77.18 T77.85 78.59 78.28
VL-BART/TS5 [54] - 71.3 - 73.6 - -
VILT [21] 70.94 - 7524 76.21 - -
OSCAR [3] 73.16 73.44 78.07 78.36 - -
VILLA [8] 73.59 73.67 78.39 79.30 79.47 79.03
ALBEF (4M) 74.54 74.70 80.24 80.50 80.14 80.30
ALBEF (14M) 75.84 76.04 82.55 83.14 80.80 80.91

Vision-Language Understanding Tasks



Align Before Fuse: VLP model with Momentum Distillation

* ALBEF achieved SOTA in various VL tasks (VQA, NLVR, SNLI-VE)

* Also, it outperforms other methods in image-text retrieval

In both zero-shot and fine-tuned cases

# Pre-train Flickr30K (1K test set) MSCOCO (5K test set)
Method  * paoes TR IR TR IR
R@]l] R@5 R@10 R@1 R@5 R@10|R@]1 R@5 R@10 R@l R®@5 R@I0
UNITER IM 873 98.0 992 756 941 96.8 | 657 886 938 529 799 88.0
VILLA 4M 87.9 975 988 763 942 96.8 - - - - - -
OSCAR 4M ; - ] ] ; - 1700 91.1 955 540 808 88.5
ALIGN 1.2B 953 998 100.0 849 974 986 | 77.0 935 969 599 833 89.8
ALBEF 4M 943 994 99.8 828 96.7 984 | 73.1 914 96.0 568 81.5 892
ALBEF 14M 959 998 100.0 856 975 989 | 776 943 972 60.7 843 90.5
Fine-tuned
# Pre-train Flickr30K (1K test set)
Method Images TR IR
R@l R@5 R@10 R@1 R@5 R@10
UNITER [2] 4M 83.6 957 97.7 68.7 89.2 93.9
CLIP [6] 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN [7] 1.2B 88.6  98.7 99.7 7577  93.8 96.8
ALBEF 4M 90.5 98.8 99.7 76.8  93.7 96.7
ALBEF 14M 941 995 99.7 828 963 98.1
Zero-shot
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BLIP: Bootstrapping Language-Image Pretraining

Motivation: Image-Text pairs from web are noisy

Bootstrapping Language-Image Pretraining (BLIP) [Li et al., 2022]

* Key idea: learn Captioner and Filter to bootstrap dataset
* Captioner: generate synthetic caption
* Filter: filter out noisy image-text pairs

“blue sky bakery in
sunset park ”

“chocolate cake
with cream frosting
and chocolate
sprinkles on top”
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BLIP: Bootstrapping Language-Image Pretraining

Motivation: Image-Text pairs from web are noisy

Bootstrapping Language-Image Pretraining (BLIP) [Li et al., 2022]

* Multimodal mixture of Encoder-Decoder (MED)
* Contrastive loss for unimodal encoder outputs
* Image-grounded Text Encoder & Decoder
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BLIP: Bootstrapping Language-Image Pretraining

Motivation: Image-Text pairs from web are noisy

Bootstrapping Language-Image Pretraining (BLIP) [Li et al., 2022]
* Multimodal mixture of Encoder-Decoder (MED)

* CapFilt: Bootstrapping noisy web data through Captioner and Filter
* Captioner (using Image-grounded Decoder): generate synthetic captions
* Filter (using Image-grounded Encoder): remove noisy captions

Model Pretraining Dataset Bootstrapping
- - ' """"""""'""""'"""""""""""'7|:'|>T del
: Filter Filtering I © mode
1
—» D = {(,,, T,)} + {Up, Tr)} (Image-grounded || - > {Uw, T} +{Uy,. TS} I |:> To data
Text Encoder) !

I,: web images
I,: human-annotated
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1
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1
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1
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BLIP: Bootstrapping Language-Image Pretraining

» Effect of bootstrapping with CapFilt
* Using both Captioner and Filter consistently improves image-text retrieval

Pre-train Bootstrap | Vision Retrieval-FT (COCO) | Retrieval-ZS (Flickr) | Caption-FT (COCO) | Caption-ZS (NoCaps)
dataset C F backbone | TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE
X X 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
S(?CC-%%\GG X VB VIT-B/16 79.1 61.5 94.1 82.8 38.1 128.2 102.7 14.0
(14M imgs) VB X 79.7 62.0 94.4 83.6 38.4 128.9 103.4 14.2
g VB VB 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4
X X 79.6 62.0 94.3 83.6 38.8 130.1 105.4 14.2
oo ® |5 /5 | VITBIG | 819 643 96.0 85.0 394 1314 | 1063 14.3
+LAION Vi VL 81.2 64.1 96.0 85.5 39.7 133.3 109.6 14.7
(129M imgs) | X X VIiT-L/16 80.6 64.1 95.1 85.5 40.3 135.5 112.5 14.7
i V1 82.4 65.1 96.7 86.7 40.4 136.7 113.2 14.8
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BLIP: Bootstrapping Language-Image Pretraining

» Effect of bootstrapping with CapFilt

e BLIP achieves SOTA in Image-Text Retrieval

Method Pre-train COCO (5K test set) Flickr30K (1K test set)
# Images TR IR TR IR
R@1 R@5 R@10 R@l R@5 R@10|R@] R@5 R@10 R@1 R@5 R@10

UNITER (Chen et al., 2020) 4M 657 88.6 938 529 799 88.0 | 8.3 980 992 756 94.1 96.8
VILLA (Gan et al., 2020) 4M - - - - - - 879 975 988 763 942 96.8
OSCAR (Li et al., 2020) 4M 70.0 91.1 955 540 80.8 88.5 - - - - - -
UNIMO (Li et al., 2021b) 5. M - - - - - - 894 989 998 78.0 942 97.1
ALIGN (Jia et al., 2021) 1.8B 77.0 935 969 599 833 898 | 953 998 100.0 849 974 98.6
ALBEF (Li et al., 2021a) 14M 776 943 972 60.7 843 905 | 959 99.8 1000 856 975 989
BLIP 14M 80,6 952 976 63.1 853 O91.1 | 96.6 99.8 1000 872 975 98.8
BLIP 129M 819 954 978 643 857 915 | 973 999 1000 873 976 98.9
BLIPcapFiieL 129M 81.2 957 979 64.1 858 916 | 972 999 1000 875 97.7 98.9
BLIPvitL 129M | 824 954 979 65.1 863 918 | 974 998 999 876 97.7 99.0
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BLIP: Bootstrapping Language-Image Pretraining

