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Motivation

* DNNs achieve remarkable success in various applications
* They usually require massive amounts of manually labeled data
* The annotation cost is high because
* |tis time-consuming: e.g., annotating bounding boxes of all objects
* |t requires expert knowledge: e.g., medical diagnosis and retrosynthesis

|
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* But, collecting unlabeled samples is extremely easy compared to annotation

* Q. How to utilize the unlabeled samples for learning DNNs?
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Self-supervised Learning

* Self-supervision?
* |tis alabel constructed from only input signals without human-annotation
* Using self-supervision, one can apply supervised learning approaches
* Examples: Predicting relative location of patches?! or rotation degree?

Example:

------------ 90° rotation 270° rotation 180° rotation 0° rotation

 What can we learn from self-supervised learning?

* To predict (well-designed) self-supervision, one might require high-level
understanding of inputs

* E.g., we should know :: is the right ear of the cat for predicting locations
* Thus, high-level representations could be learned w/o human-annotation

Algorithmic Intelligence Lab * source : [Doersch et al., 2015], 2[Gidaris et al., 2018]
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Good Representation is All You Need (SW)

* Foundation Models

* Fixing a foundation model (e.g., trained via self-supervised learning) and only
adapting a simple task-specific model is sufficient for many problems

* E.g., linear classifier upon the SImCLR/BERT backbone
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Unsupervised Learning vs. Self-supervised Learning

I now call it “self-supervised learning”, because “unsupervised” is
both a loaded and confusing term. ...

Self-supervised learning uses way more supervisory signals than
supervised learning, and enormously more than reinforcement
learning. That’s why calling it “unsupervised” is totally
misleading.

by Yann LeCun (2019. 04. 30)

* How to define “unsupervised learning” term? (there is no answer ...)
* Q) We need an objective (or loss) for learning; is the objective not a (self-)supervision?
* Q) Unsupervised learning 2 self-supervised learning?
* Q) What are the purely unsupervised learning methods?
* |In classic ML, clustering, grouping and dimensionality reduction ...

* |n this lecture,
* We mainly use the “self-supervised learning” term instead of unsupervised learning
* We learn recent SSL approaches in vision, NLP, and graph domains

Algorithmic Intelligence Lab 7



Evaluating Self-supervised Representation

* How to evaluate the quality of self-supervision?
1. Self-supervised learning in a large-scale dataset (e.g., ImageNet)

2. Transfer the pretrained network to various downstream tasks

* Linear probing: freeze the network and training only the linear classifier
= it directly evaluates the learned representation qualities

* Fine-tuning whole parameters

— Pretraining (self-supervised learning)

@Transfer (initialization)

— — Linear evaluation or Fine-tuning

Flowers102 (2k images)
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Overview of the Lecture (SW)

* We mainly follow the history of “SSL for images”
e 2015-2018: Pretext Tasks
* Context Prediction (‘15), Jigsaw Puzzle (“16), Colorization (‘17), Rotation (‘18)
* 2019-2021: Contrastive Learning
« NPID (“18), MoCo/SimCLR (“20), BYOL (‘20), MoCov3/DINO (‘21)

e 2022-: Masked Autoencoder
* BEIT (‘22), MAE (‘22), data2vec (‘22)

e Current SSL approaches can be categorized into 3 groups:
* Let X be data, Z(X) be representation, and Y be pretext label
* | denotes mutual information (Ml) of two random variables

1. Pretext task: Maximize I(Z(X);Y) where Y is pretext label of X
2. Invariance: Maximize I(Z(X;); Z(X5,)) where X;, X, are invariant data

3. Generation: Maximize I (Z(X); X) where X is perturbed version of X

Algorithmic Intelligence Lab
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SSL via Pretext Tasks — Image

* Context Prediction [Doersch et al., 2015]
* From a natural image, extract 3x3 patches
e Patch 1: The center patch

e Patch 2: Select one of other patches randomly

* Task: Given Patch 1 & 2, predict the location of the second patch (8-way classification)

—
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fc9 (8) o D B
fc8 (4096) P
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| fc7 (4096) |
e )
fc6 (4096) f--------1 fc6 (4096)
pool5 (3x3,256,2) pool5 (3x3,256,2)
conv5 (3x3,256,1) F--------1 conv5 (3x3,256,1)
conv4 (3x3,384,1) |F--------1 conv4 (3x3,384,1)
conv3 (3x3,384,1) f--------1 conv3 (3x3,384,1)
LRN2 LRN2
pool2 (3x3,384,2) pool2 (3x3,384,2)
conv2 (5x5,384,2) f--=------1 conv2 (5x5,384,2)
LRN1 LRN1
pooll (3x3,96,2) pooll (3x3,96,2)
convl (11x11,96,4)f - ------ -1 convl (11x11,96,4)
P shared -
/ Patch 1 Patch 2 l

* Each patch’s embedding is computed by one shared encoder (AlexNet)

Algorithmic Intelligence Lab
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SSL via Pretext Tasks — Image

Context Prediction [Doersch et al., 2015]
* Task: Given Patch 1 & 2, predict the location of the second patch (8-way classification)
* This pretext task assigns similar representations to semantically similar patches
* Qualitative analysis of nearest neighbors of learned representations
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SSL via Pretext Tasks — Image

 Jigsaw Puzzle [Noroozi & Favaro, 2016]
* Extension of [Doersch et al., 2015]
* (a) Extract 3x3 patches from a natural image; (b) permute the patches randomly
* Task: From (b) the shuffled patches, find which permutation is applied

(b)

.. I:> How to solve this Jigsaw puzzle? 7

7
-
-
N

Algorithmic Intelligence Lab * source : [Noroozi & Favaro, 2016] 13



SSL via Pretext Tasks — Image

 Jigsaw Puzzle [Noroozi & Favaro, 2016]
* Extension of [Doersch et al., 2015]
* (a) Extract 3x3 patches from a natural image; (b) permute the patches randomly
e Task: From (b) the shuffled patches, find which permutation is applied

—
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* Each patch’s embedding is computed by one shared encoder
* There are too many permutations (9!=362k) = choose a subset of them
e Empirically, neither simple nor ambiguous tasks achieve better performance

Algorithmic Intelligence Lab * source : [Noroozi & Favaro, 2016] 14



SSL via Pretext Tasks — Video (SH)

e Space-Time Cubic Puzzles [Kim et al., 2019] for video representation
» Self-supervisied pretext task for 3D CNNs with temporal dimension
* Train a network to predict their original spatio-temporal arrangement

* Pretraining with the learned representation outperforms supervised pretraining
methods in video action recognition

Q. Can you arrange these?

P T3 =

O-9-a-Vv eneds vy O-v-a-g ;[erodwa] vy

¥ LS Ll

_(Spatial) (Temporal)

Algorithmic Intelligence Lab *source: [Kim et al., 2019]
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SSL via Pretext Tasks — Image

* Colorization [Zhang et al., 2016]
e Task: Predict color information from a grayscale image
* Colorization requires dense prediction
* = Hypercolumn: concatenate feature maps of different layers

VGG-16-Gray Hypercolumn Hue Ground-truth
(fc7) conv7 R
(fc6) convb
convb_3 °/
h_fcl
Chroma
Lightness
Input: Grayscale Image Output: Color Image

RGB(a,b|L =50)

-110

* Formulate colorization as classification instead of regression
e Quantize Lab color space for classification
* This can handle multi-modal color distributions well

L
55

o
b
Algorithmic Intelligence Lab * source : [Zhang et al., 2016]
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SSL via Pretext Tasks — Image

* Rotation [Gidaris et al.,

2018]

* Task: Predict the rotation degree from a rotated image (4-way classification)

— g(X, y=0) —

Rotate 0 degrees i y
Rotated image: X°

—>ngth —>

Rotate 90 degrees
Rotated image: X'

— g(X,y=2) — % —

Rotate 180 degrees
Rotated image: X~

> g(X,y=3) —»%—»

Rotate 270 degrees
Rotated image: X°

ConvNet

model F(. )
ConvNet
model F( )

ConvNet

ConvNet

Maximize prob.
_ P(X)

model F(.)

| ObjCCthCS

> Maximize prob

F(X°)
| Predict 0 degrees rotation (y—O)

| Maximize prob. i
| F'(Xx"')

Predict 90 degrees rotation (y—l)
| Predict 180 degrees rotation (y=2)

Maximize prob. ’
2 Py

model F(.)

| Predict 270 degrees rotation (y=3) J

* What is the optimal number of classes (rotations)?
* Empirically, using 4 rotations (0°, 90°, 180°, 270°) is best

Algorithmic Intelligence Lab
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SSL via Pretext Tasks — Image

* Rotation [Gidaris et al., 2018]
e Task: Predict the rotation degree from a rotated image

* Due to its simplicity, this approach is widely used for other applications

e Semi-supervised Learning [Zhai et al., 2019], Supervised Learning [Lee et al.,
2020], GAN [Chen et al., 2019] Domain Generalization [Carlucci et al., 2019]

Fake image
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Realimage
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=
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Multi-task Learning

} Ours

i Classifier

o(;u)

i { Cat, Dog }

""""" o(sw) . T
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f
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o(;v)
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f i (Dog, 180°), (Dog, 270°)

Aggregation ----------------
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What is
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recompose
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images?

A

And
" these
ones?

* source : [Zhai et al., 2019], [Chen et al., 2019], [Carlucci et al., 2019], [Lee et al., 2020] 18



SSL via Pretext Tasks

* Limitations on handcrafted pretext tasks
1. Domain-specific knowledge is required to design self-supervision
* |n different domains (e.g., audio), existing methods might be not working

2. The use of self-supervision is limited
* Patch-based tasks for small-sized datasets, e.g., CIFAR
* Colorization-based tasks for single-channel inputs, e.g., gray images

3. Pre-processing is important to avoid trivial solutions

* For example, one can solve Jigsaw puzzle by using color
information in boundaries

* Next: more general approaches
* |nvariance-based approaches
* Generation-based approaches

Algorithmic Intelligence Lab
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SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

Algorithmic Intelligence Lab 21



SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair f (
Negative pair f (

* Q) How to construct positive/negative pairs in the unsupervised setting?

* A) Positive samples are constructed from
e Similar samples (e.g., in the same cluster)
e Same instance of different data augmentation
* Additional structures (e.g., multi-view images, video)
(negative samples = not positive samples)

Algorithmic Intelligence Lab 22



SSL via Invariance (SW)

* Instantiations of invariance-based approach
* Many classes of self-supervised learning can be viewed as invariance-based

* Clustering & pseudo-labeling
e Cluster data into K groups, and assume they are pseudo-labels
 Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
e E.g., DeepCluster, SWAV, DINO

e Consistency regularization
e Attract similar samples
* E.g., MixMatch, UDA, BYOL

e Contrastive learning
e Attract similar samples and dispel dissimilar samples
* E.g., MoCo, SimCLR, CLIP

23



SSL via Invariance

* DeepCluster [Caron et al., 2018]

* |dea: Clustering on embedding space provides pseudo-labels

Input

Convnet

d

.

