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Back Side of The Neural Network Success

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems
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Back Side of The Neural Network Success

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable
* (a) to a small noise on input that are specifically designed by an adversary
* (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
* |n other words, answer of machine # answer of human

«¥%%> WORDBERRY

- SOFTWARE TRANSLATION & LOCALIZATION

Algorithmic Intelligence Lab *source: https://wordberry.com/choosing-human-vs-machine-website-translation/ 5



What is The Adversarial Example?

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable
* (a) to a small noise on input that are specifically designed by an adversary

* |n other words, answer of machine # answer of human

e Even state-of-the-art-level neural networks make erroneous outputs
* Example: GoogleNet trained on ImageNet dataset

+.007 x

“panda” “nematode”™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

~ L

Humans can not distinguish them

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 6



What is The Adversarial Example?

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable
* (a) to a small noise on input that are specifically designed by an adversary

* |n other words, answer of machine # answer of human

e Even state-of-the-art-level neural networks make erroneous outputs
* Example: GoogleNet trained on ImageNet dataset

“panda” “nematode”™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

L

It is called an adversarial example!

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 7



Threat of Adversarial Examples

* Adversarial examples raise issues critical to the “Al safety” in the real world
* e.g. Autonomous vehicles may misclassify graffiti stop signs

®
N N

<@> WORDBERRY

- SOFTWARE TRANSLATION & LOCALIZATION

Algorithmic Intelligence Lab *source: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018 8



Threat of Adversarial Examples

* Furthermore, adversarial examples exist across various tasks or modalities
* Adversarial examples for segmentation task [Xie et al., 2017]

Original Adversarial Adversarial Adversarial
Image Perturbations Image Result

* Adversarial examples for automatic speech recognition [Qin et al., 2019]

Clean: “The sight of you bartley to see you living and happy and
successful can | never make you understand what that means to me”

Adversarial: “Hers happened to be in the same frame too but she
evidently didn’t care about that”

*source:
Xie et al., Adversarial Examples for Semantic Segmentation and Object Detection, ICCV 2017
Algorithmic Intelligence Lab Qin et al., Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition, ICML 2019 9



The Adversarial Game: Attacks and Defenses

* The literature of adversarial example commonly stated in security perspective
* Attacks: Design inputs for a ML system to produce erroneous outputs
* Defenses: Prevent the misclassification by adversarial examples

* In this perspective, specifying a threat model of the game is important

1. Adversary goals
2. Adversarial capabilities

3. Adversary knowledge

Algorithmic Intelligence Lab *source: https://gwynteatro.wordpress.com/2011/10/30/ambiguity-and-contradiction-leadership-certainties 10



The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

1. Adversary goals: Simply to cause misclassification, or else?
* Some adversary may be interested in to attack into a target class of their choice
* “Source-target” [Papernot et al., 2016], or “targeted” [Carlini & Wagner, 2017] attack
* |n other setting, only a specific type of misclassification may be interesting
* e.g. Malware detection: “Benign — malware” is usually out-of-interest

oy, i Saseloston \X00\XO0\Xb8\X00\
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e 7 Malware  Benign

*source:
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE SSP 2017

https://devblogs.nvidia.com/malware-detection-neural-networks/ 11



The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

2. Adversarial capabilities

* Reasonable constraints to adversary allow us to build more meaningful defenses
* Too large perturbations to an image may break even the human’s decision

* To date, most defenses restrict the adversary to make “small” changes to inputs

/
distance metric — d(*rxv x\) < €

input adversarial

* A common choice for d(:,) is ¢,-distance (especially for image classification)

* £-norm ball: the adversary cannot modify each pixel by more than €
e {y-norm ball: the adversary can arbitrary change at most € pixels

Algorithmic Intelligence Lab
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The Adversarial Game: Threat model

* The literature of adversarial example commonly stated in security perspective

* In this perspective, specifying a threat model of the game is important

3. Adversary knowledge

* A threat model must describe what knowledge the adversary is assumed to have
* White-box model: Complete knowledge of the model and its parameter
* Black-box model: No knowledge of the model
* Gray-box: Some threat models specify the various degree of access
* A limited number of queries to the model
* Access to the predicted probabilities, or just class
e Access to the training data
* The guiding principle: Kerckhoffs’ principle [Kerckhoffs, 1883]

* The adversary is assumed to completely
know the inner workings of the defense | ‘

white-box black-box
*source:

https://emperorsgrave.wordpress.com/2016/10/18/black-box/

Algorithmic Intelligence Lab https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/ 13



The Adversarial Game: Evaluating Adversarial Robustness

* A precise threat model — well-defined measures of adversarial robustness
1. “Adversarial risk”: The worst-case loss L for a given perturbation budget
E(r o) max L(f(z'),
(@y) fD L:/:d(:z:,x/)<e (f\( ) y)]

Data distribution model
2. The average minimum-distance of the adversarial perturbation

set of adv. examples
* For misclassification, A, , = {z’ : f(z') # y}
* For targeted attack, A, , = {z’ : f(2') = ¢} for some target class ¢

* Key challenge: Computing adversarial risk is usually intractable

* We have to approximate these quantities
* Much harder problem than approximating “average-case” robustness

* The heart reason of why evaluating adversarial robustness is difficult

Algorithmic Intelligence Lab

14



What is Distributional Shift?

* Deep learning system have achieved state-of-art on various Al-related tasks
* Super-human performance on image recognition problems

* Problem: ML systems are highly vulnerable

* (b) to distributionally shifted inputs, i.e., train and test input’s distribution differs
* |n other words, answer of machine # answer of human

* Various machine learning method assumes Pir3in = Prest
* However in real-world scenarios, distributional shift occurs Pirhin # Prest
* E.g., autonomous driving car trained on Korea may not generalize on Canada

— Training
Test

*source: https://www.researchgate.net/figure/Example-of-covariate-shift-training-and-test-data-having-different-distributions_figl 322568228

Algorithmic Intelligence Lab
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What is Distributional Shift?

* Distributional shift occurs across various domains
* Image, e.g., natural corruptions

* Reinforcement learning (RL), e.g., offline RL
* Time-series and natural language, e.g., shift between the prior and future data

* Even on segmentation and chemical classification problems

Test
Sketch Cartoon Art painting Photo =
X E ; ~ =4 é’ 1A RAlR
s 5, SNEeT | e sz B . .
i oAy 3 /. .:;\:1\. - 3 & £ b o 2o
Lra Op-g 5195 e 3
- ' y % PE-PA 2002/ 2012/ 2016/ 2017/
-\‘-ﬁ% 5 ) SN n\' N i §§E’ Americas Africa Europe Americas Africa
e 0. | .;A
/ LN \ F S < &
) . pa j 4 g Fs shopping multi-unit road recreational educational
~ ~ -~ ~ E E mall residential bridge facility institution
Training set Test set
Domain shift Distribution shit across time [Koh et al., 2021]

*source:
https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-domain-generalization-The-training-set-is_figl 349787277

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021
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Adversarial Attacks: Fast Gradient Sign Method [Goodfellow et al., 2015]

In vision ML system, the following threat model is common:
1. Goal - Untargeted attack: Find argmax,,. . /)< L(f(2'), )
2. Capabilities - Pixel-wise restriction: d(z,z') = ||z — 2'||00 := max |z; — x| < €
(2

3. Knowledge - White-box: Full access to the target network

Fast Gradient Sign Method (FGSM): A fast approximation of this threat model
* |dea: In white-box setting, one can get the gradients w.r.t input of the network

FGSM solves the maximization via linearizing the loss:

max  L(f(z'),y) = L(f(z),y) + 6 - Vo L(f(2),y)

o[z —a'||oo <e

To meet the max-norm constraint, FGSM takes sign(:) on the gradient
* Quiz. Why the use of sign(-) maximizes the loss?
/ \ ——p =00 i
\ e
p=1

N

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 19
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Adversarial Attacks: Least-likely Class Method [Kurakin et al., 2017b]

The idea of FGSM can be directly applied to targeted attack model:
1. Goal -|Targeted attack

2. Capabilities - Pixel-wise restriction: d(z,z') = ||z — 2'||00 := max |z; — x| < €
(2

3. Knowledge - White-box: Full access to the target network

Unlike FGSM, Least-likely Class Method minimizes the loss for the target class

Nevertheless, one could also linearize the loss L

min L(f(z"), Ytarget )

x| |x—x! || oo <€

This formulation leads to an attack method similar to FGSM:

.CE/ — T —€- &gn(VxL(f(SU), ytarget))

Now, we perform “gradient descent”

Algorithmic Intelligence Lab *source: Kurakin et al., Adversarial Machine Learning at Scale, ICLR 2017 20



Adversarial Attacks: Projected Gradient Descent [Madry et al., 2018]

FGSM can be generalized toward a stronger method
1. Single-step update = multi-step optimization
2. sign(:) — Generalized projection operation

Essentially, our goal is to solve the following optimization:

L /
! (f(2), )

set of neighbors
Projected Gradient Descent (PGD) is a direct way to solve this:

r = r{xw(a:t +a-sign(V. L(f(2"),9)))

projection
« Basic Iterative Method (BIM): z' := x
0

 Usually, PGD refers the case when z” is randomly-chosen inside * + B

In some sense, PGD is regarded as the strongest first-order adversary
* |tis the best way we could try using only gradient information

Algorithmic Intelligence Lab *source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 21



Adversarial Attacks: Carlini-Wagner Method [Carlini & Wagner, 2017a]

 Carlini & Wagner (CW): Even tighter approximation is possible:

E(x,y),\,p[ min d(x,x’)]

' €Az y

« CW attempts to directly minimize the distance ||d|| in targeted attack

min____ |9
5:k($+5):ytarget

* Key challenge: How to incorporate the constraint during optimization
e CW takes the Lagrangian relaxation to allow the gradient-based optimization:

min (6], + o+ g(a + )

_|_
< gla) = (0 S0~ fre @) o

* g(z) attains the minimum when z is an adversarial example

Algorithmic Intelligence Lab *source: Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017 22



Adversarial Attacks: Carlini-Wagner Method [Carlini & Wagner, 2017a]

* Experimental Results

* CW finds much smaller avg. minimum-distance than DeepFool

CIFAR-10 CIFAR-100 SVHN

Lo Acc. L, Acc. L Acc.
Clean 0 95.19% 0 77.63% 0 96.38%
FGSM 021 20.04% | 0.21 4.86% | 0.21 56.27%
DenseNet BIM 022 0.00% | 0.22 0.02% | 0.22 0.67%
DeepFool | 0.30  0.23% | 0.25 0.23% | 0.57  0.50%
[ CW 0.05 0.10% | 0.03 0.16% | 0.12  0.54%)|
Clean 0 93.67% 0 78.34% 0 96.68%
FGSM 0.25 2398% | 0.25 11.67% | 0.25 49.33%
ResNet BIM 026 0.02% | 026 021% | 026 2.37%
DeepFool | 0.36___0.33% | 0.27 _ 0.37%_1 0.62 __13.20%
LCW 0.08 0.00% | 0.08 0.01% | 0.15 0.04_%]

* Comparison of images generated from several attacks [Y. Song et al., 2018]

frog

Algorithmic Intelligence Lab

*source:
Carlini & Wagner, Towards Evaluating the Robustness of Neural Networks, IEEE S&P 2017

Y. Song et al., PixelDefend, ICLR 2018

It is the most similar to
clean image

23



Adversarial Attacks: Transferability of Adversarial Example

* Some adversarial examples strongly transfer across different networks

white-box attack
)

& Adversarial noise

\ “panda” white-box /

“gibbon™

“panda™ Adversarial noise black-box

Algorithmic Intelligence Lab *source: Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015 24



Adversarial Attacks: The Local Substitute Model [Papernot et al., 2017]

* Motivation: The transferability enables us to attack a black-box model
* ldea: Finding an adversarial example via white-box attack on the local substitute
model
* Goal: Training a local substitute model via FGSM-based adversarial dataset
augmentation

* FGSM-based adversarial examples are computed to change the prediction of
the black-box model

T =x+€- Sign(Vg;L(f(iU)a ypred))
* Method: / \

substitute model black-box prediction
Data augmentation

White-box attack: FGSM
*Labeling the adversarial dataset *prediction of the black box model
with the black box model

Training

is used to white-box attack

Adversarial Dataset

Algorithmic Intelligence Lab
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Adversarial Attacks: The Local Substitute Model [Papernot et al., 2017]

* Experimental Results
* Black-box attack to the Amazon and Google Oracle
* Two types of architecture:
* DNN: Deep Neural Network
* LR: Logistic Regression

Misclassification rates (%)

Amazon Google
Epochs || Queries ||| DNN LR DNN LR
p = 800 87.44 | 96.19 | 84.50 | 88.94
p = 6,400 96.78 | 96.43 | 97.17 | 92.05

Number of queries to train the local substitute model

Algorithmic Intelligence Lab *source: Papernot et al., Practical Black-Box Attacks against Machine Learning, ACM CCS 2017 26



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

* InICLR 2018, 9 defense papers were published including adversarial training:

Adversarial training [Madry et al., 2018]

Thermometer Encoding [Buckman et al., 2018]

Input Transformations [Guo et al., 2018]

Local Intrinsic Dimensionality [Ma et al., 2018]
Stochastic Activation Pruning [Dhillon et al., 2018]

Defense-GAN [Samangouei et al., 2018]

PixelDefend [Song et al., 2018]

Seed

Random number
generator

Minimize
|G(2) — x||3

Adversarial Original

Difference

Original

TV Minimization

Image Quilting

Input transformation [Guo et al., 2018]

Input image x T

Algorithmic Intelligence Lab

Generator

Defense-GAN [Samangouei et al., 2018]

Classifier

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
defenses to adversarial examples, ICML 2018
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Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

* InICLR 2018, 9 defense papers were published including adversarial training:

Adversarial training [Madry et al., 2018]
Thermometer Encoding [Buckman et al., 2018]
Input Transformations [Guo et al., 2018]

Local Intrinsic Dimensionality [Ma et al., 2018]
Stochastic Activation Pruning [Dhillon et al., 2018]
Defense-GAN [Samangouei et al., 2018]
PixelDefend [Song et al., 2018]

* Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses

“Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

p— R
' \§_~ | L___
-_ﬁ' R :> h(z) |- -« .
r 2" T 2z
<> -
r r

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing

Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 28



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
» “Fake” defense?: They don’t aim the non-existence of adversarial example
e Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* They identified three obfuscation techniques used in the defenses

Obfuscation Defenses

Existence of a non-differentiable layer

Shattered Gradients  Thermometer Encoding [Buckman et al., 2018]
* Input Transformation [Guo et al., 2018]
e Local Intrinsic Dimensionality (LID) [Ma et al., 2018]

Artificial randomness on computing gradient

Stochastic Gradients . stochastic Activation Pruning (SAP) [Dhillon et al., 2018]
* Mitigating Through Randomization [Xie et al., 2018]

Multiple iterations, or extremely deep DNN

* Pixel Defend [Song et al., 2018]
* Defense-GAN [Samangouei et al., 2018]

Exploding & Vanishing
Gradients

*source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
defenses to adversarial examples, ICML 2018



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
* “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
1. Backward Pass Differentiable Approximation (BPDA)
* Replace the non-differentiable parts only at backward pass
* Use some differentiable approximative function

X = > < Py |x)

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 30



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
* “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
2. Expectation Over Transformation (EOT)
* Take the expectation of attacks to mitigate stochastic defenses
/
~max By [L(f(¢(z")),y)]
x':d(x,x’)<e \

Random transformation

3. Reparameterization
* Replace deep or recurrent parts by simpler differentiable function

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 31



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
* “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

* Those kinds of defenses can be easily bypassed by 3 simple tricks
* 6 of the 9 defense papers were completely broken using those tricks
* 1 of the 9 was partially broken (Defense-GAN)
e Adversarial training [Madry et al. 2018; Na et al., 2018] were the only survivals

Defense Type Behavior Attack technique
Thermometer Encoding Shattered Black-box is better BPDA
Local Intrinsic Dimensionality (LID) Shattered Unbounded attack do not reach 100% BPDA
Input Transformation Shattered Black-box is better BPDA, EOT
Stochastic Activation Pruning (SAP) Stochastic, Exploding . modified EOT
Mitigating Through Randomization Stochastic . EOT
Pixel Defend Vanishing . BPDA
Defense-GAN Vanishing Unbounded attack do not reach 100% BPDA

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 32



Obfuscated Gradients: False Sense of Security [Athalye et al., 2018]

e Athalye et al. (ICML 2019): In fact, most of them are “fake” defenses
* “Fake” defense?: They don’t aim the non-existence of adversarial example
* Rather, they aim to obfuscate the gradient information
* Obfuscated gradient makes gradient-based attacks (FGSM, PGD, ...) harder

e Then... what should we do?
* At least, we have to do sanity checks on evaluating defenses
* Do your best to show that the proposed defense is a “real” defense

* Some “red-flags” indicating obfuscated gradients

(1) One-step attacks perform better than iterative attacks

(2) Black-box attacks are better than white-box attacks

(3) Unbounded attacks do not reach 100% success

(@) Random sampling finds adversarial examples better

) ) ) *source: Athalye et al., Obfuscated gradients give a false sense of security: circumventing
Algorithmic Intelligence Lab defenses to adversarial examples, ICML 2018 33



AutoAttack [Croce et al., 2020]

e AutoAttack is the state-of-the art attack method

* AutoAttack uses four advanced attacks, and check whether any attack succeeds
* Two white-box attacks: APGD-untargeted, APGD-targeted [Croce et al., 2020]
* Two black-box attacks: FAB [Croce et al., 2020], Square [Andriushchenko et al., 2020]