» Effect of bootstrapping with CapFilt
e BLIP achieves SOTA in Image-Text Retrieval

* BLIP achieves comparable performance with SOTA in Image Captioning

Pre-train NoCaps validation COCO Caption

Method Hmaces in-domain  near-domain out-domain overall Karpathy test

8 cC s Cc S Cc S C s |Be4 C
Enc-Dec (Changpinyo et al., 2021) 15M 926 125 883 121 945 119 902 12.1 - 110.9
VinVL+{ (Zhang et al., 2021) 5.7M 103.1 142 96.1 13.8 883 12.1 955 135 382 1293
LEMONy,se T (Hu et al., 2021) 12M 1045 14.6 100.7 14.0 96.7 124 1004 13.8 - -
LEMONyse T (Hu et al., 2021) 200M 107.7 147 1062 143 1079 13.1 106.8 14.1 | 40.3 133.3
BLIP 14M 111.3 15.1 1045 144 1024 13.7 1051 144 | 38.6 129.7
BLIP 129M 109.1 14.8 105.8 144 105.7 13.7 1063 143 | 394 1314
BLIPcqpFile-L 129M 111.8 149 108.6 148 111.5 14.2 109.6 14.7 | 39.7 1333
LEMONj,;ec T (Hu et al., 2021) 200M 1169 158 1133 15.1 1113 14.0 1134 150 | 40.6 1357

(Wang et al., 2021)

BLIPvirL 129M 1149 152 112.1 149 1153 144 1132 148 | 404 136.7
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BLIP: Bootstrapping Language-Image Pretraining

Effect of bootstrapping with CapFilt

(a) VQA answer
t
Image Question Answer
Encoder Encoder Decoder
Image “[Encode] + Q" “[Decode]”
(b) NLVR? true/false
t
Ve
Nx i

Merge Layer

f
[ ]

f
[ ]

I

Cross
Attention

T T
Image Cross
Encoder Attention

Image #1 \_

t

“[Encode] + Text ”
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Image
]
Encoder

Image #2

BLIP achieves SOTA in Image-Text Retrieval

BLIP achieves comparable performance with SOTA in Image Captioning

BLIP shows strong empirical performance on various VL understanding tasks

Pre-train VQA NLVR?
Method #Images | test-dev test-std dev  test-P
LXMERT 180K 72.42 7254 7490 74.50
UNITER 4AM 72770 7291 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16  73.44 78.07 78.36
SOHO 219K 73.25 73.47 T76.37 77.32
VILLA 4M 73.59  73.67 78.39 79.30
UNIMO 5.6M 75.06  75.27 - -
ALBEF 14M 75.84  76.04
SimVLMp,s.t 1.8B 77.87  78.14 81.72 81.77
BLIP 14M 77.54  77.62 82.67 82.30
BLIP 129M 7824  78.17 82.48 83.08
BLIPcpFile-L 129M 78.25 7832 82.15 82.24




METER: Multimodal End-to-End Vision-Language Transformer

Multimodal End-to-end TransformER (METER) [Dou et al., 2022]
* Extensive study on design of end-to-end transformer for VLP

* Three components that METER considered:
* Architecture of Vision & Text encoders
* Multimodal fusion method
* Pretraining objectives

CLIP-ViT, Swin,
—> BEIiT, ....

Decoder
(optional)

N /

Pretraining Objec-
tives

Vision Encoder

Merged Attention/ Masked Language Modeling,
Coattention Image-Text Matching,
Masked Image Modeling,
a man hitting a Multimodal Fusion
: . BERT, RoBERTa, /
tennis ball with —
DeBERTa, ...
a racquet.
Text Encoder
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METER: Multimodal End-to-End Vision-Language Transformer

Exp 1. Effect of Vision & Text encoders without VLP

* Impact of Text Encoders
* No significant difference between pretrained text encoders
* Pretrained text encoders are better than embedding only

* Impact of Vision Encoders
* Impact of vision encoders vary more than text encoders

* Better unimodal task performance (e.g. ImageNet Acc or MNLI) does not
guarantee better VL performance

Vision Encoder VQAv2 VE IR TR | ImageNet
Text Enc. Vgcfz XCI::: ng 1 RTg 1 S%‘;‘?D 1\11:(51 Dis. DeiT B-384/16 | 67.84  76.17 34.84 5210 85.2
Embonly | 6713 7485 4906 6320 - - BEIT B-224/16 68.45 7528 3224 59.80 85.2
ELECTRA | 6922 7657 41.80 5830 | 868 888 DeiT B-384/716 | 6892 7597 3338 5090 ) 829
CLIP 6931 7537 5496 73.80 - B} ViT B-384/16 69.09  76.35 40.30 59.80 83.97
DeBERTa 69.40 7674 5150 67.70 | 87.2 88.8 CLIP B-224/32 69.69  76.53 49.86 68.90 -
BERT 69.56 7627 49.60 66.60 | 76.3 84.3 VOLO 4-448/32 71.44 7642 4090 61.40 86.8
RoBERTa | 69.69 7653 49.86 6890 | 84.6 87.6 CaiT M-384/32 7152  76.62 3896 61.30 86.1
ALBERT 69.94 7620 5220 68.70 | 86.4 87.9 CLIP B-224/16 7175 7154 57.64 76.90 -

Swin B-384/32 7238  77.65 5230 69.50 86.4

Impact of Text Encoders Impact of Vision Encoders
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METER: Multimodal End-to-End Vision-Language Transformer

Exp 2. Effect of Vision & Text encoders with VLP
* Using pretrained Vision & Text encoder is better

* Impact of Multimodal Fusion Module
* Co-attention is better than Merged-attention(contradict to previous region-based VLP)

* Impact of Decoder
* Using Only-Encoder is better than Encoder-Decoder
* But decoder can be used for image captioning, e.g. BLIP

Text Enc.  Vision Enc. | VQAv2 Flickr-Z8
IR TR . Flickr-ZS
Emb-only  CLIP-32 7399 6032 74.10 Fusion Decoder | VQAV2 .o TR
S R =
CLIP32 | 7467 6550 76.60 Co-attention - — — _ | 7498  66.08 78.10
RoBERTa  CLIP-16 7719  76.64 89.60 4 7473 4896 71.60
Swin 7643  71.68 85.30
Fine-tuning with VLP Effect of attention fusion & decoder
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METER: Multimodal End-to-End Vision-Language Transformer

Exp 3. Effect of Pretraining Objectives

e MLM + ITM helps VLP
* Masked Image Modeling is not helpful in VLP

* Masked Patch Classification with In-batch Negatives (i.e., Contrastive loss)