* Simple method: Alternate between
1. Clustering the features to produce pseudo-labels
2. Updating parameters by predicting these pseudo-labels

* How to avoid trivial solutions?

Classification

1 Phendloziels

Clustering
*tee oo
o: 3\;- s

* Empty cluster <& feature quantization (it reassigns empty clusters)
* Imbalanced sizes of clusters < over-sampling

Algorithmic Intelligence Lab
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SSL via Invariance

Algorithmic Intelligence Lab

* DeepCluster [Caron et al., 2018]
* |Is the clustering quality improved during training?
a. Clustering overlap between DeepCluster and ImageNet
b. Clustering overlap between the current and previous epochs
c. Influence of the number of clusters

5045 0.72
m—p——]
A el 0.70 ppr o 66 A
£0.40 - o )”_/ \|\
= / 0.68 -~ o 64 §
20.35 <A g o
b 50.66 62
= z r /
50.30 0.64 60(
£0.25 0.62 581 5 . :
0 100 200 300 0 100 200 300 10 10 10 10°
epochs epochs k
(a) Clustering quality (b) Cluster reassignment (c) Influence of k

* Which images activate the target filters in the last convolutional layer?

‘_Filter 0 ] Filter 33 Filter 145 Filter 194

E% %h ,-x_ ‘d

* source : [Caron et al., 2018] 25



SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

CNN backbone 1-th image Vi
$ Vo
low dim L2 norm / H 2-th image V3 /
Non- :
. e |:| —>|:|—> | —— i-th image Ml:mory }
128D 128D \ E n-1 th image N A‘ 3

2¥2 nthi M
& n-th image VAt

Vi = }9<Xi)

128D Unit Sphere

* Non-parameteric classifier
exp(v, v/7)
> i1 exp(v]v/7)

* Each class has only one instance = V; can be used directly as a class prototype

P(ilv) =

Algorithmic Intelligence Lab * source : [Wu et al., 2018] 26



SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

* Non-parameteric classifier

P(ilv) = eXp(V,LTV/T)

Z;”:l eXp(VjTV/T)

« Computing P(i|v) is inefficient because it requires all v; = fo(x;)and VjTV
e Solution 1: Memory bank

e Store all V; in memory and update them for each mini-batch

* To stabilize training, representations in memory bank are momentum-updated
V,L(t) — mvgt_l) + (1 —m)vie"
Representations in memory bank e — Computed by current encoder

Algorithmic Intelligence Lab
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SSL via Invariance

* Instance Discrimination [Wu et al., 2018]
* |dea: Each image belongs to an unique class

* Non-parameteric classifier

P(ilv) exp(v, v/7)

2?21 eXp(VjTV/T)

Computing P(i|v) is inefficient because it requires all v; = fp(x;)and VjTV
Solution 1: Memory bank

e Store all V; in memory and update them for each mini-batch
* To stabilize training, representations in memory bank are momentum-updated

Solution 2: Noise-Contrastive Estimation [Gutmann & Hyvarinen, 2010]
* |t casts multi-class classification into a set of binary classification problems

" : : exp(v, v)
Positive sample: P(D = 1]i,v) = P(i|v) = VTV 15 exp(vI V)
i k=1 Tk
A

m negative samples
Objective: Lncg = —Ep,[log P(D = 1|i,v)] — mEp_[log P(D = 0], v')]

\ data distribution g noise distribution (uniform) )8



SSL via Invariance

e Instance Discrimination [Wu et al,,

* Ablation Study

* Non-parametric sofmatx is better than the parametric version

2018]

* NCE with many negative samples appraoches to the no-approximation version

Training / Testing |Linear SVM |Nearest Neighbor
Param Softmax 60.3 63.0
Non-Param Softmax 75.4 80.8
NCEm =1 44.3 42.5
NCE m = 10 60.2 63.4
NCE m = 512 64.3 78.4
NCE m = 4096 70.2 80.4

* Large embedding size increases the performance, but it is saturated at 256

embedding size

32 64

128

256

top-1 accuracy

34.0 | 38.8

41.0

40.1

* source : [Wuetal., 2017] 29



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank
* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
qk q-k q-k
q k q k q k
encoder q encoder k encoder Eampling encoder il
encoder
memory
k bank k
5 T x4 1 T
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

Algorithmic Intelligence Lab * source : [He et al., 2019] 30



SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:EEB EB
exp(q -k /7)
L v =—1
ST g R T) + Sy explg K /T) ®
| ‘ queue
momentum

encoder
encoder

Randomly augmented samples — uj m

* source : [Chen et al., 2020] 31
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss

* MoCo also optimizes contrastive learning objective

affinity H:EEB EB
exp(q- k' /T
Low+ k) = —log + ( ) -
exp(q - k*/7) + X2, exp(q -B/7) <
* After encoder is updated, ﬂ ﬂg m
* Momentum encoder is updated by | ‘ queue
emomentum — memomentum + (1 o m)@ momentum
« Add the current positive keys k' into the queue eneoder encoder

Randomly augmented samples — uj m

* source : [Chen et al., 2020] 32
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SSL via Invariance

« Momentum Contrast (MoCo) [He et al., 2019]
« MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient i gradient 4
i — qk “ v v — q-k “ v ~ q-k 5
q k q k q k
A U 4 4 A 4
encoder q encoder k encoder sam:ling encoder m::‘;‘e;rcllteurm
A % A memory A 0\
gl zk g penk g z*
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

60 -
58.0
58 i7£: S =
&< 564 =573 565 .-~
momentum m’ 0 0.9 0.99 0.999  0.9999 256 - %
© : O
accuracy (%) ’ fail 55.2 57.8 59.0 58.9 §54 55 541 iz
© B 5
500" —*%—end-to-end
52 —® —®--memory bank
Tl MoCo
50.0~
50 & 1 L 1 1 1
256 512 1024 4096 16384 65536
K (log-scale)

Algorithmic Intelligence Lab * source : [He et al., 2019] 33



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss

3. Large batch sizes and longer training

Algorithmic Intelligence Lab * source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 34



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

e This paper founds that contrastive learning benefits from ...

1. Strong augmentation (i.e., composition of multiple data augmentation operations)
* Strong color distortion degrades supervised learning, but improves SimCLR
* A stronger augmentation (AutoAugment) degrades SimCLR

Crop
-50

Cutout
40

Color

Sobel 30

1st transformation

Noise
20

Blur
10

Rotate

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering GOQ

R G

2nd transformation

Color distortion strength

Methods ‘ 1/8 1/4 1/2 1 1 (+Blur) |AutoAug|

SimCLR 59.6 61.0 62.6 63.2 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 77.1

Algorithmic Intelligence Lab * source : [Chen et al.,, 2020] 35



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
2. A nonlinear MLLP between the representation and the contrastive loss
* Contrastive learning objective learns z to be invariant to augmentations
exp(sim(z;, z;)/7)
—1 L) exp(sim(z;, Zk)/T)
e g(-) can remove informatlon that may be useful such as color
* Using nonlinear ¢(-) allows h to contain more information

gi,j = —log 2N

Maximize agreement 70
Z; Zj
A
q() < Projection - q(-) 60 I II II .
) - What to predict? Random guess Representation
h; <— Representation —> h; a 5o Projection h g(h)
‘ 1 = [ | L|near Color vs grayscale 80 99.3 97.4
g None Orig. vs corrupted 50 99.5 59.6
B . L Orig. vs Sobel filtered 50 96.6 56.3
%5l & 05‘%
Vi N zv '\« g
7 Nt PrOJectlon output d|men5|onaI|ty

Algorithmic Intelligence Lab * source : [Chen et al,, 2020] 36



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized

architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
3. Large batch sizes and longer training

70.0

67.

[6,]

100 200 300

Algorithmic Intelligence Lab

400

500 600
Training epochs

700

800

Batch size

900

256
512
1024
2048
4096

8192

1000

* source : [Chen et al., 2020] 37



SSL via Invariance

 SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized
architectures or a memory bank

* SimCLR achieves outstanding performance in various downstream tasks

Algorithmic Intell

Fine-grained image classification tasks

Food CIFARIO CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD

Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 953 80.2 48.4 659 60.0 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 752 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:
SimCLR (ours) 894  98.6 89.0 78.2 68.1 921 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 8438 69.4 64.1 82.7 7255 92.5
Semi-supervised learning in ImageNet Linear evaluation in ImageNet
Label fraction Method Architecture ~ Param (M) Top1 TopS5
iSEiod HIGHECHITS 56 T ;O% Methods using ResNet-50:
P Local Agg. ResNet-50 24 60.2 .
Supervised baseline ResNet-50 48.4 804 MoCo ResNet-50 24 60.6 -
Methods usine other label P PIRL ResNet-50 24 63.6 -
e L CPC v2 ResNet-50 24 638 853
*endoslabe Seiero0 2y ot SimCLR (ours) ResNet-50 24 693 89.0
VAT+Entropy Min. ResNet-50 470 834 -
UDA (w. RandAug) ResNet-50 - 88.5 Methods using other architectures:
FixMatch (w. RandAug) ResNet-50 - 89.1 Rotation RevNet-50 (4 %) 86 55.4 -
S4L (Rot+VAT+En. M.) ResNet-50 (4 %) - 91.2 BigBiGAN RevNet-50 (4x) 86 61.3 819
Ko s i ) - PR— AMDIM Custom-ResNet 626 68.1 -
ethods using representation learning only: CMC ResNet-50 (2x) 188 684 882
InstDisc ResNet-50 39:2 77.4
AR MoCo ResNet-50 (4x) 375 68.6 -
BigBiGAN RevNet-50 (4x) 552  78.8
CPC v2 ResNet-161 (x) 305 71.5  90.1
PIRL ResNet-50 ST 83.8 .
SimCLR (ours) ResNet-50 (2x) 94 742  92.0
crevz ReSVEI0IG) 7770 Dl SIMCLR (ours) ResNet-50 (4x) 375 765 932
SimCLR (ours) ResNet-50 195 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8  92.6

* source : [Chen et al., 2020] 38



SSL via Invariance

 Limitations in contrastive learning (with negatives)
* It is sensitive to the number of negative = a large batch size or a queue is required
* Are all the different instances negative?

Positive pair f (
Negative pair f (

* Q) can we learn representations without negative samples?