* Experimental Results

* AutoAttack largely reduced the obfuscated gradient issues in prior evaluations

# paper clean || APGDce APGDhir  FAB"  Square AA | reported  reduct.
CIFAR-10- [, - € = 8/255
1  (Carmon et al., 2019) 89.69 61.74 59.54 60.12 66.63 59.53 62.5 -2.97
2  (Alayracetal., 2019) 86.46 60.17 56.27 56.81 66.37 56.03 56.30 -0.27
3 (Hendrycks et al., 2019) 87.11 57.23 54.94 55.27 61.99 54.92 574 -2.48
4  (Rice et al., 2020) 85.34 57.00 5343 53.83 61.37 53.42 58 -4.58
5 (Qinetal., 2019) 86.28 55.70 52.85 53.28 60.01 52.84 52.81 0.03
6 (Engstrom et al., 2019) 87.03 oL T2 49.32 49.81 58.12 49.25 53.29 -4.04
7  (Kumari et al., 2019) 87.80 51.80 49.15 49.54 58.20 49.12 53.04 -3.92
8 (Maoetal.,2019) 86.21 49.65 47.44 47.91 56.98 47.41 50.03 -2.62
9 (Zhang et al., 2019a) 87.20 46.15 44.85 45.39 55.08 44.83 47.98 -3.15
10 (Madry et al., 2018) 87.14 44.75 44.28 44.75 53.10 44.04 47.04 -3.00
11  (Pang et al., 2020) 80.89 57.07 43.50 44.06 49.73 43.48 55.0 -11.52
12 (Wong et al., 2020) 83.34 45.90 43.22 43.74 53:32 43.21 46.06 -2.85
13 (Shafahi et al., 2019) 86.11 43.66 41.64 43.44 51.95 41.47 46.19 -4.72
14  (Ding et al., 2020) 84.36 50:12 41.74 42.47 55.53 41.44 47.18 -5.74
15  (Moosavi-Dezfooli et al., 2019) 83.11 41.72 38.50 38.97 47.69 38.50 41.4 -2.90
16 (Zhang & Wang, 2019) 89.98 64.42 37.29 38.48 59.12 36.64 60.6 -23.96
17  (Zhang & Xu, 2020) 90.25 71.40 37.54 38.99 66.88 36.45 68.7 -32.25

Algorithmic Intelligence Lab

*source: Croce et al., Reliable Evaluation of Adversarial Robustness with an Ensemble of

Diverse Parameter-free Attacks, ICML 2020
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Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

Algorithmic Intelligence Lab
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Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

* Shape and texture bias [Geirhos et al., 2019]
e Suggest benchmarks to measure whether the model is biased to textures or shapes
* Moreover, found that the ImageNet-trained models are biased to textures

Example of Stylized-ImageNet (SIN): only change the style (i.e., the texture) of the given input

* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019
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Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

* Shape and texture bias [Geirhos et al., 2019]
e Suggest benchmarks to measure whether the model is biased to textures or shapes
* Moreover, found that the ImageNet-trained models are biased to textures

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3%  indri 173%  grey fox 26.4% indri

8.2% black swan 3.3% Siamese cat 9.6% black swan

* source: Geirhos et al., ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019

Algorithmic Intelligence Lab 38



Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

 Common corruption [Hendrycks et al., 2019]
e Suggest 15 types of corruptions that highly degrade the classifier’s performance

Gaussian Noise Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Brightness Contrast Elastic Pixelate JPEG

Algorithmic Intelligence Lab *source: Hendrcyks et al., Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, ICLR 2019 39



Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

* Domain shifts [Hendrycks et al., 2019]
* Suggest 16 types of renditions of ImageNet classes, i.e., domain shift

Origami Cartoon

Algorithmic Intelligence Lab  *source: Hendrcyks et al., The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization, ICCV 2021 40



Distributional Shifts

e Various distributional shift scenarios have been proposed

* We will introduce some scenarios that are widely considered in recent works

e WILDS [Koh et al., 2019]
* WILDS consists of various real-world distributional shift scenarios
* E.g., distributional shifts on the medical imaging and natural language processing

Domain generalization Subpgﬁ:latlon Domain generalization + subpopulation shift
‘ Dataset iwildCam Camelyon17 RxRx1 OGB-MolPCBA GlobalWheat CivilComments FMoW PovertyMap Amazon Py150
Input (x) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction (y)  animal species tumor perturbed gene  bioassays wheat head bbox  toxicity land use asset wealth sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban user git repository
# domains 323 5 51 120,084 47 16 16 x5 23x2 2,586 8,421
# examples 203,029 455,954 125,510 437,929 6,515 448,000 523,846 19,669 539,502 150,000
[ i ‘ What do Black 7o Overall asolid | [ import
and LGBT package that numpy as np
Tra I people have to has a good
rain example do with bicycle quality of
licensing? construction
for the price. norm=np.___
As a Christian, | *loved* my import
I will not be French press, subprocess
patronizing it's so perfect as sp
Test examPIe any of those and came with
businesses. all this fun p=sp.Popen()
stuffl stdout=p.___
Adapted from Beery et al. Bandi et al. Taylor et al. Huetal. Davidetal. Borkanetal. Christie et al. Yeh et al. Ni et al. Raychev et al.
ap 2020 2018 2019 2020 2021 2019 2018 2020 2019 2016

Algorithmic Intelligence Lab *source: Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, ICML 2021 41
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Adversarial Training [Madry et al., 2018]

* Motivation: An optimization view on attacks and defenses
* Recall: Adversarial attacks aim to find inputs so that:

L /
e L), y)

* In the viewpoint of defense, our goal is to minimize the adversarial risk:

By |, i L(/),0)

x'd(z,x)<e

* Adversarial training (AT) aims to minimize adversarial risk in training

* Challenge: Computing the inner-maximization is difficult
* |dea: Use strong attack methods to approximate the inner-maximization
* e.g. FGSM, PGD, DeepFool, ...

max  L(f(z'),y;0)
x':d(x.x’')<e
FGSM, PGD, ...

m@in (E(a:,y)ND
/7

Training parameters

Algorithmic Intelligence Lab *source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 44



Adversarial Training [Madry et al., 2018]

Algorithmic Intelligence Lab

* Experimental results
e MNIST results

[Method  [Steps  [Restarts |Source [[Accuracy|
Natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
Targeted |40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%

White-box
* CIFAR10 results
[Method [Steps  [Source |[Accuracy|
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
White-box

[Method [Steps  |Restarts [Source [[Accuracy|
FGSM - - A’ 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A’ 95.7%
CW 40 1 A’ 97.0%
CW+ 40 1 A’ 96.4%
FGSM - - B 95.4%
PGD 40 1 B 96.4%
CW+ - - B 95.7%

Black-box
(Method  [Steps  |Source [[Accuracy|
FGSM - A’ 67.0%
PGD 7 A’ 64.2%
CW 30 A’ T8.7%
FGSM - Aat 85.6%
p(;D 7 Ana‘ 86.0(7(‘
Black-box

*source: Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018 45




TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

Consider (X,Y) modeled by n(x)
» Bayes optimal classifier: sign(2n(x) — 1)

* We are using an “accuracy-biased” loss function

Can we exploit this trade-off for better robustness?

() n(z) :=Pr(Y = 1|X = z)

)0, z € [2ke, (2k + 1)e),
|1, z e ((2k+ 1)e, (2k + 2)e].

1 [ ——

Motivation: Robust model = accuracy reduction? [Tsipras et al. ,2019]

1/2
Bayes Optimal Classifier | All-One Classifier
Rnat 0 (Optlmal) 172
== == % Roay 1 0
0 £ £ 1 Reob 1 172 (optimal)

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 46



TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

* We re-write the relationship between robust error and natural error

* Consider a binary classification with Y € {—1,1}
* Natural error: Ry (f) := E(x yv)~p1[f(X)Y < 0]
* Robust error under e-perturbation:
* [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

Riob(f) == E(x,y)~p1[3X" € B(X,¢) s.t. f(X)Y < 0]

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 47



TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

* We re-write the relationship between robust error and natural error

* Consider a binary classification with Y € {—1,1}
* Natural error: Ry (f) := E(x yv)~p1[f(X)Y < 0]
* Robust error under e-perturbation:
* [Schmidt et al., 2018; Cullina et al., 2018; Bubeck et al., 2018]

Rrob(f) = IE(X,Y)N'Dl[ElX, S IB(X7 6) s.t. f(X,)Y < 0]

é Y

* Zhang et al. (2019) also defines the boundary error:
Roay(f) = Ex,y)~p1l[X € ]B(D]%(f)a €), f(X)Y > 0]

Decision boundary

* B(DB(f),¢€) :={x : 3z’ € B(x,¢) s.t. f(x)f(z') <0}

* Boundary error identifies the gap between R, (f) and R,..(f)

Riob(f) = Ruat (f) + Rudy (f)

