Robustness

AI602: Recent Advances in Deep Learning

Lecture 11

Slide made by

Jongheon Jeong , Jihoon Tack and Seojin Kim

KAIST EE & AI

1. Overview: Venerability of deep networks

- Adversarial examples
- Distributional shifts in the wild

2. Attack methods and problem scenarios

- Adversarial attacks and obfuscated gradients
- Distributional shift scenarios

3. Defense methods: Adversarial robustness

- Adversarial training
- Advanced adversarial training
- Certified robustness

4. Defense methods: Distributional shift robustness

- Robust training schemes for distributional shifts
- Test-time adaptation

Table of Contents

1. Overview: Venerability of deep networks

- Adversarial examples
- Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios
- 3. Defense methods: Adversarial robustness
 - Adversarial training
 - Advanced adversarial training
 - Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- Deep learning system have achieved state-of-art on various AI-related tasks
 - Super-human performance on image recognition problems

- Deep learning system have achieved state-of-art on various Al-related tasks
 - Super-human performance on image recognition problems
- **Problem**: ML systems are highly vulnerable
 - (a) to a small noise on input that are specifically designed by an adversary
 - (b) to distributionally shifted inputs, i.e., train and test input's distribution differs
 - In other words, **answer of machine** ≠ **answer of human**

*source: https://wordberry.com/choosing-human-vs-machine-website-translation/ 5

- Deep learning system have achieved state-of-art on various AI-related tasks
 - Super-human performance on image recognition problems
- **Problem**: ML systems are highly vulnerable
 - (a) to a small noise on input that are specifically designed by an adversary
 - (b) to distributionally shifted inputs, i.e., train and test input's distribution differs
 - In other words, **answer of machine** ≠ **answer of human**
- Even state-of-the-art-level neural networks make erroneous outputs
 - Example: GoogleNet trained on ImageNet dataset

Algorithmic Intelligence Lab

*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 6

- Deep learning system have achieved state-of-art on various Al-related tasks
 - Super-human performance on image recognition problems
- **Problem**: ML systems are highly vulnerable
 - (a) to a small noise on input that are specifically designed by an adversary
 - (b) to distributionally shifted inputs, i.e., train and test input's distribution differs
 - In other words, **answer of machine** ≠ **answer of human**
- Even state-of-the-art-level neural networks make erroneous outputs
 - Example: GoogleNet trained on ImageNet dataset

Algorithmic Intelligence Lab

*source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015

Threat of Adversarial Examples

- Adversarial examples raise issues critical to the "AI safety" in the real world
 - e.g. Autonomous vehicles may misclassify graffiti stop signs

- Furthermore, adversarial examples exist across various tasks or modalities
 - Adversarial examples for segmentation task [Xie et al., 2017]

• Adversarial examples for automatic speech recognition [Qin et al., 2019]

Clean: "The sight of you bartley to see you living and happy and successful can I never make you understand what that means to me"

Adversarial: "Hers happened to be in the same frame too but she evidently didn't care about that"

*source:

Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, ICCV 2017 Qin et al., Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition, ICML 2019 9

The Adversarial Game: Attacks and Defenses

- The literature of adversarial example commonly stated in security perspective
 - Attacks: Design inputs for a ML system to produce erroneous outputs
 - **Defenses:** Prevent the misclassification by adversarial examples

- In this perspective, specifying a **threat model** of the game is important
 - 1. Adversary goals
 - 2. Adversarial capabilities
 - 3. Adversary knowledge

- The literature of adversarial example commonly stated in security perspective
- In this perspective, specifying a threat model of the game is important
- 1. Adversary goals: Simply to cause misclassification, or else?
 - Some adversary may be interested in to attack into a target class of their choice
 - "Source-target" [Papernot et al., 2016], or "targeted" [Carlini & Wagner, 2017] attack
 - In other setting, only a specific type of misclassification may be interesting
 - e.g. Malware detection: "Benign → malware" is usually out-of-interest

*source:

Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE SSP 2017 https://devblogs.nvidia.com/malware-detection-neural-networks/

- The literature of adversarial example commonly stated in security perspective
- In this perspective, specifying a threat model of the game is important

2. Adversarial capabilities

- Reasonable constraints to adversary allow us to build more meaningful defenses
 - Too large perturbations to an image may break even the human's decision
- To date, most defenses restrict the adversary to make "small" changes to inputs

- A common choice for $d(\cdot, \cdot)$ is ℓ_p -distance (especially for image classification)
 - ℓ_{∞} -norm ball: the adversary cannot modify each pixel by more than ϵ
 - ℓ_0 -norm ball: the adversary can arbitrary change at most ϵ pixels

- The literature of adversarial example commonly stated in security perspective
- In this perspective, specifying a **threat model** of the game is important

3. Adversary knowledge

- A threat model must describe what knowledge the adversary is assumed to have
 - White-box model: Complete knowledge of the model and its parameter
 - Black-box model: No knowledge of the model
- Gray-box: Some threat models specify the various degree of access
 - A limited number of queries to the model
 - Access to the predicted probabilities, or just class
 - Access to the training data
- The guiding principle: Kerckhoffs' principle [Kerckhoffs, 1883]
 - The adversary is assumed to completely know the inner workings of the defense

white-box

black-box

*source: https://emperorsgrave.wordpress.com/2016/10/18/black-box/

https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/ 13

- A precise threat model \rightarrow well-defined measures of adversarial robustness
 - 1. "Adversarial risk": The worst-case loss L for a given perturbation budget

$$\mathbb{E}_{(x,y)\sim\mathcal{D}} \begin{bmatrix} \max_{x':d(x,x')<\epsilon} L(f(x'),y) \end{bmatrix}$$
Data distribution model

2. The average minimum-distance of the adversarial perturbation

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\min_{x'\in A_{x,y}}d(x,x')\right]$$

set of adv. examples

- For misclassification, $A_{x,y} = \{x' : f(x') \neq y\}$
- For targeted attack, $A_{x,y} = \{x' : f(x') = t\}$ for some target class t
- Key challenge: Computing adversarial risk is usually intractable
 - We have to approximate these quantities
 - Much harder problem than approximating "average-case" robustness
 - The heart reason of why evaluating adversarial robustness is difficult

- **Deep learning system** have achieved state-of-art on various AI-related tasks
 - Super-human performance on image recognition problems
- Problem: ML systems are highly vulnerable
 - (a) to a small noise on input that are specifically designed by an adversary
 - (b) to distributionally shifted inputs, i.e., train and test input's distribution differs
 - In other words, answer of machine ≠ answer of human
- Various machine learning method assumes $P_{\text{train}} = P_{\text{test}}$
 - However in real-world scenarios, distributional shift occurs $P_{\text{train}} \neq P_{\text{test}}$
 - E.g., autonomous driving car trained on Korea may not generalize on Canada

*source: https://www.researchgate.net/figure/Example-of-covariate-shift-training-and-test-data-having-different-distributions_fig1_322568228 Algorithmic Intelligence Lab

• Distributional shift occurs across various domains

- Image, e.g., natural corruptions
- Reinforcement learning (RL), e.g., offline RL
- Time-series and natural language, e.g., shift between the prior and future data
- Even on segmentation and chemical classification problems

Domain shift

Distribution shit across time [Koh et al., 2021]

*source:

https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-domain-generalization-The-training-set-is_fig1_349787277 Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild

2. Attack methods and problem scenarios

- Adversarial attacks and obfuscated gradients
- Distributional shift scenarios
- 3. Defense methods: Adversarial robustness
 - Adversarial training
 - Advanced adversarial training
 - Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild

2. Attack methods and problem scenarios

- Adversarial attacks and obfuscated gradients
- Distributional shift scenarios
- 3. Defense methods: Adversarial robustness
 - Adversarial training
 - Advanced adversarial training
 - Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- In vision ML system, the following threat model is common:
 - **1.** Goal Untargeted attack: Find $\operatorname{argmax}_{x':d(x,x') < \epsilon} L(f(x'), y)$
 - 2. Capabilities Pixel-wise restriction: $d(x, x') = ||x x'||_{\infty} := \max_{i} |x_i x'_i| \le \epsilon$
 - 3. Knowledge White-box: Full access to the target network
- Fast Gradient Sign Method (FGSM): A fast approximation of this threat model
 - Idea: In white-box setting, one can get the gradients w.r.t input of the network
- FGSM solves the maximization via linearizing the loss:

$$\max_{x':||x-x'||_{\infty} \le \epsilon} L(f(x'), y) \approx L(f(x), y) + \delta \cdot \nabla_x L(f(x), y)$$

- To meet the max-norm constraint, FGSM takes $sign(\cdot)$ on the gradient
 - Quiz. Why the use of $sign(\cdot)$ maximizes the loss?

$$x' = x + \epsilon \cdot \operatorname{sign}(\nabla_x L(f(x), y))$$

- The idea of FGSM can be directly applied to targeted attack model:
 - 1. Goal Targeted attack
 - 2. Capabilities Pixel-wise restriction: $d(x, x') = ||x x'||_{\infty} := \max_{i} |x_i x'_i| \le \epsilon$
 - 3. Knowledge White-box: Full access to the target network
- Unlike FGSM, Least-likely Class Method minimizes the loss for the target class
- Nevertheless, one could also linearize the loss *L*

$$\min_{x':||x-x'||_{\infty} \le \epsilon} L(f(x'), y_{\text{target}})$$

• This formulation leads to an attack method similar to FGSM:

$$x' = x - \epsilon \cdot \operatorname{sign}(\nabla_x L(f(x), y_{\text{target}}))$$

Now, we perform "gradient descent"

- FGSM can be generalized toward a stronger method
 - 1. Single-step update \rightarrow multi-step optimization
 - 2. $sign(\cdot) \rightarrow Generalized projection operation$
- Essentially, our goal is to solve the following optimization:

$$\max_{x' \in x + \mathcal{B}} L(f(x'), y)$$

• **Projected Gradient Descent (PGD)** is a direct way to solve this:

$$x^{t+1} = \prod_{x+\mathcal{B}} (x^t + \alpha \cdot \operatorname{sign}(\nabla_x L(f(x^t), y)))$$

projection

- Basic Iterative Method (BIM): $x^0 := x$
- Usually, **PGD** refers the case when x^0 is randomly-chosen inside $x + \mathcal{B}$
- In some sense, PGD is regarded as the strongest first-order adversary
 - It is the best way we could try using only gradient information