 Simply minimizing ||f([&)) — f(E)H leads to mode collapse, i.e., Vz, f(x) = ¢

This relation might be not true

* Next: Positive-only approaches

Algorithmic Intelligence Lab
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SSL via Invariance

Algorithmic Intelligence Lab

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

view representation projection prediction

inpu 0 g 0 qe
imI;gi t (Y I f = Z@ I‘ q6(z6) p_ online
1] &l

Y

\
1
loss |

1
1

—A—> sg(2) ¥ target

Y

5 =

f§ g¢ 58
Objective Update
q0(z 2 0 < optimizer(6, VoL
LeyoL = H |IqZ zZ)ll ”Z P ( o Lsyor)

e TE+(1—T1)0

* Key components: target (momentum) network, predictor, stop-gradient (sg)

* source : [Grill et al., 2020] 40



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

Algorithmic Intelligence Lab

view representation projection prediction
input fe ‘ | 99 q9
image t (Y = y@ = Z@ q6(z6) p_ online
i
~| / / ]
Y ,U/ > y§ —A—> sg(2) ¥ target
fg LJ gg sg
Objective Update
q0(20) 2 0 < Optimizer(9 VQLBYQL)
Lovo = || gz — T ’

e TE+(1—T1)0

* Q) How does BYOL avoid the undesired collapsed solutions?
« {is not updated in the direction of V¢Leyor
« When the predictor is optimal, i.e., ¢*(z9) =

%'s i-th feature -

E[24]26], Lovo = E[Zi Var( ;| 2)]
* For any constant c, Var(z ;|2¢) < Var(z;,/c) = constant equilibria is unstable

* source : [Grill et al., 2020] 41



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

prediction

q0(2p) . online
Ay

w
loss |
.

sg(z¢) ¥ target

view representation projection
i ( 3 fo S 9o — qo
mput
image t @ Yo 29
=g
I ¢ ) e,
\ ,
t v Ye Z¢
Je 9¢ sg

* BYOL is more robust to the choice of batch sizes and augmentations

Algorithmic Intelligence Lab

Decrease of accuracy from baseline

O—_
@ @—,
S 3 .\‘
\.
[ J
o,
— BYOL \
= SimCLR (repro) ®

4096 2048 1024 512 256 128
Batch size

Decrease of accuracy from baseline

0@, — BYOL
x’ = SimCLR (repro)
-5 .\
—-10 .\.
\.
—15
—20
o.
-25 \
[ J
e
Baseline Remove Remove Crop + Crop
grayscale  color  bluronly  only

Transformations set

* source : [Grill et al., 2020] 42



SSL via Invariance

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* |dea: directly bootstrap the representations

#

prediction

t

q6(28) |

representation projection
) Yo 0
7|
— | N —
I ¢
\ ,
' Ye Z
— 3 58

loss |

sg(z¢) ¥ target

* BYOL is more robust to the choice of batch sizes and augmentations
* BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

Algorithmic Intelligence Lab

80

ImageNet top-1 accuracy (%)
S S = 3

=
=)

(o))
oo

BYOL (200-2x) %

*Sup (200-2x)
Sup.- (4x)

- (%YOL 4x)

Su/
o BYOL (2x)

SimCLR (2x)

CMC

SimCLR (4X)

CPCv2-L

o
AMDIM

S50M 100M 200M 400M

Number of parameters

* source : [Grill et al., 2020] 43



SSL via Invariance (HW)

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

@

| softmax |

student ggs

* Key components:

loss:
- p2log pi

c€ma

sg

teacher gg;

e (self) knowledge-distillation
 Distill the teacher (EMA version of a student) knowledge to the student
* multi-crop: a strategy to generate positive views

Objective
Lpivo = H(P:(x), P(x))

Update

O, < optimizer(es, VgSLD,NO)

Ht &« /19t + (1 - /1)95

e centering and sharpening: a strategy to avoid collapse

Algorithmic Intelligence Lab
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SSL via Invariance (HW)

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
e -p2logpi @
softmax

centering

student ggs — | teacher gy

e€ma

* DINO constructs a set of views V via multi-crop strategy:

* (1) global views: xl‘g, x‘zg

* (2) local views with smaller resolution

* All crops are passed through the student; only the global views are passed through
the teacher: “local-to-global” correspondences

* Therefore, the loss is written as:
mi Z Z H(Py(z), Ps(ml))

05
z€{z], x5} 2'eV
z'#zx

Algorithmic Intelligence Lab



SSL via Invariance (HW)

 DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
Q -p2log pi @
softmax

centering

student ggs — | teacher gy

e€ma

* DINO avoids the collapse via centering and sharpening
* Centering: adding a bias term c to the teacher
9:(z) + g1(z) + ¢

* The center c is updated with an exponential moving average
B

1
c<+— mec+ (1— m)E det(mi)
=1

* Sharpening: using a low value for the temperature 7, in the teacher softmax
normalization

Algorithmic Intelligence Lab



SSL via Invariance (HW)

 DINO [Caron et al., 2021]
e DINO outperforms previous contrastive methods in classification tasks

* Self-supervised ViT features contain explicit information about the semantic
segmentation of an image

Method Arch. Param. im/s Linear k-NN
Supervised RNS50 23 1237 793 79.3
SCLR [12] RN50 23 1237 69.1 60.7
MoCov2 [15] RNS50 23 1237 711 619
InfoMin [67] RNS0 23 1237 73.0 653
BarlowT [81] RNS50 23 1237 732 66.0
OBoW [27] RN50 23 1237 738 619
BYOL [30] RN50 23 1237 744 648
DCv2 [10] RN50 23 1237 752 67.1
SWAV [10] RN50 23 1237 1753 65.7
DINO RN50 23 1237 1753 675
Supervised ViT-S 21 1007 79.8 79.8
BYOL* [30]  ViT-S 21 1007 714 66.6 Self-attention map on [CLS] of self-supervised ViT
MoCov2* [15] ViT-S 21 1007 727 644
SwAV* [10]  ViT-S 21 1007 73.5 66.3 Method Data Arch. (T&F)m JIm  Fm
DINO ViT-S 21 1007 770 745 :
Supervised
Comparison across architectures ImageNet INet ViT-S/8 66.0 63.9 68.1
SCLR [12] RNS50w4 375 117 768  69.3 STM [48] I/D/Y RN50 81.8 79.2 843
el moms 2 LT selferied
30 —
SING L] b T SR CT [71] VLOG  RN50 48.7 46.4  50.0
SwAV [10] RN50wW5 586 76 78.5 67.1 MAST [40] YT-VOS RNI18 65.5 63.3 67.6
BYOL [30] RN50w4 375 117 78.6 _ STC [37] Kinetics RN18 67.6 64.8 70.2
BYOL [30]  RN200w2 250 123 79.6 73.9 DINO INet ViT-8/16 61.8 60.2  63.4
DINO ViT-S/8 21 180 79.7 78.3 DINO INet ViT-B/16 62.3 60.7 63.9
SCLRv2 [13] RNI152w3+SK 794 46 798 73.1 DINO INet ViT-S/8 69.9 66.6 73.1
DINO ViT-B/8 85 63 80.1 774 DINO INet ViT-B/8 71.4 67.9 749
Top-1 accuracy for linear and k-NN evaluations Video instance segmentation on top of
on the validation set of ImageNet self-supervised feature
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SSL via Invariance (SW)

e Choices for Positive Samples
* We discussed how to make positive samples invariant

By the way, what are the positive samples?

Similar data (e.g., by clustering)
* Discussed before (e.g., DeepCluster)

Same data with different augmentation
* Discussed image domain before (e.g., SimCLR)
* How about other domains (e.g., language, graph, or domain-agnostic)?

Same data with different modality
» Different channel (e.g., multi-view) or domain (e.g., vision & language)

Utilize sequential structure
* (a) Predict future state from past states (positive = true future)
* (b) Use states from same sequence as positives (positive = same sequence)

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

e Choices for Positive Samples

e Same data with different augmentation
* Discussed image domain before (e.g., SimCLR)
* How about other domains (e.g., language, graph, or domain-agnostic)?

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

e COCO-LM [Meng et al., 2021]
* |dea:

* Corrective Language Modeling: Recover original tokens from corrupted ones
* Sequence Contrastive Learning between corrupted and augmented sentences

Corrective Language Modeling

; A B C D IF ) —{(fes1) A J(B J(c J( D JCE )
: COCO-LM Pretraining Tasks: Do 'T'“s'a A T """ T"'s;’;,:l'h;; | t T T t t t
« Corrective Language Modeling (CLM) . . T,
. Sequence Contrastive Learning (SCL) - Auxiliary Transformer i Sequezzzg,?:;raStlve
: ; ! t 4 4 4 1
-------------------------------------- X } } ¥ § N IO . ., S
(A Jousk)(_ ¢ J( D J(mmask] alole b )]E)
L el L »{([cLs]

--------------- Main Transformer

--------------- i - b4 ¢ b ¢
Random Crop ‘ Cropped Sequence: BCD } -------------------------------- > B J_ c J(_ D )(rrapl}(rpap])

Original Sequence: ABCDE

* Both CLM and SCL improves Baseline

* Improvements are observed on different tasks, e.g., CLM: ColLA, SCL: RTE
(CoLA: grammatical validity of one sentence, RTE: relation of two sentences)

Group Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B | AVG
Baseline RoBERTa (Ours) 85.61/85.51 91.34 91.80 9386 58.64 69.03 87.50 86.53 83.03
ELECTRA (Ours) 86.92/86.72 91.86 9256 93.64 6650 7528 88.46 88.04 85.39
Original COCO-LM Base 88.67/88.35 92.02 93.00 9408 6541 85.42 91.51 88.61 87.05
Pretraining Task CLM Only 88.64/88.40 92.03 93.14 9386 6695 8090 89.90 88.45 86.72
SCL Only 88.62/88.14 9214 934 9386 ©470 R2S5T 90.38 89.35 86.86

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

e GraphCL [You et al., 2020]
* This paper studies contrastive learning with diverse graph augmentations
* Node dropping, edge perturbation, attribute masking, subgraph sampling
* GraphCl’s architecture and objective are almost the same as SimCLR
e YR

oot 4 e L ...... _} ______ _& Projection _,x
Input Graph e o :Ig.lm:> ------ "‘.’: E é e “.)
------ - / : : Maximize
""" $ Augmentations § ; 1) Agreement
------------ “.m N'r/dge Perturbation ~ == o‘\ E :
.................. —); ProJec‘rlon _,%
Shared GNN-based Encoder ; Heu N,
\D Embeddings O O ) S nadas ;
* The choice of graph augmentations is critical depending on downstream tasks
Biochemical molecules Social networks

NCI1 PROTEINS COLLAB RDT-B High
Identical{ 0.42 1.25 .-0.17#1;.4,4 2.47 2.27 1.01 1.07 -0.74 1.66 1.39 0.85 0.17 -0.26
AttrMask{0.03 1.20 -0.62 -1.05 -1.14 2.43 1.89 0.85 1.15 1.51 1.37 1.53 0.47 -0.36 0.25
EdgePert{=1.26 1.95 .-1.18- 1.74 1.52 0.97 0.34 0.71
Subgraph{1.63 1.17 2.10 1.90 1.62 2.54 2.30 2.20 2.67. 1.13 1.50 1.25 1.06 1.39
NodeDrop{0.85 1.57 -0.86 -0.59 -0.17 2.00 2.27 1.62 1.31 1.30 1.85 1.45 1.66 1.53 1.31
Low
> N
K& L Qé& & * L Qe’é' & K& QQ}‘ & & K & Qe}‘ & @
a@o \@ o v§\ & N v;@ o @\ & e;?/o o@ o ‘é@ & N oé o ‘s“ o
O R S O A S O & 8 S & &
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SSL via Invariance — Data Augmentation