* Masked Patch Classification with Discrete Code (i.e., VQ-VAE, DALL-E)

T
a man hitting a \

tennis ball with
aracquet.

in-batch negatives

(I

B £ lll

T235 24 287 | «

]
133 422 922 s
i
=x

576 223 722

discrete code

Masked Image Modeling
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.. o . Flickr-ZS
Pre-training Objectives VQAvV2 IR TR
MLM 74.19 - -
I™ 72.63 5374 71.00
MLM+ITM 7498 66.08 78.10
MLM+ITM + MIM (In-batch Negatives) | 74.01  62.12  76.90
MLM+ITM + MIM (Discrete Code) 7421  59.80 76.30

Effect of Pretraining Objectives



METER: Multimodal End-to-End Vision-Language Transformer

Final METER setup
e METER-Swin: RoBERTa-Base + Swin Transformer + Co-attention
* METER-CLIP: RoBERTa-Base + CLIP-ViT-Base + Co-attention

Model VQAvV2 NLVR? SNLI-VE Flickr-ZS

test-dev  test-std  dev test dev test | IR@1 IR@5 JR@10 TR@1 TR@5 TR@10
Pre-trained with >10M images
ALBEF (14M) [29] 75.84 76.04 82.55 83.14 80.80 80.91 82.8 96.3 98.1 94.1 99.5 99.7
SimVLMgasg (1.8B) [58] 77.87 78.14 81.72 81.77 8420 84.15 - - - - - -
SimVLMyugg (1.8B) [58] 80.03 80.34 84.53 85.15 86.21 86.32 - - - - - -
Pre-trained with <10M images
UNITER; arge [0] 73.82 74.02  79.12 7998 79.39 7938 | 68.74  89.20 93.86 83.60 95.70 97.70
VILLA{ ArGE [14] 74.69 74.87  79.76 8147 80.18  80.02 - - - - - -
UNIMO¢ arge [31] 75.06 75.27 - - 81.11  80.63 - - - - - -
VinVLLARGE [ ] 76.52 76.60 82.67 83.98 - - - - - - - -
PixelBERT [20] 74.45 74.55 76.5 77.2 - - - - - -
CLIP-ViL (ResNet50x4) [48] 76.48 76.70 - - 80.61  80.20 - - - - - -
ViLT [65] 71.26 - 75.70 76.13 - - 55.0 82.5 89.8 73.2 93.6 96.5
Visual Parsing [60] 74.00 74.17  77.61 78.05 - - - - - - - -
ALBEF (4M) [29] 74.54 7470  80.24 80.50 80.14 80.30 76.8 93.7 96.7 90.5 98.8 99.7
METER-SWingasg 76.43 76.42 8223 8247 80.61 8045 | 71.68 91.80 95.30 85.30 97.70 99.20
METER-CLIP-ViTgasg 77.68 77.64 8233 83.05 80.86 81.19 | 79.60 94.96 97.28 90.90 98.30 99.50

Performance on VL understanding tasks
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METER: Multimodal End-to-End Vision-Language Transformer

Final METER setup

e METER-Swin: RoBERTa-Base + Swin Transformer + Co-attention
* METER-CLIP: RoBERTa-Base + CLIP-ViT-Base + Co-attention

Model Flickr CoCco

IR@1 IR@5 IR@10 TR@1 TRE@5 TR@10 | IR@1 IR@5 IR@10 TR@1 TR@5 TR@10
Pre-trained with >10M images
ALBEF (14M) [29] | 85.6 97.5 98.9 95.9 99.8 100.0 | 60.7 84.3 90.5 77.6 94.3 97.2
Pre-trained with <10M images
UNITER] aArGE [0] 75.56  94.08 96.76 87.30 98.00 99.20 5293 79.93 87.95 65.68 88.56 93.76
VILLAp srGE [14] 76.26  94.24 96.84 87.90 97.50 98.80 - - - - - -
UNIMOr arGE [31] 78.04  94.24 97.12 89.40 98.90 99.80 - - - - - -
Vil’lVLLARGE [ ] - - - - - - 58.8 83.5 90.3 75.4 92.9 96.2
PixelBERT [20)] 71.5 92.1 95.8 87.0 98.9 99.5 50.1 77.6 86.2 63.6 87.5 93.6
ViLT [65] 64.4 88.7 93.8 83.5 96.7 98.6 42.7 72.9 83.1 61.5 86.3 92.7
Visual Parsing [60] 73.5 93.1 96.4 87.0 98.4 99.5 - - - - - -
ALBEF (4M) [29] 82.8 96.7 98.4 94.3 994 99.8 56.8 81.5 89.2 73.1 91.4 96.0
METER-SWingasg 79.02  95.58 98.04 92.40 99.00 99.50 54.85 81.41 89.31 72.96 92.02 96.26
METER-CLIP-ViTgasg | 82.22  96.34 98.36 94.30 99.60 99.90 57.08 82.66  90.07 76.16 93.16 96.82

Algorithmic Intelligence Lab
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Multimodal SSL: Overview

* There have been a long attempts to learn vision-language (VL) models
» Different objective, different methods have been studied

* We discuss four approaches in achieving various VL representations

3. Learning visual representation from frozen Large Language Models (LLMs)
* Leveraging the power of LLMs for visual in-context learning

Algorithmic Intelligence Lab 138



Frozen: Multimodal Few-Shot Learning with Frozen Language Models

Frozen [Tsimpoukelli et al., 2020]
e Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020]

* How we can leverage the ability of LLMs for visual few-shot learning?

Model Completion

This person ~i:> @. <E0S>

is like

This person is
like @.

This person is
like ©.

Model Completion

This was the Wright
invented by brothers. <E0S>

This was invented
by Zacharias
Janssen.

This was invented by
Thomas Edison.

Model Completion

: break into a secure
W}]\.th OT:Ee of building, unlock the door
these I can and walk right in <EOS>

With one of these I
can drive around a

With one of these I can
take off from a city and
track, overtaking = fly across the sky to
other cars and taking somewhere on the other
corners at speed side of the world
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Frozen: Multimodal Few-Shot Learning with Frozen Language Models

Frozen [Tsimpoukelli et al., 2020]
* Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020]
* How we can leverage the ability of LLMs for visual few-shot learning?