• **Carlini & Wagner (CW)**: Even tighter approximation is possible:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\min_{x'\in A_{x,y}}d(x,x')\right]$$

• CW attempts to directly minimize the distance $||\delta||$ in targeted attack

$$\min_{\substack{\delta:k(x+\delta)=y_{\text{target}}}} \|\delta\|_2$$

- Key challenge: How to incorporate the constraint during optimization
- CW takes the Lagrangian relaxation to allow the gradient-based optimization:

$$\min_{\delta} \|\delta\|_2 + \alpha \cdot g(x+\delta)$$

• $g(x) = \left(\max_{i \neq \text{target}} f_i(x) - f_{y_{\text{target}}}(x)\right)^+ \max(0, x)$

• g(x) attains the minimum when x is an adversarial example

Experimental Results

• CW finds much smaller avg. minimum-distance than DeepFool

		CIFAR-10		CIE	AR-100	SVHN		
		L_{∞}	Acc.	L_{∞}	Acc.	L_{∞}	Acc.	
	Clean	0	95.19%	0	77.63%	0	96.38%	
	FGSM	0.21	20.04%	0.21	4.86%	0.21	56.27%	
DenseNet	BIM	0.22	0.00%	0.22	0.02%	0.22	0.67%	
	DeepFool	0.30	0.23%	0.25	0.23%	0.57	0.50%	
	CW	0.05	0.10%	0.03	0.16%	0.12	0.54%	
	Clean	0	93.67%	0	78.34%	0	96.68%	
	FGSM	0.25	23.98%	0.25	11.67%	0.25	49.33%	
ResNet	BIM	0.26	0.02%	0.26	0.21%	0.26	2.37%	
	DeepFool	0.36	0.33%	0.27	0.37%	0.62	13.20%	
	CW	0.08	0.00%	0.08	0.01%	0.15	0.04%	

• Comparison of images generated from several attacks [Y. Song et al., 2018]

It is the most similar to clean image

```
*source:
```

Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017 Y. Song et al., PixelDefend, ICLR 2018

Algorithmic Intelligence Lab

• Some adversarial examples strongly transfer across different networks

- Motivation: The transferability enables us to attack a black-box model
 - Idea: Finding an adversarial example via white-box attack on the local substitute model
 - **Goal:** Training a local substitute model via FGSM-based adversarial dataset augmentation
 - FGSM-based adversarial examples are computed to change the prediction of the black-box model

$$x' = x + \epsilon \cdot \operatorname{sign}(\nabla_x L(f(x), y_{\operatorname{pred}}))$$
• Method:

Dataset

Dataset

Training

Substitute Model

Data augmentation

*Labeling the adversarial dataset with the black box model

Adversarial Dataset

Substitute Model

White-box attack: FGSM

*prediction of the black box model is used to white-box attack

Experimental Results

- Black-box attack to the Amazon and Google Oracle
- Two types of architecture:
 - **DNN**: Deep Neural Network
 - LR: Logistic Regression

		Ama	azon	Google		
Epochs	Queries	DNN	LR	DNN	LR	
$\rho = 3$	800	87.44	96.19	84.50	88.94	
ho = 6	6,400	96.78	96.43	97.17	92.05	

Misclassification rates (%)

Number of queries to train the local substitute model

- In ICLR 2018, 9 defense papers were published including adversarial training:
 - Adversarial training [Madry et al., 2018]
 - Thermometer Encoding [Buckman et al., 2018]
 - Input Transformations [Guo et al., 2018]
 - Local Intrinsic Dimensionality [Ma et al., 2018]
 - Stochastic Activation Pruning [Dhillon et al., 2018]
 - Defense-GAN [Samangouei et al., 2018]
 - PixelDefend [Song et al., 2018]

Input transformation [Guo et al., 2018]

Defense-GAN [Samangouei et al., 2018]

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples, ICML 2018

- In ICLR 2018, 9 defense papers were published including adversarial training:
 - Adversarial training [Madry et al., 2018]
 - Thermometer Encoding [Buckman et al., 2018]
 - Input Transformations [Guo et al., 2018]
 - Local Intrinsic Dimensionality [Ma et al., 2018]
 - Stochastic Activation Pruning [Dhillon et al., 2018]
 - Defense-GAN [Samangouei et al., 2018]
 - PixelDefend [Song et al., 2018]
 - ...
- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - **"Fake" defense?**: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

Algorithmic Intelligence Lab

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples, ICML 2018

- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - "Fake" defense?: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder
 - They identified **three obfuscation techniques** used in the defenses

Obfuscation	Defenses					
	Existence of a non-differentiable layer					
Shattered Gradients	 Thermometer Encoding [Buckman et al., 2018] Input Transformation [Guo et al., 2018] Local Intrinsic Dimensionality (LID) [Ma et al., 2018] 					
	Artificial randomness on computing gradient					
Stochastic Gradients	 Stochastic Activation Pruning (SAP) [Dhillon et al., 2018] Mitigating Through Randomization [Xie et al., 2018] 					
Exploding & Vanishing	Multiple iterations, or extremely deep DNN					
Gradients	 Pixel Defend [Song et al., 2018] Defense-GAN [Samangouei et al., 2018] 					

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples, ICML 2018

- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - **"Fake" defense?**: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder
- Those kinds of defenses can be easily bypassed by **3 simple tricks**
 - 1. Backward Pass Differentiable Approximation (BPDA)
 - Replace the non-differentiable parts only at backward pass
 - Use some differentiable approximative function

- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - "Fake" defense?: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder
- Those kinds of defenses can be easily bypassed by **3 simple tricks**
 - 2. Expectation Over Transformation (EOT)
 - Take the expectation of attacks to mitigate stochastic defenses

$$\max_{x':d(x,x')<\epsilon} \mathbb{E}_{t\sim T}[L(f(t(x')),y)]$$

Random transformation

- 3. Reparameterization
 - Replace deep or recurrent parts by simpler differentiable function

- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - "Fake" defense?: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder
- Those kinds of defenses can be easily bypassed by **3 simple tricks**
 - 6 of the 9 defense papers were completely broken using those tricks
 - 1 of the 9 was partially broken (Defense-GAN)
 - Adversarial training [Madry et al. 2018; Na et al., 2018] were the only survivals

Defense	Туре	Behavior	Attack technique	
Thermometer Encoding	Shattered	Black-box is better	BPDA	
Local Intrinsic Dimensionality (LID)	Shattered	Unbounded attack do not reach 100%	BPDA	
Input Transformation	Shattered	Black-box is better	BPDA, EOT	
Stochastic Activation Pruning (SAP)	Stochastic, Exploding		modified EOT	
Mitigating Through Randomization	Stochastic		EOT	
Pixel Defend	Vanishing		BPDA	
Defense-GAN	Vanishing	Unbounded attack do not reach 100%	BPDA	

Algorithmic Intelligence Lab

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples, ICML 2018

- Athalye et al. (ICML 2019): In fact, most of them are "fake" defenses
 - "Fake" defense?: They don't aim the non-existence of adversarial example
 - Rather, they aim to obfuscate the gradient information
 - Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder
- Then... what should we do?
 - At least, we have to do sanity checks on evaluating defenses
 - Do your best to show that the proposed defense is a "real" defense
 - Some "red-flags" indicating obfuscated gradients

① One-step attacks perform better than iterative attacks

Black-box attacks are better than white-box attacks

③ Unbounded attacks do not reach 100% success

④ Random sampling finds adversarial examples better

AutoAttack is the state-of-the art attack method

- AutoAttack uses four advanced attacks, and check whether any attack succeeds
- Two white-box attacks: APGD-untargeted, APGD-targeted [Croce et al., 2020]
- Two black-box attacks: FAB [Croce et al., 2020], Square [Andriushchenko et al., 2020]

Experimental Results

• AutoAttack largely reduced the obfuscated gradient issues in prior evaluations

#	paper	clean	APGD _{CE}	$\mathbf{APGD}_{\mathbf{DLR}}^{\mathrm{T}}$	FAB ^T	Square	AA	reported	reduct.
CIF	AR-10 - l_∞ - $\epsilon=8/255$								
1	(Carmon et al., 2019)	89.69	61.74	<u>59.54</u>	60.12	66.63	59.53	62.5	-2.97
2	(Alayrac et al., 2019)	86.46	60.17	56.27	56.81	66.37	56.03	56.30	-0.27
3	(Hendrycks et al., 2019)	87.11	57.23	<u>54.94</u>	55.27	61.99	54.92	57.4	-2.48
4	(Rice et al., 2020)	85.34	57.00	53.43	53.83	61.37	53.42	58	-4.58
5	(Qin et al., 2019)	86.28	55.70	52.85	53.28	60.01	52.84	52.81	0.03
6	(Engstrom et al., 2019)	87.03	51.72	49.32	49.81	58.12	49.25	53.29	-4.04
7	(Kumari et al., 2019)	87.80	51.80	49.15	49.54	58.20	49.12	53.04	-3.92
8	(Mao et al., 2019)	86.21	49.65	47.44	47.91	56.98	47.41	50.03	-2.62
9	(Zhang et al., 2019a)	87.20	46.15	44.85	45.39	55.08	44.83	47.98	-3.15
10	(Madry et al., 2018)	87.14	44.75	44.28	44.75	53.10	44.04	47.04	-3.00
11	(Pang et al., 2020)	80.89	57.07	43.50	44.06	49.73	43.48	55.0	-11.52
12	(Wong et al., 2020)	83.34	45.90	43.22	43.74	53.32	43.21	46.06	-2.85
13	(Shafahi et al., 2019)	86.11	43.66	41.64	43.44	51.95	41.47	46.19	-4.72
14	(Ding et al., 2020)	84.36	50.12	41.74	42.47	55.53	41.44	47.18	-5.74
15	(Moosavi-Dezfooli et al., 2019)	83.11	41.72	38.50	38.97	47.69	38.50	41.4	-2.90
16	(Zhang & Wang, 2019)	89.98	64.42	37.29	38.48	59.12	36.64	60.6	-23.96
17	(Zhang & Xu, 2020)	90.25	71.40	37.54	38.99	66.88	36.45	68.7	-32.25