* Multi-View Contrastive Learning on Graphs [Hassani & Khasahmadi, 2020]

* |dea: Use a graph diffusion as the second view

\ZI\ i? - @ m MLP Pool
. = T g/ E@
‘ , : >
é@ Sarr:lple Sh&flred Cont:rast Shared
_ A : :
\/T -~ G000 2% 6569 .
NN > 7T E<: o -
N o0 (0 (ﬁﬂ{&o oL
gl o B
Objective max {MI (hq’ hﬁ) + MI (h. ’ha)]
J ,w¢¢|g|z |g|; HE e

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation

* Multi-View Contrastive Learning on Graphs [Hassani & Khasahmadi, 2020]
* |dea: Use a graph diffusion as the second view

__________

/‘E

—_——— e — —— ) = ———— —— e ———
————

MLP Pool
T fo(-) >
6550
Ceontrakt Shared -

o= = ——— - —_—— g = ————

fo(-) >

o}
O
O
O

—_——==7

'

——— -

Node embeddings A"}

Objective x| |—;| 3 ﬁ f: ™I (7g, 75 ) + M (B Bg )|
9€9 =1

Maximize MI by contrastive learning
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SSL via Invariance — Data Augmentation

* Multi-View Contrastive Learning on Graphs [Hassani & Khasahmadi, 2020]
* |dea: Use a graph diffusion as the second view

Sees 0000 m
—@—9 MLP Pool
\ﬁ‘> | <;:|
— = fo(.) >
Contrast . Shared -
:
—~ ’ : MLP Pool
= T\ —> HE&E —
— fo(-) >
0000|0000

* For graph diffusion, this paper uses Personalized PageRank and Heat Kernel
* Unlike visual representation learning, increasing # of views does not help

#VIEWS CORA CITESEER PUBMED
2 86.8+0.5 73.34+0.5 80.1+0.7
3 85.3+0.5 71.24+0.7 79.9+0.6

» Different diffusion matrices may have similar information about the graph

Algorithmic Intelligence Lab
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SSL via Invariance — Data Augmentation (HW)

* i-Mix [Lee et al., 2021]
* ldea: Introduce virtual labels in a batch and apply MixUp or CutMix
* It is a domain-agnostic regularization strategy for contrastive learning

* General form of i-Mix
* Let B = {(x;,%;)})., be a batch of positive data pairs for contrastive learning
* For each anchor x;, X; is a positive sample, X; ;are negative samples
* Then, i-Mix defines the one-hot virtual label v; € {0,1}" of x; and &;
* vi;=landv; =1
* With virtual labels, we can re-write a general contrastive loss: £(x;, v;)
* Then, i-Mix loss is defined as:

CMX (25, v3), (z5,v5); B, A) = £Mix (2, z5; N), Av; + (1 — A)vj; B)

* i-Mix uses MixUp and CutMix functions as a Mix operator

* i-Mix can be applied for different contrastive objectives, such as SimCLR, MoCo
and BYOL
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SSL via Invariance — Data Augmentation (HW)

* i-Mix [Lee et al., 2021]
* ldea: Introduce virtual labels in a batch and apply MixUp or CutMix
* |t is a domain-agnostic regularization strategy for contrastive learning

* i-Mix consistently improves the classification accuracy on different domains

Domain Dataset N-pair +i-Mix MoCov2 +-Mix BYOL + 1-Mix

CIFAR-10 933 +01 95.6+02 935+02 961 +01 942 +02 96.3 +o02
CIFAR-100 70.8 +04 758 +03 71.6+01 781 +03 727 +to04 78.6+02

Speech Commands 94.9 +01 983 +01 963 +01 984 +00 948 +02 98.3+00
Tabular Covlype 685+03 721+02 705+02 731+01 72.1+02 741 +02

Image

Table 1: Comparison of contrastive representation learning methods and ¢-Mix in different domains.

Algorithmic Intelligence Lab
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SSL via Invariance — Different Modality

e Choices for Positive Samples

* Same data with different modality
» Different channel (e.g., multi-view) or domain (e.g., vision & language)

Algorithmic Intelligence Lab
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SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* ldea: Use multiple views of the same instance as positive samples

1); e Vs U'Lg eV

Unmatching view

Matching views

Loz =-E

contrast

o he({o]u3})
{vl 0}, vh 1} e g— h 1 .
Zj:l o({vi,v})

fou (V1) " fo, (v2) 1)
[ for () |1 fos (v2) | 7

\ Neural network

Algorithmic Intelligence Lab * source : [Tian et al,, 2019] 58
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SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* |dea: Use multiple views of the same instance as positive samples

N

Unmatching view

Matching views

« By minimizing £(Vi,V5) = £¥u¥2 o2V 0 fy (¢), fo.(-) learns to extract

contrast contrast’/

common information in two different views
* For M >2 views, use L = Z;‘il LW1,V;) or L= ZKK].SM L(V;, V)

2 ®
)

Algorithmic Intelligence Lab Core-view Ful |—gra ph * source : [Tian et al., 2019] 59




SSL via Invariance — Different Modality

e Contrastive Multiview Coding (CMC) [Tian et al., 2019]
* |dea: Use multiple views of the same instance as positive samples

* Using more views is effective

* NYU-Depth-V2 dataset have 4 views: (1) luminance (L), (2) chrominance (ab),
(3) depth, (4) surface normal

* Task: semantic segmentation

S FTTITr Ty S8 T Core-view vs Full-graph
34*"/ 556, / Pixel Accuracy (%) mloU (%)

ol = e 2T e Random 455 214

3 28 -+ Suenvised | 552 *! Supervised CMC (core-view) 5751 34.1

" 26 3 jz CMC (full-graph) 57.0 34.4
4 = Supervised 57.8 359
s L

1 2 3 a 1 2 3 4

Number of views

Algorithmic Intelligence Lab * source : [Tian et al,, 2019] 60



SSL via Invariance — Different Modality (HW)

e CLIP [Radford et al., 2021]
* ldea: Use text description of the given image as positive samples

* Negative pair: an image and text that describes different image

e CLIP jointly trains an image encoder and a text encoder to predict the correct
pairings of (image, text)

Pepper the

aussie pup |||—> E::ox(:er J l l i l
<’ | T, T, T3 Tn |

_,‘ I ;' Ty 7 I'Ty | ;T | w | Ir'TN

—)I I LT | LT, 1 LT3 | - |12

Ly Iy INTy | INT2 | INT3 | .. |InTn

* 400 million (image, text) pairs are collected from the internet
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SSL via Invariance — Different Modality (HW)

e CLIP [Radford et al., 2021]
* ldea: Use text description of the given image as positive samples
* After the pre-train, the model can be zero-shot transferred to downstream task:
1) Embed the descriptions of target classes with the text encoder
2) Select the maximally similar text embedding to the given image

* A zero-shot CLIP classifier shows a competitive performance with a fully supervised
linear classifier fitted on ResNet-50 features

StanfordCars +28.9
Country211

Food101
] . Kinetics700
{ SST2
R SUN397
| UCF101
A photo of . Text HatefulMemes

, a ; “| Encoder
. g Caltech101

ImageNet
OxfordPets
PascalvOC2007

FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
Euro§AT .

-40 -30 =20 =10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Image I 1,-Ty | 1T, B 1T
-—>Encoder_}' vh | ety o I

A photo of
a
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SSL via Invariance — Different Modality (SW)

e VATT [Akbari et al., 2021]
e VATT matches video, audio, and description text via contrastive learning

e Similar to CLIP, but uses Transformer encoder to apply on various data modalities

VATT

Extra Learnable
[AGG] Embedding

4,[ Multimodal Projection Head ]

Transformer Encoder
Modality-Specific OR Modality-Agnostic

00000000

Modality-Specific Patch + Position Embedding

Linear Projection
(3D RGB voxels)

(1D waveform)

] [ Linear Projection ] [ Linear Projection ]

(1-hot word vectors)

Input Video

Algorithmic Intelligence Lab

v

Input Audio Waveform

“Sled dogs running on the
snow pulling the sled.”

Input Text

Transformer Encoder

Embedding

Multimodal
Projection Head

video audio
feature feature

O £ [ B E O | £ [ [ ) [

Wl
v

O T le——{TTT]

MIL-NCE
loss
EEEEEE

text
feature
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SSL via Invariance — Different Modality (SW)

e VATT [Akbari et al., 2021]
* VATT matches video, audio, and description text via contrastive learning
e Similar to CLIP, but uses Transformer encoder to apply on various data modalities

* VATT is effective on various downstream tasks, e.g., video classification, audio
classification, image classification, and text-to-video retrieval

Kinetics-400 Kinetics-600 Moments in Time
METHOD Top-1 Top-5 Topr-1 Topr-5 Topr-1 Topr-5 TFLOPs
13D [13] 71.1 89.3 71.9 90.1 29.5 56.1 -
R(2+1)D [26] 72.0 90.0 - - - - 17.5
bLVNet [27] 73.5 91.2 - - 314 59.3 0.84
S3D-G [96] 74.7 93.4 - - - - -
Oct-I3D+NL [20] 75.7 - 76.0 - - - 0.84
D3D [83] 759 - 77.9 - - - -
I3D+NL [93] T 93.3 - - - - 10.8
ip-CSN-152 [87] 77.8 92.8 - - - - 33
AttentionNAS [92] - - 79.8 94.4 32.5 60.3 1.0
AssembleNet-101 [77] - - - - 34.3 62.7 -
MoViNet-AS [47] 78.2 - 82.7 - 39.1 - 0.29
LGD-3D-101 [69] 79.4 94.4 81.5 95.6 - - -
SlowFast-R101-NL [30] 79.8 93.9 81.8 95.1 - - 7.0
X3D-XL [29] 79.1 93.9 81.9 95.5 - - 1.5
X3D-XXL [29] 80.4 94.6 - - - - 5.8
TimeSFormer-L [9] 80.7 94.7 82.2 95.6 - - 7.14
VATT-Base 79.6 94.9 80.5 95.5 38.7 67.5 9.09
VATT-Medium 81.1 95.6 82.4 96.1 39.5 68.2 15.02
VATT-Large 82.1 95.5 83.6 96.6 41.1 67.7 29.80
VATT-MA-Medium 79.9 94.9 80.8 95.5 37.8 65.9 15.02
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SSL via Invariance — Sequential Structure (SW)

e Choices for Positive Samples

» Utilize sequential structure
* (a) Predict future state from past states (positive = true future)
* (b) Use states from same sequence as positives (positive = same sequence)

(a) Is also related to SSL via generation (sequential prediction)

Algorithmic Intelligence Lab
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SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* |dea: Predicting future information with discarding low-level information

* T¢:dataattimet
* 2t = genc(Tt): high-level latent representation of
e Ct = Gar(®1, T2, ..., %) : context latent representation summarizing all 2<t¢

Ct Predictions
i
‘—;—;— (m)—(o)—(=) ™ NN
A \ \
+ + + + Zt41 Zt+42 2r.+3 Zt+4
/ genc \ / genc \ / genc \ / genc \ / genc \ / genc \ / genc \ / genc \
Tt-3 Tt4+1 Tt42 Tt+3 Tt+4

W\WM WW [ wﬁ\A\W\.\.,,. - Wmm ——— Wﬂ -

Algorithmic Intelligence Lab * source : [Oord et al., 2018] 66



SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]

* |dea: Predicting future information with discarding low-level information

e Tt:dataattimet

* 2t = genc(Tt): high-level latent representation of

o ¢t = Gar(T1,To,...