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 48



TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

* Goal: Find f such that R.ob(f) — RE,, is small
RI'Ob(f) o :at — (Rnat(f) o nat) + Rbd}’(f) < 0

Natural error gap

* Theorem 1 (upper bound, informal). Let ¢ be a usual surrogate loss. We have:

Rrob(f) = Rpat = (Ruat(f) — Rpat) + Rbay(f)
(Re(f) —Ry) + Ruay(y) (Bartlett etal., 2006)

(Ro(f) — R3) + [ max (F(X)F(X)/A)

X'eB(X e)

IA

IN

* Theorem 2 (lower bound, informal). for any ¢ > 0, there exist D, f,and 1 > 0
such that:

Reon(f) - R:at_<R¢<f>—R;>+E[ max ¢<f<X'>f<X>/A>]—

X'eB(X ,e)

* The upper bound is tight if there is no assumption on D

*source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 49



TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

Goal: Find f such that R.ob(f) — RE,, is small

nat

A

Riob(f) = Riat = (Ruat(f) = Riar) + Roay(f) < 6

The theorems naturally suggests a new surrogate loss:

minE | £(£(X),Y) + X,g%%j;mE(f(X),f(X’))/A

accurac
y robustness

TRADES: TRadeoff-inspired Adv. DEfense via Surrogate-loss minimization
* A: The balancing hyper-parameter
* We can boost the robust accuracy with little loss of natural accuracy

Key difference: TRADES finds X' by solving maxx'cp(x,¢) L(f(X), f(X'))/A
* Adversarial training [Madry et al., 2018]: max x/cp(x e) L(f(X"),Y)

Up to now, TRADES is regarded as the state-of-the-art defense method

Algorithmic Intelligence Lab *source: Zhang et al., Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2018 50



TRADES: Tradeoff Between Accuracy and Robustness [Zhang et al., 2019]

* Experimental results
* White-box attack results (CIFAR-10 & MNIST)

Table 5: Comparisons of TRADES with prior defense models under white-box attacks.

Defense || Defense type | Under which attack | Dataset | Distance | Anat(f) I Arob(f)
[BRRGI18)] gradient mask [ACW18] CIFARI10 | 0.031 (/~) - 0%
[MLW 18] gradient mask [ACW18] CIFARI10 | 0.031 (£~) - 5%
[DAL™ 18] gradient mask [ACW18] CIFARI10 | 0.031 (/~) - 0%
[SKNT18] gradient mask [ACW18] CIFARI10 | 0.031 (/~) - 9%
[NKM17] gradient mask [ACW18] CIFARI10 | 0.015 (£x) - 15%
[WSMK18] robust opt. FGSM?2 (PGD) CIFARI10 | 0.031 ({x) | 27.07% | 23.54%
[MMS 18] robust opt. FGSM?Y (PGD) CIFAR10 | 0.031 (¢,) | 87.30% | 47.04%|
[ZSLG16] regularization FGSM?' (PGD) CIFARI10 | 0.031 (£5) | 94.64% | 0.15%

[KGB17] regularization FGSM?" (PGD) CIFARI10 | 0.031 ({~) | 85.25% | 45.89%

[RDV17] regularization FGSM?" (PGD) CIFARI10 | 0.031 ({~) | 95.34% 0%

TRADES (1/\ = 1) || regularization | FGSM!Y% (PGD) | CIFARI10 | 0.031 ({..) | 88.64% | 48.90%
TRADES (1/)\ = 6) || regularization | FGSM!?% (PGD) | CIFARI10 | 0.031 (£..) | 84.92% | 56.43%
TRADES (1/X = 1) || regularization FGSM?’ (PGD) CIFARI10 | 0.031 (/) | 88.64% | 49.14%
TRADES (1/)\ = 6) || regularization FGSM?2 (PGD) CIFARI10 | 0.031 (/) | 84.92% | 56.61%
TRADES (1/A = 1) || regularization DeepFool () CIFARI10 | 0.031 (/) | 88.64% | 59.10%
TRADES (1/\ = 6) || regularization DeepFool ({~) CIFARIO | 0.031 (/) | 84.92% | 61.38%
TRADES (1/A = 1) || regularization LBFGSAttack CIFARI10 | 0.031 (£, | 88.64% | 84.41%
TRADES (1/\ = 6) || regularization LBFGSAttack CIFARI10 | 0.031 (£~,) | 84.92% | 81.58%
TRADES (1/\ = 1) || regularization MI-FGSM CIFARI10 | 0.031 (£5) | 88.64% | 51.26%
TRADES (1/)\ = 6) || regularization MI-FGSM CIFARI10 | 0.031 (£5) | 84.92% | 57.95%
TRADES (1/A = 1) || regularization C&W CIFARI10 | 0.031 (/) | 88.64% | 84.03%
TRADES (1/)\ = 6) || regularization C&W CIFARI10 | 0.031 () | 84.92% | 81.24%

[SKC18] gradient mask [ACW18] MNIST | 0.005 (£5) - 55%

[MMS™18] robust opt. FGSM*’ (PGD) MNIST 0:3.(lc0) 99.36% | 96.01%
TRADES (1/\ = 6) || regularization | FGSM"* (PGD) | MNIST 0.3 ({ae) 99.48% | 95.60%
TRADES (1/)\ = 6) || regularization FGSM*’ (PGD) MNIST 0.3 ({x) 99.48% | 96.07%
TRADES (1/)\ = 6) || regularization C&W MNIST | 0.005 (f2) | 99.48% | 99.46%

Algorithmic Intelligence Lab
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Overfitting of Adversarial Training [Rice et al., 2020]

* Problem of AT: Robust overfitting
* The robust error of test set, gradually increases from the middle of the training
* This phenomenon occurs across dataset, architectures and objectives (e.g., TRADES)

* Early stopping is an effective way to prevent the overfitting

 Most of recent advanced AT methods aims to resolve this issue

= Test robust Test standard

=== Trainrobust =~ === Train standard . . L.
Comparison of methods for preventing overfitting
0.8
overfitting occurs ROBUST TEST ERROR (%)
REG METHOD FINAL BEST DIFF
5 “EARLY STOPPING W/ VAL 46.9 4677702 %
g " 71 REGULARIZATION 53.0£0.39""486 """ 44"
{2 REGULARIZATION 552 +0.4 46.4 55.2
CUuTOUT 48.8 +0.79 46.7 2.1
MIXUP 49.1 +1.32 46.3 2.8
SEMI-SUPERVISED 47.1+4.32 40.2 6.9

Algorithmic Intelligence Lab *source: Rice et al., Overfitting in adversarially robust deep learning, ICML 2020 53



Adversarial Weight Perturbation [Wu et al., 2020]

e Observation: model with the high robustness have a smooth loss landscape

 We measure the loss landscape of the adversarial risk
* (1) During AT, the best model (at 100 epoch) has the most smooth landscape

5 5
— Training robustness 20 120
1001 — Test robustness 4 40 4 —140
S Robust gen. gap — 60 — 160
3 3
§ 60 § — % § %0
= 3, \ — 100 3 —200
g M —

2
40 J
20 / 1 1

0050 100 150 200 210 =05 00 05 1o %0 <65 00 05 10

Epoch a a

* (2) The AT objectives with strong robustness tend to have a smoother landscape

5
[ Test robustness —AT
—_ 1901 mmm Robust gen. gap 4 —TRADES
X 80 — MART
a w3 — RST
60 n
::d 40
20 1
0 X S o e S %0 <65 oo 0.5 1.0
s 1?}‘0?, \I\P‘?\ O <€ o

Algorithmic Intelligence Lab *source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurlPS 2020 54



Adversarial Weight Perturbation [Wu et al., 2020]

* Adversarial Weight Perturbation (AWP)
* Optimize the loss on the worst case weight parameter to force the smoothness

. . BN
min max p(w +v) — mi max| Z |x;£rfﬁ|(pge£(fw+"(xg)’ Yi),

Maximize the weight perturbation

Maximize the input perturbation, i.e., adversarial training

* |n detail, AWP use a projected gradient decent to attack the weight parameters

Vv% :r; E(fw v(xf/i)ayz')

v < I (v + 12 =
7( ||VV% i1 LEwiv(x7), i)

Algorithmic Intelligence Lab *source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurlPS 2020 55



Adversarial Weight Perturbation [Wu et al., 2020]

* Experimental results
* AWP effectively prevents the overfitting issues of AT

Threat Model Method SVHN CIFAR-10 CIFAR-100
Best Last Best Last Best Last
I AT 53.36 4449 5279 4444 27.22 20.82
° AT-AWP 59.12 5587 55.39 54.73 30.71 30.28
I AT 66.87 65.03 69.15 6593 41.33 35.27
2