Algorithmic Intelligence Lab

*source: Croce et al., Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks, ICML 2020

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild

2. Attack methods and problem scenarios

- Adversarial attacks and obfuscated gradients
- Distributional shift scenarios
- 3. Defense methods: Adversarial robustness
 - Adversarial training
 - Advanced adversarial training
 - Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- Shape and texture bias [Geirhos et al., 2019]
 - Suggest benchmarks to measure whether the model is biased to textures or shapes
 - Moreover, found that the ImageNet-trained models are biased to textures

Example of Stylized-ImageNet (SIN): only change the style (i.e., the texture) of the given input

* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019 Algorithmic Intelligence Lab

- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- Shape and texture bias [Geirhos et al., 2019]
 - Suggest benchmarks to measure whether the model is biased to textures or shapes
 - Moreover, found that the ImageNet-trained models are biased to textures

(a) Texture image
81.4% Indian elephant
10.3% indri
8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox
3.3% Siamese cat

(c) Texture-shape cue conflict
 63.9% Indian elephant
 26.4% indri
 9.6% black swan

* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019

- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- Common corruption [Hendrycks et al., 2019]
 - Suggest 15 types of corruptions that highly degrade the classifier's performance

- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- Domain shifts [Hendrycks et al., 2019]
 - Suggest 16 types of renditions of ImageNet classes, i.e., domain shift

Painting

Sculpture

Embroidery

- Various distributional shift scenarios have been proposed
- We will introduce some scenarios that are widely considered in recent works
- WILDS [Koh et al., 2019]
 - WILDS consists of various real-world distributional shift scenarios
 - E.g., distributional shifts on the medical imaging and natural language processing

		Domain generalization				Subpopulation shift Domain generalization + subpopulation s				ion shift
Dataset	iWildCam	Camelyon17	RxRx1	OGB-MolPCBA	GlobalWheat	CivilComments	FMoW	PovertyMap	Amazon	Py150
Input (x)	camera trap photo	o tissue slide	cell image	molecular graph	wheat image	online comment	satellite image	satellite image	product review	code
Prediction (y)	animal species	tumor	perturbed gene	e bioassays v	wheat head bbo	x toxicity	land use	asset wealth	sentiment	autocomplete
Domain (d)	camera	hospital	batch	scaffold	location, time	demographic	time, region	country, rural-urb	oan user	git repository
# domains	323	5	51	120,084	47	16	16 x 5	23 x 2	2,586	8,421
# examples	203,029	455,954	125,510	437,929	6,515	448,000	523,846	19,669	539,502	150,000
Train example						What do Black and LGBT people have to do with bicycle licensing?		M	Overall a solid package that has a good quality of construction for the price.	import numpy as np norm=np
Test example						As a Christian, I will not be patronizing any of those businesses.			I *loved* my French press, it's so perfect and came with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>
Adapted from	Beery et al. 2020	Bandi et al. 2018	Taylor et al. 2019	Hu et al. 2020	David et al. 2021	Borkan et al. 2019	Christie et al. 2018	Yeh et al. 2020	Ni et al. 2019	Raychev et al. 2016

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios

3. Defense methods: Adversarial robustness

- Adversarial training
- Advanced adversarial training
- Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios

3. Defense methods: Adversarial robustness

- Adversarial training
- Advanced adversarial training
- Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- **Motivation:** An optimization view on attacks and defenses
 - Recall: Adversarial attacks aim to find inputs so that:

$$\max_{x':d(x,x')<\epsilon} L(f(x'),y)$$

• In the viewpoint of defense, our goal is to minimize the adversarial risk:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{x':d(x,x')<\epsilon}L(f(x'),y)\right]$$

• Adversarial training (AT) aims to minimize adversarial risk in training

- Challenge: Computing the inner-maximization is difficult
- Idea: Use strong attack methods to approximate the inner-maximization
 - e.g. FGSM, PGD, DeepFool, ...

• Experimental results

• MNIST results

Method	Steps	Restarts	Source	Accuracy
Natural	-	-	-	98.8%
FGSM	-	-	А	95.6%
PGD	40	1	Α	93.2%
PGD	100	1	Α	91.8%
PGD	40	20	Α	90.4%
PGD	100	20	Α	89.3%
Targeted	40	1	Α	92.7%
CW	40	1	Α	94.0%
CW+	40	1	Α	93.9%

Method	Steps	Restarts	Source	Accuracy
FGSM	-	-	A'	96.8%
PGD	40	1	A'	96.0%
PGD	100	20	A'	95.7%
CW	40	1	A'	97.0%
CW+	40	1	A'	96.4%
FGSM	-	-	В	95.4%
PGD	40	1	В	96.4%
CW+	-	-	В	95.7%

Black-box

- White-box
- CIFAR10 results

Method	Steps	Source	Accuracy
Natural	-	-	87.3%
FGSM	-	Α	56.1%
PGD	7	Α	50.0%
PGD	20	Α	45.8%
CW	30	Α	46.8%

Method	Steps	Source	Accuracy
FGSM	-	A'	67.0%
PGD	7	A'	64.2%
CW	30	A'	78.7%
FGSM	-	Anat	85.6%
PGD	7	Anat	86.0%

White-box

Black-box

- Motivation: Robust model → accuracy reduction? [Tsipras et al., 2019]
- Consider (X, Y) modeled by $\eta(x)$
 - Bayes optimal classifier: $sign(2\eta(x) 1)$
- We are using an "accuracy-biased" loss function
- Can we exploit this trade-off for better robustness?

- We re-write the relationship between **robust error** and **natural error**
- Consider a binary classification with $Y \in \{-1, 1\}$
 - Natural error: $\mathcal{R}_{\mathrm{nat}}(f) := \mathbb{E}_{(\boldsymbol{X},Y)\sim\mathcal{D}} \mathbf{1}[f(\boldsymbol{X})Y \leq 0]$
 - **Robust error** under *ε*-perturbation:
 - [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

 $\mathcal{R}_{\rm rob}(f) := \mathbb{E}_{(\boldsymbol{X},Y)\sim\mathcal{D}} \mathbf{1}[\exists \boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X},\epsilon) \text{ s.t. } f(\boldsymbol{X}')Y \leq 0]$

- We re-write the relationship between **robust error** and **natural error**
- Consider a binary classification with $Y \in \{-1, 1\}$
 - Natural error: $\mathcal{R}_{nat}(f) := \mathbb{E}_{(\boldsymbol{X},Y)\sim\mathcal{D}} \mathbf{1}[f(\boldsymbol{X})Y \leq 0]$
 - **Robust error** under *ε*-perturbation:
 - [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

$$\mathcal{R}_{\rm rob}(f) := \mathbb{E}_{(\boldsymbol{X},Y)\sim\mathcal{D}} \mathbf{1}[\exists \boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X},\epsilon) \text{ s.t. } f(\boldsymbol{X}')Y \leq 0]$$

• $\mathbb{B}(\mathrm{DB}(f), \epsilon) := \{ \boldsymbol{x} : \exists \boldsymbol{x}' \in \mathbb{B}(\boldsymbol{x}, \epsilon) \text{ s.t. } f(\boldsymbol{x}) f(\boldsymbol{x}') \leq 0 \}$

• Boundary error identifies the gap between $\mathcal{R}_{rob}(f)$ and $\mathcal{R}_{nat}(f)$

$$\mathcal{R}_{
m rob}(f) = \mathcal{R}_{
m nat}(f) + \mathcal{R}_{
m bdy}(f)$$

• Goal: Find \hat{f} such that $\mathcal{R}_{rob}(\hat{f}) - \mathcal{R}_{nat}^*$ is small $\mathcal{R}_{rob}(\hat{f}) - \mathcal{R}_{nat}^* = (\mathcal{R}_{nat}(\hat{f}) - \mathcal{R}_{nat}^*) + \mathcal{R}_{bdy}(\hat{f}) \leq \delta$ Natural error gap

• Theorem 1 (upper bound, informal). Let ϕ be a usual surrogate loss. We have: $\mathcal{R}_{rob}(f) - \mathcal{R}_{nat}^* = (\mathcal{R}_{nat}(f) - \mathcal{R}_{nat}^*) + \mathcal{R}_{bdy}(f)$ $\leq (\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathcal{R}_{bdy(f)}$ (Bartlett et al., 2006) $\leq (\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathbb{E} \left[\max_{\mathbf{X}' \in \mathbb{B}(\mathbf{X}, \epsilon)} \phi(f(\mathbf{X}')f(\mathbf{X})/\underline{\lambda}) \right]$

Theorem 2 (lower bound, informal). for any ξ > 0, there exist D, f, and λ > 0 such that:

$$\mathcal{R}_{\rm rob}(f) - \mathcal{R}_{\rm nat}^* \ge (\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathbb{E}\left[\max_{\mathbf{X}' \in \mathbb{B}(\mathbf{X}, \epsilon)} \phi(f(\mathbf{X}')f(\mathbf{X})/\lambda)\right] - \xi$$

• The upper bound is tight if there is no assumption on ${\mathcal D}$

- Goal: Find \hat{f} such that $\mathcal{R}_{rob}(\hat{f}) \mathcal{R}_{nat}^*$ is small $\mathcal{R}_{rob}(\hat{f}) - \mathcal{R}_{nat}^* = (\mathcal{R}_{nat}(\hat{f}) - \mathcal{R}_{nat}^*) + \mathcal{R}_{bdy}(\hat{f}) \le \delta$
- The theorems naturally suggests a new surrogate loss:

$$\min_{f} \mathbb{E} \left[\frac{\mathcal{L}(f(\boldsymbol{X}), \boldsymbol{Y})}{\operatorname{accuracy}} + \max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \mathcal{L}(f(\boldsymbol{X}), f(\boldsymbol{X}')) / \lambda \right]$$

- TRADES: TRadeoff-inspired Adv. DEfense via Surrogate-loss minimization
 - λ : The **balancing** hyper-parameter
 - We can boost the robust accuracy with little loss of natural accuracy
- Key difference: TRADES finds X' by solving $\max_{X' \in \mathbb{B}(X, \epsilon)} L(f(X), f(X')) / \lambda$
 - Adversarial training [Madry et al., 2018]: $\max_{{m X}'\in {\mathbb B}({m X},\epsilon)} L(f({m X}'),Y)$
- Up to now, TRADES is regarded as the state-of-the-art defense method

