Generative Models II: Explicit Density Models

Al602: Recent Advances in Deep Learning

Lecture 6

Slide made by

Sangwoo Mo, Chaewon Kim, Minkyu Kim, Younggyo Seo KAIST EE

Table of Contents

1. Introduction

• Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Table of Contents

1. Introduction

- Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models
- 3. Energy-based Models (EBM)
 - Energy-based models
 - Score matching generative models
- 4. Autoregressive and Flow-based Models
 - Autoregressive models
 - Flow-based models

• From now on, we study generative models with explicit density estimation:

• From now on, we study generative models with explicit density estimation:

Better density modeling

Table of Contents

1. Introduction

• Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

• Consider the following generative model:

- Fixed prior on random latent variable
 - e.g., standard Normal distribution

$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \mathbb{I})$$

- Parameterized likelihood (decoder) for generation:
 - e.g., Normal distribution parameterized by neural network

$$p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}; f_{\texttt{dec}}(\boldsymbol{z}), \mathbb{I})$$

• Resulting generative distribution (to optimize):

$$\log p_{\theta}(\boldsymbol{x}) = \log \int_{\boldsymbol{z}} p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = \log \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})}[p(\boldsymbol{x}|\boldsymbol{z})]$$

 Variational autoencoder (VAE) introduce an auxiliary distribution (encoder) [Kingma et al., 2013]

 $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; f_{\texttt{enc},\mu}(\boldsymbol{x}), f_{\texttt{enc},\sigma}(\boldsymbol{x}))$

• Each $\log p_{\theta}(\boldsymbol{x})$ term is replaced by its <u>lower bound</u>:

$$egin{aligned} \log p_{ heta}(oldsymbol{x}) &\geq \log p_{ heta}(oldsymbol{x}) - \min_{\phi} \operatorname{KL}(q_{\phi}(oldsymbol{z}|oldsymbol{x})) \| p_{ heta}(oldsymbol{z}|oldsymbol{x})) \ &= \log p_{ heta}(oldsymbol{x}) + \max_{\phi} \mathbb{E}_{oldsymbol{z}\sim q_{\phi}(oldsymbol{z}|oldsymbol{x})} [\log p_{ heta}(oldsymbol{z}|oldsymbol{x}) - \log q_{\phi}(oldsymbol{z}|oldsymbol{x})] \ &= \max_{\phi} \mathbb{E}_{oldsymbol{z}\sim q_{\phi}(oldsymbol{z}|oldsymbol{x})} [\log p_{ heta}(oldsymbol{x}) + \log p_{ heta}(oldsymbol{z}|oldsymbol{x}) - \log q_{\phi}(oldsymbol{z}|oldsymbol{x})] \ &= \max_{\phi} \mathbb{E}_{oldsymbol{z}\sim q_{\phi}(oldsymbol{z}|oldsymbol{x})} [\log p_{ heta}(oldsymbol{x}|oldsymbol{z})] - \operatorname{KL}(q_{\phi}(oldsymbol{z}|oldsymbol{x})) \| p(oldsymbol{z})) \end{aligned}$$

• Bound becomes equality when $q_{\phi}(m{z}|m{x}) pprox p_{\theta}(m{z}|m{x})$

• The training objective becomes:

tractable between two Gaussian distributions

$$\max_{\theta} \sum_{n=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}) \geq \max_{\theta} \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$$

$$\approx \max_{\theta} \max_{\phi} \sum_{n=1}^{N} \sum_{k=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}|\boldsymbol{z}^{(n,k)}) - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})||p(\boldsymbol{z}))$$
where latent variables are sampled by $\boldsymbol{z}^{(n,k)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})$

• However, non-trivial to train with back propagation due to sampling procedure:

• Reparameterization trick is based on the change-of-variables formula:

$$\varepsilon_2 \sim \mathcal{N}(\varepsilon_2 | \mu, \sigma) \iff \varepsilon_2 = \mu + \sigma \varepsilon_0, \qquad \varepsilon_0 \sim \mathcal{N}(\varepsilon_0 | 0, 1)$$

• Latent variable $z^{(n,k)}$ can be similarly parameterized by encoder network:

• Total loss of variational autoencoder:

 $\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla \phi \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla \phi \mathcal{L}_{2}}$

- Recall that $f_{{\rm dec}}, f_{{\rm enc},\mu}, f_{{\rm enc},\sigma}$ are parameterized by ϕ
- Derivative of first part:

 • Total loss of variational autoencoder:

 $\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla \phi \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla \phi \mathcal{L}_{2}}$

- Recall that $f_{{\tt dec}}, f_{{\tt enc},\mu}, f_{{\tt enc},\sigma}$ are parameterized by ϕ
- Derivative of second part:

 Based on the proposed scheme, variational autoencoder successfully generates images:

Training on MNIST

• Interpolation of latent variables induce transitions in generated images:

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to **poor generation quality**
- Tighter objective bound
 - **Reduce approximation (model) error:** Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - **Careful optimization:** various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - **Reduce approximation (model) error:** Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - **Careful optimization:** various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

• Observe that ELBO can also be proved by the Jensen's inequality:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] \geq \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$

- Based on convexity, interchange order of logarithm and summation
- Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z}^{(1)}, \cdots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$
$$\geq \mathbb{E}_{\boldsymbol{z}^{(1)}, \cdots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$

also called importance weights

- Becomes original ELBO when K=1 and becomes exact bound when $K=\infty$

$$\mathbb{E}_{\boldsymbol{z}^{(1)},\cdots,\boldsymbol{z}^{(K)}\sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{1}{K}\sum_{k=1}^{K}\frac{p(\boldsymbol{x},\boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})}\right] \approx p(\boldsymbol{x})$$

- Inference gap of VAE can be decomposed to approximation gap (model error) and amortization gap (single neural network amortizes all posteriors)
- Semi-amortized VAE: In addition to the global inference network, update the posterior of each local instance for a few steps [Kim et al., 2018]
 - Resembles MAML (see future lecture)

- 1. Sample $\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})$
- 2. Set $\lambda_0 = \operatorname{enc}(\mathbf{x}; \phi)$

 \rightarrow shared to all samples

3. For
$$k = 0, ..., K - 1$$
, set
 $\lambda_{k+1} = \lambda_k + \alpha \nabla_\lambda \operatorname{ELBO}(\lambda_k, \theta, \mathbf{x})$

 \rightarrow specific to each sample x

• Semi-amortized VAE can further reduce ELBO, applied on top of any VAEs

MODEL	ORACLE GEN	Learned Gen
VAE SVI SA-VAE	$\leq 21.77 \\ \leq 22.33 \\ \leq 20.13$	$\leq 27.06 \\ \leq 25.82 \\ \leq 25.21$
TRUE NLL (EST)	19.63	_

* SVI: Instance-specific posterior only, without amortization

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to **poor generation quality**
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- **Posterior collapse** (latents are ignored when paired with powerful decoder)
 - Careful optimization: various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

- Posterior collapse [Bowman et al., 2016]:
 - When paired with powerful decoder, VAEs often ignore the posterior $q_{\phi}(z|x)$ and generates generic samples (i.e., reconstruction loss does not decrease well)
- To mitigate posterior collapse, prior works attempt
 - 1. Weaken the KL regularization term [Bowman et al., 2016, Razavi et al., 2019a]
 - Recall: KL regularization term minimizes $KL(p_{\phi}(z|x), p(z))$
 - Anneal the weight during training, or constraint $\geq \delta$
 - 2. Match aggregated posterior instead of individuals [Tolstikhin et al., 2018]
 - Instead of matching $p_{\phi}(z|x) \approx p(z)$ for all x, match the aggregated posterior $\mathbb{E}_{x \sim p(x)} p_{\phi}(z|x) \approx p(z)$ (each $p_{\phi}(z|x)$ is now a deterministic, single point)
 - Need implicit distribution matching techniques (e.g., GAN)
 - 3. Improve optimization procedure [He et al., 2019]
 - Strengthen the encoder: update encoder until converge, and decoder once

- VQ-VAE [Oord et al., 2017]
 - Each data is embedded into combination of 'discrete' latent vectors: $\{e_1, \dots, e_K\}$
 - i.e.) each encoder output is quantized to the nearest vector among $K \operatorname{codebook}$ vectors

- Restriction of latent space achieves high generation quality including:
 - Images, videos, audios, etc.

