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• Deep learning system have achieved state-of-art on various AI-related tasks
• Super-human performance on image recognition problems

Back Side of The Neural Network Success

4
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Trend on ILSVRC classification top-5 error rates
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AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of 

AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections
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• Deep learning system have achieved state-of-art on various AI-related tasks
• Super-human performance on image recognition problems

• Problem: ML systems are highly vulnerable
• (a) to a small noise on input that are specifically designed by an adversary
• (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
• In other words, answer of machine ≠ answer of human

Back Side of The Neural Network Success

5*source: https://wordberry.com/choosing-human-vs-machine-website-translation/
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• Deep learning system have achieved state-of-art on various AI-related tasks
• Super-human performance on image recognition problems

• Problem: ML systems are highly vulnerable
• (a) to a small noise on input that are specifically designed by an adversary
• (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
• In other words, answer of machine ≠ answer of human

• Even state-of-the-art-level neural networks make erroneous outputs
• Example: GoogleNet trained on ImageNet dataset

What is The Adversarial Example?

Humans can not distinguish them

*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 6
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• Deep learning system have achieved state-of-art on various AI-related tasks
• Super-human performance on image recognition problems

• Problem: ML systems are highly vulnerable
• (a) to a small noise on input that are specifically designed by an adversary
• (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
• In other words, answer of machine ≠ answer of human

• Even state-of-the-art-level neural networks make erroneous outputs
• Example: GoogleNet trained on ImageNet dataset

What is The Adversarial Example?

It is called an adversarial example!

*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 7
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• Adversarial examples raise issues critical to the “AI safety” in the real world
• e.g. Autonomous vehicles may misclassify graffiti stop signs

Threat of Adversarial Examples

8*source: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Stop! Go!
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• Furthermore, adversarial examples exist across various tasks or modalities
• Adversarial examples for segmentation task [Xie et al., 2017]

• Adversarial examples for automatic speech recognition [Qin et al., 2019]

Threat of Adversarial Examples

9

*source:
Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, ICCV 2017
Qin et al., Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition, ICML 2019

Clean: “The sight of you bartley to see you living and happy and 
successful can I never make you understand what that means to me”

Adversarial: “Hers happened to be in the same frame too but she 
evidently didn’t care about that”
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• The literature of adversarial example commonly stated in security perspective
• Attacks: Design inputs for a ML system to produce erroneous outputs
• Defenses: Prevent the misclassification by adversarial examples

• In this perspective, specifying a threat model of the game is important

1. Adversary goals

2. Adversarial capabilities

3. Adversary knowledge

The Adversarial Game: Attacks and Defenses

10*source: https://gwynteatro.wordpress.com/2011/10/30/ambiguity-and-contradiction-leadership-certainties



Algorithmic Intelligence Lab

• The literature of adversarial example commonly stated in security perspective

• In this perspective, specifying a threat model of the game is important

1. Adversary goals: Simply to cause misclassification, or else? 
• Some adversary may be interested in to attack into a target class of their choice

• “Source-target” [Papernot et al., 2016], or “targeted” [Carlini & Wagner, 2017] attack 
• In other setting, only a specific type of misclassification may be interesting

• e.g. Malware detection: “Benign → malware” is usually out-of-interest

The Adversarial Game: Threat model

11

*source: 
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE SSP 2017
https://devblogs.nvidia.com/malware-detection-neural-networks/
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• The literature of adversarial example commonly stated in security perspective

• In this perspective, specifying a threat model of the game is important

2. Adversarial capabilities
• Reasonable constraints to adversary allow us to build more meaningful defenses

• Too large perturbations to an image may break even the human’s decision

• To date, most defenses restrict the adversary to make “small” changes to inputs

• A common choice for 𝑑 ⋅,⋅ is ℓ𝒑-distance (especially for image classification)
• ℓ"-norm ball: the adversary cannot modify each pixel by more than 𝜖
• ℓ𝟎-norm ball: the adversary can arbitrary change at most 𝜖 pixels 

The Adversarial Game: Threat model

12

input adversarial

distance metric
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• The literature of adversarial example commonly stated in security perspective

• In this perspective, specifying a threat model of the game is important

3. Adversary knowledge
• A threat model must describe what knowledge the adversary is assumed to have

• White-box model: Complete knowledge of the model and its parameter
• Black-box model: No knowledge of the model

• Gray-box: Some threat models specify the various degree of access
• A limited number of queries to the model
• Access to the predicted probabilities, or just class
• Access to the training data

• The guiding principle: Kerckhoffs’ principle [Kerckhoffs, 1883]
• The adversary is assumed to completely 

know the inner workings of the defense

The Adversarial Game: Threat model

13

*source: 
https://emperorsgrave.wordpress.com/2016/10/18/black-box/
https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/

white-box black-box

?
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• A precise threat model → well-defined measures of adversarial robustness
1. “Adversarial risk”: The worst-case loss 𝐿 for a given perturbation budget