Experimental results

White-box attack results (CIFAR-10 & MNIST)

Table 5. Comparisons of TRADES with prof defense models under white-box attacks.									
Defense	Defense type	Under which attack	Dataset	Distance	$\mathcal{A}_{\mathrm{nat}}(f)$	$\mathcal{A}_{\mathrm{rob}}(f)$			
[BRRG18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	0%			
[MLW ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	5%			
[DAL ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	0%			
[SKN ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	9%			
[NKM17]	gradient mask	[ACW18]	CIFAR10	$0.015 \ (\ell_{\infty})$	-	15%			
[WSMK18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	27.07%	23.54%			
[MMS ⁺ 18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	87.30%	47.04%			
[ZSLG16]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	94.64%	0.15%			
[KGB17]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	85.25%	45.89%			
[RDV17]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	95.34%	0%			
TRADES $(1/\lambda = 1)$	regularization	FGSM ^{1,000} (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	48.90%			
TRADES $(1/\lambda = 6)$	regularization	FGSM ^{1,000} (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	56.43%			
TRADES $(1/\lambda = 1)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	49.14%			
TRADES $(1/\lambda = 6)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	56.61%			
TRADES $(1/\lambda = 1)$	regularization	DeepFool (ℓ_{∞})	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	59.10%			
TRADES $(1/\lambda = 6)$	regularization	DeepFool (ℓ_{∞})	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	61.38%			
TRADES $(1/\lambda = 1)$	regularization	LBFGSAttack	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	84.41%			
TRADES $(1/\lambda = 6)$	regularization	LBFGSAttack	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	81.58%			
TRADES $(1/\lambda = 1)$	regularization	MI-FGSM	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	51.26%			
TRADES $(1/\lambda = 6)$	regularization	MI-FGSM	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	57.95%			
TRADES $(1/\lambda = 1)$	regularization	C&W	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	84.03%			
TRADES $(1/\lambda = 6)$	regularization	C&W	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	81.24%			
[SKC18]	gradient mask	[ACW18]	MNIST	$0.005(\ell_2)$	-	55%			
[MMS ⁺ 18]	robust opt.	FGSM ⁴⁰ (PGD)	MNIST	$0.3(\ell_{\infty})$	99.36%	96.01%			
TRADES $(1/\lambda = 6)$	regularization	FGSM ^{1,000} (PGD)	MNIST	$0.3(\ell_{\infty})$	99.48%	95.60%			
TRADES $(1/\lambda = 6)$	regularization	FGSM ⁴⁰ (PGD)	MNIST	$0.3(\ell_{\infty})$	99.48%	96.07%			
TRADES $(1/\lambda = 6)$	regularization	C&W	MNIST	$0.005(\ell_2)$	99.48%	99.46%			

Table 5: Comparisons of TRADES with prior defense models under white-box attacks

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios

3. Defense methods: Adversarial robustness

- Adversarial training
- Advanced adversarial training
- Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- Problem of AT: Robust overfitting
 - The robust error of test set, gradually increases from the middle of the training
 - This phenomenon occurs across dataset, architectures and objectives (e.g., TRADES)
- Early stopping is an effective way to prevent the overfitting
- Most of recent advanced AT methods aims to resolve this issue

Comparison of methods for preventing overfitting

	Robust Test Error (%)				
Reg Method	Final	BEST	DIFF		
EARLY STOPPING W/ VAL	46.9	46.7	0.2		
ℓ_1 REGULARIZATION	53.0 ± 0.39	48.6	4.4		
ℓ_2 regularization	55.2 ± 0.4	46.4	55.2		
CUTOUT	48.8 ± 0.79	46.7	2.1		
MIXUP	49.1 ± 1.32	46.3	2.8		
Semi-supervised	47.1 ± 4.32	40.2	6.9		

Adversarial Weight Perturbation [Wu et al., 2020]

- Observation: model with the high robustness have a smooth loss landscape
- We measure the loss landscape of the adversarial risk
 - (1) During AT, the best model (at 100 epoch) has the most smooth landscape

• (2) The AT objectives with strong robustness tend to have a smoother landscape

Adversarial Weight Perturbation (AWP)

• Optimize the loss on the worst case weight parameter to force the smoothness

$$\begin{split} \min_{\mathbf{w}} \max_{\mathbf{v} \in \mathcal{V}} \rho(\mathbf{w} + \mathbf{v}) &\to \min_{\mathbf{w}} \max_{\mathbf{v} \in \mathcal{V}} \frac{1}{n} \sum_{i=1}^{n} \max_{\|\mathbf{x}_{i}' - \mathbf{x}_{i}\|_{p} \leq \epsilon} \ell(\mathbf{f}_{\mathbf{w} + \mathbf{v}}(\mathbf{x}_{i}'), y_{i}), \\ \\ \text{Maximize the weight perturbation} \end{split}$$

Maximize the input perturbation, i.e., adversarial training

• In detail, AWP use a projected gradient decent to attack the weight parameters

$$\mathbf{v} \leftarrow \Pi_{\gamma} \big(\mathbf{v} + \eta_2 \frac{\nabla_{\mathbf{v}} \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{f}_{\mathbf{w}+\mathbf{v}}(\mathbf{x}'_i), y_i)}{\|\nabla_{\mathbf{v}} \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{f}_{\mathbf{w}+\mathbf{v}}(\mathbf{x}'_i), y_i)\|} \|\mathbf{w}\| \big),$$

- Experimental results
 - AWP effectively prevents the overfitting issues of AT

Threat Model	Method	SVHN		CIFAR-10		CIFAR-100	
		Best	Last	Best	Last	Best	Last
L_{∞}	AT	53.36	44.49	52.79	44.44	27.22	20.82
	AT-AWP	59.12	55.87	55.39	54.73	30.71	30.28
L_2	AT	66.87	65.03	69.15	65.93	41.33	35.27
	AT-AWP	72.57	67.73	72.69	72.08	45.60	44.66

• Moreover, AWP achieves the state-of-the-art robustness on various benchmarks

Defense	Natural	FGSM	PGD-20	PGD-100	CW_∞	SPSA	AA
AT	86.07	61.76	56.10	55.79	54.19	61.40	52.60 [¶]
AT-AWP	85.57	62.90	58.14	57.94	55.96	62.65	54.04
TRADES	84.65	61.32	56.33	56.07	54.20	61.10	53.08
TRADES-AWP	85.36	63.49	59.27	59.12	57.07	63.85	56.17
MART	84.17	61.61	58.56	57.88	54.58	58.90	51.10
MART-AWP	84.43	63.98	60.68	59.32	56.37	62.75	54.23
Pre-training	87.89	63.27	57.37	56.80	55.95	62.55	54.92
Pre-training-AWP	88.33	66.34	61.40	61.21	59.28	65.55	57.39
RST	89.69	69.60	62.60	62.22	60.47	67.60	59.53
RST-AWP	88.25	67.94	63.73	63.58	61.62	68.72	60.05

- Recently, data augmentations are used in AT to improve the robustness
 - Several works research the effect of **conventional augmentations** in AT

AutoAugment [Cubuk et al., 2019]

- For instance, CutMix can prevent the robust overfitting
 - Additionally using weight averaging (WA) can further improve the robustness

*source:

Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2019 Cubuk et al., AutoAugment: Learning Augmentation Strategies from Data, CVPR 2020 Rebuffi et al, Data Augmentation Can Improve Robustness, NeurIPS 2021 57

- Recently, data augmentations are used in AT to improve the robustness
 - Other works find that using generating more training data, is highly effective in AT

DDPM [Ho et al., 2019]

- Using the generated data (from **DDPM**) for AT, improves the robustness
 - As DDPM is unconditional generative model, one should use pseudo-labels from the pre-trained classifier (not adversarially trained classifier)
 - DDPM augmentation achieves the state-of-the art performance

Model	DATASET	Norm	CLEAN	Robust
Wu et al. [76] (WRN-34-10) Gowal et al. [30] (WRN-70-16) Ours (DDPM) (WRN-28-10) Ours (DDPM) (WRN-70-16) Ours (100M DDPM)* (ResNet-18) Ours (100M DDPM)* (WRN-28-10) Ours (100M DDPM)* (WRN-70-16)	Cifar-10	ℓ_∞	85.36% 85.29% 85.97% 86.94% 87.35% 87.50% 88.74%	56.17% 57.14% 60.73% 63.58% 58.50% 63.38% 66.10%

*source:

Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS 2020 Gowal et al., Improving Robustness using Generated Data, NeurIPS 2021 58

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios

3. Defense methods: Adversarial robustness

- Adversarial training
- Advanced adversarial training
- Certified robustness
- 4. Defense methods: Distributional shift robustness
 - Robust training schemes for distributional shifts
 - Test-time adaptation

- Adversarial training has achieved reasonable adversarial robustness
 - Adversarially-trained networks are resistant for the corresponding threat model

- Adversarial training has achieved reasonable adversarial robustness
 - Adversarially-trained networks are resistant for the corresponding threat model
- **Problem**: The conjectured robustness may be broken under a stronger "adaptive" attack mechanism
 - In other words, we can not guarantee the robustness under unseen threat model

- Adversarial training has achieved reasonable adversarial robustness
 - Adversarially-trained networks are resistant for the corresponding threat model
- **Problem**: The conjectured robustness may be broken under a stronger "adaptive" attack mechanism
 - In other words, we can not guarantee the robustness under unseen threat model
- The most that can be said is that a specific attack was unable to find

- For a classifier *f* , we want to **'certify' the robustness** for the given input *x*
 - For a radius r, is there a perturbation δ with $||\delta|| \le r$ where $f(x) \ne f(x + \delta)$?
- Exact certification
 - Report whether or not there exists such perturbation δ
 - Satisfiability modulo theories [Katz et al., 2017]
 - Mixed integer linear programming [Cheng et al., 2017]
 - Can't be scaled beyond moderate-sized networks
- Conservative certification
 - Certify that there is no such perturbation ${oldsymbol \delta}$ or abstain
 - Bound the global Lipschitz constants [Gouk et al., 2018]
 - Measure the local smoothness [Hein et al., 2017]
 - Assume specific network architectures (e.g., ReLU activations)
- Both approaches have some limits to be applied to modern architectures