64 px

Algorithmic Intelligence Lab

50% overlap

YGenc - OUtPUt

)2

Rt+2| (e
Rt+3| (et
Zt+4| e

4

input image

,Tt) : context latent representation summarizing all 2<t¢

gay - output
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o

/‘

7/
s

s A

7
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_-~ Predictions

* source : [Oord et al., 2018] 67



SSL via Invariance — Sequential Structure

* Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* |dea: Predicting future information with discarding low-level information

* How to maximize mutual information between ¢+« and ¢:?
« Randomly choose one positive sample Zt+k and N-1 negative samples {x}
* Minimize the following NCE-based loss:

fk($t+k,ct)
5T, fila, ct>]

EN = —EX [10

where f,.(x, ¢) = exp(z' Wie)

o I(x4yr,ct) >1og(N) — Ly and it becomes tighter as N becomes larger

Algorithmic Intelligence Lab * source : [Oord et al., 2018] 68



SSL via Invariance — Sequential Structure

Contrastive Predictive Coding (CPC) [Oord et al., 2018]
* This framework is working on Audio, Vision, NLP and RL

EEERS
Al |

T -‘1-' Kot ey o ; e
e b ® b e S, o & E —_—"
rvi'.'..vt ; \ i3 -ZZ" PRI, aaa SO e
NN 1 Lo P s e
N e BE Mol
O g o
-;i-'. m r f";"‘
O A.x_o/ g At
A\ Lot )

Image patches that activate a certain neuron t-SNE of audio representations for 10 speakers
0 rooms_watermaze 0 explore_goal_locations_small s seekavold_arena_01 2 lasertag_three_opponents_small x rooms_keys_doors_puzzle
&0 00 - - 3

k-
54 20 3
X
g g M £ E E:*
§ 0 ;“2 150 § 2 ;‘-" 10 E 15
0 100 o S 10
10
10 s0 5 0 5
? 0 250M 500M 750M 1B ? 0 250M 500M 750M 1B GO 250M 500M 750M 1B = 0 250M 500M 750M 18 L.IO 250M 500M 750M 18
Frame Frame Frame Frame Frame

CPC improves agents on RL environments (red)
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SSL via Invariance — Sequential Structure (SW)

* VINCE [Gordon et al., 2019]
e Data augmentations cannot tell the novel views and motions of the objects
* Instead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

Standard Contrastive Loss Video Noise Contrastive Estimation

I il S
! - A
: ~ 7-2“‘-; ]
- : II : N r o)
§ Image Augmentations I N - ;,‘:
; colon Crop. T ' E . Temporal Changes
| Deformation, New Views, Related Objects v
I
j
I
I
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SSL via Invariance — Sequential Structure (SW)

* VINCE [Gordon et al., 2019]

e Data augmentations cannot tell the novel views and motions of the objects
* Instead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

* Since video has multiple frames, VINCE attracts all positives (not pair-wise)
* Use 4 positive frames per video for experiments

Multi-Frame NCE Multi-Frame Multi-Pair NCE
Multi Frame Positives Current Positives MoCo MemBank

5 o T O
FEsE (e -

4 o
i 1% Y (N [N, | NN

Anchors

from same vide

T ERGEY
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SSL via Invariance — Sequential Structure (SW)

* VINCE [Gordon et al., 2019]
e Data augmentations cannot tell the novel views and motions of the objects
* |nstead, use video data to provide 3D-aware positive views
* Namely, use different frames from the same video as positive samples

* Using temporal information provides better positive views

e Same frame: Use same frame images but positives are given by the same
frame of different image augmentations

* Multi-frame (not multi-pair): Use 2 frames from the same video

Test Task
Images Per Video ImageNet SUN Scene Kinetics 400 OTB 2015 Precision OTB 2015 Success
1: Same Frame 0.358 0.450 0.318 0.555 0.403
2: Multi-Frame 0.381 0.478 0.361 0.622 0.464
8: Multi-Frame Multi-Pair 0.400 0.495 0.362 0.629 0.465

Algorithmic Intelligence Lab
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SSL via Invariance — Sequential Structure (SW)

* FlowE [Xiong et al., 2021]
* VINCE assumed frames from the same video are invariant
* However, we need to consider their temporal changes

* To this end, FlowE relaxes the assumption that the frames are equivariant
* Letl, =T (I;) where T is a transformation between two frames I, I,

* Specifically, " is a composition of data augmentations A, A, of each
frame I, I,, respectively, and M} _,, is an optical flow

e Then the spatial features z,, z, should satisfy the equivariance z, = 7(z;)

U1 h, Z1 P1
W Alﬁb‘ fo_, g, 9% _,
Z I 4 ; \

TZAl_] oMi4p0A, L= ”f)l - f)2||§

fe 9 |/

V2 hy Zo P2

- A
1—52
| A

-

Algorithmic Intelligence Lab 73



SSL via Invariance — Sequential Structure (SW)

* FlowE [Xiong et al., 2021]
* VINCE assumed frames from the same video are invariant
* However, we need to consider their temporal changes

* To this end, FlowE relaxes the assumption that the frames are equivariant
* Letl, =T (I;) where T is a transformation between two frames I, I,

* Specifically, " is a composition of data augmentations A, A, of each
frame I, I,, respectively, and M} _,, is an optical flow

e Then the spatial features z,, z, should satisfy the equivariance z, = 7(z;)

* Considering optical flow gives better positive than naive invariance-based (VINCE)

Method UrbanCity BDD100K

mloU mAP mloU" mAP' | mloU mAP mloU' mAPf
Rand Init 94 0.0 27.3 6.4 9.8 0.0 22.0 55
CRW [22] 190 0.0 31.6 152 | 194 17 34.7 229
VINCE [16] 306 0.9 47.4 17.8 | 232 0.1 39.5 23.8
FlowE (Ours) 49.6 5.8 61.7 190 | 376 58 49.8 24.9
End-to-end supervised | 63.3 2.2 67.0 16.5 52.0 8.0 56.6 20.0

Algorithmic Intelligence Lab

74



SSL via Invariance — Sequential Structure (SH)

* Context and Motion Decoupling [Huang et al., 2021]

* For video representation learning, many literature often explicitly decouples the
context and motion supervision in the pretext task

* Jointly optimize two self-supervision

* (Context Matching) Compare global features of key frames and video clips
under the contrastive learning — (b) different frames

(though using clip = multiple frames as positive)
* (Motion Prediction) Current visual data in a video are used to predict the
future motion information — (a) future state

@ Context features S Motion features

________________________________________________________________________________________________________________________________________

o ©.1 |

I-frame (Cy, Hyy W) Contrastive learning

r iy S—
i t=1 V-Network ’
,‘.‘_'_'_'_‘_'_'_‘_‘_'_‘_‘_‘_'. t=2 é I

i mt:'r, -

RGB video clip

i Context
| supervision
i

|
'
|
'
'
|
|

(Cy, Ty, Hy, W)
Transformer + MLP

M-Network MLP
t=T,+1 —_— _—
. t=T,+2
Motion -

(C, Tav HB’ W3) Pointwisg )
contrastive learning

i supervision t= i}rs ¥ (Cy Ty Hay W) (C, Ty Hy W,)

Motion vectors Motion prediction ,E
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SSL via Invariance (SW)

* Limitations of invariance-based approaches
1. Specialized for classification
* |nvariance-based method clusters similar data into a single point

* |t is effective for classifier (or linear probing), less effective for different tasks
(e.g., detection or segmentation for visual domain)

* “Dense” contrastive learning methods have thus been proposed

2. Nontrivial choice of positive samples
* Data augmentation for non-image domain is arguable
* Even arguable for non-natural images (e.g., medical or fine-grained)

3. Less scalable for large models and datasets
* Contrastive learning (empirically) less merits the scaling law

* Next: more scalable and domain-agnostic approaches
* Generation-based approaches
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SSL via Generation (SW)

* Overview of Generation-based Approaches

* There have been a long attempts to learn representation Z from data X

* To this end, many classic ML literature designed a probabilistic model p(X, Z)
* They are called as generative models with latent variables

* Ancient works (before AlexNet, 2012)
* Early works: probabilistic PCA and latent variable models (LVM)
* |In 200672009, the first deep learning revolution have arose
* Deep Boltzmann machines (DBM) and deep belief networks (DBN)
* They applied “unsupervised pretraining” to train deep networks

 Though RBM-based approaches was not empirically successful, they
inspired early modern generative models (e.g., VAE) a lot

» Also, autoencoder-based approaches (e.g., denoising autoencoder; DAE)
have been proposed — modernized to BigBiGAN, MAE, etc.
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SSL via Generation (SW)

* Overview of Generation-based Approaches
* There have been a long attempts to learn representation Z from data X
 To this end, many classic ML literature designed a probabilistic model p(X, Z)
* They are called as generative models with latent variables

* Classic approaches (before contrastive learning, 2020)
* We introduce some notable classic methods
* Context encoder, a CNN version of masked autoencoder
* Deep InfoMax and BigBiGAN, which were SOTA of then

* Recent methods can be categorized into 2 groups:
* BERT-like approach (or masked autoencoder)
* Predict original X from perturbed X (learn X = Z — X encoder)

* GPT-like approach (or sequential prediction)
e Predict future state X;, 1 from past states X;.; (learn X;.; — X; decoder)
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SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrec(x) = |M O (z = F((1 - M) 0 z))|l3

(723 [

' o o

2 8 =

~ . 2 | Channel-wise |3

(1 — M) Encoder) | & Fully & |[Decoder >£

- o Connected o L
3 g |
— | © |
= (7] |

w| e——— |0
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SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
e Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lree(x) = |M © (z — F(1- M) © )3
e With adversarial loss, reconstruction quality is improved further

Laae = max Evex |log D(x) +log(1 = D(F((1 — M) & z)

(a) Input context (b) Human artist (c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Algorithmic Intelligence Lab * source : [Pathak et al., 2016] 81



SSL via Generation — Classic Approaches

* Context Encoder [Pathak et al., 2016]
* Task: Predict the masked region using its surrounding information

* The auto-encoder is trained via reconstruction loss

Lrce(z) = |[M © (z — F(1 - M) © x))ll3
* With adversarial loss, reconstruction quality is improved further

Laav = max Evex [log D(x) +log(1 = D(F((1 ~ M) @)

* How to construct the masks? A segmentation mask in other dataset

Algorithmic Intelligence Lab (a) Central region (b) Random block (c) Random region * source : [Pathak et al., 2016] 82



SSL via Generation — Classic Approaches

* Deep InfoMax [Hjelm et al., 2019]
* ldea: Maximizing mutual information between inputs and features