* Given pretrained vision encoder (e.g., ResNet50) and LLMs (e.g., GPT-3), Frozen only
updates vision encoder for image-text alignment
* Use linear mapping to embed into LLM

* Autoregressive captioning loss is used for training

on the water

t ottt ot te b

i anduage Model . % Frozen
N O O O D O
. JjCJjcJjJje e Jc
S R A A A S A

Y4 vision 9 anguage Mode
‘ E\r:coder - LTe)gt Erﬂbehgdgr I ez

T T

A small red boat
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Frozen: Multimodal Few-Shot Learning with Frozen Language Models

Frozen [Tsimpoukelli et al., 2020]

* Large Language Models (LLMs) are effective few-shot learners [Brown et al., 2020]

* How we can leverage the ability of LLMs for visual few-shot learning?

* Given pretrained vision encoder (e.g., ResNet50) and LLMs (e.g., GPT-3), Frozen only

updates vision encoder for image-text alignment

* Use linear mapping to embed into LLM

* Autoregressive captioning loss is used for training

* Frozen enables few-shot classification as well as few-shot VQA

Blue <EOS> Steve Jobs % <E0S> This 1is a dax 3 <EO0S>
Self Attention Layers Self Attention Layers ’ ‘ Self Attention Layers
L HIHITI ) [[”T[[H[[ [[[[HT[[[”[[T[ J [[[[T”H”%””H [”[”THH[HTHH”[T[ )
Vision Text Vision Text Vision Text Vision Text Vision Text Vision Text
Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder
Bl Question: Q: Who Q: Who This is a NN# %4 This is a Question:
What colour invented invented dax. ¥ Y blicket. What is
is the car? this? A: this? A: this?
Answer: The Wright Answer:
brothers.

(a) 0-shot VQA

Algorithmic Intelligence Lab

(b) 1-shot outside-knowledge VQA

(c) Few-shot image classification



Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

e Better VL models for few-shot learning by
* Bridging pre-trained vision-only and language-only models
* Can handle sequences of arbitrary visual and textual data

* Seamlessly ingest images or videos as inputs

Input Prompt [ * Completion ]
A This is a a flamingo.
. e This is a shiba. They are found

chinchilla. They ot o

‘ e They are very This is in the
> alCh};l ou popular in Japan. Caribbean and
- - South America.
What is the title ‘Where is this )
of this painting? painting th;lt is the nlz:me
Answer: The displayed? t(,)h' DEly wt:; Arles.
Hallucinogenic Answer: Louvres 15 X‘:‘S Pa"” :
Toreador. Museum, Paris. SWEE Qo g g a
This is an apple with a sticker
— 4 "
| SRS
o - What does the sticker say?
utput: AVE utput: .

"Underground”  {LIGHANR  "Congress" Output: jiSoulomes The sticker says "iPod".
What is the common thing Where is the photo taken?
about these three images? R "

2 It looks like it’s taken in a
— They are all flamingos. backyard.
2+1=3 T 5+6=11 — 3x6=18 y e
What is the difference be- Do you think it is printed or
tween these three images? handwritten?
e
l:éo%agijﬂga Outont: A ik A vortsaitof The first one is a cartoon, the It looks like it’s handwritten.
| poster depicting a put: A pinl portrait of : .
Catdressedlas roomyithla Output: — Salvador Dali il e Lol f!ammgo, What color is the sticker?
French emperor flamingo pool tput: with a robot and the third one is a 3D
Napoleon float. head. (™ model of a flamingo. It’s white.
holding a piece

Multimodal In-Context Learning
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Multimodal visual dialogue




Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* Better pretrained vision and language model
* Vision encoder pretrained from CLIP-like objective with more data
* Used 1.4B, 7B, 70B Chinchilla model for LLM
* New Perceiver-Resampler module for vision-language alignment
* Gated Cross-attention dense (GATED XATTN-DENSE) layers for vision-language fusion

Output: text
Pretrained and frozen R
. ‘ a very serious cat. ‘

Trained from scratch

| ] n-th GATED XATTN-DENSE
Perceiver Perceiver é
o C mblek
1st GATED XATTN-DENSE

T

Processed text

|<image> This is a very cute dog.<image> This is | . ; :
Interleaved visual/text data i E
% ] Y : Joe=tv
tf This is a very cute dog.| A" | This is -
; Vision X Languag

i input input

Perceiver-Resampler Architecture GATED-XATTN-DENSE layer

Algorithmic Intelligence Lab



Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* MultiModal MassiveWeb (M3W) dataset — Mixture of datasets

* Extract text and images from HTML of 43M webpages
» Special tokens: Use <image> token to determine locations of images and <EOC> prior to image

and end of document
* Also use 1.8B image-text pairs from ALIGN and 27M video-text pairs

* Use autoregressive captioning loss, weighted per dataset

M L
> AmEgynn, |~ logp(yely<s, v<)
m=1 =1
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Flamingo: a Visual Language Model for Few-Shot Learning

Flamingo [Alayrac et al., 2022]

* Flamingo outperforms (6 out of 16) existing SOTA fine-tuned models with no fine-tuning

<
E ) Flamingo (80B) Previous 100.0% 1
R 150% B 37 shots E—1 Zero/few-shot SotA g
= c
L 125% - 115 £ 90.0% -
= == 5
£ 100% mmmmmmmmmmmm s s -Ro7- t
S 75% 2 80.0%
= ]
(] -
C 50% ;!.} . —8— Flamingo-80B
e £ 70.0% Flamingo-9B
= 25% A 34 o) .
o < Flamingo 3B
;
& 0% - < < x T T T T 60.0% T T T T
N o N N S wn a9 ¥
- S ¥ B &3¢ < g z % S g 0 48 16 32
Q E T 2 8§ o < & % § o S »h ¥ =2 X Number of shots
S = s > > > > s 0 O = -
o h ol s (.
>
=
* When fine-tuned, it achieves SOTA various tasks
Method VQAV2 COCO | VATEX VizWiz MSRVTTQA VisDial YouCook2 TextVQA HatefulMemes
test-dev  test-std | test test test-dev  test-std test valid | test-std valid valid | test-std test seen
% 32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0
” Fine-tuned  82.0 82.1 138.1 84.2 65.7 65.4 474 618  59.7 118.6 571 541 86.6
SotA 81.37 81.37  149.67 81.47 57.27 60.67 46.8 752 7541 138.7 54.7 73.7 84.67
° [133] [133] [119] [153] [65] [65] [51] [79] [123] [132] [137] [84] [152]
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
* Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

* Propose two-stage alignment using Q-former
e Stage 1: Representation learning with Q-former
* Q-former: BERT initialized transformer that encodes visual information given query
e Various learning objectives used
* Image-Text Matching (binary classification loss)
* Image-Text Contrastive Learning (i.e., CLIP loss)
* Image-grounded text generation (i.e., captioning loss)