- VQ-VAE [Oord et al., 2017]
 - The objective of VQ-VAE composed of three terms:
 - Reconstruction loss (1)
 - VQ loss (2):
 - Optimization of codebook vectors
 - Commitment loss (3):
 - Regularization to get encoder outputs and codebook close

$$\mathcal{L} = \underbrace{||g_{\phi}(e) - x||_{2}^{2}}_{(1)} + \underbrace{||\mathbf{sg}(f_{\theta}(x)) - e||_{2}^{2}}_{(2)} + \frac{\beta ||f_{\theta}(x) - \mathbf{sg}(e)||_{2}^{2}}_{(3)}$$

- VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:
 - DALL-E (text-image generative model) image is encoded via VQ-VAE
 - Many audio self-supervised learning method

- VQ-VAE-2 [Razavi et al., 2019b]
 - Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
 - For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training

- VQ-VAE-2 [Razavi et al., 2019b]
 - After VQ-VAE-2 training, train two pixelCNN priors for new image generation
 - They autoregressively fill out each quantized latent vector space

Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - **Careful optimization:** various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

- NVAE [Vahdat et al., 2020]
 - Hierarchical VAEs use the factorized latent space $p_{\theta}(z) = \prod_{l} p_{\theta}(z_{l}|z_{< l})$
 - Here, the ELBO objective is given by

$$\mathcal{L}_{\text{VAE}}(\boldsymbol{x}) := \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log p(\boldsymbol{x}|\boldsymbol{z}) \right] - \text{KL}(q(\boldsymbol{z}_1|\boldsymbol{x})||p(\boldsymbol{z}_1)) - \sum_{l=2}^{L} \mathbb{E}_{q(\boldsymbol{z}_{< l}|\boldsymbol{x})} \left[\text{KL}(q(\boldsymbol{z}_l|\boldsymbol{x}, \boldsymbol{z}_{< l})||p(\boldsymbol{z}_l|\boldsymbol{z}_{< l})) \right],$$

- However, prior attempts on hierarchical VAE were not so successful due to:
 - 1. Long-range correlation: upper latents often forget the data information

2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since they jointly learn the prior distribution $p_{\theta}(z)$ Both $q_{\phi}(z|x)$ and $p_{\theta}(z)$ are

Both $q_{\phi}(z|x)$ and $p_{\theta}(z)$ are moving during training

- NVAE [Vahdat et al., 2020]
 - Idea 1. Bidirectional encoder (originally from [Kingma et al., 2016])
 - Enforce upper latents (e.g., z_3) to predict the lower latents (e.g., z_1)
 - → Improve the long-range correlation issue

- Training: posterior $q_{\phi}(z|x)$ is inferred by both encoder and decoder (aggregate them) and prior $p_{\theta}(z)$ is jointly inferred by decoder
 - Recall that the KL term is a function of $q_{\phi}(z|x)$ and $p_{\theta}(z)$
- Inference: Sample prior $p_{\theta}(z)$ from decoder and generate sample x

- NVAE [Vahdat et al., 2020]
 - Idea 2. Taming the unstable KL term
 - 1. Residual normal distribution
 - For each factorized **prior** distribution

$$p(z_l^i | \boldsymbol{z}_{< l}) := \mathcal{N}(\mu_i(\boldsymbol{z}_{< l}), \sigma_i(\boldsymbol{z}_{< l})),$$

define **approximate posterior** as (instead of directly predict μ_i , σ_i)

 $q(z_l^i | \boldsymbol{z}_{< l}, \boldsymbol{x}) := \mathcal{N}(\mu_i(\boldsymbol{z}_{< l}) + \Delta \mu_i(\boldsymbol{z}_{< l}, \boldsymbol{x}), \sigma_i(\boldsymbol{z}_{< l}) \cdot \Delta \sigma_i(\boldsymbol{z}_{< l}, \boldsymbol{x})),$

- Then, the **KL term** of ELBO is given by $KL(q(z^i|\boldsymbol{x})||p(z^i)) = \frac{1}{2} \left(\frac{\Delta \mu_i^2}{\sigma_i^2} + \Delta \sigma_i^2 - \log \Delta \sigma_i^2 - 1 \right)$
- 2. Spectral regularization
 - Enforce *Lipschitz smoothness* of encoder to bound KL divergence
 - Regularize the *largest singular value* of convolutional layers (estimated by power iteration [Yoshida & Miyato, 2017])

- NVAE [Vahdat et al., 2020]
 - Results:
 - Generate high-resolution (256x256) images

• SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method	MNIST 28×28	CIFAR-10 32×32	ImageNet 32×32	CelebA 64×64	CelebA HQ 256×256	FFHQ 256×256			
NVAE w/o flow	78.01	2.93	-	2.04	-	0.71			
NVAE w/ flow	78.19	2.91	3.92	2.03	0.70	0.69			
VAE Models with an Unconditional Decoder									
BIVA [36]	78.41	3.08	3.96	2.48	-	-			
IAF-VAE [4]	79.10	3.11	-	-	-	-			
DVAE++ [20]	78.49	3.38	-	-	-	-			
Conv Draw [42]	-	3.58	4.40	-	-	-			
Flow Models without any Autoregressive Components in the Generative Model									
VFlow [59]	-	2.98	-	-	-	-			
ANF [60]	-	3.05	3.92	-	0.72	-			
Flow++ [61]	-	3.08	3.86	-	-	-			
Residual flow [50]	-	3.28	4.01	-	0.99	-			
GLOW [62]	-	3.35	4.09	-	1.03	-			
Real NVP [63]	-	3.49	4.28	3.02	-	-			

- VD-VAE [Child, 2021]
 - Autoregressive models have outperformed VAEs (will be covered later)
 - Main idea: However, very deep VAEs generalize autoregressive models

Latent variables are identical to observed variables

Observation 1: Hierarchical VAEs with N layers (N = dimension of data D) generalizes autoregressive models

e.g.) learns deterministic identity function

Latent variables allow for parallel generation

Observation 2: VAEs with fewer layers (N < D) can still model data by learning efficient hierarchies of latent variables

• e.g.) learns conditional independence

- VD-VAE [Child, 2021]
 - Empirically, deep VAEs often suffer from unstable training
 - Recap: NVAE requires complex techniques to stabilize KL
 - **Q:** How to make VAE deeper?
 - Idea 1: Top-down architecture with bottleneck residual blocks