* Y = Ey(X) is the feature vector of input X where F,, is an embedding function

* How to optimize mutual information? [Donsker & Varadhan, 1983]
I(X;Y) := D (JIIM) = ZPV(X;Y) = Eg [Ty (2, y)] — log Byl )

joint distribution marginal distribution

* Optimize the embedding function £, and discriminator 77, simultaneously

W, 1) = argmax Ly, (X; By (X))

)

Algorithmic Intelligence Lab * source : [Hjelm et al., 2019] 83



SSL via Generation — Classic Approaches

* Deep InfoMax [Hjelm et al., 2019]
* ldea: Maximizing mutual information between inputs and features

* Y = Ey(X) is the feature vector of input X where F,, is an embedding function

M x M feature map (see Figure 1) St M x M features M x M Scores
/.// i / /,/ uRealn
“Real” Local ¢ “
| . ocal feature (+
M > [ ANE Y] y ”
: Feature vector ‘ L. !
/ o R »l \
\\\ 4 Discriminator T K Slobal feature
e “Fake”
/£ 7| A 1]
“Fake" hi DLTTT PR, >
> D J Local feature (-) +—t M
. M
M x M features drawn from another image M x M features drawn from another image

* Instead of (left) maximizing Ml between global features, (right) doing Ml between
global and local features achieves better performance

Algorithmic Intelligence Lab * source : [Hjelm et al., 2019] 84



SSL via Generation — Classic Approaches (SW)

* BigBiGAN [Donahue et al., 2019]

* After the success of GAN for image generation, numerous work attempted to
extend the applicability of GAN for representation learning

 To this end, ALI/BiGAN (2017) learned a joint distribution p(X, Z) with GAN
* ALI/BiGAN performed well on low-resolution images

features data

aCa®)
)@

DR
T

Semi-supervised learning on CIFAR-10

A

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83 +2.01 19.61+2.09 18.63+232 17.72+1.82
ALI (ours, no feature matching) 1998 +0.89 19.09+044 1799+1.62 17.05+1.49

Algorithmic Intelligence Lab
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SSL via Generation — Classic Approaches (SW)

* BigBiGAN [Donahue et al., 2019]

* After the success of GAN for image generation, numerous work attempted to
extend the applicability of GAN for representation learning

 To this end, ALI/BiGAN (2017) learned a joint distribution p(X, Z) with GAN

* Leveraging the power of BigGAN on high-resolution image generation,
BigBiGAN achieved SOTA representation learning performance

* It was the SOTA before the dominance of contrastive learning
e Cf. ContraD (2021) combined BigBiGAN and contrastive learning

Method Architecture Feature | Top-1 Top-5
BiGAN [7, 42] AlexNet Conv3 31.0 -
SS-GAN [4] ResNet-19 Block6 38.3 -
Motion Segmentation (MS) [30, 6] ResNet-101 AvePool 27.6 48.3
Exemplar (Ex) [&, 6] ResNet-101 AvePool 31.5 53.1
Relative Position (RP) [5, 6] ResNet-101 AvePool 36.2 59.2
Colorization (Col) [41, 6] ResNet-101 AvePool 39.6 62.5
Combination of MS+Ex+RP+Col [6] ResNet-101 AvePool - 69.3
CPC [39] ResNet-101 AvePool 48.7 73.6
Rotation [11, 24] RevNet-50 x4  AvePool 554 -
Efficient CPC [17] ResNet-170 AvePool 61.0 83.0
ResNet-50 AvePool 554 717.4
o ResNet-50 BN+CReLU | 56.6 78.6
BigBIGAN (ours) RevNet-50 x4  AvePool 608  81.4
RevNet-50 x4 BN+CReLU | 61.3 81.9
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SSL via Generation — Masked Autoencoder

* Overview of Generation-based Approaches

e BERT-like approach (or masked autoencoder)
* Predict original X from perturbed X (learn X = Z = X encoder)

Algorithmic Intelligence Lab

87



SSL via Generation — Masked Autoencoder

 BERT [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore
* |nstead, masked language modeling is used for pre-training
* Replace some fraction of words (15%) in the input, then predict these words

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax ]

BERT

Randomly mask coe

15% of tokens
[CLS] [MASK]

Input

[CLS)

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-bert 45



SSL via Generation — Masked Autoencoder

e BERT [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore

* |nstead, masked language modeling is used for pre-training
* Additionally, next sentence prediction (NSP) task is used for pre-training
* Decide whether two input sentences are consecutive or not

Predict likelihood

1% | IsNext
that sentence B
belongs after

99% NotNext
sentence A

[ FFNN + Softmax ]
LN ]
BERT

Tokenized cee
Input [CLS] [MASK]
Input [CLS) [MASK] [MASK]

J L
Sentence A Sentence B

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-bert 45



SSL via Generation — Masked Autoencoder

* SpanBERT [Joshi et al., 2019]
* Recap: BERT selects [MASK] tokens at uniformly random
* ldea: mask contiguous random spans rather than random tokens

L(football) = Lym(football) + Lspo (football)
= —log P(football | x7) — log P(football | x4, X9, p3)

a1n Am:rican fooiball ga‘;ne Positional encoding from boundaries
N S S
Lxu [ [ xs [l | [ x| [ x| [ %2 | [ xs | [ %] | x0 [[ xu][ x0 |

TS S S SN SO S SO S SO S S

Transformer Encoder

ottt t t t t t t t 1

|Super| |Bow1 || 50 | ’ was ‘ |[MASK]| |[MASK]‘ ’[MASK]‘ |[MASK]| | to | |determine|| the | |champion‘

* Span Boundary Objective (SBO) encourages model to store span-level information
at the boundary tokens

SQuAD 2.0 NewsQA TriviaQA Coref MNLI-m QNLI GLUE (Avg)

Span Masking (2seq) + NSP 85.4 250 78.8 76.4 87.0 93.3 83.4
Span Masking (1seq) 86.7 73.4 80.0 763 ) 93.8 83.8
Span Masking (1seq) + SBO 86.8 74.1 80.3 79.0 87.6 93.9 84.0
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SSL via Generation — Masked Autoencoder

 ELECTRA [Clark et al., 2020]

* |dea: Replaced Token Detection (RTD) inspired by GANs

Replaced Token Detection

the chef  cooked the

* @Generator is trained with MLM

meal

sample
the —> [MASK] —> -> a —>
chef — chef —> Cenerator chef —>
cooked —> [MASK] —>| (typically a [-> ate —>
the —» the —»| small MLM) the —
meal —>» meal —> meal —>

—> replaced
.. —> original
Discriminator | 5 replaced
(ELECTRA) eplace
—> original
—> original

* Generator can be trained to fool discriminator adversarially, but it is worse

than MLM training

* Discriminator is trained to predict whether
each token is replaced one or not

* Both are jointly trained, and discriminator
will be used for downstream tasks

Algorithmic Intelligence Lab
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BERT-La
BERT-Base

LECTRA-Sm
GPT

(o]
o

dev GLUE Score

- ® BERT-Small

~
w

® ELMo
704
® GloVe

ELECTRA-Large

100k steps

ELECTRA-Base

rge

all

RoBERTa
500k steps ® XLNet
(fully trained)

300k steps

=—= Replaced Token Detection Pre-training
e—e Masked Language Model Pre-training

T
0

T
1

T T T
2 3 4
Pre-train FLOPs le2l
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SSL via Generation — Masked Autoencoder

e Strategies for Pre-training Graph Neural Networks [Hu et al., 2020]

* Note. This paper also uses well-known properties of molecules as supervision

* |dea:

* Context Prediction: predict surrounding graph structures
* Attribute Masking: predict masked node attributes like MLM

Input graph

(a) Context Prediction

(b) Attribute Masking

C'\/O)‘\HD7

= Comext anchor nodes

K-hop neighborhood
\\_/ (T—

Context graph \' , @ —

GNN

TN
X%, N, 0,8, ...}

> GNN

(C,N,O,S, ..}
X = Masked node

* Details of Context Prediction:
« h%): Node embedding of center node v with K-hop neighborhood

* ¢“: Average of embeddings of context anchor nodes

* Learning with negative sampling:

o (hT(JK)ch,/) ~1v=v NG =G

* This is similar to contrastive learning
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SSL via Generation — Masked Autoencoder

e Strategies for Pre-training Graph Neural Networks [Hu et al., 2020]

* Note. This paper also uses well-known properties of molecules as supervision

* |dea:

* Context Prediction: predict surrounding graph structures
* Attribute Masking: predict masked node attributes like MLM

Input graph (a) Context Prediction (b) Attribute Masking
Iy~ K-hop neighborhood GNN
5 % K o. X', N, 0,8, ..
i e I
; . : P \cﬁ/
cl HN \
# Eﬂe\, @ — o
B rmne ontext graph ~GNN-/
@ = Center node {CN,O,8, ..}
= Context anchor nodes X = Masked node
Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
# Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /
# Binary prediction tasks i 12 617 27, 2 157 1 1 /
Gragff_igje‘?mg ks S Out-of-distribution prediction (scaffold split)
- - 65.8 4.5 74.04+08 634+0.6 573416 580+44 7T1.84+25 753+£19 70.14+54 67.0
- Infomax 68.8 £0.8 753 +0.5 62.7+04 584408 699+3.0 753425 76.0+0.7 759+£1.6 70.3
- EdgePred 67.3+24 76.040.6 64.1£0.6 604407 64.1 3.7 741421 763+1.0 79.94+09 70.3
|~ = | AtrMasking | 64.3 £2.8 ~ 76.7 04 642 10.5 61.0+£0.7 71.8 £41 747414 772 X011 793 k1.6 | TI.T |
- ContextPred | 68.0 £2.0 75.7+0.7 63.94+0.6 609 £0.6 659 +3.8 758 +1.7 773+£1.0 79.6+1.2 70.9
Supervised - 68.3+0.7 77.0+£03 644+04 62.14+05 572+£25 794+13 744+12 7T769+£1.0 70.0
Supervised Infomax 68.0+1.8 77.8+£03 649+0.7 609406 71.2+28 81.3+14 77.84+09 80.1£0.9 72.8
Supervised EdgePred | 66.6 +2.2 783 +0.3 66.5+0.3 63.34+09 709+46 785424 775408 79.1 £3.7 72.6
| Supervised | AttrMasking | 66.5 £2.5 ~77.9 £0.4 65.1 £0.3 63.9 +0.9 73.7 £2.8 81.2+1.9 77.1+1.2 803 +09 | 732 |
Supervised | ContextPred | 68.7 +1.3 78.1 £0.6 65.7 +0.6 62.7 +0.8 72.6 +1.5 81.3+2.1 79.9+0.7 84.5+0.7 74.2
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SSL via Generation — Masked Autoencoder

* GROVER [Rong et al., 2020]
* Note. This paper also propose an architecture for molecules
* ldea:
e Contextual Property Prediction by masking subgraph like SpanBERT
* Subgraph categories are extracted from data: k-hop sub-graphs

* Graph-level Motif Prediction (multi-label classification) with domain knowledge
* Motifs can be obtained by a program (RDKit)

Contextual property prediction (node/edge level task) Graph-level motif prediction

Contextual property extraction Subgraph masking Semantic motifs from

_N b iga
PR R SR e i e s i e s = Eedeton domain knowledge
1 node-based k=1 ., /;_\ c/i\o jmmmmmmm—————————————
i u R Vs
1 G/o\o [N +3 g
1 (20 N,
Input molecule : & nodeledge R™ “OH R—CH:
1 &

Graph-level Prediction

] 1

i i

] 1

1 1

i i
L ———— o representation i R—=CHs o i —
| edge-based k=11 NICAEN : L N
| | foR : o
| sos | ' I Sy R—C=N |
| O/A\ W | i e i

1 § .