2. The average minimum-distance of the adversarial perturbation

• For misclassification,
• For targeted attack, 

• Key challenge: Computing adversarial risk is usually intractable
• We have to approximate these quantities

• Much harder problem than approximating “average-case” robustness
• The heart reason of why evaluating adversarial robustness is difficult

The Adversarial Game: Evaluating Adversarial Robustness

14

model

set of adv. examples

Data distribution
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• Deep learning system have achieved state-of-art on various AI-related tasks
• Super-human performance on image recognition problems

• Problem: ML systems are highly vulnerable
• (a) to a small noise on input that are specifically designed by an adversary
• (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
• In other words, answer of machine ≠ answer of human

• Various machine learning method assumes 𝑃!"#$% = 𝑃!&'!
• However in real-world scenarios, distributional shift occurs 𝑃$%&'( ≠ 𝑃$)*$
• E.g., autonomous driving car trained on Korea may not generalize on Canada

What is Distributional Shift?

15
*source: https://www.researchgate.net/figure/Example-of-covariate-shift-training-and-test-data-having-different-distributions_fig1_322568228
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• Distributional shift occurs across various domains
• Image, e.g., natural corruptions
• Reinforcement learning (RL), e.g., offline RL 
• Time-series and natural language, e.g., shift between the prior and future data
• Even on segmentation and chemical classification problems

What is Distributional Shift?

16

Distribution shit across time [Koh et al., 2021]Domain shift

*source: 
https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-domain-generalization-The-training-set-is_fig1_349787277
Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021
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• In vision ML system, the following threat model is common:
1. Goal - Untargeted attack: Find 
2. Capabilities - Pixel-wise restriction: 
3. Knowledge - White-box: Full access to the target network

• Fast Gradient Sign Method (FGSM): A fast approximation of this threat model
• Idea: In white-box setting, one can get the gradients w.r.t input of the network

• FGSM solves the maximization via linearizing the loss:

• To meet the max-norm constraint, FGSM takes sign ⋅ on the gradient
• Quiz. Why the use of sign ⋅ maximizes the loss?

Adversarial Attacks: Fast Gradient Sign Method [Goodfellow et al., 2015]

19*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
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• The idea of FGSM can be directly applied to targeted attack model:
1. Goal - Targeted attack
2. Capabilities - Pixel-wise restriction: 
3. Knowledge - White-box: Full access to the target network

• Unlike FGSM, Least-likely Class Method minimizes the loss for the target class 

• Nevertheless, one could also linearize the loss 𝐿

• This formulation leads to an attack method similar to FGSM:

Adversarial Attacks: Least-likely Class Method [Kurakin et al., 2017b]

20

Now, we perform “gradient descent”

*source: Kurakin et al., Adversarial Machine Learning at Scale, ICLR 2017
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• FGSM can be generalized toward a stronger method
1. Single-step update → multi-step optimization
2. sign ⋅ → Generalized projection operation

• Essentially, our goal is to solve the following optimization:

• Projected Gradient Descent (PGD) is a direct way to solve this:

• Basic Iterative Method (BIM):
• Usually, PGD refers the case when       is randomly-chosen inside  

• In some sense, PGD is regarded as the strongest first-order adversary
• It is the best way we could try using only gradient information

Adversarial Attacks: Projected Gradient Descent [Madry et al., 2018]

21*source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018

set of neighbors

projection
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Adversarial Attacks: Carlini-Wagner Method [Carlini & Wagner, 2017a]

• Carlini & Wagner (CW): Even tighter approximation is possible: 

• CW attempts to directly minimize the distance         in targeted attack 

• Key challenge: How to incorporate the constraint during optimization
• CW takes the Lagrangian relaxation to allow the gradient-based optimization: 

•

• attains the minimum when     is an adversarial example

*source: Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017

max 0, 𝑥
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• Experimental Results
• CW finds much smaller avg. minimum-distance than DeepFool

• Comparison of images generated from several attacks [Y. Song et al., 2018]

Adversarial Attacks: Carlini-Wagner Method [Carlini & Wagner, 2017a]

23

It is the most similar to 
clean image

*source: 
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017
Y. Song et al., PixelDefend, ICLR 2018
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black-box

white-box

• Some adversarial examples strongly transfer across different networks

Adversarial Attacks: Transferability of Adversarial Example

24

Adversarial noise

Adversarial noise

white-box attack

*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
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• Motivation: The transferability enables us to attack a black-box model
• Idea: Finding an adversarial example via white-box attack on the local substitute 

model
• Goal: Training a local substitute model via FGSM-based adversarial dataset 

augmentation
• FGSM-based adversarial examples are computed to change the prediction of 

the black-box model

• Method:

Adversarial Attacks: The Local Substitute Model [Papernot et al., 2017]

25

Adversarial Dataset

Dataset Substitute Model
Training

White-box attack: FGSM 
*prediction of the black box model 

is used to white-box attack

Data augmentation
*Labeling the adversarial dataset 

with the black box model

black-box predictionsubstitute model
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• Experimental Results
• Black-box attack to the Amazon and Google Oracle
• Two types of architecture:

• DNN: Deep Neural Network
• LR: Logistic Regression

Adversarial Attacks: The Local Substitute Model [Papernot et al., 2017]

26

Misclassification rates (%)

Number of queries to train the local substitute model

*source: Papernot et al., Practical Black-Box Attacks against Machine Learning, ACM CCS 2017
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• In ICLR 2018, 9 defense papers were published including adversarial training:
• Adversarial training [Madry et al., 2018]
• Thermometer Encoding [Buckman et al., 2018]
• Input Transformations [Guo et al., 2018]
• Local Intrinsic Dimensionality [Ma et al., 2018]
• Stochastic Activation Pruning [Dhillon et al., 2018]
• Defense-GAN [Samangouei et al., 2018]
• PixelDefend [Song et al., 2018]
• …

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

27

Defense-GAN [Samangouei et al., 2018]

Input transformation [Guo et al., 2018]

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• In ICLR 2018, 9 defense papers were published including adversarial training:
• Adversarial training [Madry et al., 2018]
• Thermometer Encoding [Buckman et al., 2018]
• Input Transformations [Guo et al., 2018]
• Local Intrinsic Dimensionality [Ma et al., 2018]
• Stochastic Activation Pruning [Dhillon et al., 2018]
• Defense-GAN [Samangouei et al., 2018]
• PixelDefend [Song et al., 2018]
• …

• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

28
*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

• They identified three obfuscation techniques used in the defenses

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

29

Obfuscation Defenses

Shattered Gradients

Existence of a non-differentiable layer
• Thermometer Encoding [Buckman et al., 2018]
• Input Transformation [Guo et al., 2018]
• Local Intrinsic Dimensionality (LID) [Ma et al., 2018]

Stochastic Gradients
Artificial randomness on computing gradient
• Stochastic Activation Pruning (SAP) [Dhillon et al., 2018]
• Mitigating Through Randomization [Xie et al., 2018]

Exploding & Vanishing 
Gradients

Multiple iterations, or extremely deep DNN
• Pixel Defend [Song et al., 2018]
• Defense-GAN [Samangouei et al., 2018]

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018



Algorithmic Intelligence Lab

• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

• Those kinds of defenses can be easily bypassed by 3 simple tricks
1. Backward Pass Differentiable Approximation (BPDA)

• Replace the non-differentiable parts only at backward pass 
• Use some differentiable approximative function

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

30
*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

• Those kinds of defenses can be easily bypassed by 3 simple tricks
2. Expectation Over Transformation (EOT)

• Take the expectation of attacks to mitigate stochastic defenses

3. Reparameterization
• Replace deep or recurrent parts by simpler differentiable function

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

31

Random transformation

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

• Those kinds of defenses can be easily bypassed by 3 simple tricks
• 6 of the 9 defense papers were completely broken using those tricks
• 1 of the 9 was partially broken (Defense-GAN)
• Adversarial training [Madry et al. 2018; Na et al., 2018] were the only survivals

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

32
*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
• “Fake” defense?: They don’t aim the non-existence of adversarial example

• Rather, they aim to obfuscate the gradient information
• Obfuscated gradient makes gradient-based attacks (FGSM, PGD, …) harder

• Then… what should we do?
• At least, we have to do sanity checks on evaluating defenses
• Do your best to show that the proposed defense is a “real” defense

• Some “red-flags” indicating obfuscated gradients

Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

33
*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing 
defenses to adversarial examples, ICML 2018
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• AutoAttack is the state-of-the art attack method
• AutoAttack uses four advanced attacks, and check whether any attack succeeds
• Two white-box attacks: APGD-untargeted, APGD-targeted [Croce et al., 2020]
• Two black-box attacks: FAB [Croce et al., 2020], Square [Andriushchenko et al., 2020]

• Experimental Results
• AutoAttack largely reduced the obfuscated gradient issues in prior evaluations

AutoAttack [Croce et al., 2020]

34
*source: Croce et al., Reliable Evaluation of Adversarial Robustness with an Ensemble of 
Diverse Parameter-free Attacks, ICML 2020
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

Distributional Shifts

36
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

• Shape and texture bias [Geirhos et al., 2019]
• Suggest benchmarks to measure whether the model is biased to textures or shapes
• Moreover, found that the ImageNet-trained models are biased to textures