Randomized Smoothing [Cohen et al., 2019]

- Problem: Directly training a robust DNN *f* is challenging
 - Randomized smoothing instead constructs another classifier g from f
 - The l_2 -norm robust radius of g is lower-bounded in terms of f
 - Note: *f* does not have to be perfectly smooth for adversarial robustness

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

- Problem: Directly training a robust DNN f is challenging
 - Randomized smoothing instead constructs another classifier g from f
 - The l_2 -norm robust radius of g is lower-bounded in terms of f
 - Note: *f* does not have to be perfectly smooth for adversarial robustness

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

Theorem 1. Let $f : \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let g be defined as in (1). Suppose $c_A \in \mathcal{Y}$ and $\underline{p}_A, \overline{p}_B \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\varepsilon) = c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \neq c_A} \mathbb{P}(f(x+\varepsilon) = c) \quad (2)$$

Then $g(x + \delta) = c_A$ for all $\|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right) \tag{3}$$

The certified radius R is large when:

- The noise level σ is high
- The probability of the top class c_A is high
- The probabiliy of each other class is low

- Problem: Directly training a robust DNN f is challenging
 - Randomized smoothing instead constructs another classifier g from f
 - The l_2 -norm robust radius of g is lower-bounded in terms of f
 - Note: *f* does not have to be perfectly smooth for adversarial robustness

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

Theorem 1. Let $f : \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let g be defined as in (1). Suppose $c_A \in \mathcal{Y}$ and $\underline{p}_A, \overline{p}_B \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\varepsilon) = c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \neq c_A} \mathbb{P}(f(x+\varepsilon) = c) \quad (2)$$

Then $g(x + \delta) = c_A$ for all $\|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right) \tag{3}$$

Theorem 2. Assume $\underline{p}_A + \overline{p}_B \leq 1$. For any perturbation δ with $\|\delta\|_2 > R$, there exists a base classifier f consistent with the class probabilities (2) for which $g(x + \delta) \neq c_A$.

- If (2) is all that is known about *f*, then the **robustness guarantee is** *tight*
- In other words, it is **impossible to certify an** l_2 **ball with radius larger than** R

- Problem: Directly training a robust DNN f is challenging
 - + Randomized smoothing instead constructs another classifier g from f
 - The l_2 -norm robust radius of g is lower-bounded in terms of f
 - Note: *f* does not have to be perfectly smooth for adversarial robustness

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

Intractability of "averaging over Gaussian noise" -> Monte Carlo & hypothesis test

Theorem 1. Let $f : \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let g be defined as in (1). Suppose $c_A \in \mathcal{Y}$ and $p_A, \overline{p_B} \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\varepsilon)=c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \neq c_A} \mathbb{P}(f(x+\varepsilon)=c) \quad (2)$$

Then
$$g(x + \delta) = c_A$$
 for all $\|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right) \tag{3}$$

- Problem: Directly training a robust DNN f is challenging
 - Randomized smoothing instead constructs another classifier g from f
 - The l_2 -norm robust radius of g is lower-bounded in terms of f
 - Note: *f* does not have to be perfectly smooth for adversarial robustness

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

• Intractability of "averaging over Gaussian noise" -> Monte Carlo & hypothesis test

certify the robustness of g around x
function CERTIFY(
$$f, \sigma, x, n_0, n, \alpha$$
)
counts0 \leftarrow SAMPLEUNDERNOISE(f, x, n_0, σ)
 $\hat{c}_A \leftarrow$ top index in counts0
counts \leftarrow SAMPLEUNDERNOISE(f, x, n, σ)
 $\underline{p}_A \leftarrow$ LOWERCONFBOUND(counts[\hat{c}_A], $n, 1 - \alpha$)
if $\underline{p}_A > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p}_A)$
else return ABSTAIN

Proposition 2. With probability at least $1 - \alpha$ over the randomness in CERTIFY, if CERTIFY returns a class \hat{c}_A and a radius R (i.e. does not abstain), then g predicts \hat{c}_A within radius R around x: $g(x + \delta) = \hat{c}_A \forall ||\delta||_2 < R$.

- Experimental results:
 - The base classifier f is trained with cross-entropy loss of Gaussian augmentations

$$\mathcal{L}^{nat} \coloneqq \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)} [\mathcal{L}(F(x+\epsilon), y)]$$

$$\int$$
Softmax outputs of f

- The choice of σ determines the trade-off between the accuracy and robustness

• Q. Can we train f more effectively to yield **more robust** g?

- Idea: Adversarial training of the smoothed classifier g (approx.)
 - How to attack the smoothed classifier g through the base classifier f?
 - Recall: g is the most provable output of f under Gaussian augmentation

$$g(x) \coloneqq \operatorname{argmax}_{c \in \mathcal{Y}} \left\{ \mathbb{P}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}(f(x + \epsilon) = c) \right\}$$

• Define **"soft" smoothed classifier** *G* (corresponding to *g*) as follows:

$$G(x) \coloneqq \left(F * \mathcal{N}(0, \sigma^2 I)\right)(x) = \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)}[F(x + \delta)]$$
Softmax outputs of f

- Adversarial attack is performed on the soft smoothed classifier G
- Note: Attack on g does not yield a valid gradient because of argmax function

- Idea: Adversarial training of the smoothed classifier g (approx.)
 - Adversarial attack is performed on the soft smoothed classifier G

$$G(x) \coloneqq (F * \mathcal{N}(0, \sigma^2 I))(x) = \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)}[F(x + \delta)]$$

$$\int \int Softmax \text{ outputs of } f$$

• One can find **an adversarial example** \hat{x} of a clean sample x w.r.t. G as follows:

$$\hat{x} \coloneqq \max_{||x'-x||_2 \le \epsilon} (\mathcal{L}(G(x'), y))$$
$$= \max_{||x'-x||_2 \le \epsilon} (-\log \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)} \left[\left(F(x' + \delta) \right)_y \right]$$

- Idea: Adversarial training of the smoothed classifier g (approx.)
 - One can find **an adversarial example** \hat{x} of a clean sample x as follows:

$$\hat{x} \coloneqq \max_{||x'-x||_2 \le \epsilon} (\mathcal{L}(G(x'), y))$$
$$= \max_{||x'-x||_2 \le \epsilon} \left(-\log \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)} \left[\left(F(x' + \delta) \right)_y \right] \right)$$

• The gradient ascent step is performed on x' via Monte-Carlo approximation

$$\nabla_{x'}(\mathcal{L}(G(x'), y) = \nabla_{x'}\left(-\log \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)}\left[\left(F(x' + \delta)\right)_y\right]\right)$$
$$\approx \nabla_{x'}\left(-\log \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma^2 I)}\left(\frac{1}{m}\sum_{i=1}^m F(x' + \delta_i)_y\right)\right)$$

• Then, the adversarial example \hat{x} w.r.t. G is used to train the base classifier f
- Experiments
 - Comparison of [Cohen et al., 2019]
 - Improves the certified accuracy of the smoothed classifier g

Table 1: Certified top-1 accuracy of our best ImageNet classifiers at various ℓ_2 radii.

ℓ_2 Radius (ImageNet) 0).5	1.0	1.5	2.0	2.5	3.0	3.5
COHEN ET AL. [6] (%) 4 OURS (%) 4	49	37	29	19	15	12	9
	56	45	38	28	26	20	17

Table 2: Certified top-1 accuracy of our best CIFAR-10 classifiers at various ℓ_2 radii.

ℓ_2 Radius (CIFAR-10)	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25
COHEN ET AL. [6] (%)	61	43	32	22	17	13	10	7	4
OURS (%)	73	58	48	38	33	29	24	18	16

• However, it requires:

- High computational cost due to the adversarial attack
- Many hyperparameters such as
 - (1) ϵ : maximum allowed l_2 perturbation
 - (2) *T*: number of steps of the attack
 - (3) *m*: the number of noise samples for Monte Carlo approximation

- Idea: Maintain the prediction consistency over Gaussian noise
 - 0-1 loss of smoothed classifier [Zhai et al., 2020]

$$\mathbb{E}_{(x,y)\in\mathbb{D}}\begin{bmatrix}1-\mathbb{1}_{R(g;x,y)\geq\epsilon}\end{bmatrix} = \mathbb{E}\begin{bmatrix}\mathbb{1}_{g(x)\neq y}\end{bmatrix} + \mathbb{E}[\mathbb{1}_{g(x)=y,R(g;x,y)<\epsilon}]$$
Natural error
Indicator function

- **"Consistent" prediction** in logit space over Gaussian noise (i.e., $F(x + \delta)$ is constant) implies $\mathbb{P}_{\delta}(f(x + \delta) = g(x))$ to become 1
- Then, the robust term of 0-1 loss is upper-bounded by the following:

$$\mathbb{E}\left[\mathbb{1}_{g(x)=y,R(g;x,y)<\epsilon}\right] = \mathbb{E}\left[\mathbb{1}_{g(x)=y,R(g;x,g(x))<\epsilon}\right]$$

robust error
$$= \mathbb{E}\left[\mathbb{1}_{R(g;x,g(x))<\epsilon}\right] \le \mathbb{E}\left[\mathbb{1}_{\mathbb{P}_{\delta}\left(f(x+\delta)=g(x)\right)<\Phi(\epsilon/\sigma)\right]}\right]$$

- In other words, consistent prediction minimizes upper-bound of the robust 0-1 loss
- Note: As $\mathbb{P}_{\delta}(f(x+\delta) = g(x))$ goes to 1, $\mathbb{E}\left[\mathbb{1}_{\mathbb{P}_{\delta}(f(x+\delta) = g(x)) < \Phi(\epsilon/\sigma)]}\right]$ goes to 0

Algorithmic Intelligence Lab

- Idea: Maintain the prediction consistency over Gaussian noise
 - Objective: "Consistent" prediction in logit space over Gaussian noise

$$L^{con} \coloneqq \lambda \cdot \mathbb{E}_{\delta}[KL(\widehat{F}(x)) | F(x+\delta)] + \eta \cdot H(\widehat{F}(x))$$

where $\hat{F}(x) \coloneqq \mathbb{E}[F(x + \delta)]$, and $H(\cdot)$ denotes the entropy