Molecular graph e e e 8 masked part L N representation
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SSL via Generation — Masked Autoencoder

* GROVER [Rong et al., 2020]
* Note. This paper also propose an architecture for molecules
* ldea:
e Contextual Property Prediction by masking subgraph like SpanBERT
* Graph-level Motif Prediction (multi-label classification) with domain knowledge

Contextual property prediction (node/edge level task) Graph-level motif prediction

N Contextual property extraction Subgraph masking Bredficion Semar_ltic motifs from Graph-level Prediction
TR B T o e it oo ! = = domain knowledge
i node-based k=1, >, ,,/-'\ cfi\n e T e
1 [ 0o
DD TSI | -0 3
: i

-
W2

| |
1
1 1
1
Input molecule s i OH i R—CH;
[FSSIIIIIIoIIIIIIIIIIIIIIIIIIIIIIIIIIIIIID : n representation E R—CH3s . ! —_—
| edge-based k=11 NICAEN H N |
i : i i o i R—C=N
i e | . i Ciqy R—C=N |
i O/$\ W i /D\( E R” oK E graph
Molecular graph 5.2 1 1 s e o i i e i i ' masked part oo B i) representation

* Pretraining improves GNNs in various downstream tasks
GROVER No Pretrain = Abs. Imp.

BBBP (2039) 0.940 0.911 +0.029
SIDER (1427) 0.658 0.624 +0.034
ClinTox (1478) 0.944 0.884 +0.060
BACE (1513) 0.894 0.858 +0.036
Tox21 (7831) 0.831 0.803 +0.028
ToxCast (8575) 0.737 0.721 +0.016
Average 0.834 0.803 +0.038
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SSL via Generation — Masked Autoencoder (HW)

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

e Similar to BERT in NLP, BEiT randomly masks image patches and trains to
recover the visual tokens of masked patches (instead of the raw pixels)

* Visual token: a discretized vocabulary for the image patch

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Visual Tokens i Unused During Reconstructed ‘
i Pre-Training Image
[ 123 234 456 567 g——— [
ol i L et
p e 4 987 876 765 543 E | e, 4
Original s — - ---»! | Decoder | ---» o
Image . /112 223 334 445 b | |
‘ | | . | |
NS I/ 21 a2 4.?,3 544 | g s
b ;l 234 i;ss 876; 765 T *322
= Pl ;‘ I I ' ] I
Image .' s | Masked Image Modeling Head I

Patches B | {|
NS b |} b | b} hi

snockwisel BEIT Encoder

Masking
=

- [o]lri(=]lz](e] jWI—jITHW 1] [12] sa] (8] [s5] (s8] erpasdng

—
- Patch

1
— FI
e =2 (s ". M M M | ™) ‘-’ B Embedding

* BEIT training procedure is consist of two stages:
1. Learning visual tokens
2. Masked image modeling
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SSL via Generation — Masked Autoencoder (HW)

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction
* BEIT training procedure is consist of two stages:
1. Learning visual tokens

______________________________________________

!

______________________________________________

Visual Tokens i Unused During Reconstructed
Pre-Training Image
gf", 9 123 234 456 567 " -
> o / | | > o
o gl 987 876 765 543 | : | = & 4
Original - P — —_— | S : ---» ! Decoder | ---» y
Image /112 223334 445 P |
< : -. L B :
t“‘“ 21 32_?_5133 544 ; ey A
i /

* In this stage, a discrete variational autoencoder (dVAE) is trained to represent each
224 x 224 image into a 14 x 14 grid of discrete image tokens, each element of whic
h can assume 8192 possible values

* The tokenizer q4(z|x) maps image image pixels into a visual codebook
* The decoder py,(x|z) learns to reconstruct the input image
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SSL via Generation — Masked Autoencoder (HW)

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction

* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

B 234 ¢456 876" . 322
——- L1 || 1
Image - | Masked Image Modeling Head |
Patches ’ 1
EEN bt )t @
Blockwise
Aockues| BEIT Encoder
-~
Tjﬁf WW WWWTEW 14 ﬁ 18] Embadding
- J_“‘; Flatten ’—\b M oM [Ml 1 = [M] 3 Patch

ar 1§ ¥ o Embedding

* The standard ViT is used as the backbone network

* Some image patches are randomly masked (approx. 40%), and then the visual
tokens that corresponds to the masked patches are predicted

* The objective is maximizing the log-likelihood of the correct visual tokens z;
given the corrupted image x™ with the masked positions M

max Z E rm [Z IOgPMIM(Zi|$M)]

€D ieM
98



SSL via Generation — Masked Autoencoder (HW)

* BEIT [Bao et al., 2022]
* Task: Masked visual tokens prediction
* BEIT training procedure is consist of two stages:
2. Masked Image Modeling

- % , e

b A 234 456 876 765 ~322
—- L1 | !
Image i | Masked Image Modeling Head |
Patches r || (—H
FEEE i | b k)
Blockwise
Sockinss| BEIT Encoder
=
EIEEIEEE ﬁmmnmmmmemm
e 1l
TEEE ™ [ ". oo - | Bl .

* During masked image modeling, block-wise masking strategy is used
* A block with the minimum number of patches to 16 is masked
* Repeat masking until obtaining enough masked patches (total 40% of patches)
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SSL via Generation — Masked Autoencoder (HW)

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Objective: MSE loss of masked patches

encoder -

>
Vi
=
v
i
.
R

* Key components:
* High masking ratio (75%):
* BERT masks 15% of tokens, MAE needs higher masking ratio
* Asymmetric encoder-decoder architecture:

* MAE allows to train very large transformer encoder by using the
lightweight decoder => it significantly reduces the pre-training time
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SSL via Generation — Masked Autoencoder (HW)

* MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
* Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder
dim ft lin

128 84.9 69.1
256 84.8 71.3

blocks ft lin

1 84.8 65.5
2 84.9 70.0

4 84.9 71.9 512 84.9 73.5

8 84.9 73.5 768 84.4 75.1

12 84.4 73.3 1024 843 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
prove linear probing accuracy. rower than the encoder (1024-d).

* The decoder depth is less influential for improving fine-tuning
* Only a single transformer block decoder can perform strongly with fine-tuning

* MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9%
FLOPs per token vs. ViT-L

Algorithmic Intelligence Lab
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SSL via Generation — Masked Autoencoder (HW)

« MAE [He et al., 2022]

e Task: Predicting the pixel values for each masked patch

e Other intriguing properties of MAE

case ft lin FLOPs case ft lin
encoder w/ [M] 842 596 33X pixel (w/o norm) 84.9 735
encoder w/o [M] 849 735 1x pixel (W/ norm) 85.4 73.9
PCA 84.6 123
dVAE token 85.3 71.6

(c) Mask token. An encoder without mask to- (d) Reconstruction target. Pixels as recon-

kens is more accurate and faster (Table 2). struction targets are effective.

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder

case ft lin

none 84.0 65.7
crop, fixed size 84.7 73:1
crop, rand size 849 735
crop + color jit 84.3 1.9

* |tis more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation

* MAE behaves decently even if using no data augmentation

Algorithmic Intelligence Lab

(e) Data augmentation. Our MAE works with
minimal or no augmentation.
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SSL via Generation — Masked Autoencoder (HW)

e MAE [He et al., 2022]
e Task: Predicting the pixel values for each masked patch
e Other intriguing properties of MAE

case ratio ft lin

random 75 849 735
block 50 839 723
block 75 828 639
grid 75 84.0 66.0

(f) Mask sampling. Random sampling works _ s !
the best. See Figure 6 for visualizations. Pe—r “block 50%

(f) Random patch masking is better than block-wise and grid-wise sampling
* Block-wise sampling: Removes large random blocks
* Grid-wise sampling: Keeps one of every four patches
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SSL via Generation — Masked Autoencoder (HW)

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* Modality-unified algorithm:

e 1) Build representations of the full input data with the teacher model
* The teacher is an exponentially decaying average of the student

* 2) Encode the masked version of the input sample with the student model and
predict the representations of original input

* Modality-specified data processing and masking strategies are used
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SSL via Generation — Masked Autoencoder (HW)

* data2vec [Baevski et al., 2022]

* data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Images | Speech Language
| Model in teacher-mode

| i
| | i
i : i
| I
Original U fjopiomhea— | llike tea with milk | - e - 1
| ! | |
} i } \ f !
i | i L) Teacher tracks

ffffffffffff student

Predict del
Model in student-mode faciehmacs parameters

I ! |
I ! |
| |
I ; | representation of
! } original input
‘ e
Masked ‘..mu‘||\||H||\im\mm\m-|u-w-wm-‘-w- - lliketea . milk | . D |:| D B
! |
! |

* The objective is predicting the representation for time-steps which are masked

* data2vec uses the standard transformer architecture
* Training targets are the output of the top K blocks of the teach network

. ai: the normalized output of block [ at time-step t

—~~

- 1
» Training target: v = —XJ_; 41 G¢

e The objective is smooth-L1 loss between y; and the prediction f;(x) at t:

3@ — H@)/B v — fu(@) < B
Ly, fe(z)) = {(|yt @)= 1) otherwise
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SSL via Generation — Masked Autoencoder (HW)

* data2vec [Baevski et al., 2022]

data2vec is a framework for general self-supervised learning for images, speech,
and text where the learning objective is identical in each modality

Modality-specified data processing and masking strategy

Image processing
* (Input embed) Embed images of 224 x 224 pixels as patches of 16 x 16 pixel
* (Masking) Apply BEIT masking strategy with 60% masking ratio

Speech processing

* (Input embed) Sample with 16kHz then forward seven temporal convolutions
e (Masking) Mask 49% of all time-steps

NLP processing
* (Input embed) The input data is tokenized using a byte-pair encoding (BPE)
* (Masking) Apply BERT masking strategy to 15% of uniformly selected tokens
* 80% are replaced by a learned mask token, [M]
* 10% are left unchanged
* 10% are replaced by randomly selected vocabulary token
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SSL via Generation — Masked Autoencoder (HW)

* data2vec [Baevski et al., 2022]

* data2vec shows a new state of the art or competitive performance to predominant
approaches on three domains

* Vision task: ImageNet classification

* Speech task: Word error rate (smaller is better) on the Librispeech dataset
* NLP task: GLEU benchmark

Table 1. Computer vision: top-1 validation accuracy on ImageNet-

1K with ViT-B and ViT-L models. data2vec ViT-B was trained

for 800 epochs and ViT-L for 1,600 epochs. We distinguish be-

tween individual models and setups composed of multiple models
(BEiT/PeCo train separate visual tokenizers and PeCo also distills
two MoCo-v3 models).