- VD-VAE [Child, 2021]
 - Empirically, deep VAEs often suffer from unstable training
 - Recap: NVAE requires complex techniques to stabilize KL
 - **Q:** How to make VAE deeper?
 - Idea 2: Additional simple techniques
 - Transposed CNNs => Nearest-neighbor upsampling
 - Scale down weight initialization of final layer in residual block
 - Gradient skipping: skip updates when gradient norm is above threshold

• VD-VAE [Child, 2021]

• **Results:** Very deep VAEs (>50 layers) can outperform autoregressive models with fe wer parameters while maintaining fast sampling

	Model type	Params	Depth	Sampling	NLL
CIFAR-10					
PixelCNN++ (Salimans et al., 2017)	AR	53M*		D	2.92
PixelSNAIL (Chen et al., 2017)	AR	00101		D	2.85
Sparse Transformer (Child et al., 2019)	AR	59M		D	2.80
VLAE (Chen et al., 2016)	VAE	0,111		$\overset{D}{D}$	≤ 2.95
IAF-VAE (Kingma et al., 2016)	VAE		12	1	≤ 3.11
Flow++ (Ho et al., 2019)	Flow	31M		1	≤ 3.08
BIVA (Maaløe et al.) 2019)	VAE	103M	15	1	≤ 3.08
NVAE (Vahdat & Kautz, 2020)	VAE	131M	30	1	≤ 2.91
Very Deep VAE (ours)	VAE	39M	45	1	\le 2.87
					_
ImageNet-32					
Gated PixelCNN	AR	177M*	10	D	3.83
Image Transformer (Parmar et al., 2018)	AR			D	3.77
BIVA	VAE	103M*	15	1	≤ 3.96
NVAE	VAE	268M	28	1	≤ 3.92
Flow++	Flow	169M		1	≤ 3.86
Very Deep VAE (ours)	VAE	119M	78	1	\leq 3.80
ImageNet-64				_	
Gated PixelCNN	AR	177M*		D	3.57
SPN (Menick & Kalchbrenner, 2018)	AR	150M		D	3.52
Sparse Transformer	AR	152M		D	3.44
Glow (Kingma & Dhariwal, 2018)	Flow			1	3.81
Flow++	Flow	73M		1	≤ 3.69
Very Deep VAE (ours)	VAE	125M	75	1	\leq 3.52
FFHQ-256 (5 bit)			26		< 0.00
NVAE	VAE	11576	36	1	≤ 0.68
Very Deep VAE (ours)	VAE	115M	62	1	\leq 0.61
EEHO 1024 (8 bit)					
FFHQ-1024 (8 bit)	VAE	115M	72	1	< 2.42
Very Deep VAE (ours)	VAE	115M	72	1	\leq 2.42

Table of Contents

- 1. Introduction
 - Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models
- 3. Energy-based Models (EBM)
 - Energy-based models
 - Score matching generative models
- 4. Autoregressive and Flow-based Models
 - Autoregressive models
 - Flow-based models

- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - Diffusion (forward) process: Markov chain that gradually add noise (of same dimension of data) to data until original the signal is destroyed

$$q(x_t|x_{t-1}) := \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

• Sampling (backward) process: Markov chain with learned Gaussian denoising transition, starting from standard Gaussian noise $p(x_T) = \mathcal{N}(x_T; 0, I)$

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Denoising/sampling (reverse)

- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - Here, the forward distribution $q(x_{t-1}|x_t, x_0)$ can be expressed as a closed form
 - Variational Lower Bound (VLB) objective is given by the sum of local KL divergences (between Gaussians)
 L_{VLB}

 $E_q[D_{\mathrm{KL}}(q(x_T|x_0)||p(x_T)) + \sum_{t>1} D_{\mathrm{KL}}(q(x_{t-1}|x_t, x_0)||p_\theta(x_{t-1}|x_t)) - \log p_\theta(x_0|x_1)]$

- Specifically, how to calculate the posterior $q(x_{t-1}|x_t, x_0)$?
 - Let $\alpha_t = 1 \beta_t$ and $\bar{\alpha}_t = \prod_{s=0}^t \alpha_s$, then marginal can be derived:

$$(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t x_0}, (1 - \bar{\alpha}_t)\mathbf{I})$$
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

• Using Bayes theorem,

q

$$(x_{t-1}|x_t, x_0) = \mathcal{N}(x_{t-1}; \tilde{\mu}(x_t, x_0), \tilde{\beta}_t \mathbf{I})$$
$$\tilde{\beta}_t \coloneqq \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$
$$\tilde{\mu}_t(x_t, x_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} x_0 + \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x_t$$

- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - For modelling p_{θ} , we should model μ_{θ} and Σ_{θ}

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \underline{\mu_{\theta}(x_t, t)}, \underline{\Sigma_{\theta}(x_t, t)})$$

- DDPM [Ho et al., 2020] proposes a simple objective & model:
 - For Σ_{θ} , DDPM fix the variance $\Sigma_{\theta}(x_t, t) = \sigma_t^2 I$, where $\sigma_t^2 = \beta_t$ or $\tilde{\beta}_t$
 - For μ_{θ} , DDPM predicts the noise ϵ and use the following derivation:

$$u_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$

• Where ϵ_{θ} is trained by optimizing following objective:

$$L_{\text{simple}} = E_{t,x_0,\epsilon} \left[||\epsilon - \epsilon_{\theta}(x_t,t)||^2 \right]$$

- Then, the training/sampling scheme resembles *denoising score matching* (will be discussed later in this lecture)
- Intuitively, the reverse process adds the (learned) noise ϵ_{θ} for each step (resembles stochastic Langevin dynamics)
- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

• DDPM also generates high-resolution (256x256) images

- Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]
 - This paper improves upon DDPM by introducing additional techniques:
 - 1. Learned variance instead of fixed variance

$$\Sigma_{\theta}(x_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t)$$

Learnable parameters

2. Hybrid objective of VLB and Simple objectives $L_{\rm hybrid} = L_{\rm simple} + \lambda \underline{L_{\rm vlb}}$

 $\Sigma_{ heta}$ can be learned through this loss

- 3. Different diffusion (cosine) schedule
 - Instead of linear schedule in DDPM

- Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]
 - Results: Simple techniques can improve performance of DDPM

Table 3. Comparison of DDPMs to other likelihood-based models on CIFAR-10 and Unconditional ImageNet 64×64 . NLL is reported in bits/dim. On ImageNet 64×64 , our model is competitive with the best convolutional models, but is worse than fully transformer-based architectures.