AT-AWP 7257 67.73 72.69 72.08 45.60 44.66

* Moreover, AWP achieves the state-of-the-art robustness on various benchmarks

Defense Natural FGSM PGD-20 PGD-100 CW. | SPSA | AA
AT 86.07 61.76 56.10 55.79 54.19 | 61.40 | 52.601
AT-AWP 85.57 62.90 58.14 57.94 55.96 | 62.65 | 54.04
TRADES 84.65 61.32 56.33 56.07 54.20 | 61.10 | 53.08
TRADES-AWP 85.36 63.49 59.27 59.12 57.07 | 63.85 | 56.17
MART 84.17 61.61 58.56 57.88 54.58 | 5890 | 51.10
MART-AWP 84.43 63.98 60.68 59.32 56.37 | 62.75 | 54.23
Pre-training 87.89 63.27 57.37 56.80 55.95 | 6255 | 54.92
Pre-training-AWP  88.33 66.34 61.40 61.21 59.28 | 65.55 | 57.39
RST 89.69 69.60 62.60 62.22 60.47 | 67.60 | 59.53
RST-AWP 88.25 67.94 63.73 63.58 61.62 | 68.72 | 60.05

Algorithmic Intelligence Lab *source: Wu et al, Adversarial Weight Perturbation Helps Robust Generalization, NeurlPS 2020 56



Data Augmentation Can Improve Robustness [Rebuffit et al., 2021]

* Recently, data augmentations are used in AT to improve the robustness
e Several works research the effect of conventional augmentations in AT

CutMix

ResNet-50 Mixup [48] Cutout [3]

Image

Dog 0.5
Cat 0.5

CutMix [Yun et al., 2019]

Dog 0.6

Dog L0 i 04

Label Dog 1.0

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4

Sub-policy 5
S wT

Batch 1

b g
>

i’

. I I

Batch 2

Batch 3

A

PR

Rotate, 0.2, 3

Equalize, 0.6, 8
Solarize, 0.6, 8  Posterize, 0.4, 6

Posterize, 0.8, 5
Equalize, 1.0, 2

Solarize, 0.6, 3
Equalize, 0.6, 7

Equalize, 0.4, 4
Rotate, 0.8, 8

AutoAugment [Cubuk et al., 2019]

* For instance, CutMix can prevent the robust overfitting
* Additionally using weight averaging (WA) can further improve the robustness

o
2
B

%4
]
=S

= Pad & Crop (without WA)
= Cutout (without WA)
= MixUp (without WA)
= CutMix (without WA)

Robust test accuracy

20%
step

(a) Without WA
*source:

Yun et al., CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, ICCV 2019

60%

50%

= Pad & Crop (with WA)
——— Cutout (with WA)
= MixUp (with WA)
— CutMix (with WA)

Robust test accuracy

20%
step

(b) With WA

Cubuk et al., AutoAugment: Learning Augmentation Strategies from Data, CVPR 2020

Algorithmic Intelligence Lab

Rebuffi et al, Data Augmentation Can Improve Robustness, NeurlPS 2021
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Improving Robustness using Generated Data [Gowal et al., 2021]

* Recently, data augmentations are used in AT to improve the robustness
e Other works find that using generating more training data, is highly effective in AT

Pext1|xt
&2 H@ @H H

R e i

DDPM [Ho et al., 2019]

e Using the generated data (from DDPM) for AT, improves the robustness

* As DDPM is unconditional generative model, one should use pseudo-labels from
the pre-trained classifier (not adversarially trained classifier)

 DDPM augmentation achieves the state-of-the art performance

MODEL DATASET NORM CLEAN ROBUST
Wu et al. [76] (WRN-34-10) 85.36%  56.17%

Gowal et al. [30] (WRN-70-16) CIFAR-10 p 85.29%  57.14%
Ours (DDPM) (WRN-28-10) 00 85.97%  60.73%
Ours (DDPM) (WRN-70-16) 86.94%  63.58%
Ours (100M DDPM)* (ResNet-18) 87.35%  58.50%
Ours (100M DDPM)* (WRN-28-10) 87.50%  63.38%
Ours (100M DDPM)* (WRN-70-16) 88.74%  66.10%

*source:
Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS 2020

Algorithmic Intelligence Lab Gowal et al., Improving Robustness using Generated Data, NeurlPS 2021 58
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Back Side of Adversarial Training

e Adversarial training has achieved reasonable adversarial robustness
* Adversarially-trained networks are resistant for the corresponding threat model
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Back Side of Adversarial Training

e Adversarial training has achieved reasonable adversarial robustness
* Adversarially-trained networks are resistant for the corresponding threat model
* Problem: The conjectured robustness may be broken under a stronger
“adaptive” attack mechanism
* |n other words, we can not guarantee the robustness under unseen threat model
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Back Side of Adversarial Training

e Adversarial training has achieved reasonable adversarial robustness
* Adversarially-trained networks are resistant for the corresponding threat model

* Problem: The conjectured robustness may be broken under a stronger
“adaptive” attack mechanism

* |n other words, we can not guarantee the robustness under unseen threat model

 The most that can be said is that a specific attack was unable to find
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Typical approaches for certified robustness

For a classifier f, we want to ‘certify’ the robustness for the given input x
 For aradiusr, is there a perturbation § with ||§|| < r where f(x) # f(x + §)?

Exact certification
* Report whether or not there exists such perturbation &
 Satisfiability modulo theories [Katz et al., 2017]
* Mixed integer linear programming [Cheng et al., 2017]
e Can’t be scaled beyond moderate-sized networks

Conservative certification
 Certify that there is no such perturbation & or abstain
* Bound the global Lipschitz constants [Gouk et al., 2018]
* Measure the local smoothness [Hein et al., 2017]
* Assume specific network architectures (e.g., ReLU activations)

Both approaches have some limits to be applied to modern architectures
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Randomized Smoothing [Cohen et al., 2019]

* Problem: Directly training a robust DNN f is challenging
* Randomized smoothing instead constructs another classifier g from f
e The l;-norm robust radius of g is lower-bounded in terms of f
* Note: f does not have to be perfectly smooth for adversarial robustness

g(x) = argmax ey {PE~N(O,O'21)(f(x +€) = c)}

“panda”
“bird”

“‘panda”

“bird”

“bird”

“bird”

<\
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Randomized Smoothing [Cohen et al., 2019]

* Problem: Directly training a robust DNN f is challenging
* Randomized smoothing instead constructs another classifier g from f
e The l;-norm robust radius of g is lower-bounded in terms of f
* Note: f does not have to be perfectly smooth for adversarial robustness

g(x) = argmax ey {PE~N(O,O'21)(f(x +€) = c)}

Theorem 1. Let f : R® — Y be any deterministic or

random function, and let € ~ N (wal ). Let g be defined
asin (1). Suppose.cy € Y andp s, Py < [0,1] satisfy: The certified radius R is large when:

P(f(z +¢€) = ca) > pa > P > maxP(f(z+¢)=¢) (2 * The noise level g is high
A  The probability of the top class ¢y is high
Then g(z + 8) = ca forall ||6||2 < R, where * The probabiliy of each other class is low
g
R=73(27"(pa) - 27'(PB)) 3)

Algorithmic Intelligence Lab 65



Randomized Smoothing [Cohen et al., 2019]

* Problem: Directly training a robust DNN f is challenging
* Randomized smoothing instead constructs another classifier g from f
e The l;-norm robust radius of g is lower-bounded in terms of f
* Note: f does not have to be perfectly smooth for adversarial robustness

g(x) = argmax ey {PE~N(O,O'21)(f(x +€) = c)}

Theorem 1. Let f : R® — Y be any deterministic or

random function, and let ¢ ~ N'(0,0%1). Let g be defined
as in (1). Suppose cy € Y and p,pp € [0,1] satisfy:

P(f(z +€) = ca) > pa > 55 > maxP(f(z +¢) = ¢) () The.orem 2. Assume p 5 + pg < 1. For any perturbfztion
erlc 4 d with ||8||o > R, there exists a base classifier f consistent

Then g(z + 6) = ca for all ||8||z < R, where with the class probabilities (2) for which g(xz + §) # ca.

g

R=5(27'(pa) - @' (5)) 3)

* If (2) is all that is known about f, then the robustness guarantee is tight
* In other words, it is impossible to certify an [, ball with radius larger than R
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Randomized Smoothing [Cohen et al., 2019]

* Problem: Directly training a robust DNN f is challenging
* Randomized smoothing instead constructs another classifier g from f
e The l;-norm robust radius of g is lower-bounded in terms of f
* Note: f does not have to be perfectly smooth for adversarial robustness

g(x) = argmax ey {PE~N(O,O'21)(f(x +€) = c)}

* Intractability of “averaging over Gaussian noise” -> Monte Carlo & hypothesis test

Theorem 1. Let f : RY — Y be any deterministic or
random function, and let € ~ N'(0,0°I). Let g be defined

as in(1). Suppose cy € Y and pa,pg € [0, 1] satisfy:
P(f(x+¢€) =ca) > pa >ps > n;axﬁ”(f(x-*'é?) =c) (2
c#ca