Q: query token positions; T: text token positions.
@ masked [ unmasked

Image-Grounded

SR Image-Text
Matching

Image-Text Text Generation
Input Image Con?,asﬁve Q T Q T Q T
2 Feed Forward Learning Feed Forward Q D D D D Q D D . l. Q D D i
— £ for every 0000 00 Bl D0 Bl
| LN image Kilakia 1 o Y o [ EE OO
2} WM Y  Cross Attention - .
‘ Encoder Attention Masking T T T
g 4 bidirectional _— O O Lo BE O]
If Attention

Self Attenti mutlimodal causal

x N — - uni-modal - % —- x N Bi-directional Multi-modal Causal Uni-modal
Self-Attention Mask  Self-Attention Mask Self-Attention Mask

Learned Input Text [ 2 cat weering sun lasses] Image-Text ‘ Image-Grounded Image-Text
Queries LTSS g sung Matching Text Generation Contrastive Learning
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]

* Lighter approach for aligning pretrained vision encoder and LLM for VL tasks

* Propose two-stage alignment using Q-former
» Stage 1: Representation learning with Q-former
e Stage 2: Bootstrapping with Frozen LLM
* Can be applied to both decoder-based / encoder-decoder-based LLM

% O0O-00 Output Text [ a cat wearing sunglasses ]

Bootstrapping from a - )
Decoder-based 1 XY Image ‘ i J [ Fully
Large Language Model Encoder Q-Former Connected LLM Decoder
(e.g. OPT) f
ooO-o0o
Learned Queries
Ood-0On0o Suffix Text [ wearing sunglasses J
Bootstrapping from an -
Encoder-Decoder-based %. Ny mage NN Fully
Large Language Model ﬁ ‘ Encoder ‘ Q-Former ’ ‘ T J # LLM Decoder
(e.g. FlanT5) kb )
/ EE-EN \r[lj O-0 D][acat]
Input Image Learned Queries Prefix Text
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
e BLIP-2 achieves SOTA on zero-shot VL tasks

. Visual Question Answering Image Captioning Image-Text Retrieval
Models g::;‘:ble g)fl’fr‘c‘e " VQAW2 (test-dev) ¢ N%)Capsp (val) ¢ gFlickr (test)
’ VQA acc. CIDEr SPICE TR@1 IR@1
BLIP (Li et al., 2022) 583M v - 113.2 14.8 96.7 86.7
SimVLM (Wang et al., 2021b) 1.4B X - 112.2 - - -
BEIT-3 (Wang et al., 2022b) 1.9B X - - - 94.9 81.5
Flamingo (Alayrac et al., 2022) 10.2B X 56.3 - - - -
BLIP-2 188M v | 65.0 121.6 158 97.6 89.7
Models #Trainable #Total VQAv2 OK-VQA GQA
Params Params | val test-dev test test-dev
VL-T506-vqa 224M 269M 13.5 - 5.8 6.3
FewVLM (Jin et al., 2022) 740M 785M | 47.7 - 16.5 29.3
Frozen (Tsimpoukelli et al., 2021) 40M 7.1B 29.6 - 5.9 -
VLKD (Dai et al., 2022) 406M 832M | 42.6 44.5 13.3 -
Flamingo3B (Alayrac et al., 2022)  1.4B 3.2B - 49.2 41.2 -
Flamingo9B (Alayrac et al., 2022) 1.8B 9.3B - 51.8 44.7 -
Flamingo80B (Alayrac et al., 2022) 10.2B 80B - 56.3 50.6 -
BLIP-2 ViT-L OPT, 75 104M 3.1B 50.1 49.7 30.2 33.9
BLIP-2 ViT-G OPT, 75 107M 3.8B 53.5 52.3 31.7 34.6
BLIP-2 ViT-G OPT¢ 78 108M 7.8B 54.3 52.6 36.4 36.4
BLIP-2 ViT-L FlanT5x; 103M 3.4B 62.6 62.3 394 44.4
BLIP-2 ViT-G FlanT5x, 107M 4.1B 63.1 63.0 40.7 44.2
BLIP-2 ViT-G FlanT5xx;. 108M 12.1B 65.2 65.0 45.9 44.7
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BLIP-2: BLIP with Frozen Image Encoders and LLM

BLIP-2 [Li et al., 2023]
e BLIP-2 achieves SOTA on zero-shot VL tasks

* Also it achieves SOTA on image-text retrieval tasks, outperforming various dual encoder-
based (e.g., CLIP) or fusion-encoder based models

#Trainable Flickr30K Zero-shot (1K test set) COCO Fine-tuned (5K test set)
Model Params Image — Text Text — Image Image — Text Text — Image
R@1 R@5 R@10 R@1 R@5 R@10 |R@1 R@5 R@10 R@l1 R@5 R@10
Dual-encoder models
CLIP (Radford et al., 2021) 428M 88.0 98.7 994 687 90.6 952 - - - - - -
ALIGN (Jiaet al., 2021) 820M 88.6 98.7 997 757 938 968 | 77.0 935 969 599 833 8938
FILIP (Yao et al., 2022) 417M 89.8 992 998 750 934 963 | 789 944 974 612 843 90.6
Florence (Yuan et al., 2021) 893M 909 99.1 - 76.7 93.6 - 81.8 952 - 63.2 85.7 -
BEIT-3(Wang et al., 2022b) 1.9B 949 999 1000 815 956 978 | 848 965 983 672 877 928
Fusion-encoder models
UNITER (Chen et al., 2020) 303M 83.6 957 9777 687 892 939 | 657 886 938 529 799 88.0
OSCAR (Li et al., 2020) 345M - - - - - - 70.0 91.1 955 540 80.8 885
VinVL (Zhang et al., 2021) 345M - - - - - - 754 929 962 588 835 903
Dual encoder + Fusion encoder reranking
ALBEEF (Li et al., 2021) 233M 941 995 997 828 963 98.1 | 77.6 943 972 60.7 843 905
BLIP (Li et al., 2022) 446M 96.7 100.0 100.0 86.7 973 98.7 | 824 954 979 651 863 918
BLIP-2 ViT-L 474M 969 100.0 1000 886 976 989 | 835 960 980 663 865 918
BLIP-2 ViT-G 1.2B 97.6 100.0 100.0 89.7 981 989 |854 970 985 683 877 926

Algorithmic Intelligence Lab



Multimodal SSL: Overview

* There have been a long attempts to learn vision-language (VL) models
» Different objective, different methods have been studied

* We discuss four approaches in achieving various VL representations

4. Unifying Vision-Language pretraining
* Learning Vision-Language model from scratch for all tasks
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OFA: Unifying Architectures, Tasks and Modalities

One For ALL (OFA) [Wang et al., 2022]
* A unified transformer model for various modalities (image, text, location)

* Pretrain with all Vision, Language, and Vision-Language tasks
* Incorporate all available images (with labels), texts, image-text pairs

Unified Vocab.