Distributional Shifts

37
* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019

Example of Stylized-ImageNet (SIN): only change the style (i.e., the texture) of the given input
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

• Shape and texture bias [Geirhos et al., 2019]
• Suggest benchmarks to measure whether the model is biased to textures or shapes
• Moreover, found that the ImageNet-trained models are biased to textures

Distributional Shifts

38
* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

• Common corruption [Hendrycks et al., 2019]
• Suggest 15 types of corruptions that highly degrade the classifier’s performance

Distributional Shifts

39*source: Hendrcyks et al., Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, ICLR 2019
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

• Domain shifts [Hendrycks et al., 2019]
• Suggest 16 types of renditions of ImageNet classes, i.e., domain shift

Distributional Shifts

40*source: Hendrcyks et al., The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization, ICCV 2021
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• Various distributional shift scenarios have been proposed

• We will introduce some scenarios that are widely considered in recent works

• WILDS [Koh et al., 2019]
• WILDS consists of various real-world distributional shift scenarios
• E.g., distributional shifts on the medical imaging and natural language processing

Distributional Shifts

41*source: Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021
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• Motivation: An optimization view on attacks and defenses
• Recall: Adversarial attacks aim to find inputs so that:

• In the viewpoint of defense, our goal is to minimize the adversarial risk:

• Adversarial training (AT) aims to minimize adversarial risk in training

• Challenge: Computing the inner-maximization is difficult
• Idea: Use strong attack methods to approximate the inner-maximization

• e.g. FGSM, PGD, DeepFool, …

Adversarial Training [Madry et al., 2018]

44

Training parameters FGSM, PGD, …

*source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
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• Experimental results
• MNIST results

• CIFAR10 results

Adversarial Training [Madry et al., 2018]

45

White-box Black-box

Black-boxWhite-box

*source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
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• Motivation: Robust model → accuracy reduction? [Tsipras et al. ,2019]

• Consider 𝑋, 𝑌 modeled by 𝜂(𝑥)
• Bayes optimal classifier: sign 2𝜂 𝑥 − 1

• We are using an “accuracy-biased” loss function

• Can we exploit this trade-off for better robustness?

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

46*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018
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• We re-write the relationship between robust error and natural error

• Consider a binary classification with 𝑌 ∈ {−1, 1}
• Natural error: 
• Robust error under 𝜖-perturbation:

• [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

47*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018
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• We re-write the relationship between robust error and natural error

• Consider a binary classification with 𝑌 ∈ {−1, 1}
• Natural error: 
• Robust error under 𝜖-perturbation:

• [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

• Zhang et al. (2019) also defines the boundary error:

•

• Boundary error identifies the gap between               and               

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

48

Decision boundary

*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018
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• Goal: Find     such that                             is small

• Theorem 1 (upper bound, informal). Let 𝜙 be a usual surrogate loss. We have:

• Theorem 2 (lower bound, informal). for any 𝜉 > 0, there exist 𝒟, 𝑓, and 𝜆 > 0
such that:

• The upper bound is tight if there is no assumption on 𝒟

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

Natural error gap

(Bartlett et al., 2006)

*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 49
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• Goal: Find     such that                             is small

• The theorems naturally suggests a new surrogate loss:

• TRADES: TRadeoff-inspired Adv. DEfense via Surrogate-loss minimization
• 𝜆: The balancing hyper-parameter

• We can boost the robust accuracy with little loss of natural accuracy

• Key difference: TRADES finds 𝑿′ by solving
• Adversarial training [Madry et al., 2018]:

• Up to now, TRADES is regarded as the state-of-the-art defense method

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

accuracy robustness

*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 50
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• Experimental results
• White-box attack results (CIFAR-10 & MNIST)

TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

51*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018
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• Problem of AT: Robust overfitting
• The robust error of test set, gradually increases from the middle of the training
• This phenomenon occurs across dataset, architectures and objectives (e.g., TRADES)

• Early stopping is an effective way to prevent the overfitting

• Most of recent advanced AT methods aims to resolve this issue

Overfitting of Adversarial Training [Rice et al., 2020]

53

overfitting occurs

Comparison of methods for preventing overfitting

*source: Rice et al., Overfitting in adversarially robust deep learning, ICML 2020
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• Observation: model with the high robustness have a smooth loss landscape

• We measure the loss landscape of the adversarial risk
• (1) During AT, the best model (at 100 epoch) has the most smooth landscape

• (2) The AT objectives with strong robustness tend to have a smoother landscape 

Adversarial Weight Perturbation [Wu et al., 2020]

54*source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurIPS 2020
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• Adversarial Weight Perturbation (AWP)
• Optimize the loss on the worst case weight parameter to force the smoothness