- Entropy term is to prevent $\hat{F}(x)$ to be too close the the uniform
- Empirically, the expectation over Gaussian is approximated by Monte-Carlo

$$L \coloneqq L^{nat} + L^{con} \coloneqq \mathbb{E}[\mathcal{L}(F(x+\delta), y) + \lambda \cdot KL(\hat{F}(x)) | F(x+\delta) + \eta \cdot H(\hat{F}(x))]$$
$$\approx \frac{1}{m} \sum_{i} (\mathcal{L}(F(x+\delta_{i}), y) + \lambda \cdot KL(\hat{F}(x)) | F(x+\delta_{i}))) + \lambda \cdot H(\hat{F}(x))$$

• No attack, fewer hyperparameter compared to [Salman et al., 2020]

- Experimental results
 - ACR (Average Certified Radius) is defined by:

$$\frac{1}{|\mathcal{D}_{test}|} \sum_{(x,y) \in \mathbb{D}_{test}} CR(f,\sigma,x) \cdot \mathbb{1}_{g(x)=y}$$

Certified radius

• ACR reflects the trade-off between robustness and accuracy of smoothed classifier

- Experimental results
 - Effectively trade-off the robustness and accuracy
 - The robustness of smoothed classifier dramatically increases

Table 1: Comparison of approximate certified test accuracy (%) on CIFAR-10. Every model is certified with σ used for its training. We set our result bold-faced whenever the value improves the baseline. For ACRs, we underline the best model per σ . For the results in "+ Hyperparameter search", we evaluate the best model among those released by Salman et al. [32] for each σ .

σ	Models (CIFAR-10)	ACR	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
	Gaussian [10]	0.424	76.6	61.2	42.2	25.1	0.0	0.0	0.0	0.0	0.0	0.0
	+ Consistency ($\lambda = 10$)	0.544	77.8	68.8	57.4	43.8	0.0	0.0	0.0	0.0	0.0	0.0
	+ Consistency ($\lambda = 20$)	<u>0.552</u>	75.8	67.6	58.1	46.7	0.0	0.0	0.0	0.0	0.0	0.0
0.25	SmoothAdv [32]	0.544	73.4	65.6	57.0	47.5	0.0	0.0	0.0	0.0	0.0	0.0
	+ Consistency ($\lambda = 2$)	0.548	72.9	65.6	57.5	48.5	0.0	0.0	0.0	0.0	0.0	0.0
	Stability training [23]	0.421	72.3	58.0	43.3	27.3	0.0	0.0	0.0	0.0	0.0	0.0
	MACER [44]	0.531	79.5	69.0	55.8	40.6	0.0	0.0	0.0	0.0	0.0	0.0
	Gaussian [10]	0.525	65.7	54.9	42.8	32.5	22.0	14.1	8.3	3.9	0.0	0.0
	+ Consistency ($\lambda = 10$)	0.720	64.3	57.5	50.6	43.2	36.2	29.5	22.8	16.1	0.0	0.0
0.50	SmoothAdv [32]	0.689	64.4	57.2	49.0	40.6	33.6	27.4	21.8	14.0	0.0	0.0
	+ Hyperparameter search	0.717	53.1	49.2	44.9	41.0	37.2	33.2	29.1	24.0	0.0	0.0
	+ Consistency $(\lambda = 1)$	0.726	52.3	48.9	45.1	41.3	37.8	33.9	29.9	25.2	0.0	0.0
	Stability training [23]	0.521	60.6	51.5	41.4	32.5	23.9	15.3	9.6	5.0	0.0	0.0
	MACER [44]	0.691	64.2	57.5	49.9	42.3	34.8	27.6	20.2	12.6	0.0	0.0
	Gaussian [10]	0.542	47.2	39.2	34.0	27.8	21.6	17.4	14.0	11.8	10.0	7.6
	+ Consistency ($\lambda = 5$)	0.734	48.1	43.9	39.3	34.7	29.9	26.1	22.1	18.8	15.4	12.2
	+ Consistency ($\lambda = 10$)	0.756	46.3	42.2	38.1	34.3	30.0	26.3	22.9	19.7	16.6	13.8
1.00	SmoothAdv [32] + Hyperparameter search + Consistency $(\lambda = 1)$	0.682 0.785 0.816	50.2 45.6 41.7	44.0 41.9 39.0	37.6 38.0 36.2	33.8 34.2 33.5	28.8 30.9 30.7	24.0 27.4 27.6	20.2 24.1 24.7	15.8 20.7 22.0	13.2 17.7 19.5	10.2 14.9 17.3
	Stability training [23] MACER [44]	0.526 0.744	43.5 41.4	38.9 38.5	32.8 35.2	27.0 32.3	23.1 29.3	19.1 26.4	15.4 23.4	11.3 20.2	7.8 17.4	5.7 14.5

- Experimental results
 - Fewer hyperparameter/training time compared to baselines
 - At least achieves comparable results

Table 2: Comparison of approximate certified test accuracy (%) on ImageNet. We set our result bold-faced whenever the value improves the baseline. We use $\eta = 0.1$ instead of 0.5 when $\sigma = 1.0$.

σ	Models (ImageNet)	ACR	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
0.50	Gaussian [10] + Consistency ($\lambda = 5$)	0.733 0.822	57 55	46 50	37 44	29 34	0 0	0 0	0 0	0 0
	SmoothAdv [32]	0.825	54	49	43	37	0	0	0	0
1.00	Gaussian [10] + Consistency ($\lambda = 5$)	0.875 0.982	44 41	38 37	33 32	26 28	19 24	15 21	12 17	9 14
	SmoothAdv [32]	1.040	40	37	34	30	27	25	20	15

Table 3: Comparison of training time statistics on CIFAR-10 with $\sigma = 0.50$. All the baselines are trained on their official implementations separately.

Models	# HP	ACR	Mem.	Time (h)
Gaussian	2	0.525	2.9G	4.6
+ Consistency		0.720	2.9G	8.7
SmoothAdv	4	0.717	3.0G	23.1
MACER	4	0.691	9.4G	14.1

- Randomized smoothing cares about the l₂-norm certified robustness
 - A few approaches consider l_{∞} -norm certified robustness
 - So far, not scaled up to full-resolution ImageNet
 - On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models [Gowal et al., 2018]
 - Interval Bound Propagation (IBP)

- Maximize the lower bound of the logit value of the true label
- Minimize the upper bound of the logit values of other labels

- Randomized smoothing cares about the l_2 -norm certified robustness
 - A few approaches consider $oldsymbol{l}_\infty$ -norm certified robustness
 - So far, not scaled up to full-resolution ImageNet
 - Boosting the Certified Robustness of L-infinity Distance Nets [Zhang et al., 2022]
 - Introduce l_{∞} -distance layer

$$x_i^{(l)} = u(\boldsymbol{x}^{(l-1)}, \{\boldsymbol{w}^{(l,i)}, b_i^{(l)}\}) = \|\boldsymbol{x}^{(l-1)} - \boldsymbol{w}^{(l,i)}\|_{\infty} + b_i^{(l)}, \quad l \in [L], i \in [n_l]$$

• l_{∞} -distance net satisfies **1-Lipschitz continuity in** l_{∞} -norm

Proposition 2.2. The mapping of an ℓ_{∞} -distance layer is 1-Lipschitz with respect to ℓ_{∞} -norm. Thus by composition, any ℓ_{∞} -distance net $g(\cdot)$ is 1-Lipschitz with respect to ℓ_{∞} -norm.

• One can guarantee $g(x) = g(x + \delta)$ when $||\delta||_{\infty} < \text{margin}(x, y; g)/2$

$$\mathsf{margin}(oldsymbol{x},y;oldsymbol{g}) = [oldsymbol{g}(oldsymbol{x})]_y - \max_{j
eq y} [oldsymbol{g}(oldsymbol{x})]_j$$

Algorithmic Intelligence Lab

Table of Contents

- 1. Overview: Venerability of deep networks
 - Adversarial examples
 - Distributional shifts in the wild
- 2. Attack methods and problem scenarios
 - Adversarial attacks and obfuscated gradients
 - Distributional shift scenarios
- 3. Defense methods: Adversarial robustness
 - Adversarial training
 - Advanced adversarial training
 - Certified robustness

4. Defense methods: Distributional shift robustness

- Robust training schemes for distributional shifts
- Test-time adaptation

- Motivation: Data augmentation largely improve the generalization performance
- AugMix: Mixup the original image with the composed augmentations
 - Intuitively, it generates diverse image without veering too far from the original

- Then, regularize the predictive distribution to be consistency across augmentations
 - This injects an inductive bias to the classifier

$$\mathcal{L}(p_{\text{orig}}, y) + \lambda \operatorname{JS}(p_{\text{orig}}; p_{\text{augmix1}}; p_{\text{augmix2}})$$

JS: Jensen-Shannon divergence p_{orig} : original sample's output $p_{\text{augmix}-i}$: AugMix sample's output

• Experimental results

• AugMix significantly outperforms the baseline augmentation schemes

		Standard	Cutout	Mixup	CutMix	AutoAugment*	Adv Training	AUGMIX
9.	AllConvNet	30.8	32.9	24.6	31.3	29.2	28.1	15.0
CIEAD 10 C	DenseNet	30.7	32.1	24.6	33.5	26.6	27.6	12.7
CIFAR-10-C	WideResNet	26.9	26.8	22.3	27.1	23.9	26.2	11.2
	ResNeXt	27.5	28.9	22.6	29.5	24.2	27.0	10.9
Mea	an	29.0	30.2	23.5	30.3	26.0	27.2	12.5
	AllConvNet	56.4	56.8	53.4	56.0	55.1	56.0	42.7
CIEAD 100 C	DenseNet	59.3	59.6	55.4	59.2	53.9	55.2	39.6
CIFAR-100-C	WideResNet	53.3	53.5	50.4	52.9	49.6	55.1	35.9
	ResNeXt	53.4	54.6	51.4	54.1	51.3	54.4	34.9
Mea	an	55.6	56.1	52.6	55.5	52.5	55.2	38.3