<img1> <loc1>
<img2> <loc2> -
- i i O i person <img3> <Io<:3> Visualize
K[VG. Wit (e Gless i ot “HEm i [<Ioc299> <loc126> <loc282> <loc159> '—»

white shirt” describe?

- is -<|mga192> |:| <Ioc1000>
GC: What does the region describe? region: Text vocab.  Image vocab.  Location vocab.
<10c299> <loc126> <loc282> <loc159> Man in white shirt

ITM: Does the image describe “Two boys

playing frisbee on the grass” ? Yes

Two boys playing frisbee on the grass ]

[VQA: How many people are there in the ] (Two

- _ - - Image Captioning: What does the image [
describe?
Masking picture?
T ke
' N
Detection: What are the objects in the ] E Visual Grounding ' [<Ioc187><|oc47><|oc381 ><loc74>car<loc Visualize
image? R 299><loc126><loc282><loc159:
E g - g ! Grounded Captioning E ><loc126><loc282><loc159>person
- - - n  Image-Text Matching ' -
Image Infilling: What is the image in the ! | Captioni | '
+ [ h I mage Captioning I . . i ) | B A
- - - - middle part? ! Visual Question Answering | <img123><img756><img311>...<img521> 1Decoder}>—> W «
i il e | ObiectDetocion | —
Text Infilling: What is the complete text of | Image Infilling ' P ——
“A <mask> woman” ? H Text Infilling H i
N ,
Vision & Language Tasks Vision Tasks Language Tasks
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OFA: Unifying Architectures, Tasks and Modalities

One For ALL (OFA) [Wang et al., 2022]
* A unified transformer model for various modalities (image, text, location)

* Pretrain with all Vision, Language, and Vision-Language tasks
* Incorporate all available images (with labels), texts, image-text pairs

e OFA supports various unimodal and multimodal tasks with decent performance

Image Captioning Visual Question Answering Visual Grounding Visual Entailment

’__32_%9___\ B : e —-==tees
| <34><89> | N .
* |

<176><359> ,

| ,
| Entailment «"
N : Neutral

R : Contradiction

_________

! A plate of food
| on atable with

= | acup of coffee
|

_________

|
N

What is the man to the far
right holding in his hand?

Two glass and stone buildings
accent the environment.

1.

___________
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Image Generation Language Understanding Language Generation
! ! . _____ i ___ ___V__

I’_ ———————— V2utut e \ I’_ N ,‘— N IF N
,  Aclock : | What is the sentiment ! | B : | What is the summary ! | Ethiopia
I towerlooms ! of sentence “better 1 Positive I | of article “The I ! R o
| : B ! | . p I ethiopi t == | reduces prices
| underneath | | suited to a night in | ,  Negative o , ethiopian government | | of fertilizers
, @ clear sky. | | the living room than a | . | | today decided to cut ! N .
_________ / |l night at the movies.”? : N | the price of fertilizers ! N,



OFA: Unifying Architectures, Tasks and Modalities

One For ALL (OFA) [Wang et al., 2022]
* A unified transformer model for various modalities (image, text, location)

* Pretrain with all Vision, Language, and Vision-Language tasks
* Incorporate all available images (with labels), texts, image-text pairs

* OFA supports various multimodal and unimodal tasks with decent performance

VQA SNLI-VE

Model test-dev  test-std dev  test

UNITER [14] 73.8 74.0 794 794 Model Cross-Entropy Optimization CIDEr Optimization

OSCAR [15] 73.6 73.8 - - ode BLEU@4 METEOR CIDEr SPICE BLEU@4 METEOR CIDEr SPICE

VILLA [16] 74.7 749 802 80.0 VLT3 [56] 315 357 les 219 - - - -

VL-TS5 [56] - 70.3 - - OSCAR [15] 37.4 30.7 1278 235 41.7 30.6 1400 245

VinVL [17] 76.5 76.6 - - UNICORN [57] 35.8 28.4 119.1 215 - - - -

UNIMO [46] 75.0 753 8l.1 80.6 VinVL [17] 38.5 30.4 130.8 234 41.0 31.1 1409 252

ALBEF [69] 75.8 76.0  80.8 809 UNIMO [46] 39.6 - 127.7 - - - - -

METER [70] 77.7 776 809 81.2 LEMON [71] 415 30.8 139.1 241 42.6 31.4 1455 255

VLMo [48] 79.9 80.0 - - SimVLM [22] 40.6 33.7 143.3 254 - - - -

SimVLM [22]  80.0 80.3  86.2 86.3 OFA iy 35.9 28.1 1190 216 38.1 29.2 1287  23.1

Florence [23] 80.2 80.4 - - OFA\edium 39.1 30.0 1304 232 414 30.8 140.7 248
OFAg.sc 41.0 30.9 1382 242 428 31.7 1467  25.8

OFAiny 703 704 853 8.2 OFALarge 424 31.5 1422 245 43.6 322 150.7 262

OFAMedium 754 755 866 87.0 OFA 439 31.8 1453 248 44.9 325 1549 266

OFARase 78.0 78.1  89.3 892

OFA7 arge 80.3 80.5 90.3 90.2

OFA 82.0 82.0 91.0 91.2

VL Understanding Image Captioning
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OFA: Unifying Architectures, Tasks and Modalities

One For ALL (OFA) [Wang et al., 2022]
* A unified transformer model for various modalities (image, text, location)

* Pretrain with all Vision, Language, and Vision-Language tasks
* Incorporate all available images (with labels), texts, image-text pairs

* OFA supports various multimodal and unimodal tasks with decent performance

Model SST-2 RTE MRPC QQP MNLI QNLI

Multimodal Pretrained Baseline Models
Visual BERT [38] 894  56.6 71.9 89.4 81.6 87.0