• In detail, AWP use a projected gradient decent to attack the weight parameters

Adversarial Weight Perturbation [Wu et al., 2020]

55*source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurIPS 2020

Maximize the input perturbation, i.e., adversarial training

Maximize the weight perturbation
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• Experimental results
• AWP effectively prevents the overfitting issues of AT

• Moreover, AWP achieves the state-of-the-art robustness on various benchmarks

Adversarial Weight Perturbation [Wu et al., 2020]

56*source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurIPS 2020
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• Recently, data augmentations are used in AT to improve the robustness 
• Several works research the effect of conventional augmentations in AT

• For instance, CutMix can prevent the robust overfitting
• Additionally using weight averaging (WA) can further improve the robustness

Data Augmentation Can Improve Robustness [Rebuffit et al., 2021]
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CutMix [Yun et al., 2019]
AutoAugment [Cubuk et al., 2019]

*source: 
Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2019
Cubuk et al., AutoAugment: Learning Augmentation Strategies from Data, CVPR 2020
Rebuffi et al, Data Augmentation Can Improve Robustness, NeurIPS 2021
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• Recently, data augmentations are used in AT to improve the robustness 
• Other works find that using generating more training data, is highly effective in AT

• Using the generated data (from DDPM) for AT, improves the robustness
• As DDPM is unconditional generative model, one should use pseudo-labels from 

the pre-trained classifier (not adversarially trained classifier)
• DDPM augmentation achieves the state-of-the art performance

Improving Robustness using Generated Data [Gowal et al., 2021]
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DDPM [Ho et al., 2019]

*source: 
Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS 2020
Gowal et al., Improving Robustness using Generated Data, NeurIPS 2021
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• Adversarial training has achieved reasonable adversarial robustness
• Adversarially-trained networks are resistant for the corresponding threat model

Back Side of Adversarial Training
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• Adversarial training has achieved reasonable adversarial robustness
• Adversarially-trained networks are resistant for the corresponding threat model

• Problem: The conjectured robustness may be broken under a stronger 
“adaptive” attack mechanism
• In other words, we can not guarantee the robustness under unseen threat model

Back Side of Adversarial Training
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• Adversarial training has achieved reasonable adversarial robustness
• Adversarially-trained networks are resistant for the corresponding threat model

• Problem: The conjectured robustness may be broken under a stronger 
“adaptive” attack mechanism
• In other words, we can not guarantee the robustness under unseen threat model

• The most that can be said is that a specific attack was unable to find

Back Side of Adversarial Training
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• For a classifier 𝑓, we want to ‘certify’ the robustness for the given input 𝑥
• For a radius 𝑟, is there a perturbation 𝛿 with |𝛿| ≤ 𝑟 where 𝑓 𝑥 ≠ 𝑓(𝑥 + 𝛿)?

• Exact certification
• Report whether or not there exists such perturbation 𝜹
• Satisfiability modulo theories [Katz et al., 2017]
• Mixed integer linear programming [Cheng et al., 2017]
• Can’t be scaled beyond moderate-sized networks

• Conservative certification
• Certify that there is no such perturbation 𝜹 or abstain
• Bound the global Lipschitz constants [Gouk et al., 2018]
• Measure the local smoothness [Hein et al., 2017]
• Assume specific network architectures (e.g., ReLU activations)

• Both approaches have some limits to be applied to modern architectures

Typical approaches for certified robustness

63
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• Problem: Directly training a robust DNN 𝒇 is challenging
• Randomized smoothing instead constructs another classifier 𝒈 from 𝒇
• The 𝒍𝟐-norm robust radius of 𝑔 is lower-bounded in terms of 𝑓
• Note: 𝑓 does not have to be perfectly smooth for adversarial robustness

Randomized Smoothing [Cohen et al., 2019]

64

𝑔 𝑥 ≔ argmax,∈𝒴 ℙ/~𝒩 2,4!5 𝑓 𝑥 + 𝜖 = 𝑐



Algorithmic Intelligence Lab

• Problem: Directly training a robust DNN 𝒇 is challenging
• Randomized smoothing instead constructs another classifier 𝒈 from 𝒇
• The 𝒍𝟐-norm robust radius of 𝑔 is lower-bounded in terms of 𝑓
• Note: 𝑓 does not have to be perfectly smooth for adversarial robustness

Randomized Smoothing [Cohen et al., 2019]
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𝑔 𝑥 ≔ argmax,∈𝒴 ℙ/~𝒩 2,4!5 𝑓 𝑥 + 𝜖 = 𝑐