CIFAR-10 and CIFAR-100 results

			Nois	e		B 1	ur			Wea	ther			Digita	ıl		
Network	Clean	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG	mCE
Standard	23.9	79	80	82	82	90	84	80	86	81	75	65	79	91	77	80	80.6
Patch Uniform	24.5	67	68	70	74	83	81	77	80	74	75	62	77	84	71	71	74.3
AutoAugment* (AA)	22.8	69	68	72	77	83	80	81	79	75	64	56	70	88	57	71	72.7
Random AA*	23.6	70	71	72	80	86	82	81	81	77	72	61	75	88	73	72	76.1
MaxBlur pool	23.0	73	74	76	74	86	78	77	77	72	63	56	68	86	71	71	73.4
SIN	27.2	69	70	70	77	84	76	82	74	75	69	65	69	80	64	77	73.3
AUGMIX	22.4	65	66	67	70	80	66	66	75	72	67	58	58	79	69	69	68.4
AUGMIX+SIN	25.2	61	62	61	69	77	63	72	66	68	63	59	52	74	60	67	64.9

ImageNet result

- Pyramid AT: utilize adversarial examples as data augmentations
 - This method is typically designed for **patch-based models**, e.g., ViT or MLP-Mixer
- Pyramid AT use a **patch-wise adversarial attack**
 - Constraint the patch to have the same noise scale ٠
 - Add the adversarial noise across various patch sizes

- + one should remove the randomness of the model when using adversaries
 - Note that ViT consist of dropout (and stochastic depth) •
 - Such randomness may induce gradient obfuscations ٠

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(\mathcal{M}(\theta),\tilde{x},y) + \lambda \max_{\delta\in\mathcal{P}} L(\theta,x^{a},y) + f(\theta)\right]$$

Randomness (dropout mask, \mathcal{M}) for clean data **Fixed parameter for adversaries Algorithmic Intelligence Lab**

*source: Herrmann et al, Pyramid Adversarial Training Improves ViT Performance, CVPR 2022 84

Experimental results

- Pyramid AT significantly improves the distributional shift robustness
- More intriguingly, the clean accuracy also improves

					Out of Distribution Robustness Test					
Method	ImageNet	Real	Α	C↓	ObjectNet	V2	Rendition	Sketch	Stylized	
ViT [13]	72.82	78.28	8.03	74.08	17.36	58.73	27.07	17.28	6.41	
ViT+CutMix [60]	75.49	80.53	14.75	64.07	21.61	62.37	28.47	17.15	7.19	
ViT+Mixup [61]	77.75	82.93	12.15	61.76	25.65	64.76	34.90	25.97	9.84	
RegViT (RandAug) [48]	79.92	85.14	17.48	52.46	29.30	67.49	38.24	29.08	11.02	
+Random Pixel	79.72	84.72	17.81	52.83	28.72	67.17	39.01	29.26	12.11	
+Random Pyramid	80.06	85.02	19.15	52.49	29.41	67.81	39.78	30.30	11.64	
+Adv Pixel	80.42	85.78	19.15	47.68	30.11	68.78	45.39	34.40	18.28	
+Adv Pyramid (ours)	81.71	86.82	22.99	44.99	32.92	70.82	47.66	36.77	19.14	
RegViT [48] on 384x384	81.44	86.38	26.20	58.19	35.59	70.09	38.15	28.13	8.36	
+Random Pixel	81.32	86.18	25.95	58.69	34.12	69.50	37.66	28.79	9.77	
+Random Pyramid	81.42	86.30	27.55	57.31	34.83	70.53	38.12	29.16	9.61	
+Adv Pixel	82.24	87.35	31.23	48.56	37.41	71.67	44.07	33.68	13.52	
+Adv Pyramid	83.26	88.14	36.41	47.76	39.79	73.14	46.68	36.73	15.00	

• Moreover, the attention and saliency map well aligns with the object

Algorithmic Intelligence Lab

*source: Herrmann et al, Pyramid Adversarial Training Improves ViT Performance, CVPR 2022 85

- Another direction is to adapt the model to the unseen distribution
 - Use the test input (from unseen distribution) for the adaptation
- This direction have some benefits compare to the robust training schemes
 - (i) Modifying the training may not be feasible due to computation (of re-training)
 - (ii) Can utilize the information of unseen distribution with the test inputs
 - (iii) does not require any assumptions about the training procedure
 - E.g., domain adaptation requires domain labels during training

setting	source data	target data	train loss	test loss
fine-tuning	-	x^t,y^t	$L(x^t,y^t)$	-
domain adaptation	x^s, y^s	x^t	$L(x^s, y^s)$ + $L(x^s, x^t)$	-
test-time training	x^s, y^s	x^t	$L(x^s, y^s) + L(x^s)$	$L(x^t)$
fully test-time adaptation	-	x^t	-	$L(x^t)$

- Prior work: **Batch Normalization (BN) adaptation** [Schnider et al., 2020]
 - Adapting the batch statistic of the BN significantly improves the robustness
 - One can obtain the test (target) mean and variance statistic with single forward

 μ_s : source mean, μ_t : target mean, σ_s : source mean, σ_t : target mean

BN adaptation can be applied to any models with BN •

		IN-C mCE (_)				Top1 acc	×)	Partial: small	
	w/o	partial	full		w/o	partial	full		
Model	adapt	adapt	adapt	Δ	adapt	adapt	adapt	Δ	Full: full batch
Vanilla ResNet-50	76.7	65.0	62.2	(-14.5)	39.2	48.6	50.7	(+11.5)	
SIN [28]	69.3	61.5	59.5	(-9.8)	45.2	51.6	53.1	(+7.9)	
ANT [29]	63.4	56.1	53.6	(-9.8)	50.4	56.1	58.0	(+7.6)	
ANT+SIN [29]	60.7	55.3	53.6	(-7.0)	52.6	56.8	58.0	(+5.4)	
AugMix [AM; 30]	65.3	55.4	51.0	(-14.3)	48.3	56.3	59.8	(+11.4)	
Assemble Net [32]	52.3	_	50.1	(-1.2)	59.2	_	60.8	(+1.5)	
DeepAug [36]	60.4	52.3	49.4	(-10.9)	52.6	59.0	61.2	(+8.6)	
DeepAug+AM [36]	53.6	48.4	45.4	(-8.2)	58.1	62.2	64.5	(+6.4)	
DeepAug+AM+RNXt101 [36]	44.5	40.7	38.0	(-6.6)	65.2	68.2	70.3	(+5.1)	

batch

- Tent adapt the BN parameters by minimizing the test entropy H
 - $H(\hat{y}) = -\sum_{c} p(\hat{y}_{c}) \log p(\hat{y}_{c})$ of model predictions $\hat{y} = f_{\theta}(\hat{x})$.
 - Also, Tent use the test batch statistics for BN (i.e., fully adapt the batch statistics)

• Tent significantly outperforms the baseline robustification methods

Source	Torget	or (%)	
Source	larget	C10-C	C100-C
train		40.8	67.2
train	train	18.3	38.9
train	train	16.7	47.0
train	test	17.5	45.0
	test	17.3	42.6
	test	15.7	41.2
	test	14.3	37.3
	Source train train train train	SourceTargettraintraintraintraintraintraintraintesttesttesttesttest	SourceTargetErro $C10-C$ train40.8traintraintraintraintrain16.7traintest17.5test17.3test15.7test14.3

- Limitation of prior adaptation works: require batches or entire test dataset
- For single sample adaptation, MEMO suggest to augment the test data
 - In this regard, one can generate a batch with a single sample

• Then, MEMO minimize the entropy of average prediction of the batch

$$\bar{p}_{\theta}(y|\mathbf{x}) \triangleq \mathbb{E}_{\mathcal{U}(\mathcal{A})}\left[p_{\theta}(y|a(\mathbf{x}))\right] \approx \frac{1}{B} \sum_{i=1}^{B} p_{\theta}(y|\tilde{\mathbf{x}}_{i})$$

Algorithmic Intelligence Lab

Experimental results

• MEMO significantly improve the baselines (i.e., single sample adaptation methods)

	ImageNet-C	ImageNet-R Error (%)	ImageNet-A Error (%)
Pageline PagNat 50 (He at al. 2016)	76.7	62.0	100.0
baseline Residet-50 (He et al., 2016)	77.0 (11.0)	61 2 (00)	100.0
	77.9 (+1.2)	01.3(-2.6)	98.4(-1.6)
+ Single point BN	71.4(-5.3)	61.1(-2.8)	99.4(-0.6)
+ MEMO (ours)	69.9(-6.8)	58.8 (-5.1)	99.1 (-0.9)
+ BN ($N = 256, n = 256$)	61.6(-15.1)	59.7(-4.2)	99.8(-0.2)
+ Tent (online) (Wang et al., 2021)	54.4(-22.3)	57.7(-6.2)	99.8(-0.2)
+ Tent (episodic)	64.7(-12.0)	61.0(-2.9)	99.7(-0.3)
+ DeepAugment+AugMix (Hendrycks et al., 2021a)	53.6	53.2	96.1
+ TTA	55.2 (+1.6)	51.0(-2.2)	93.5(-2.6)
+ Single point BN	51.3(-2.3)	51.2(-2.0)	95.4 (-0.7)
+ MEMO (ours)	49.8(-3.8)	49.2(-4.0)	94.8 (-1.3)
+ BN ($N = 256, n = 256$)	45.4(-8.2)	48.8 (-4.4)	96.8 (+0.7)
+ Tent (online)	43.5(-10.1)	46.9(-6.3)	96.7 (+0.6)
+ Tent (episodic)	47.1(-6.5)	50.1(-3.1)	96.6 (+0.5)
+ MoEx+CutMix (Li et al., 2021)	74.8	64.5	91.9
+ TTA	75.7 (+0.9)	62.7(-1.8)	89.5(-2.4)
+ Single point BN	71.0(-3.8)	62.6(-1.9)	91.1 (-0.8)
+ MEMO (ours)	69.1 (-5.7)	59.4 (-3.3)	89.0 (-2.9)
+ BN ($N = 256, n = 256$)	60.9 (-13.9)	61.6(-2.9)	93.9 (+2.0)
+ Tent (online)	54.0 (-20.8)	58.7 (-5.8)	94.4 (+2.5)
+ Tent (episodic)	66.2(-8.6)	63.9(-0.6)	94.7 (+2.8)
RVT*-small (Mao et al., 2021)	49.4	52.3	73.9
+ TTA	53.0 (+3.6)	49.0 (-3.3)	68.9 (-5.0)
+ Single point BN	48.0(-1.4)	51.1(-1.2)	74.4 (+0.5)
+ MEMO (ours)	40.6(-8.8)	43.8 (-8.5)	69.8 (-4.1)
+ BN ($N = 256, n = 256$)	44.3(-5.1)	51.0 (-1.3)	78.3 (+4.4)
+ Tent (online)	46.8 (-2.6)	50.7(-1.6)	82.1 (+8.2)
+ Tent (adapt all)	44.7 (-4.7)	74.1 (+21.8)	81.1 (+7.2)