Then g(x + &) = ca for all ||0||2 < R, where

g

R=3(27'(pa) - @' (5)) 3)
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Randomized Smoothing [Cohen et al., 2019]

* Problem: Directly training a robust DNN f is challenging
* Randomized smoothing instead constructs another classifier g from f
e The l;-norm robust radius of g is lower-bounded in terms of f
* Note: f does not have to be perfectly smooth for adversarial robustness

g(x) = argmax ey {PE~N(O,O'21)(f(x +€) = c)}

* Intractability of “averaging over Gaussian noise” -> Monte Carlo & hypothesis test

# certify the robustness of g around x

function CERTIFY(f, o, z, ng, n, o)
counts0 < SAMPLEUNDERNOISE(f, z, 19, 0) Proposition 2. With probability at least 1 — « over the
Ca < top index in counts0 randomness in CERTIFY, if CERTIFY returns a class ¢,
counts < SAMPLEUNDERNOISE(f’Ax’n’ a) and a radius R (i.e. does not abstain), then g predicts ¢4
pa « LOWERCONFBOUND(counts(eal. 1 —a)  \upin radius R around x: g(x+6)=¢éa V|d|2 <R
if p4 > % return prediction ¢4 and radius 0 ®~1(pa)
else return ABSTAIN
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Randomized Smoothing [Cohen et al., 2019]

e Experimental results:
* The base classifier f is trained with cross-entropy loss of Gaussian augmentations

rnat — Ee~]\f(0,0'21) [L(F(x +€),y)]
Softmax outputs of f

* The choice of o determines the trade-off between the accuracy and robustness

1.0 1.0
0=0.12 — 0=0.25

30 0=0.25 808 0=0.50
g g
éo o=0.50 2 06 o=1.00
a8 v = © 7 St I A D A
© o=1.00 © undefended
Bo. N undefended Boa”
b= S £ '
8o i 8o2 =

0.0 i 0.0

0.8 1.0 1.2 14 15 20 25 3.0 35 40
radius radius
Results on CIFAR-10 Results on ImageNet

* Q. Can we train f more effectively to yield more robust g?
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Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

* |dea: Adversarial training of the smoothed classifier g (approx.)
* How to attack the smoothed classifier g through the base classifier f?

Recall: g is the most provable output of f under Gaussian augmentation

g9(x) = argmaxcey {P ey (0,02 (f(x + €) = 0]

Define “soft” smoothed classifier G (corresponding to g) as follows:

G(x) == (F * IV (0, 021))(x) = IE§~N(0,021)[F(3C + 6)]

Softmax outputs of f

Adversarial attack is performed on the soft smoothed classifier G

Note: Attack on g does not yield a valid gradient because of argmax function
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Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

* |dea: Adversarial training of the smoothed classifier g (approx.)
* Adversarial attack is performed on the soft smoothed classifier G

G(x) = (F * N(O,O'ZI))(X) = IE6~]\/‘(0,021) [F(x + &)]

/

Softmax outputs of f

* One can find an adversarial example X of a clean sample x w.r.t. G as follows:

x:= max (LGX"),y)

[|x'—x||,<€

= max (—logEs_j(002y) [(F (" + 5))31]

[lx"—x|| ;<€

Algorithmic Intelligence Lab
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Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

* |dea: Adversarial training of the smoothed classifier g (approx.)
* One can find an adversarial example X of a clean sample x as follows:

X:= max (L(G(x),y)

|x! —x|| ;<€

=  max (— log ]E5~N(0,021) [(F(x, + 8))3/])

" —x]||2<€

* The gradient ascent step is performed on x’ via Monte-Carlo approximation

Vot (LGG,Y) = Vot (=108 By (o2n) [ (PG + 8)) )
1 m
~ V,yr (‘ log Es(0,021) (EZ FG + 5i)y>>
i=1

* Then, the adversarial example X w.r.t. G is used to train the base classifier f
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Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers [Salman et al., 2019]

* Experiments
* Comparison of [Cohen et al., 2019]
* Improves the certified accuracy of the smoothed classifier g

Table 1: Certified top-1 accuracy of our best ImageNet classifiers at various ¢, radii.

¢3 RADIUS (IMAGENET) | 0.5 1.0 1.5 2.0 2.5 3.0 35

COHEN ET AL. [6] (%) 49 37 29 19 15 12 9
OURS (%) 56 45 38 28 26 20 17

Table 2: Certified top-1 accuracy of our best CIFAR-10 classifiers at various /5 radii.

¢/, RADIUS (CIFAR-10) | 025 0.5 0.75 1.0 125 1.5 175 20 225

COHEN ET AL. [6] (%) 61 43 32 22 17 13 10 7 4
OURS (%) 73 58 48 38 33 29 24 18 16

* However, it requires:
* High computational cost due to the adversarial attack
* Many hyperparameters such as
* (1) e: maximum allowed [, perturbation
* (2) T: number of steps of the attack
* (3) m: the number of noise samples for Monte Carlo approximation
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Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

* Idea: Maintain the prediction consistency over Gaussian noise
* 0-1 loss of smoothed classifier [Zhai et al., 2020]

E(x,y)elD)[l - ﬂR(g;x,y)ZE] = ]E[ﬂg(X)iy] + IE:[]1g(JC)=y,R(g;x,y)<e]

Natural error robust error

Indicator function

* “Consistent” prediction in logit space over Gaussian noise (i.e., F(x 4+ §) is
constant) implies Ps(f (x + §) = g(x)) to become 1

* Then, the robust term of 0-1 loss is upper-bounded by the following:

IE[]1.9(96)=3/.R(g;x.y)<~€] = ]E[ﬂg(x)=y,R(g;x,g(x))<e]

robust error

=E lﬂR(g;x,g(x))«] =E [ﬂIP’a(f(H5)=g(x))<<13(6/6)]]

* |n other words, consistent prediction minimizes upper-bound of the robust 0-1 loss

* Note: As Ps(f(x +6) = g(x)) goesto 1, E [ﬂpa(f(xw):g(x))@(e/a)]] goes to 0
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Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

* Idea: Maintain the prediction consistency over Gaussian noise
* Objective: “Consistent” prediction in logit space over Gaussian noise

Lo = A - Es[KL(F(x)||F (x + 8)] +n - H(F(x))
where F(x) := E[F(x + 8)], and H(-) denotes the entropy
* Entropy term is to prevent F(x) to be too close the the uniform

e Empirically, the expectation over Gaussian is approximated by Monte-Carlo

L= L"at 4 [N = E[L(F(x 4+ 6),y) + A KL(E()||F(x + &) + - H(F (x))]

~ %Z(L(F(x +6,),y) + A KL(F)||F(x + 6;))) + A+ H(F (x))

* No attack, fewer hyperparameter compared to [Salman et al., 2020]
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Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

* Experimental results
* ACR (Average Certified Radius) is defined by:

1
CR(f,O',X) -1 (x)=
51 2. ser=s
| testl (x,y)ED¢est /

Certified radius

* ACR reflects the trade-off between robustness and accuracy of smoothed classifier
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Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

* Experimental results
» Effectively trade-off the robustness and accuracy
* The robustness of smoothed classifier dramatically increases

Table 1: Comparison of approximate certified test accuracy (%) on CIFAR-10. Every model is
certified with o used for its training. We set our result bold-faced whenever the value improves the
baseline. For ACRs, we underline the best model per o. For the results in “+ Hyperparameter search”,
we evaluate the best model among those released by Salman et al. [32] for each o.

o Models (CIFAR-10) ACR 000 025 050 0.75 100 125 150 175 200 225

Gaussian [10] 0.424 766 612 422 251 00 0.0 0.0 0.0 0.0 0.0
+ Consistency (A = 10) 0.544 778 688 574 438 00 00 00 00 00 00
+ Consistency (A =20) 0.552 758 67.6 581 467 00 00 00 00 00 0.0

0.25 SmoothAdv [32] 0544 734 656 570 475 00 00 00 00 00 00
+ Consistency (A = 2) 0548 729 656 575 485 00 00 00 00 00 00

Stability training [23] 0421 723 580 433 273 00 00 00 00 00 0.0

MACER [44] 0531 795 69.0 558 406 00 00 00 00 00 00
Gaussian [10] 0525 657 549 428 325 220 141 83 39 00 00
+ Consistency (A = 10) 0.720 643 57.5 50.6 432 362 295 228 161 0.0 0.0
SmoothAdv [32] 0.689 644 572 49.0 406 33.6 274 218 140 00 00

0.50 + Hyperparameter search 0.717 53.1 492 449 41.0 372 332 29.1 240 0.0 0.0
+ Consistency (A = 1) 0.726 523 489 451 413 378 339 299 252 0.0 0.0

Stability training [23] 0521 60.6 515 414 325 239 153 96 50 00 00
MACER [44] 0.691 642 575 499 423 348 276 202 126 00 00

Gaussian [10] 0542 472 392 340 278 216 174 140 118 100 7.6
+ Consistency (A = 5) 0.734 48.1 439 393 347 299 261 221 188 154 122
+ Consistency (A = 10) 0.756 463 422 381 343 300 263 229 19.7 16.6 138