The certified radius R is large when:
• The noise level 𝜎 is high
• The probability of the top class 𝑐! is high
• The probabiliy of each other class is low
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• Problem: Directly training a robust DNN 𝒇 is challenging
• Randomized smoothing instead constructs another classifier 𝒈 from 𝒇
• The 𝒍𝟐-norm robust radius of 𝑔 is lower-bounded in terms of 𝑓
• Note: 𝑓 does not have to be perfectly smooth for adversarial robustness

• If (2) is all that is known about 𝑓, then the robustness guarantee is tight
• In other words, it is impossible to certify an 𝒍𝟐 ball with radius larger than 𝑹

Randomized Smoothing [Cohen et al., 2019]
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• Problem: Directly training a robust DNN 𝒇 is challenging
• Randomized smoothing instead constructs another classifier 𝒈 from 𝒇
• The 𝒍𝟐-norm robust radius of 𝑔 is lower-bounded in terms of 𝑓
• Note: 𝑓 does not have to be perfectly smooth for adversarial robustness

• Intractability of “averaging over Gaussian noise” -> Monte Carlo & hypothesis test

Randomized Smoothing [Cohen et al., 2019]
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• Problem: Directly training a robust DNN 𝒇 is challenging
• Randomized smoothing instead constructs another classifier 𝒈 from 𝒇
• The 𝒍𝟐-norm robust radius of 𝑔 is lower-bounded in terms of 𝑓
• Note: 𝑓 does not have to be perfectly smooth for adversarial robustness

• Intractability of “averaging over Gaussian noise” -> Monte Carlo & hypothesis test

Randomized Smoothing [Cohen et al., 2019]
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𝑔 𝑥 ≔ argmax,∈𝒴 ℙ/~𝒩 2,4!5 𝑓 𝑥 + 𝜖 = 𝑐
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• Experimental results:
• The base classifier 𝑓 is trained with cross-entropy loss of Gaussian augmentations

• The choice of 𝜎 determines the trade-off between the accuracy and robustness

• Q. Can we train 𝑓 more effectively to yield more robust 𝒈?

Randomized Smoothing [Cohen et al., 2019]
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ℒ678 ≔ 𝔼/~𝒩 2,4!5 [ℒ 𝐹 𝑥 + 𝜖 , 𝑦 ]

Softmax outputs of 𝑓

Results on CIFAR-10 Results on ImageNet
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• Idea: Adversarial training of the smoothed classifier 𝒈 (approx.)
• How to attack the smoothed classifier 𝒈 through the base classifier 𝑓?
• Recall: 𝑔 is the most provable output of 𝑓 under Gaussian augmentation

• Define “soft” smoothed classifier 𝑮 (corresponding to 𝑔) as follows:

• Adversarial attack is performed on the soft smoothed classifier 𝑮
• Note: Attack on 𝑔 does not yield a valid gradient because of argmax function

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

70

𝐺 𝑥 ≔ 𝐹 ∗𝒩 0, 𝜎9𝐼 𝑥 = 𝔼:~𝒩 2,4!5 [𝐹 𝑥 + 𝛿 ]

𝑔 𝑥 ≔ argmax,∈𝒴 ℙ/~𝒩 2,4!5 𝑓 𝑥 + 𝜖 = 𝑐

Softmax outputs of 𝑓
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• Idea: Adversarial training of the smoothed classifier 𝒈 (approx.)
• Adversarial attack is performed on the soft smoothed classifier 𝑮

• One can find an adversarial example Y𝒙 of a clean sample 𝑥 w.r.t. 𝐺 as follows:

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

71

𝐺 𝑥 ≔ 𝐹 ∗𝒩 0, 𝜎"𝐼 𝑥 = 𝔼#~𝒩 &,(!) [𝐹 𝑥 + 𝛿 ]

Softmax outputs of 𝑓

6𝑥 ≔ max
|+",+| !-.

(ℒ 𝐺 𝑥/ , 𝑦

= max
|+",+| !-.

(− log𝔼#~𝒩 &,(!) 𝐹 𝑥/ + 𝛿 0
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• Idea: Adversarial training of the smoothed classifier 𝑔 (approx.)
• One can find an adversarial example Y𝒙 of a clean sample 𝑥 as follows:

• The gradient ascent step is performed on 𝑥′ via Monte-Carlo approximation

• Then, the adversarial example Y𝒙 w.r.t. 𝑮 is used to train the base classifier 𝒇

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

72

6𝑥 ≔ max
|+",+| !-.

(ℒ 𝐺 𝑥/ , 𝑦

= max
|+",+| !-.