Model	ImageNet	CIFAR
Glow (Kingma & Dhariwal, 2018)	3.81	3.35
Flow++ (Ho et al., 2019)	3.69	3.08
PixelCNN (van den Oord et al., 2016c)	3.57	3.14
SPN (Menick & Kalchbrenner, 2018)	3.52	-
NVAE (Vahdat & Kautz, 2020)	-	2.91
Very Deep VAE (Child, 2020)	3.52	2.87
PixelSNAIL (Chen et al., 2018)	3.52	2.85
Image Transformer (Parmar et al., 2018)	3.48	2.90
Sparse Transformer (Child et al., 2019)	3.44	2.80
Routing Transformer (Roy et al., 2020)	3.43	-
DDPM (Ho et al., 2020)	3.77	3.70
DDPM (cont flow) (Song et al., 2020b)	-	2.99
Improved DDPM (ours)	3.53	2.94

- Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
 - Generalizes DDPM with much faster sampling process
 - Main idea: Introduce non-Markovian forward process
 - Since DDPM objective only depends on marginal $q(x_t|x_0)$, any arbitrary inference distribution that has same marginal can be used
 - Specifically, DDIM proposes a following inference distribution:

$$q_{\sigma}(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1},\boldsymbol{x}_{0}) = \frac{q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})q_{\sigma}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}{q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})}$$
$$\underbrace{\boldsymbol{x}_{3} \underbrace{\boldsymbol{x}_{0}}_{q(\boldsymbol{x}_{3}|\boldsymbol{x}_{2},\boldsymbol{x}_{0})} \underbrace{\boldsymbol{x}_{2}}_{q(\boldsymbol{x}_{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{0})} \underbrace{\boldsymbol{x}_{1}}_{q(\boldsymbol{x}_{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{0})} \underbrace{\boldsymbol{x}_{0}}_{q(\boldsymbol{x}_{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{0})} \underbrace{\boldsymbol{x}_{0}}$$

• Where q_{σ} is set to have same marginal with DDPM

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t}-\sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1-\alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right)$$

- Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
 - Generative process $p_{\theta}^{(t)}(x_{t-1}|x_t)$ is defined by leveraging $q_{\sigma}(x_{t-1}|x_t, x_0)$:
 - 1. From x_t , predict "denoised" observation x_0
 - 2. Obtain sample x_{t-1} from $q_{\sigma}(x_{t-1}|x_t, x_0)$ using predicted x_0 and x_t

- How to predict x_0 from x_t ?
 - Marginal: $q(x_t|x_0) \coloneqq \int q(x_{1:t}|x_0) dx_{1:(t-1)} = N(x_t; \sqrt{\alpha_t}x_0, (1 \alpha_t)I)$
 - From this, we can obtain $x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 \alpha_t} \epsilon_t$
 - By introducing a model $\epsilon_{\theta}^{(t)}(x_t)$ that predicts ϵ_t , prediction of x_0 is given as: $f_{\theta}^{(t)}(x_t) \coloneqq (x_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(x_t)) / \sqrt{\alpha_t}$

- Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
 - Resulting generative process:

$$p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}) = \begin{cases} \mathcal{N}(f_{\theta}^{(1)}(\boldsymbol{x}_{1}), \sigma_{1}^{2}\boldsymbol{I}) & \text{if } t = 1\\ q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}, f_{\theta}^{(t)}(\boldsymbol{x}_{t})) & \text{otherwise,} \end{cases}$$
$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{\boldsymbol{x}_{t} - \sqrt{1 - \alpha_{t}}\epsilon_{\theta}^{(t)}(\boldsymbol{x}_{t})}{\sqrt{\alpha_{t}}}\right)}_{\text{"predicted } \boldsymbol{x}_{0}\text{"}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_{t}^{2}} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_{t})}_{\text{"direction pointing to } \boldsymbol{x}_{t}\text{"}} + \underbrace{\sigma_{t}\epsilon_{t}}_{\text{random noise}}$$

- Which becomes a DDPM when $\sigma_t = \sqrt{(1 \alpha_{t-1})/(1 \alpha_t)} \sqrt{1 \alpha_t/\alpha_{t-1}}$
- Which becomes a deterministic generative process from x_t to x_0 when $\sigma_t = 0$
 - i.e., Denoising Diffusion Implicit Model (DDIM)
- Accelerated generation process
 - Objective does not depend on specific forward process if $q_{\sigma}(x_t|x_0)$ is fixed
 - Hence, we can consider "shorter" forward processes
 - Forward process over a subset $\{x_{\tau_1}, \dots, x_s\}$ that matches the marginals

•
$$q(x_{\tau_i}|x_0) = N(\sqrt{\alpha_{\tau_i}}x_0, (1-\alpha_{\tau_i})I)$$

- Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
 - Experiments: Investigation on hyperparameters
 - Number of sampling steps S
 - Degree of stochasticity σ
 - Interpolation between DDPM ($\eta = 1$) and DDIM ($\eta = 0$)

$$\sigma_{\tau_i}(\eta) = \eta \sqrt{(1 - \alpha_{\tau_{i-1}})/(1 - \alpha_{\tau_i})} \sqrt{1 - \alpha_{\tau_i}/\alpha_{\tau_{i-1}}}$$

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta = 1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T = 1000 steps, and S < T can be seen as simulating DDPMs trained with S steps), and $\eta = 0.0$ indicates DDIM.

CIFAR10 (32×32)								Cele	bA (64 \times	(64)	
	S	10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98

Deterministic generation process (DDIM) can generate good samples with 10x~100x smaller sampling steps (=fast)

- Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
 - Main idea: Class information could improve the image fidelity of diffusion model.
 - Class-conditional GANs already make heavy use of class information [Brock et al., 2019].
 - Propose classifier guidance to give class information to the diffusion model.
 - Trade off between the fidelity and diversity of generated image.
 - As strong class guidance is given, the fidelity of images improves but the diversity decreases.
 - Train a classifier $p_{\phi}(y|x_t, t)$ on noisy images x_t , and use gradients $\nabla_{x_t} \log p_{\phi}(y|x_t, t)$ to guide the diffusion sampling process.

- Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
 - Classifier guided diffusion sampling (as DDPM)
 - Substitute the denoising process to conditional likelihood $p_{\theta,\phi}(x_t|x_{t+1}, y)$

$$p_{\theta,\phi}(x_t|x_{t+1}, y) = Zp_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)$$

where Z is a normalizing constant.

• By approximating $\log p_{\phi}(y|x_t)$ using a Talyor expansion,

$$\log(p_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)) \approx -\frac{1}{2}(x_t - \mu - \Sigma g)^T \Sigma^{-1}(x_t - \mu - \Sigma g) + C_3$$
$$= \log p(z) + C_4, z \sim \mathcal{N}(\mu + \Sigma g, \Sigma)$$

Here, $g = \nabla_{x_t} \log p_{\phi}(y|x_t)|_{x_t = \mu}$ which is a gradient from the classifer.

• Conditional transition could be approximated by a Gaussian similar to uncondi tional transition operator with shifted mean.

- Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
 - Classifier guided DDIM sampling
 - Score function is derived from the noise prediction model $\epsilon_{\theta}(x_t)$:

$$abla_{x_t} \log p_{\theta}(x_t) = -\frac{1}{\sqrt{1-\bar{lpha}_t}} \epsilon_{\theta}(x_t)$$

• Score function for conditional generation is given by,

$$egin{aligned}
abla_{x_t} \log(p_{ heta}(x_t)p_{\phi}(y|x_t)) &=
abla_{x_t} \log p_{ heta}(x_t) +
abla_{x_t} \log p_{\phi}(y|x_t) \ &= -rac{1}{\sqrt{1-ar{lpha}_t}}\epsilon_{ heta}(x_t) +
abla_{x_t} \log p_{\phi}(y|x_t) \end{aligned}$$

• Hence, we could use the modified noise prediction for the same procedure.

$$\hat{\epsilon}(x_t) \coloneqq \epsilon_{ heta}(x_t) - \sqrt{1 - ar{lpha}_t} \,
abla_{x_t} \log p_{\phi}(y|x_t)$$

- Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
 - Trade off between fidelity and diversity.
 - As scaling classifier gradients, metrics indicate quality (IS and precision) improves and metrics imply diversity (FID and recall) become worse.

- Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
 - Difussion model guided with classifier outperforms the state of the art generative models.

ImageNet 128×128 ImageNet 128×128 BigGAN-deep [5]6.027.180.86DCTransformer [†] [42]6.406.660.440.56DDPM [43]4.248.210.620.46StyleGAN [27]2.356.620.590.40LSUN Horses 256×256 StyleGAN2 [28]3.846.460.630.48ADM (dropout)2.955.940.690.55DDPM [28]7.256.330.580.48DDPM [25]17.112.40.530.48DDPM [25]17.112.40.530.48DDPM [25]17.112.40.530.48ADMGlospan="4">Colspan="4">ImageNet 512×512 BigGAN-deep* [5]4.063.96OCTransformer [†] [42]36.518.240.36DDPM [25]17.112.40.530.48ADM <th></th>										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ec Rec	Prec	sFID	FID	Model	Rec	Prec	sFID	FID	Model
DDPM [25] 4.89 9.07 0.60 0.45 DDPM [25] 4.89 9.07 0.62 0.46 StyleGAN [27] 2.35 6.62 0.59 0.48 ADM (dropout) 1.90 5.59 0.66 0.51 LSUN Horses 256×256 ImageNet 256×256 ImageNet 256×256 StyleGAN2 [28] 3.84 6.46 0.63 0.48 ADM (dropout) 2.95 5.94 0.69 0.55 DDPM [25] 17.1 12.4 0.53 0.48 ADM (dropout) 5.57 6.69 0.63 0.52 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep* [5] 4.06 3.96 0.79 0.48 IDDPM [43] 2.92 3.79 0.74 0.63 ADM 2.61 3.77 0.73 0.63					ImageNet 128×128				×256	LSUN Bedrooms 256
DDPM [25] 4.89 9.07 0.60 0.45 IDDPM [43] 4.24 8.21 0.62 0.46 StyleGAN [27] 2.35 6.62 0.59 0.48 ADM (dropout) 1.90 5.59 0.66 0.51 LSUN Horses 256×256 ImageNet 256×256 ImageNet 256×256 ImageNet 256×256 StyleGAN2 [28] 3.84 6.46 0.63 0.48 ADM (dropout) 2.95 5.94 0.69 0.55 ADM (dropout) 2.57 6.81 0.71 0.55 DDPM [25] 17.1 12.4 0.53 0.48 StyleGAN2 [28] 7.25 6.33 0.58 0.43 ADM (dropout) 5.57 6.69 0.63 0.52 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 0.84 BigGAN-deep* [5] 4.06 3.96 0.79 0.48 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 2.61 3.77 0.73 0.63	36 0.35	0.86	7.18	6.02	BigGAN-deep [5]	0.56	0.44	6.66	6.40	DCTransformer [†] [42]
StyleGAN [27] 2.35 6.62 0.59 0.48 ADM (dropout) 1.90 5.59 0.66 0.51 LSUN Horses 256×256 ImageNet 256×256 ImageNet 256×256 StyleGAN2 [28] 3.84 6.46 0.63 0.48 ADM (dropout) 2.57 6.81 0.71 0.55 DDPM (dropout) 2.57 6.81 0.71 0.55 DDPM [25] 17.1 12.4 0.53 0.48 ADM (dropout) 5.57 6.69 0.63 0.52 DDPM [25] 17.1 12.4 0.53 0.48 ADM (dropout) 5.57 6.69 0.63 0.52 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep [5] 4.06 3.96 0.79 0.48 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 2.37 6.10 0.71 0.55 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep [5] 8.43 8.13 0.84 ADM				3.36	$LOGAN^{\dagger}$ [68]	0.45	0.60	9.07	4.89	
ADM (dropout) 1.90 5.59 0.66 0.51 LSUN Horses 256×256 ImageNet 256×256 ImageNet 256×256 StyleGAN2 [28] 3.84 6.46 0.63 0.48 ADM 2.95 5.94 0.69 0.55 ADM (dropout) 2.57 6.81 0.71 0.55 DDPM [25] 17.1 12.4 0.53 0.48 StyleGAN2 [28] 7.25 6.33 0.58 0.43 ADM (dropout) 5.57 6.69 0.63 0.52 ImageNet 64×64 ImageNet 512×512 S.44 5.32 0.82 BigGAN-deep* [5] 4.06 3.96 0.79 0.48< BigGAN-deep [5] 8.43 8.13 0.88 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.74 BigGAN-deep [5] 4.06 3.96 0.79 0.48 BigGAN-deep [5] 8.43 8.13 0.83 ADM 2.61 3.77 0.73 0.63 ADM 23.24 10.19 0.77 0.83	70 0.65	0.70	5.09	5.91	ADM	0.46	0.62	8.21	4.24	IDDPM [43]
ImageNet 256 × 256StyleGAN2 [28]3.846.460.630.48ADM2.955.940.690.55ADM (dropout)2.576.810.710.55ISUN Cats 256 × 256ImageNet 326 × 256ImageNet 326 × 256DDPM [25]17.112.40.530.48StyleGAN2 [28]7.256.330.580.43ADM (dropout)5.576.690.630.52ImageNet 64 × 64ImageNet 512 × 512ImageNet 512 × 512BigGAN-deep* [5]4.063.960.790.48IDDPM [43]2.923.790.740.62ADM2.613.770.730.63M-G	78 0.51	0.78	7.04	5.98	ADM-G (25 steps)	0.48	0.59	6.62	2.35	StyleGAN [27]
StyleGAN2 [28] ADM 3.84 6.46 0.63 0.48 ADM 2.95 5.94 0.69 0.55 ADM (dropout) 2.57 6.81 0.71 0.55 LSUN Cats 256×256Independent of the second state	78 0.59	0.78	5.09	2.97	ADM-G	0.51	0.66	5.59	1.90	ADM (dropout)
ADM2.955.940.690.55ADM (dropout)2.576.810.710.55LSUN Cats 256×256 2.57 6.810.710.55DDPM [25]17.112.40.530.48StyleGAN2 [28]7.256.330.580.43ADM (dropout)5.576.690.630.52ImageNet 64×64ImageNet 64×64ImageNet 512×512BigGAN-deep* [5]4.063.960.790.48IDDPM [43]2.923.790.740.62ADM2.613.770.730.63					ImageNet 256×256				56	LSUN Horses 256×25
ADM (dropout)2.57 6.81 0.71 0.55 $(Q + AL^{2} - [51])$ 51.11 17.36 0.50 LSUN Cats 256×256DDPM [25] 17.1 12.4 0.53 0.48 $IDDPM^{\ddagger} [43]$ 12.26 5.42 0.70 DDPM [25] 17.1 12.4 0.53 0.48 $IDDPM^{\ddagger} [53]$ 11.30 $IDSPM^{\ddagger} [53]$ 11.30 StyleGAN2 [28] 7.25 6.33 0.58 0.43 ADM 10.94 6.02 0.66 ADM (dropout) 5.57 6.69 0.63 0.52 $ADM-G$ 4.59 5.25 0.87 ImageNet 64×64ImageNet 512×512ImageNet 512×512ImageNet 512×512ImageNet 512×512 ADM 23.24 10.19 0.77 BigGAN-deep [5] 4.06 3.96 0.79 0.48 $BigGAN-deep [5]$ 8.43 8.13 0.88 MDPM [43] 2.92 3.79 0.74 0.62 $ADM-G$ 23.24 10.19 0.77 ADM 2.61 3.77 0.73 0.63 $ADM-G$ 25 steps) 8.41 9.67 0.83	36 0.67	0.36	8.24	36.51	DCTransformer [†] [42]	0.48	0.63	6.46	3.84	StyleGAN2 [28]
ADM (dropout)2.57 6.81 0.71 0.55 IDDPM [‡] [43] 12.26 5.42 0.70 LSUN Cats 256×256IDDPM [25] 17.1 12.4 0.53 0.48 DDPM [25] 17.1 12.4 0.53 0.48 10.94 6.02 0.63 StyleGAN2 [28] 7.25 6.33 0.58 0.43 ADM 10.94 6.02 0.63 ADM (dropout) 5.57 6.69 0.63 0.52 ImageNet 512×512ImageNet 512×512ImageNet 64×64ImageNet 512×512BigGAN-deep [5] 8.43 8.13 0.88 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.74 ADM 2.61 3.77 0.73 0.63 $ADM-G$ (25 steps) 8.41 9.67 0.83	36 0.57	0.36	17.38	31.11	VO-VAE-2 ^{†‡} [51]	0.55	0.69	5.94	2.95	ADM
SR3 ^{†‡} [53]11.30BigGAN Cats 256 \times 256DDPM [25]17.112.40.530.48StyleGAN2 [28]7.25 6.33 0.580.43ADM (dropout) 5.57 6.69 0.630.52 ImageNet 64 \times 64BigGAN-deep* [5]4.063.96 0.79 0.48IDDPM [43]2.92 3.79 0.740.62ADM2.61 3.77 0.730.63 ADM-G (25 steps)8.41ADM2.61 3.77 0.730.63	0 0.62	0.70	5.42	12.26		0.55	0.71	6.81	2.57	ADM (dropout)
LSUN Cats 256×256 BigGAN-deep [5] 6.95 7.36 0.87 DDPM [25] 17.1 12.4 0.53 0.48 10 94 6 02 0.69 StyleGAN2 [28] 7.25 6.33 0.58 0.43 ADM-G (25 steps) 5.44 5.32 0.87 ADM (dropout) 5.57 6.69 0.63 0.52 ADM-G 4.59 5.25 0.87 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep [5] 8.43 8.13 0.87 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.74 ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83										
DDPM [25]17.112.40.530.4810 946 020.63StyleGAN2 [28]7.25 6.33 0.580.43 ADM-G (25 steps) 5.445.320.83 ADM (dropout)5.57 6.69 0.630.52ImageNet 512 \times 512ImageNet 512 \times 512ImageNet 64 \times 64ImageNet 512 \times 512ImageNet 512 \times 512ImageNet 512 \times 512 BigGAN-deep* [5]4.063.96 0.79 0.48IDDPM [43]2.92 3.79 0.740.62 ADM 2.61 3.77 0.730.63	37 0.28	0.87	7.36							LSUN Cats 256×256
ADM (dropout) 5.57 6.69 0.63 0.52 ADM-G 4.59 5.25 0.82 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep* [5] 4.06 3.96 0.79 0.48 BigGAN-deep [5] 8.43 8.13 0.88 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.73 ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83		0.69				0.48	0.53	12.4	17.1	DDPM [25]
ADM (dropout) 5.57 6.69 0.63 0.52 ADM-G 4.59 5.25 0.82 ImageNet 64×64 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 ImageNet 512×512 BigGAN-deep* [5] 4.06 3.96 0.79 0.48 BigGAN-deep [5] 8.43 8.13 0.88 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.73 ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83	81 0.49	0.81	5.32	5.44	ADM-G (25 steps)	0.43	0.58	6.33	7.25	StyleGAN2 [28]
BigGAN-deep* [5] 4.06 3.96 0.79 0.48 IDDPM [43] 2.92 3.79 0.74 0.62 ADM 2.61 3.77 0.73 0.63 BigGAN-deep [5] 8.43 8.13 0.88 ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83	32 0.52	0.82	5.25	4.59		0.52	0.63	6.69	5.57	ADM (dropout)
IDDPM [43] 2.92 3.79 0.74 0.62 ADM 23.24 10.19 0.77 ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83					ImageNet 512×512					ImageNet 64×64
ADM 2.61 3.77 0.73 0.63 ADM-G (25 steps) 8.41 9.67 0.83	88 0.29	0.88	8.13	8.43	BigGAN-deep [5]	0.48	0.79	3.96	4.06	BigGAN-deep* [5]
	73 0.60	0.73	10.19	23.24	ADM	0.62	0.74	3.79	2.92	IDDPM [43]
ADM (dropout) 2.07 4.29 0.74 0.63 ADM -C 7.72 6.57 0.8 ²	33 0.47	0.83	9.67	8.41	ADM-G (25 steps)		0.73			
ADM-G 1.12 0.51 0.0	37 0.42	0.87	6.57	7.72	ADM-G	0.63	0.74	4.29	2.07	ADM (dropout)

- Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]
 - Introduce classifier guidance without training any additional classifier.
 - Train a single neural network which **parameterize both conditional and unconditional diffusion model**.
 - Conditional model $p_{\theta}(\boldsymbol{z}|\boldsymbol{c})$ with score $\epsilon_{\theta}(\boldsymbol{z}_{\lambda}, \boldsymbol{c})$
 - Unconditional diffusion model $p_{\theta}(\mathbf{z})$ with score $\epsilon_{\theta}(\mathbf{z}_{\lambda}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c} = \mathbf{0})$
 - Perform sampling using the linear combination of conditional and unconditional score estimates.

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = (1+w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda})$$

- Inspired by the gradient of an implicit classifier $p^i(c|z_{\lambda}) \propto p(z_{\lambda}|c)/p(z_{\lambda})$.
- If exact score $\epsilon^*(z_{\lambda}, c)$, $\epsilon^*(z_{\lambda})$ exists, then the gradient of the implicit classifier is given by $\nabla_{\mathbf{z}_{\lambda}} \log p^i(\mathbf{c}|\mathbf{z}_{\lambda}) = -\frac{1}{\sigma_{\lambda}} [\epsilon^*(\mathbf{z}_{\lambda}, \mathbf{c}) \epsilon^*(\mathbf{z}_{\lambda})]$
- Its guidance would be linear interpolation between two score functions.

- Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]
 - Suggesting higher guidance generates less diverse and high fidelity images.

Method	FID (\downarrow)	IS (†)
ADM [3]	2.07	-
CDM [6]	1.48	67.95
Ours, no guidance	1.80	53.71
Ours, with guidance		
w = 0.1	1.55	66.11
w = 0.2	2.04	78.91
w = 0.3	3.03	92.8
w = 0.4	4.30	106.2
w = 0.5	5.74	119.3
w = 0.6	7.19	131.1
w = 0.7	8.62	141.8
w = 0.8	10.08	151.6
w = 0.9	11.41	161
w = 1.0	12.6	170.1
w = 2.0	21.03	225.5
w = 3.0	24.83	250.4
w = 4.0	26.22	260.2

Figure 1: ImageNet 64x64 results

Figure 2: ImageNet 64x64 FID vs. IS

- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided D iffusion Models [Nichol et al., 2022]
 - Text conditional image synthesis with classifier-free guidance to diffusion model.
 - How to input text as the condition?
 - Encode the text into a sequence of *K* tokens and feed theses tokens into a Transformer model.
 - Final token embedding is used in place of a class embedding.
 - The last layer of token embeddings is separately projected to the dimensionali ty of each attention layer, and then concatenated to the attention context.

- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided D iffusion Models [Nichol et al., 2022]
 - Text conditional image synthesis with classifier-free guidance to diffusion model.

"a hedgehog using a calculator"

"a corgi wearing a red bowtie and a purple party hat"

"robots meditating in a vipassana retreat"

"a fall landscape with a small cottage next to a lake"

"a surrealist dream-like oil painting by salvador dalí of a cat playing checkers"

"a professional photo of a sunset behind the grand canyon"

"a high-quality oil painting of a psychedelic hamster dragon"

"an illustration of albert einstein wearing a superhero costume"

Table of Contents

- 1. Introduction
 - Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models
- 4. Autoregressive and Flow-based Models
 - Autoregressive models
 - Flow-based models

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - Instead of directly modeling the density p(x), learn the unnormalized density (i.e., energy) E(x) such that

$$p_{\theta}(x) = rac{\exp(-E_{\theta}(x))}{Z_{\theta}}, \quad Z_{\theta} = \int_{x \in \mathcal{X}} \exp(-E_{\theta}(x))$$

- Here, we don't care about the **exact density** (which needs to compute the partition function Z_{θ}), but only interested in the **relative order** of densities
- **Training:** The gradient of negative log-likelihood (NLL) is decomposed to:

$$\mathbb{E}_{x \sim p_{\text{data}}(x)} [-\nabla_{\theta} \log p_{\theta}(x)] = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\nabla_{\theta} E_{\theta}(x)] + \nabla_{\theta} \log Z_{\theta}$$
$$= \underbrace{\mathbb{E}_{x \sim p_{\text{data}}(x)} [\nabla_{\theta} E_{\theta}(x)]}_{\text{data gradient}} - \underbrace{\mathbb{E}_{x' \sim p_{\theta}(x)} [\nabla_{\theta} E_{\theta}(x')]}_{\text{model gradient}}$$

- Note that this **contrastive** objective resembles (Wasserstein) GAN, but EBM uses an implicit MCMC generating procedure and no gradient through sampling
 - One can modify the discriminator of GAN to be an EBM [Zhao et al., 2017]

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - Instead of directly modeling the density p(x), learn the unnormalized density (i.e., energy) E(x) such that

$$p_{\theta}(x) = rac{\exp(-E_{\theta}(x))}{Z_{\theta}}, \quad Z_{\theta} = \int_{x \in \mathcal{X}} \exp(-E_{\theta}(x))$$

- **Sampling:** Run Markov chain Monte Carlo (MCMC) to draw a sample from $p_{\theta}(x)$
 - For high-dimensional data (e.g., image generation), stochastic gradient Langevin dynamics (SGLD) [Welling & Teh, 2011] is popularly used:
 - Given an initial sample x^0 , iteratively update x^{k+1} (k = 0, ..., K 1)

$$x^{k+1} \leftarrow x^k + \frac{\alpha}{2} \underbrace{\nabla_x \log p_\theta(x^k)}_{-\nabla_x E_\theta(x)} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \alpha)$$

• Due to the Gaussian noise, it does not collapse to the MAP solution but converges to $p_{\theta}(x)$ as $\alpha \to 0$ and $K \to \infty$

Advantages of EBMs

1. Compositionality: One can add or subtract <u>multiple energy functions</u> (e.g., male, black hair, smiling) to sample the composite distribution

- 2. No generator network: Unlike GAN/VAEs, EBMs do not need a specialized generator architecture (one can reuse the <u>standard classifier</u> architectures)
- 3. Adaptive computation time: Since the sampling is given by iterative SGLD, the user can choose from the fast coarse samples to slow fine samples

Energy-based Models (EBM) - Appendix

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - The gradient of partition function can be reformulated as follow:

$$\begin{aligned} \nabla_{\boldsymbol{\theta}} \log Z_{\boldsymbol{\theta}} &= \nabla_{\boldsymbol{\theta}} \log \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ \stackrel{(i)}{=} \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \nabla_{\boldsymbol{\theta}} \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ &= \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \int \nabla_{\boldsymbol{\theta}} \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ \stackrel{(ii)}{=} \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ &= \int \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ \stackrel{(iii)}{=} \int \frac{\exp(-E_{\boldsymbol{\theta}}(\mathbf{x}))}{Z_{\boldsymbol{\theta}}} (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ \stackrel{(iv)}{=} \int p_{\boldsymbol{\theta}}(\mathbf{x}) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \\ &= \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} \left[-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x}) \right], \end{aligned}$$

- JEM [Grathwohl et al., 2020]
 - Use standard classifier architectures for *joint distribution* EBMs
 - Recall that the classifier $p_{\theta}(y|x)$ is expressed by the logits $f_{\theta}(x)$

$$p_{ heta}(y|x) = rac{\exp(f_{ heta}(x)[y])}{\sum_{y'} \exp(f_{ heta}(x)[y'])}$$

• Here, one can re-interpret the logits to define an energy-based model

$$p_{\theta}(x,y) = rac{\exp(f_{\theta}(x)[y])}{Z_{\theta}}, \quad p_{\theta}(x) = rac{\sum_{y} \exp(f_{\theta}(x)[y])}{Z_{\theta}}$$

- Note that shifting the logits does not affect $p_{\theta}(y|x)$ but $p_{\theta}(x)$; hence, EBM gives an extra degree of freedom
- The objective of JEM is a **sum** of density and conditional models, where the density model is trained by contrastive objective of EBM

$$\log p_{\theta}(x, y) = \log p_{\theta}(x) + \log p_{\theta}(y|x)$$

- JEM [Grathwohl et al., 2020]
 - JEM achieves a competitive performance as both classifier and generative model

Class	Model	Accuracy% ↑	IS↑	FID↓
	Residual Flow	70.3	3.6	46.4
	Glow	67.6	3.92	48.9
Hybrid	IGEBM	49.1	8.3	37.9
	JEM $p(\mathbf{x} y)$ factored	30.1	6.36	61.8
	JEM (Ours)	92.9	8.76	38.4
Disc.	Wide-Resnet	95.8	N/A	N/A
Gen.	SNGAN	N/A	8.59	25.5
Gen.	NCSN	N/A	8.91	25.32

- Also, JEM (generative classifier) improves uncertainty and robustness
 - (a) calibration, (b) out-of-distribution detection, (c) adversarial robustness

Score Matching

- Score matching [Hyvärinen, 2005]
 - Score = gradient of the log-likelihood $s(x) \coloneqq \nabla_x \log p(x)$
 - Score matching = Match the scores of data and model distribution
 - However, we don't know the scores of data distribution
 - Instead, one can use the equivalent form (proof by integration of parts)

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\mathtt{data}}(x)}[\|s_{\theta}(x) - s_{\mathtt{data}}(x)\|_{2}^{2}] = \mathbb{E}_{x \sim p_{\mathtt{data}}(x)}\left[\operatorname{tr}(\nabla_{x}s_{\theta}(x)) + \frac{1}{2}\|s_{\theta}(x)\|_{2}^{2}\right] + \operatorname{const.}$$