UNITER [14] 89.7 556 693 892 809  86.0 Model Top-1 Acc.
VL-BERT [8] 898 557 706 890 812 863
VilBERT [13] 904 537 690 886 799 838 EfficientNet-B7 [89] 84.3
LXMERT [40] 902 572 698 753 804 842 :
Uni-Perceiver [61] 90.2  64.3 86.6 87.1 81.7 89.9 VIiT-L/16 [6] 82.5
SimVLM [22] 909 639 752 904 834 886 DINO [90] 82.8
FLAVA [60] 909 578 814 904 803 873 SimCLR v2 [32] 2.9
U]I\\[IIMOl[ié] P96.8. déOTAM-d l - 898 - MoCo v3 [35] o 1
atural-Language-rretraine odels .
BERT [2] 932 704 880 913 866 923 BEiT3g4-L/16 [36] 86.3
RoBERTa [28] 964 866 909 922 902 939 MAE-L/16 [37] 85.9
XLNet [25] 970 859 908 923 908 949
ELECTRA [82] 969 880 90.8 924 909 950 OFA 85.6
DeBERTa [83] 968 883 919 923 91.1 953
Ours

OFA 966 91.0 917 925 902 948

Language tasks Image classification task
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OFA: Unifying Architectures, Tasks and Modalities

* Also, OFA can generate image from text
* Showing better performance than DALLE, NUWA

Model FID| CLIPSIMtT IS?T
DALLE [50] 27.5 - 17.9
CogView [51] 27.1 333 18.2

GLIDE [77] 12.2 -
Unifying [78] 299 30.9 -
NUWA [52] 12.9 34.3 27.2

OFA 10.5 34.4 31.1
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OFA: Unifying Architectures, Tasks and Modalities

* Also, OFA can generate image from text
* Showing better performance than DALLE, NUWA

An eagle view of a magic city.

An art painting of a soldier, in
the style of cyperpunk.

Algorithmic Intelligence Lab

A pathway to a temple with
sakura trees in full bloom, HD.

A beautiful painting of native
forest landscape photography,
HD.

The golden palace of the land

Rustic interior of an alchemy
of clouds. shop.



BEiT-3: BEIT Pretraining for All Vision and Vision-Language Tasks

BEIT v3 [Wang et al., 2022]

* The Big Convergence
e Unification of architecture to Transformer
* Pretraining task based on masked data modeling

e Scaling up the vision, language, vision-language transformers with masked data
modeling pretraining

* Pretraining with interleaved image and texts, and image-caption pairs

Masked Data Modeling ~  m--------- i _________

: Switching Modality Experts :

1 |

T ! V-FFN L-FFN VL-FFN |

! Vision  Language VL

) 1 Expert Expert Expert 1

BEIT-3 R el St T

(Multiway Transformer) J
;:+

t T T Shared Multi-Head
Images Texts Image-Text Self-Attention

Pairs 4

Multimodal Input
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BEiT-3: BEIT Pretraining for All Vision and Vision-Language Tasks

BEIT v3 [Wang et al., 2022]

e Scaling up the vision, language, vision-language transformers with masked data
modeling pretraining

e BEIT v3 can be adapted to various vision and vision-language tasks

player a
4 4
VL-FFN
V-FFN Fx 4 4
Lx + L-FEN Multi-Head Self-Attention
Multi-Head Self-Attention LX 4
Patch Embeddings Muli-Head Self-Attention V;FFN '-':FN

Eﬂ!imlﬁii TWord Embeddings Multi-Head Self-Attention

. A baseball player throwing a ball . TPatch Embeddings TWord Embeddings
(a) Vision Encoder ES S B A vasevall VASK] throwing [MASK] ball .
Masked Image Modeling (b) Language Encoder - g
Image Classification (IN1K) Masked Language Modeling (c) Fusion Encoder
Semantic Segmentation (ADE20K) Masked Vision-Language Modeling
Object Detection (COCO) Vision-Language Tasks (VQA, NLVR2)
throwing
4
Image-Text
Contrastive Learning WAAAY
/ \ Fx t +
Multi-Head Self-Attention
V-FFN L-FFN
Lx t Lx t V-FFN L-FFN
Multi-Head Self-Attention Multi-Head Self-Attention (L-F)x 4 4
}Patch Embeddings 1 Word Embeddings Multi-Head Self-Attention
E !gﬁn.== A baseball player throwing a ball . TPatch Embeddings TWord Embeddings
- S —t== A baseball player is [MASK]
(d) Dual Encoder SRk P

Image-Text Retrieval (Flickr30k, COCO) (¢) Image-to-Text Generation

Image Captioning (COCO)
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BEiT-3: BEIT Pretraining for All Vision and Vision-Language Tasks

BEIT v3 [Wang et al., 2022]

e As aresult, BEIT v3 achieves SOTA performance on various tasks including
* Vision tasks: Classification, Segmentation, Detection
* Vision-Language tasks: Retrieval, VQA, Visual Reasoning

Semantic
Segmentation
Visual (ADE20K) IRgenEt
Reasoning Classification
(NLVR2) (w/ Public
Resource)
62:5
Image 90.0 §2.5 Object
Captioning Detection
(Coco) 61:0 (COCO)
86.0 89.0
146.25 63.5

Visual Question

Answering 83.25 84.0 Finetuned 12T
(VQAV2) (COCO)
86.0 66.0
Zero-shot T2I Finetuned T2I
(Flickr30k) (COCO)
Previous SOTA
CoCa
Flamingo
Zero-shot 12T Finetuned 12T
(Flickr30k) (Flickr30k) Flolrence V.]_
Finetuned T2I BEIT-3 (This Work)
(Flickr30k)
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Language Is Not All You Need: Aligning Perception with Language Models

KOSMOS-1 [Huang et al., 2023]
* LLMs are great at following instructions and learn in context

 KOSMOS-1 is Multimodal Large Language Model (MLLM) that can perceive
general modalities that follows instruction and learn in context

* Language models as general-purpose interfaces: other modalities are embedded into
language models

* As LLMs, KOSMOS-1 conduct instruction tuning for better human alignment

output
T
% Multimodal Large Language Model (MLLM)
Kosmos-1 can perceive both language and , learn in context , reason, and generate
Embedding
?
"' .l :i=7 = 318.7002
' Receict .. 0N
: I; e l||| I |-|||l-
Vision Audition
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Language Is Not All You Need: Aligning Perception with Language Models

KOSMOS-1 [Huang et al., 2023]

* Capabilities of KOSMOS-1
» Zero-shot / Few-shot multimodal learning, outperforming Flamingo

M COCO | Flickr30k
odel

CIDEr SPICE CIDEr SPICE Model VQAv2 VizWiz
ZeroCap 14.6 5.5 - - Frozen 29.5 -
VLKD 58.3 134 - - VLKDViT-B/16 38.6 -
FewVLM - - 31.0 10.0 MET{%LM 41.1 5
METALM 82.2 15.7 43.4 11.7 Flamingo-3B* 49.2 28.9