SmoothAdv [32] 0.682 50.2 440 376 338 288 240 202 158 132 102
+ Hyperparameter search  0.785 45.6 419 38.0 342 309 274 241 207 17.7 149
+ Consistency (A = 1) 0.816 41.7 390 362 335 30.7 27.6 247 220 195 173

Stability training [23] 0526 435 389 328 270 231 191 154 113 78 57
MACER [44] 0.744 414 385 352 323 293 264 234 202 174 145

1.00
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Consistency Regularization for Certified Robustness of Smoothed Classifier [Jeong and Shin., 2020]

* Experimental results
* Fewer hyperparameter/training time compared to baselines
* At least achieves comparable results

Table 2: Comparison of approximate certified test accuracy (%) on ImageNet. We set our result
bold-faced whenever the value improves the baseline. We use n = 0.1 instead of 0.5 when o = 1.0.

o Models (ImageNet) ACR 00 05 10 15 20 25 30 35
Gaussian [10] 0733 57 46 37 29 0 0 0 0

050 + Consistency(A=5) 0822 55 50 44 34 O 0 0 0
SmoothAdv [32] 0825 54 49 43 37 0 0 0 0
Gaussian [10] 0875 44 38 33 26 19 15 12 9

1.00 +Consistency(A=5) 0982 41 37 32 28 24 21 17 14
SmoothAdv [32] 1.040 40 37 34 30 27 25 20 15

Table 3: Comparison of training time statistics on
CIFAR-10 with ¢ = 0.50. All the baselines are
trained on their official implementations separately.

Models #HP ACR Mem. Time (h)
Gaussian 0.525 2.9G 4.6
+ Consistency 2 0.720 29G 8.7
SmoothAdyv 4 0.717 3.0G 23.1
MACER 4 0.691 9.4G 14.1
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Other Certified Robustness Approaches

* Randomized smoothing cares about the I,-norm certified robustness
* A few approaches consider l,-norm certified robustness
* So far, not scaled up to full-resolution ImageNet

* On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust
Models [Gowal et al., 2018]

* Interval Bound Propagation (IBP)

Conv2D
RelU
Conv2D
C
2
3
@

4

Adversarial
polytope

Intefi?éll
bounds

Specification

* Maximize the lower bound of the logit value of the true label
* Minimize the upper bound of the logit values of other labels
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Other Certified Robustness Approaches

* Randomized smoothing cares about the I,-norm certified robustness
* A few approaches consider l,-norm certified robustness
* So far, not scaled up to full-resolution ImageNet

* Boosting the Certified Robustness of L-infinity Distance Nets [Zhang et al., 2022]
* Introduce [ -distance layer

2V = w(@® D {w®) b} = 2D —w®I|| o + b, 1e[L),i€ [n]

» [ -distance net satisfies 1-Lipschitz continuity in [.,-norm

Proposition 2.2. The mapping of an {.-distance layer is 1-Lipschitz with respect to £.-norm. Thus
by composition, any {.-distance net g(-) is 1-Lipschitz with respect to £..-norm.

* One can guarantee g(x) = g(x + §) when ||§|| < margin(x,y; g)/2

margin(x,y;g) = [g(x)], — Ijnigi[g(m)]y

Algorithmic Intelligence Lab 80



Table of Contents

4. Defense methods: Distributional shift robustness
* Robust training schemes for distributional shifts
e Test-time adaptation
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Robust training schemes: AugMix [Hendrycks et al., 2020]

* Motivation: Data augmentation largely improve the generalization performance

* AugMix: Mixup the original image with the composed augmentations
* Intuitively, it generates diverse image without veering too far from the original

Compose Mixup with the
augmentations original sample

W
7S
\0-1

* Then, regularize the predictive distribution to be consistency across augmentations
* This injects an inductive bias to the classifier
L (poriga y) + AJS (porig; Paugmix1; paugmixZ)

JS: Jensen-Shannon divergence
Dorig: Original sample’s output
Paugmix—i: AugMix sample’s output
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Robust training schemes: AugMix [Hendrycks et al., 2020]

* Experimental results
e AugMix significantly outperforms the baseline augmentation schemes

Standard Cutout Mixup CutMix AutoAugment* Adv Training AUGMIX

AllConvNet | 30.8 329 246 313 29.2 28.1 15.0

DenseNet 30.7 32,1 246 335 26.6 27.6 12.7

CIFAR-10-C WideResNet| 269 268 223  27.1 23.9 26.2 112

ResNeXt 275 289 226 295 24.2 27.0 10.9

Mean 29.0 30.2 235 303 26.0 27.2 12.5

AllConvNet | 56.4 56.8 534 560 55.1 56.0 42.7

DenseNet 593 59.6 554 592 539 55.2 39.6

CIFAR-100-C wigeResNet| 533 535 504 529 49.6 55.1 359

ResNeXt 534 546 514 541 513 54.4 349

Mean 55.6 56.1 526 555 952.5 55.2 383

CIFAR-10 and CIFAR-100 results
Noise Blur Weather Digital

Network Clean |Gauss. Shot Impulse|Defocus Glass Motion Zoom|Snow Frost Fog Bright|Contrast Elastic Pixel JPEG| mCE
Standard 239 79 80 82 82 90 84 80 | 86 81 75 65 79 91 77 80 | 80.6
Patch Uniform 245 | 67 68 70 74 83 81 77 | 80 74 75 62 77 84 71 71 | 743
AutoAugment* (AA)| 22.8 | 69 68 72 77 83 80 81 | 79 75 64 56 70 88 57 71 | 727
Random AA* 236 | 70 71 72 80 86 82 81 | 81 77 72 61 75 88 73 72 |76.1
MaxBlur pool 230 73 74 176 74 86 78 77 | 77 72 63 56 68 86 71 71 | 734
SIN 2721 69 70 70 77 84 76 82 | 74 75 69 65 69 80 64 77 | 733
AUGMIX 224 | 65 66 67 70 80 66 66 | 75 72 67 58 58 79 69 69 | 684
AUGMIX+SIN 252 | 61 62 61 69 77 63 72 | 66 68 63 59 52 74 60 67 | 64.9

ImageNet result
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Pyramid Adversarial Training [Herrmann et al., 2022]

* Pyramid AT: utilize adversarial examples as data augmentations
* This method is typically designed for patch-based models, e.g., ViT or MLP-Mixer

* Pyramid AT use a patch-wise adversarial attack
* Constraint the patch to have the same noise scale
* Add the adversarial noise across various patch sizes

Original Image Learned Adversarial Pyramid  Perturbed Image

. ol LU__A, R
VTR i "”’%“—: e
‘.-4 e } LA :
P 0 v et o
H 5 3 A %
, + + + 1
- AL AY T

“basenji”  patch size =28 Patchsize =14 Patch size = 1, “bassoon”
i.e., pixel

* + one should remove the randomness of the model when using adversaries
* Note that ViT consist of dropout (and stochastic depth)
* Such randomness may induce gradient obfuscations

Eey~n | LMO],&,9)+ A max L{g] 2, y)+£(0)]

Randomness (dropout mask, M) for clean data  Fixed parameter for adversaries
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Pyramid Adversarial Training [Herrmann et al., 2022]

* Experimental results
* Pyramid AT significantly improves the distributional shift robustness
* More intriguingly, the clean accuracy also improves

Out of Distribution Robustness Test

Method ImageNet  Real A Cl ObjectNet V2 | Rendition Sketch  Stylized
ViT [13] 72.82 78.28 | 8.03 74.08 17.36 58.73 27.07 17.28 6.41
ViT+CutMix [60] 75.49 80.53 | 1475 64.07 21.61 62.37 2847 17.15 7.19
ViT+Mixup [61] 71.75 8293 | 1215 61.76 25.65 64.76 34.90 25.97 9.84
RegViT (RandAug) [48] 79.92 85.14 | 1748 5246 29.30 67.49 38.24 29.08 11.02
+Random Pixel 79.72 84.72 | 17.81 52.83 28.72 67.17 39.01 29.26 12.11
+Random Pyramid 80.06 85.02 | 19.15 5249 29.41 67.81 39.78 30.30 11.64
+Adv Pixel 80.42 85.78 | 19.15 47.68 30.11 68.78 45.39 34.40 18.28
+Adv Pyramid (ours) 81.71 86.82 | 2299 44.99 32.92 70.82 47.66 36.77 19.14
RegViT [48] on 384x384 81.44 86.38 | 2620 58.19 35.59 70.09 38.15 28.13 8.36
+Random Pixel 81.32 86.18 | 2595 58.69 34.12 69.50 37.66 28.79 9.77
+Random Pyramid 81.42 86.30 | 27.55 57.31 34.83 70.53 38.12 29.16 9.61
+Adv Pixel 82.24 87.35 | 31.23 48.56 37.41 71.67 44.07 33.68 13.52
+Adv Pyramid 83.26 88.14 | 36.41 47.76 39.79 73.14 46.68 36.73 15.00

* Moreover, the attention and saliency map well aligns with the object
F "v.