− log𝔼#~𝒩 &,(!) 𝐹 𝑥/ + 𝛿 0

∇+"(ℒ 𝐺 𝑥/ , 𝑦 = ∇+" − log𝔼#~𝒩 &,(!) 𝐹 𝑥/ + 𝛿 0

≈ ∇+" − log𝔼#~𝒩 &,(!)
1
𝑚
B
123

4

𝐹 𝑥/ + 𝛿1 0



Algorithmic Intelligence Lab

• Experiments
• Comparison of [Cohen et al., 2019]
• Improves the certified accuracy of the smoothed classifier 𝑔

• However, it requires:
• High computational cost due to the adversarial attack
• Many hyperparameters such as

• (1) 𝜖: maximum allowed 𝑙" perturbation
• (2) 𝑇: number of steps of the attack
• (3) 𝑚: the number of noise samples for Monte Carlo approximation

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]
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• Idea: Maintain the prediction consistency over Gaussian noise
• 0-1 loss of smoothed classifier [Zhai et al., 2020]

• “Consistent” prediction in logit space over Gaussian noise (i.e., 𝐹(𝑥 + 𝛿) is 
constant) implies ℙ# 𝑓 𝑥 + 𝛿 = 𝑔 𝑥 to become 1

• Then, the robust term of 0-1 loss is upper-bounded by the following:

• In other words, consistent prediction minimizes upper-bound of the robust 0-1 loss
• Note: As ℙ# 𝑓 𝑥 + 𝛿 = 𝑔 𝑥 goes to 1, 𝔼 𝟙ℙ# 6 +7# 28 + 9:(./()] goes to 0

Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]
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Indicator function
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• Idea: Maintain the prediction consistency over Gaussian noise
• Objective: “Consistent” prediction in logit space over Gaussian noise

where ]𝐹 𝑥 ≔ 𝔼 𝐹 𝑥 + 𝛿 , and 𝐻(⋅) denotes the entropy

• Entropy term is to prevent ]𝐹 𝑥 to be too close the the uniform

• Empirically, the expectation over Gaussian is approximated by Monte-Carlo

• No attack, fewer hyperparameter compared to [Salman et al., 2020]

Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]
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𝐿,M6 ≔ 𝜆 ⋅ 𝔼:[𝐾𝐿( ]𝐹(𝑥)| 𝐹 𝑥 + 𝛿 + 𝜂 ⋅ 𝐻( ]𝐹 𝑥 )

𝐿 ≔ 𝐿?@A + 𝐿BC? ≔ 𝔼[ℒ 𝐹 𝑥 + 𝛿 , 𝑦 + 𝜆 ⋅ 𝐾𝐿( N𝐹(𝑥)| 𝐹 𝑥 + 𝛿 + 𝜂 ⋅ 𝐻 N𝐹(𝑥)

≈
1
𝑚
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1
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• Experimental results
• ACR (Average Certified Radius) is defined by:

• ACR reflects the trade-off between robustness and accuracy of smoothed classifier

Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

76
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• Experimental results
• Effectively trade-off the robustness and accuracy
• The robustness of smoothed classifier dramatically increases

Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]
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• Experimental results
• Fewer hyperparameter/training time compared to baselines
• At least achieves comparable results

Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]
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• Randomized smoothing cares about the 𝒍𝟐-norm certified robustness
• A few approaches consider 𝒍"-norm certified robustness
• So far, not scaled up to full-resolution ImageNet

• On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust 
Models [Gowal et al., 2018]
• Interval Bound Propagation (IBP)

• Maximize the lower bound of the logit value of the true label
• Minimize the upper bound of the logit values of other labels

Other Certified Robustness Approaches

79



Algorithmic Intelligence Lab

• Randomized smoothing cares about the 𝒍𝟐-norm certified robustness
• A few approaches consider 𝒍"-norm certified robustness
• So far, not scaled up to full-resolution ImageNet

• Boosting the Certified Robustness of L-infinity Distance Nets [Zhang et al., 2022]
• Introduce 𝑙"-distance layer

• 𝑙"-distance net satisfies 1-Lipschitz continuity in 𝒍"-norm

• One can guarantee 𝑔 𝑥 = 𝑔(𝑥 + 𝛿)when | 𝛿 |D < margin(𝒙, 𝑦; 𝒈)/2

Other Certified Robustness Approaches
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• Motivation: Data augmentation largely improve the generalization performance

• AugMix: Mixup the original image with the composed augmentations
• Intuitively, it generates diverse image without veering too far from the original

• Then, regularize the predictive distribution to be consistency across augmentations
• This injects an inductive bias to the classifier

Robust training schemes: AugMix [Hendrycks et al., 2020]
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JS: Jensen-Shannon divergence
𝑝$%&': original sample’s output
𝑝()'*&+,&: AugMix sample’s output

*source: Hendrycks et al, AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, ICLR 2020

Compose 
augmentations

Mixup with the 
original sample
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• Experimental results
• AugMix significantly outperforms the baseline augmentation schemes

Robust training schemes: AugMix [Hendrycks et al., 2020]