ViT-B  ViT-L
Multiple models
BEIT (Bao et al., 2021) 832 852
PeCo (Dong et al., 2022) 84.5 865
Single models
MoCo v3 (Chenet al., 2021b)  83.2  84.1
DINO (Caron et al., 2021) 82.8 -
MAE (He et al., 2021) 83.6 859
SimMIM (Xie et al., 2021) 83.8 -
iBOT (Zhou et al., 2021) 83.8 -
MaskFeat (Wei et al., 2021) 84.0 857
data2vec 842  86.6

Vision
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Table 2. Speech processing: word error rate on the Librispeech test-other test set when fine-tuning pre-trained models on the Libri-light
low-resource labeled data setups (Kahn et al., 2020) of 10 min, 1 hour, 10 hours, the clean 100h subset of Librispeech and the full 960h of
Librispeech. Models use the 960 hours of audio from Librispeech (LS-960) as unlabeled data. We indicate the language model used
during decoding (LM). Results for all dev/test sets and other LMs can be found in the supplementary material (Table 5).

Unlabeled IM Amount of labeled data
data 10m 1h 10h 100h 960h
wav2vec 2.0 (Baevski et al., 2020b) ~ LS-960  4-gram 156 113 95 80 6.1
HuBERT (Hsu et al., 2021) LS-960 4-gram 153 113 94 8.1 -
WavLM (Chen et al., 2021a) LS-960  4-gram - 108 92 17
data2vec LS-960 4-gram 123 91 81 68 55
Speech

Table 3. Natural language processing: GLUE results on the development set for single-task fine-tuning of individual models. For MNLI
we report accuracy on both the matched and unmatched dev sets, for MRPC and QQP, we report the unweighted average of accuracy and
F1, for STS-B the unweighted average of Pearson and Spearman correlation, for CoLA we report Matthews correlation and for all other
tasks we report accuracy. BERT Base results are from Wu et al. (2020) and our baseline is ROBERTa re-trained in a similar setup as BERT.
We also report results with wav2vec 2.0 style masking of spans of four BPE tokens with no unmasked tokens or random targets.

MNLI QNLI RTE MRPC QQP STS-B CoLA SST Avg

BERT (Devlin et al., 2019)  84.0/84.4  89.0 61.0 863 89.1 895 573 93.0 807
Baseline (Liu et al., 2019)  84.1/83.9 904 69.3 80.0 893 889 568 923 825

data2vec 83.2/83.0 909 67.0 902 89.1 872 622 918 827
+ wav2vec 2.0 masking 82.8/834 91.1 699 900 8.0 8.7 603 924 829
NLP

107



SSL via Generation — Sequential Prediction

* Overview of Generation-based Approaches

* GPT-like approach (or sequential prediction)
e Predict future state X;,1 from past states X;.; (learn X;.; = X; decoder)
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SSL via Generation — Sequential Prediction

 GPT [Radford et al., 2018]
arg max log p(x Z po(Tpn|T1, . Tpn_1)

* Pre-training by language modeling over 7000 unique books (unlabeled data)

* Contains long spans of contiguous text, for learning long-distance
dependencies
* Fine-tuning by training a classifier with target task-specific labeled data
* Classifier is added on the final transformer block’s last word’s hidden state
©/€? softmax(h,, Wy)

Linear vy,

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 42



SSL via Generation — Sequential Prediction (HW)

* iGPT [Chen et al., 2020]
* Task: Auto-regressively predict pixels, without incorporating 2D structure of image

’“ 2 (a) Autoregressive (b) BERT (a) Linear Probe
- ¥ Ml B
; : < (oooooom)<
o0 0 0000 o0 O 0000 Cat
——— T —
. .... . .. . ‘ (b) Finetune
T—e————— R
000000000
000000000 00000000 et
: g ‘ ¢ ©00000000
HE B HE B [ | L] ™
Target Target Cat  Dog

Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

e Similar to NLP domain, iGPT considers two pre-training objectives:
* Auto-regressive modeling (like GPT)
* BERT objective

* When fine-tuning, iGPT average pool all tokens in a sequence and use it as a
feature vector, then learn a projection layer
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SSL via Generation — Sequential Prediction (HW)

* iGPT [Chen et al., 2020]

* Task: Auto-regressively predict pixels, without incorporating 2D structure of image
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Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate

(b) BERT
v
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w
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e —

00000 o
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Target

the representations learned by these objectives with linear probes or fine-tuning.

* Input data format: 9-bit color palette

* iGPT down-samples an image into one of 32 x 32, 48 x 48, or 64 x 64 RGB data
* iGPT clusters all (R, G, B) values in training dataset using k-means with k=512,

which is 9-bit color palette

* |t further reduces input sequence length 3 times
* |t also discretizes the input data and output target

Algorithmic Intelligence Lab
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SSL via Generation — Sequential Prediction (HW)

* iGPT [Chen et al., 2020]
* Task: Auto-regressively predict pixels, without incorporating 2D structure of image

* iGPT is not only successful for (conditional) image generation, but also show
notable representation learning performance (Comparable with SimCLR)

Model Input Completions - Original
Model Acc  Unsup Transfer  Sup Transfer
CIFAR-10
ResNet-152 94 Vv
SimCLR 95.3 Vv
iGPT-L 96.3 Vv
CIFAR-100
ResNet-152  78.0 Vv
SimCLR 80.2 Vi
iGPT-L 82.8 VA
STL-10
AMDIM-L 942 Vv
iGPT-L 95.5 Vv
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SSL via Generation — Sequential Prediction (SW)

 World Model

* Autoregressive modeling can be also applied for more complex domains such as
video or action-conditioned videos (called “transition model”)

* Recurrent world model [Ha & Schmidhuber, 2018]:
* Encoder and decoder that converts data X; to representation Z;
* Transition model that predicts action-conditioned future Z; ., = f(Z;, 4;)

* Objective: Given trajectory {X;.;, A1.+}, the model (a) encodes them to Z; .,
(b) predict Z;, 1 with transition model, and (c) decode X;,1

— y
« The learned model can be ‘ environment | action |
utilized for visual planning

(for both training and inference) v

VAE (V)

7 \
4
-

Z
observation |
i C
world model © | MDN-RNN (M) J
h

y

Y

- >

‘L action
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SSL via Generation — Sequential Prediction (SW)

* World Model
* Recall that it is similar to the CPC objective in the SSL via Invariance section
* Generation: Predict the target X;,; directly
* Contrastive: Find the positive X;,; from negative samples X/,
* One can interchange them arbitrarily = Q. Which one is better?

Algorithmic Intelligence Lab
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SSL via Generation — Sequential Prediction (SW)

* World Model
* Recall that it is similar to the CPC objective in the SSL via Invariance section
* Generation: Predict the target X;,; directly
* Contrastive: Find the positive X;,, from negative samples X/,
* One can interchange them arbitrarily = Q. Which one is better?

e Contrastive structured world model (C-SWM) [Kipf et al., 2020]:
* Generation objective distracts the model by focusing on low-level styles
e Contrastive objective more focus on high-level semantics

* Learning a proper invariance is also essential for planning!
* Contrastive learning (Z projects low-level styles from X) can be beneficial

You are here v Target You are here v Target

1
LI

Algorithmic Intelligence Lab *reference: https://jacobbuckman.com/2019-10-25-three-paradigms-of-reinforcement-learning/ 42




[Extra] SSL for Visual Planning (SW)

* Representation for Visual Planning
* |Inspired the success of SSL on visual domain, some works attempted to leverage

the techniques (e.g., MoCo, MAE) for learning world models
@aybuffer \ / \
% 9 =15,(0) > Reinforcement

:::::::3“-“ Learning
: . Query :
: 2 : Encoder :

N : SRR <
e )
o Contrastive

Key * = /o, \% Learning
\ Oy Encoder / K /
* Recent works found that transferring the SSL models from image/video datasets
(e.g., ImageNet pre-trained MoCo) is also effective for visual planning tasks

* PVR!and MVP?2 uses frozen visual backbone (MoCo and MAE) to extract
representation, and apply IL/RL techniques upon the representation

* APV3 fine-tunes video models to learn action-conditional world models

* source : 1[Parisi et al., 2022], 2[Xiao et al., 2022]. 3[Seo et al., 2022] 116
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[Extra] SSL for Visual Planning (SW)

* Representation for Visual Planning

* PVR!and MVP?2 uses frozen visual backbone (MoCo and MAE) to extract
representation, and apply IL/RL techniques upon the representation

* Similar to the vision tasks (e.g., semantic vs. dense representation tasks), the
appropriate backbone depends on the control task

* Navigation (e.g., Habitat) = semantic representation

* Low-level control (e.g., MuloCo/DMC) — dense representation

Algorithmic Intelligence Lab * source : Y[Parisi et al., 2022], 2[Xiao et al., 2022]. 3[Seo et al., 2022] 117



[Extra] SSL for Visual Planning (SW)

* Representation for Visual Planning

* PVR!and MVP?2 uses frozen visual backbone (MoCo and MAE) to extract
representation, and apply IL/RL techniques upon the representation

* Similar to the vision tasks (e.g., semantic vs. dense representation tasks), the
appropriate backbone depends on the control task

* Navigation (e.g., Habitat) = semantic representation
* Low-level control (e.g., MuloCo/DMC) — dense representation

* Intuitively, MoCo is more effective for the navigation task
* Also, using Conv in late layers is more beneficial for navigation

Habitat DMC —
- 90 ® Ground-Truth
z _ 81 84 ® MoCo (Aug+)
:éi |77 I80 |78 - |'7’6 78 i 79 m MoCo (Crop)
£ | 72 ollald o 70 . :RNSO
- ayer
. . __ i )L’a er3 .
y Location of
91 m Layer 4 he Conv |
2 85 m Layer5 the Conv layer
HH 81 83 ol
e 77 | |79 o IB = R | —— ;
5 | | = 71 4 72 72 73
& N
63 63
Y e

Algorithmic Intelligence Lab * source : Y[Parisi et al., 2022], 2[Xiao et al., 2022]. 3[Seo et al., 2022] 118



Summary (SW)

* We discussed 3 types of self-supervised learning
1. Pretext task: Maximize Ml of representation and pretext label
2. Invariance: Maximize Ml of representations of positive samples
3. Generation: Maximize Ml of representation and (perturbed) data

* (3) Generation-based approach is currently the most promising direction
* BERT/MAE for encoder, and GPT for encoder-decoder models
* Large-scale & multimodal foundation models are being stronger!
* (2) invariance-based method is still effective at learning semantic tasks
* Leverage the additional prior knowledge of positive samples
* Thus, one may need to choose an appropriate backbone for the task

» Self-supervised learning have shown its effectiveness on various domains
* Image, video, language, audio, graph, tabular, and multimodal domains
* Recent works discover that visual SSL is also effective for the planning tasks
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