. " ) ) mineg-9B*
Eﬁﬁggzgg* ;3:2 ) 2(1):2 ) [ Kosmos-1(1.6B) 5.0 292 |
I Kosmos-1 (1.6B)  84.7 16.8 67.1 14.5 |

Zero-shot Image Captioning Zero-shot Visual Question Answering
VQAv2 | VizWiz
. Model
Model coco | Flickr30k k=2 k=4 k=8 k=2 k=4 k=8
k=2 k=4 k=8 k=2 k=4 k=38 Frozen - 382
Flamingo-3B - 850  90.6 - 720 717 METALM - 453 - - -
Flamingo-9B - 93.1 99.0 - 72.6 73.4 Flamingo-3B - 53.2 554 - 34.4 38.4

0:08 . 563 580 . 349
Kosmos-1 (1.6B . 51.8 51.4 31.4 35.3

Few-shot Image Captioning Few-shot Visual Question Answering
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Language Is Not All You Need: Aligning Perception with Language Models

KOSMOS-1 [Huang et al., 2023]

* Capabilities of KOSMOS-1
» Zero-shot / Few-shot multimodal learning, outperforming Flamingo
* Nonverbal visual reasoning: Raven IQ-Test

* First attempt of DNN model for 1Q-test, but still large gap between human

+®
+ () ?

4
A

Example of 1Q Test

Which option can complete the matrix?

A B G D E F

+| |4 (® ¢ o

Input Prompt
Here are The following
eight images: °8:’ c8° 0 @ ‘ + @ image is:
] OFH ® o] o

Is it correct?

Is it correct?

Is it correct? Is it correct? Is it correct? Is it correct?

Method Accuracy

Random Choice 17%

Kosmos-1 22%
w/o language-only instruction tuning 26%

Yes Yes Yes Yes Yes Yes
P( Yes | Input Prompt)
] — [ ]
& B C D E F
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Language Is Not All You Need: Aligning Perception with Language Models

KOSMOS-1 [Huang et al., 2023]

* Capabilities of KOSMOS-1
» Zero-shot / Few-shot multimodal learning, outperforming Flamingo
* Nonverbal visual reasoning: Raven IQ-Test

* Prompting for Image classification: KOSMOS-1 benefits from Chain-of-Thought (CoT)
prompting for visual recognition task

Input Prompt

Question: which studio created the movie characters in the image?
Answer:

Dis:ey X Models Accuracy
ot Promat Standard Prompting CLIP VIT-B /32 59 6
o CLIP ViT-B/16 59.8
Q>0 Introduce this picture in detail: CLIP ViT-L/14 64.0
ool Kosmos-1 67.1
v arobot w/ multimodal CoT prompting 72.9

It is a robot that is holding up a cube that is the same color as the wall. The image is from the film,
WALL-E, by Pixar Animation Studios. It is the story of a small robot named WALL-E and his quest to
build the ultimate life form. WALL-E is created by a group...

Effect of prompting on Rendered SST2 dataset

Itis a robot that is holding up a cube that is the same color as the wall. The image is
from the film, WALL-E, by Pixar Animation Studios. It is the story...

Question: which studio created the movie characters in the image?

Answer:

Completion

Pixar Animation Studios V

Multimodal Chain-of-Thought Prompting
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GPT-4

GPT-4 [OpenAl, 2023]

* The new GPT-4 supports visual prompts
* |t supports various input; natural images, documents, OCR, etc.

User What is funny about this image? Describe it panel by panel. User Below is part of the InstuctGPT paper. Could you read and summarize it to me?

Training language models to follow nstructions
ack

1 [s.CL] 4N

4 F GPT-4  The InstructGPT paper focuses on training large language models to follow instructions
Source: hmmm (Reddit) with human feedback. The authors note that making language models larger doesn't

inherently make them better at following a user's intent. Large models can generate
GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels. outputs that are untruthful, toxic, or simply unhelpful.
Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically To address this issue, the authors fine-tune language models on a wide range of tasks
used for computer monitors) plugged into its charging port. using human feedback. They start with a set of labeler-written prompts and responses,
then collect a dataset of labeler demonstrations of the desired model behavior. They
Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA fine-tune GPT-3 using supervised learning and then use reinforcement learning from
connector on it. human feedback to further fine-tune the model. The resulting model, called
InstructGPT, shows improvements in truthfulness and reductions in toxic output
Panel 3: A close-up of the VGA connector with a small Lightning connector (used for generation while having minimal performance regressions on public NLP datasets.

charaina iPhones and other Annle devices) at the end.

Image captioning / VQA Document understanding
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GPT-4

GPT-4 [OpenAl, 2023]

* The new GPT-4 supports visual prompts
* |t supports various input; natural images, documents, OCR, etc.

* It shows comparable performance on various vision-language understanding tasks
* However, the model is unknown (e.g., architecture, training method, data used)

Benchmark GPT-4 Few-shot SOTA SOTA

Evaluated few-shot Best external model (includes benchmark-specific training)
VQAv2 T7.2% 676% 84.3%
VQA score (test-dev) 0-shot Flamingo 32-shot PaLl-17B
TextVQA 78.0% 379% 71.8%
VQA score (val) 0-shot Flamingo 32-shot PalLl-17B
ChartQA 78.5%" - 586%
Relaxed accuracy (test) Pix2Struct Large
Al2 Diagram (AI2D) 78.2% - 421%
Accuracy (test) 0-shot Pix2Struct Large
DocVQA 88.4% - 88.4%
ANLS score (test) 0-shot (pixel-only) ERNIE-Layout 2.0
Infographic VQA 751% - 61.2%
ANLS score (test) 0-shot (pixel-only) Applica.ai TILT
TVQA 87.3% - 86.5%
Accuracy (val) 0-shot MERLOT Reserve Large
LSMDC 457% 31.0% 52.9%
Fill-in-the-blank accuracy (test) 0-shot MERLOT Reserve O-shot MERLOT
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Summary

* We discussed four approaches in vision-language pretraining
1. Image-text alignment using CLIP for transferrable visual representation
2. Fused transformer for vision-language understanding
3. Learning visual representation from frozen Large Language Models (LLMs)
4. Unifying Vision-Language pretraining

* The development of LLMs have affected the visual representation learning
» Zero-shot / Few-shot classification as instruction / in-context learning
* Scaling up foundation models showing emergent capabilities

e But still, understanding and designing better learning method is important problem
* Scaling is not the only way to improve performance!
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