83*source: Hendrycks et al, AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, ICLR 2020

CIFAR-10 and CIFAR-100 results

ImageNet result
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• Pyramid AT: utilize adversarial examples as data augmentations
• This method is typically designed for patch-based models, e.g., ViT or MLP-Mixer

• Pyramid AT use a patch-wise adversarial attack
• Constraint the patch to have the same noise scale
• Add the adversarial noise across various patch sizes

• + one should remove the randomness of the model when using adversaries
• Note that ViT consist of dropout (and stochastic depth)
• Such randomness may induce gradient obfuscations

Pyramid Adversarial Training [Herrmann et al., 2022]
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Patch size = 1,
i.e., pixel

Patch size = 14Patch size = 28

Randomness (dropout mask, ℳ) for clean data Fixed parameter for adversaries
*source: Herrmann et al, Pyramid Adversarial Training Improves ViT Performance, CVPR 2022
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• Experimental results
• Pyramid AT significantly improves the distributional shift robustness
• More intriguingly, the clean accuracy also improves 

• Moreover, the attention and saliency map well aligns with the object

Pyramid Adversarial Training [Herrmann et al., 2022]

85*source: Herrmann et al, Pyramid Adversarial Training Improves ViT Performance, CVPR 2022

Attention map Saliency map
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• Another direction is to adapt the model to the unseen distribution
• Use the test input (from unseen distribution) for the adaptation

• This direction have some benefits compare to the robust training schemes
• (i) Modifying the training may not be feasible due to computation (of re-training)
• (ii) Can utilize the information of unseen distribution with the test inputs
• (iii) does not require any assumptions about the training procedure

• E.g., domain adaptation requires domain labels during training

Test-time Adaptation

86*source: Wang et al., Tent: Fully Test-time Adaptation by Entropy Minimization, ICLR 2021
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• Prior work: Batch Normalization (BN) adaptation [Schnider et al., 2020]
• Adapting the batch statistic of the BN significantly improves the robustness
• One can obtain the test (target) mean and variance statistic with single forward

• BN adaptation can be applied to any models with BN

Tent: Fully Test-time Adaptation by Entropy Minimization [Wang et al., 2021]

87*source: Schneider et al., Improving robustness against common corruptions by covariate shift adaptation, NeurIPS 2020

𝜇-: source mean, 𝜇.: target mean, 𝜎-: source mean, 𝜎.: target mean

New batch statistics

Partial: small batch
Full: full batch
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• Tent adapt the BN parameters by minimizing the test entropy 𝑯
• 𝐻 d𝑦 = −∑, 𝑝 d𝑦, log 𝑝( d𝑦,) of model predictions d𝑦 = 𝑓P d𝑥 .
• Also, Tent use the test batch statistics for BN (i.e., fully adapt the batch statistics)

• Tent significantly outperforms the baseline robustification methods

Tent: Fully Test-time Adaptation by Entropy Minimization [Wang et al., 2021]

88*source: Wang et al., Tent: Fully Test-time Adaptation by Entropy Minimization, ICLR 2021

Use test 
batch statistics

Optimize with
entropy loss

BN statistics BN parameters
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• Limitation of prior adaptation works: require batches or entire test dataset

• For single sample adaptation, MEMO suggest to augment the test data
• In this regard, one can generate a batch with a single sample

• Then, MEMO minimize the entropy of average prediction of the batch

MEMO: Test Time Robustness via Adaptation and Augmentation [Zhang et al., 2021]

89*source: Zhang et al., Test Time Robustification of Deep Models via Adaptation and Augmentation, arXiv 2021
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• Experimental results
• MEMO significantly improve the baselines (i.e., single sample adaptation methods)

MEMO: Test Time Robustness via Adaptation and Augmentation [Zhang et al., 2021]

90*source: Zhang et al., Test Time Robustification of Deep Models via Adaptation and Augmentation, arXiv 2021
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• Robustness is critical for many real-world applications with trustworthy usage
• E.g., autonomous driving cars

• We discussed two types of venerability in modern machine learning
• Adversarial examples: a perturbation that confuses the network prediction
• Distributional shifts: where the train and test distribution differs

• To train robust classifier under adversarial examples, we mainly discussed
• Adversarial training, i.e., training the network with adversarial examples
• Test-time robustness certification via randomized smoothing

• To train robust classifier under distributional shifts, we mainly discussed
• Robust training schemes with new data augmentation schemes
• Test-time adaptation methods to new distributions

Summary
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• To see more recent works on robustness, refer to RobustBench
• This site shows the robustness performance of various defense methods
• URL: https://robustbench.github.io/

Summary: RobustBench

92*source: Croce et al., RobustBench: a standardized adversarial robustness benchmark, NeurIPS 2021

https://robustbench.github.io/
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