YaieW

Original Baseline Pixel Pyramid Pixel AdaBelief

Original Baseline Pixel Pyramid
Attention map Saliency map
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Test-time Adaptation

* Another direction is to adapt the model to the unseen distribution
* Use the test input (from unseen distribution) for the adaptation

* This direction have some benefits compare to the robust training schemes
* (i) Modifying the training may not be feasible due to computation (of re-training)
* (ii) Can utilize the information of unseen distribution with the test inputs

* (iii) does not require any assumptions about the training procedure
* E.g., domain adaptation requires domain labels during training

setting

fine-tuning

domain adaptation
test-time training

fully test-time adaptation

source data target data train loss test loss
',y L(z*,y") -
xt L(z®,y®) + L(z*, x") -
xt L(z*,y®) + L(z* L(z?)
zt - L(z)
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Tent: Fully Test-time Adaptation by Entropy Minimization [Wang et al., 2021]

* Prior work: Batch Normalization (BN) adaptation [Schnider et al., 2020]
* Adapting the batch statistic of the BN significantly improves the robustness
* One can obtain the test (target) mean and variance statistic with single forward

Us: source mean, U;: target mean, gg: source mean, o;: target mean

New batch statistics

* BN adaptation can be applied to any models with BN

IN-C mCE (\) Topl accuracy () Partial: small batch
w/o  partial  full w/o  partial  full
Model adapt adapt adapt A adapt adapt adapt A Full: full batch
Vanilla ResNet-50 76.7 65.0 622 (—14.5) 39.2 486 50.7 (+11.5)
SIN [28] 69.3 61.5 59.5 (—9.8) 452 51.6 53.1 +7.9)
ANT [29] 63.4 56.1 53.6 (—9.8) 50.4 56.1 58.0 (+7.6)
ANT+SIN [29] 60.7 55.3 53.6 (—=7.00 52.6 56.8 58.0 (+5.4)
AugMix [AM; 30] 65.3 554 51.0 (—14.3) 483 56.3  59.8 (+11.4)
Assemble Net [32] 52.3 - 50.1 (-1.2) 59.2 - 60.8 (+1.5)
DeepAug [36] 60.4 523 494 (-10.9) 52.6 59.0 61.2 (+8.6)
DeepAug+AM [36] 53.6 48.4 454 (—8.2) 58.1 62.2 64.5 (+6.4)

DeepAug+AM+RNXt101 [36]  44.5 40.7 38.0 (—6.6) 65.2 68.2 70.3 (+5.1)
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Tent: Fully Test-time Adaptation by Entropy Minimization [Wang et al., 2021]

* Tent adapt the BN parameters by minimizing the test entropy H

* H@) = — Xcp(@)log p(¥.) of model predictions § = fo(X).
* Also, Tent use the test batch statistics for BN (i.e., fully adapt the batch statistics)

BN statistics BN parameters

normalization u <+ E[x], 0% E[(px — xt)z]

p© o Y B
IN g e @ a OUT | transformation Y4 y+0H/0v,B+ B+ 0H/OB

Use test Optimize with
batch statistics  entropy loss

* Tent significantly outperforms the baseline robustification methods

Error (%)
Method Source Target C10-C  C100-C
Source train 40.8 67.2
RG train train 18.3 38.9
UDA-SS train train 16.7 47.0
TTT train test 17.5 45.0
BN test 173 42.6
PL test 15.7 41.2
Tent (ours) test 14.3 373
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MEMO: Test Time Robustness via Adaptation and Augmentation [Zhang et al., 2021]

 Limitation of prior adaptation works: require batches or entire test dataset

* Forsingle sample adaptation, MEMO suggest to augment the test data
* |n this regard, one can generate a batch with a single sample

m ¥ ool ). nell all
single test input  trained model Po y|x E ;
augmentation functions ol l_l O I_J
{al,...,aM} mlnH(ﬁg) =
& ra m ] H 0
WAPe ol > M -
P o B marginal entropy
% H (111 minimization [ H
% | marginal output —
e diStEibu'iion) e
o Poly|X H
U % D_DH / - i - il

Po(ylx) Po(y|x)

* Then, MEMO minimize the entropy of average prediction of the batch

B
Po(ulx) 2 By lpo(wlaGo)] = 5 Y po(ul%)
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MEMO: Test Time Robustness via Adaptation and Augmentation [Zhang et al., 2021]

* Experimental results
« MEMO significantly improve the baselines (i.e., single sample adaptation methods)

Algorithmic Intelligence Lab

ImageNet-C  ImageNet-R  ImageNet-A

mCE | Error (%) Error (%)
Baseline ResNet-50 (He et al., 2016) 76.7 63.9 100.0
+ TTA 77.9 (+1.2) 61.3 (—2.6) 98.4 (-1.6)
+ Single point BN 71.4 (-5.3) 61.1 (-2.8) 99.4 (-0.8)
+ MEMO (ours) 69.9 (—6.8) 58.8 (—5.1) 99.1 (-0.9)
+ BN (N = 256,n = 256) 61.6 (-15.1) 59.7 (-4.2) 99.8 (-0.2)
+ Tent (online) (Wang et al., 2021) 54.4 (—22.3) 57.7 (—-6.2) 99.8 (-0.2)
+ Tent (episodic) 64.7 (—12.0) 61.0 (—2.9) 99.7 (-0.3)
+ DeepAugment+AugMix (Hendrycks et al., 2021a) 53.6 53.2 96.1
+ TTA 55.2 (+1.6) 51.0 (—2.2) 93.5 (-2.6)
+ Single point BN 51.3 (-2.3) 51.2 (-2.0) 95.4 (-0.7)
+ MEMO (ours) 49.8 (-3.8) 49.2 (-4.0) 94.8 (-1.3)
+ BN (N = 256,n = 256) 45.4 (-8.2) 48.8 (—4.4) 96.8 (+0.7)
+ Tent (online) 43.5 (-10.1) 46.9 (-6.3) 96.7 (+0.6)
+ Tent (episodic) 47.1 (-6.5) 50.1 (-3.1) 96.6 (+0.5)
+ MoEx+CutMix (Li et al., 2021) 74.8 64.5 91.9
+ TTA 75.7 (+0.9) 62.7 (-1.8) 89.5 (—2.4)
+ Single point BN 71.0 (-3.8) 62.6 (—1.9) 91.1 (-o0.8)
+ MEMO (ours) 69.1 (—5.7) 59.4 (-3.3) 89.0 (-2.9)
+ BN (N = 256,n = 256) 60.9 (-13.9) 61.6 (—2.9) 93.9 (+2.0)
+ Tent (online) 54.0 (—20.8) 58.7 (-5.8) 94.4 (+2.5)
+ Tent (episodic) 66.2 (—8.6) 63.9 (—0.6) 94.7 (+2.8)
RVT*-small (Mao et al., 2021) 49.4 52.3 73.9
+ TTA 53.0 (+3.6) 49.0 (-3.3) 68.9 (-5.0)
+ Single point BN 48.0 (-1.9) 51.1 (-1.2) 74.4 (+0.5)
+ MEMO (ours) 40.6 (-88) 43.8 (-85) 69.8 (—4.1)
+ BN (N = 256,n = 256) 44.3 (-5.1) 51.0 (-1.3) 78.3 (+4.4)
+ Tent (online) 46.8 (—2.6) 50.7 (-1.6) 82.1 (+8.2)
+ Tent (adapt all) 44.7 (—-4.7) 74.1 (+21.8) 81.1 (+7.2)

*source: Zhang et al., Test Time Robustification of Deep Models via Adaptation and Augmentation, arXiv 2021
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Summary

Robustness is critical for many real-world applications with trustworthy usage
e E.g., autonomous driving cars

We discussed two types of venerability in modern machine learning
* Adversarial examples: a perturbation that confuses the network prediction
e Distributional shifts: where the train and test distribution differs

To train robust classifier under adversarial examples, we mainly discussed
* Adversarial training, i.e., training the network with adversarial examples
* Test-time robustness certification via randomized smoothing

To train robust classifier under distributional shifts, we mainly discussed
* Robust training schemes with new data augmentation schemes
* Test-time adaptation methods to new distributions
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Summary: RobustBench

* To see more recent works on robustness, refer to RobustBench

* This site shows the robustness performance of various defense methods

* URL: https://robustbench.github.io/

Leaderboard: CIFAR-10, £, = 8/255, untargeted attack

Show 15 ¥ entries
AutoAttack Best known AA eval.
Ran Standard R Extra
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k accuracy . data
accuracy accuracy unreliable
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4 It uses additional 1M synthetic images in training. 64.58% robust 88.50% 64.64% 64.58% X X
accuracy is due to the original evaluation (AutoAttack +

MultiTargeted)
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