Summary

- **Robustness is critical** for many real-world applications with trustworthy usage
 - E.g., autonomous driving cars
- We discussed two types of venerability in modern machine learning
 - Adversarial examples: a perturbation that confuses the network prediction
 - Distributional shifts: where the train and test distribution differs
- To train robust classifier under adversarial examples, we mainly discussed
 - Adversarial training, i.e., training the network with adversarial examples
 - Test-time robustness certification via randomized smoothing
- To train robust classifier under distributional shifts, we mainly discussed
 - Robust training schemes with **new data augmentation schemes**
 - **Test-time adaptation** methods to new distributions

- To see more recent works on robustness, refer to RobustBench
 - This site shows the robustness performance of various defense methods
 - URL: <u>https://robustbench.github.io/</u>

Shov	v 15		entries						Search: Papers, an	chitectures, ve
	Ran k	•	Method	Standard accuracy	AutoAttack robust accuracy	Best known robust accuracy	AA eval. potentially unreliable	Extra data	Architectur e	Venue 🍦
	1	66.5	Fixing Data Augmentation to Improve Adversarial Robustness 6% robust accuracy is due to the original evaluation (AutoAttack + MultTargeted)	92.23%	66.58%	66.56%	×	\checkmark	WideResNet-70- 16	arXiv, Mar 2021
	2	li It u	mproving Robustness using Generated Data ses additional 100M synthetic images in training. 66.10% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	88.74%	66.11%	66.10%	×	×	WideResNet-70- 16	NeurIPS 2021
	3	L a 65.8	Uncovering the Limits of Adversarial Training gainst Norm-Bounded Adversarial Examples 17% robust accuracy is due to the original evaluation (AutoAttack + MultTargeted)	91.10%	65.88%	65.87%	×		WideResNet-70- 16	arXiv, Oct 2020
	4	lt	Fixing Data Augmentation to Improve Adversarial Robustness uses additional 1M synthetic images in training. 64.58% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	88.50%	64.64%	64.58%	×	×	WideResNet- 106-16	arXiv, Mar 2021

Leaderboard: CIFAR-10, $\ell_{\infty} = 8/255$, untargeted attack

[Athalye et al., 2018a] Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples, ICML 2018 https://arxiv.org/abs/1802.00420

[Athalye et al., 2018b] Synthesizing robust adversarial examples, ICML 2018 <u>https://arxiv.org/abs/1707.07397</u>

[Blanchet et al., 2016] Quantifying Distributional Model Risk via Optimal Transport, arXiv 2016 https://arxiv.org/abs/1604.01446

[Buckman et al., 2018] Thermometer Encoding: One Hot Way To Resist Adversarial Examples, ICLR 2018 https://openreview.net/forum?id=S18Su--CW

[Carlini & Wagner, 2017a] Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017 https://arxiv.org/abs/1608.04644

[Carlini et al., 2019] On Evaluating Adversarial Robustness, arXiv 2019 https://arxiv.org/abs/1902.06705

[Dhillon et al., 2018] Stochastic Activation Pruning for Robust Adversarial Defense, ICLR 2018 https://arxiv.org/abs/1803.01442

[Elsayed et al., 2018] Large Margin Deep Networks for Classification, NIPS 2018 https://arxiv.org/abs/1803.05598

[Eykholt et al., 2017] Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018 https://arxiv.org/abs/1707.08945

[Goodfellow et al., 2015] Explaining and Harnessing Adversarial Examples, ICLR 2015 https://arxiv.org/abs/1412.6572

References

[Karmon et al., 2018] LaVAN: Localized and Visible Adversarial Noise, ICML 2018 https://arxiv.org/abs/1801.02608

[Kurakin et al., 2017a] Adversarial Examples in the Physical World, ICLR Workshop 2017 https://arxiv.org/abs/1607.02533

[Kurakin et al., 2017b] Adversarial Machine Learning at Scale, ICLR 2017 https://arxiv.org/abs/1611.01236

[Lee et al., 2018] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NIPS 2018

https://arxiv.org/abs/1807.03888

[Liu et al., 2017] Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 https://arxiv.org/abs/1611.02770

[Madry et al., 2018] Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 https://arxiv.org/abs/1706.06083

[Moosavi-Dezfooli et al., 2016] DeepFool: a simple and accurate method to fool deep neural networks, CVPR 2016 https://arxiv.org/abs/1511.04599

[Moosavi-Dezfooli et al., 2017] Universal adversarial perturbations, CVPR 2017 https://arxiv.org/abs/1610.08401

[Papernot et al., 2017] Practical Black-Box Attacks against Machine Learning, ACM CCS 2017 https://arxiv.org/abs/1602.02697

[Qin et al., 2019] Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition, ICML 2019

http://proceedings.mlr.press/v97/qin19a.html

References

[Katz et al., 2017] Provably Minimally-Distorted Adversarial Examples, arXiv 2017 https://arxiv.org/abs/1709.10207

[Cheng et al., 2017] Maximum Resilience of Artificial Neural Networks, ATVA 2017 https://arxiv.org/abs/1705.01040

[Gouk et al., 2018] Regularization of Neural Networks by Enforcing Lipschitz Continuity, arXiv 2018 https://arxiv.org/abs/1804.04368

[Hein et al., 2018] Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation, NIPS 2017 https://arxiv.org/abs/1804.04368

[Cohen et al., 2019] Certified Adversarial Robustness via Randomized Smoothing, ICML 2019 https://arxiv.org/abs/1902.02918

[Salman et al., 2019] Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers, NeurIPS 2019 https://arxiv.org/abs/1906.04584

[Jeong and Shin, 2020] Consistency Regularization for Certified Robustness of Smoothed Classifiers, NeurIPS 2020 <u>https://arxiv.org/abs/2006.04062</u>

[Zhai et al., 2020] MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius, ICLR 2020 https://arxiv.org/abs/2001.02378

[Gowal et al., 2018] On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models, arXiv 2018

https://arxiv.org/abs/1810.12715

[Zhang et al., 2022] Boosting the Certified Robustness of L-infinity Distance Nets, ICLR 2018 https://arxiv.org/abs/2110.06850 [Samangouei et al., 2018] Defense-GAN: Protecting Classifiers Against Adversarial Attacks using Generative Models, ICLR 2018

https://arxiv.org/abs/1805.06605

[Sinha et al., 2018] Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018 https://arxiv.org/abs/1710.10571

[Su et al., 2017] One pixel attack for fooling deep neural networks, arXiv 2017 https://arxiv.org/abs/1710.08864

[Wong et al., 2018] Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope, ICML 2018

https://arxiv.org/abs/1711.00851

[Xiao et al., 2018] Spatially Transformed Adversarial Examples, ICLR 2018 https://arxiv.org/abs/1801.02612

[Xie et al., 2017] Adversarial Examples for Semantic Segmentation and Object Detection, ICCV 2017 https://arxiv.org/abs/1703.08603

[Xie et al., 2018] Improving Transferability of Adversarial Examples with Input Diversity, arXiv 2018 https://arxiv.org/abs/1803.06978

[Zhang et al., 2019] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019 https://arxiv.org/abs/1901.08573

[Geirhos et al., 2019] ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019 https://arxiv.org/abs/1811.12231

References

[Koh et al., 2021] WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021 https://arxiv.org/abs/2012.07421

[Croce et al., 2020] Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks, I CML 2020

https://arxiv.org/abs/2003.01690

[Hendrcyks et al., 2019] Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, ICLR 20 19

https://arxiv.org/abs/1903.12261

[Hendrcyks et al., 2021] The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization, ICCV 20 21

https://arxiv.org/abs/2006.16241

[Rice et al., 2020] Overfitting in adversarially robust deep learning, ICML 2020 https://arxiv.org/abs/2002.11569

[Wu et al., 2020] Adversarial Weight Perturbation Helps Robust Generalization, NeurIPS 2020 https://arxiv.org/abs/2004.05884

[Yun et al., 2019] CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2019 https://arxiv.org/abs/1905.04899

[Cubuk et al., 2020] AutoAugment: Learning Augmentation Strategies from Data, CVPR 2020 https://arxiv.org/abs/1805.09501

[Rebuffi et al., 2021] Data Augmentation Can Improve Robustness, NeurIPS 2021 https://arxiv.org/abs/2111.05328

References

[Ho et al., 2020] Denoising Diffusion Probabilistic Models, NeurIPS 2020 https://arxiv.org/abs/2006.11239

[Gowal et al., 2021] Improving Robustness using Generated Data, NeurIPS 2021 https://arxiv.org/abs/2110.09468

[Hendrycks et al., 2020] AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, ICLR 2020 https://arxiv.org/abs/1912.02781

[Herrmann et al., 2022] Pyramid Adversarial Training Improves ViT Performance, CVPR 2022 https://arxiv.org/abs/2111.15121

[Schneider et al., 2020] Improving robustness against common corruptions by covariate shift adaptation, NeurIPS 2020 https://arxiv.org/abs/2006.16971

[Wang et al., 2021] Tent: Fully Test-time Adaptation by Entropy Minimization, ICLR 2021 https://arxiv.org/abs/2006.10726

[Zhang et al., 2021] Test Time Robustification of Deep Models via Adaptation and Augmentation, arXiv 2021 https://arxiv.org/abs/2110.09506

[Croce et al., 2021] RobustBench: a standardized adversarial robustness benchmark, NeurIPS 2021 https://arxiv.org/abs/2010.09670