- Recent works mostly consider denoising score matching [Vincent, 2011]
 - Match the score of **perturbed distribution** $q_{\sigma}(\tilde{x}) \coloneqq \int q_{\sigma}(\tilde{x}|x) p_{\text{data}}(x)$ where $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(x, \sigma)$
 - Then, the score matching objective is equivalent to

$$\frac{1}{2}\mathbb{E}_{\tilde{x}\sim q_{\sigma}(\tilde{x}|x)p_{\mathtt{data}}(x)}[\|s_{\theta}(\tilde{x})-\nabla_{\tilde{x}}\log q_{\sigma}(\tilde{x}|x)\|_{2}^{2}]$$

- It is tractable since the gradient $\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) = \nabla_{\tilde{x}} \log \mathcal{N}(\tilde{x}|x,\sigma) = \nabla_{\tilde{x}} \log \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{\tilde{x}-x}{\sigma})^2)$ can be **analytically computed**
- The objective can learn the scores of data distribution if $\sigma pprox 0$

- Score matching [Hyvärinen, 2005]
 - The score matching objective can be reformulated as follow:

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}(x)}[\|s_{\theta}(x) - s_{\text{data}}(x)\|_{2}^{2}] = \mathbb{E}_{x \sim p_{\text{data}}(x)}\left[\operatorname{tr}(\nabla_{x}s_{\theta}(x)) + \frac{1}{2}\|s_{\theta}(x)\|_{2}^{2}\right] + \operatorname{const.}$$

• It is sufficient to show that

$$\begin{split} \mathbb{E}_{p_{\mathtt{data}}(x)}[-s_{\mathtt{data}}(x)s_{\theta}(x)] &= \sum_{i} \int -p_{\mathtt{data}}(x) \frac{\partial \log p_{\mathtt{data}}(x)}{dx_{i}} s_{\theta,i}(x) dx \\ &= \sum_{i} \int -\frac{\partial p_{\mathtt{data}}(x)}{dx_{i}} s_{\theta,i}(x) dx \\ &= \sum_{i} \int p_{\mathtt{data}}(x) \frac{\partial s_{\theta,i}(x)}{dx_{i}} dx + \text{const.} \end{split}$$

• The last equality comes from the integration of parts

$$\int p'(x)f(x)dx = p(x)f(x)\Big|_{-\infty}^{\infty} - \int p(x)f'(x)dx$$

and assumption $p_{data}(x)s_{\theta}(x) \rightarrow 0$ for both side of infinity

- NCSN [Song et al., 2019]
 - Previous works mostly define the score as a gradient of the **energy function** $s_{\theta}(x) \coloneqq -\nabla_{x} E_{\theta}(x)$
 - This work: Directly model the score $x \in \mathbb{R}^d \mapsto s_{\theta}(x) \in \mathbb{R}^d$ as an output
 - Noise-conditional Score Network
 - Denoising score matching is stable for large σ but unbiased for small σ
 - Idea: Learn multiple noise levels (with a single neural network) and anneal the noise level during sampling $\sigma_1 > \cdots > \sigma_L$

Algorithm 1 Annealed La	ngevin dynamics.
Require: $\{\sigma_i\}_{i=1}^L, \epsilon, T.$	
1: Initialize $\tilde{\mathbf{x}}_0$	
2: for $i \leftarrow 1$ to L do	
3: $\alpha_i \leftarrow \epsilon \cdot \sigma_i^2 / \sigma_L^2$	$\triangleright \alpha_i$ is the step size.
4: for $t \leftarrow 1$ to T do	
5: Draw $\mathbf{z}_t \sim \mathcal{N}($	
6: $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha}{2}$	$\int_{0}^{t} \mathbf{s}_{\boldsymbol{ heta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$
7: end for	
8: $\tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T$	
9: end for	
return $ ilde{\mathbf{x}}_T$	

- One can extend score matching to **continuous version** (stochastic differential equations, SDEs) [Song et al., 2021]
 - NCSN and DDPM can be viewed as different discretization of some SDEs
 - This view provides a better approach for generation and likelihood estimation

- NCSN [Song et al., 2019]
 - The continuous version of NCSN [Song et al., 2021] is SOTA for both likelihood estimation and sample generation on CIFAR-10

Table 2: NLLs and FIDs (OD	E) on CIFA	R-10.	Table 3: CIFAR-10 sampl	le qua	lity.
Model	NLL Test ↓	$FID\downarrow$	Model	FID↓	IS↑
RealNVP (Dinh et al., 2016)	3.49	-	Conditional		
iResNet (Behrmann et al., 2019)	3.45	-	BigGAN (Brock et al., 2018)	14.73	9.22
Glow (Kingma & Dhariwal, 2018)	3.35	-	StyleGAN2-ADA (Karras et al., 2020a)	2.42	10.14
MintNet (Song et al., 2019b)	3.32	-	Unconditional		
Residual Flow (Chen et al., 2019)	3.28	46.37			
FFJORD (Grathwohl et al., 2018)	3.40	-	StyleGAN2-ADA (Karras et al., 2020a)	2.92	9.83
Flow++ (Ho et al., 2019)	3.29	-	NCSN (Song & Ermon, 2019)	25.32	$8.87 \pm .12$
DDPM (L) (Ho et al., 2020)	$\leq 3.70^{*}$	13.51	NCSNv2 (Song & Ermon, 2020)	10.87	$8.40\pm.07$
DDPM (L_{simple}) (Ho et al., 2020)	$\leq 3.75^*$	3.17	DDPM (Ho et al., 2020)	3.17	9.46 ± .11
DDPM	3.28	3.37	DDPM++	2.78	9.64
DDPM cont. (VP)	3.21	3.69	DDPM++ cont. (VP)	2.55	9.58
DDPM cont. (sub-VP)	3.05	3.56	DDPM++ cont. (sub-VP)	2.61	9.56
DDPM++ cont. (VP)	3.16	3.93	DDPM++ cont. (deep, VP)	2.41	9.68
	3.02	3.16	DDPM++ cont. (deep, sub-VP)	2.41	9.57
DDPM++ cont. (sub-VP)			NCSN++	2.45	9.73
DDPM++ cont. (deep, VP)	3.13	3.08	NCSN++ cont. (VE)	2.38	9.83
DDPM++ cont. (deep, sub-VP)	2.99	2.92	NCSN++ cont. (deep, VE)	2.20	9.89

• Score matching through SDE [Song et al., 2021]

• Like DDPM, we consider some forward diffusion process (SDE):

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

• Then, the reverse diffusion process also follows some SDE:

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

One can learn the score function by score matching

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \Big\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t) | \mathbf{x}(0)} \Big[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) | \mathbf{x}(0)) \right\|_2^2 \Big] \Big\}.$$

• Score matching through SDE [Song et al., 2021]

• Like DDPM, we consider some forward diffusion process (SDE):

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

• Here, NCSN and DDPM can be viewed as different discretizations some stochastic differential equations (SDEs)

• NCSN:
$$d\mathbf{x} = \sqrt{\frac{d\left[\sigma^{2}(t)\right]}{dt}} d\mathbf{w}$$
 $\rightarrow \mathbf{x}_{i} = \mathbf{x}_{i-1} + \sqrt{\sigma_{i}^{2} - \sigma_{i-1}^{2}} \mathbf{z}_{i}$
• DDPM: $d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w} \rightarrow \mathbf{x}_{i} = \sqrt{1 - \beta_{i}}\mathbf{x}_{i-1} + \sqrt{\beta_{i}}\mathbf{z}_{i}$

- Score matching through SDE [Song et al., 2021]
 - The reverse diffusion process can be solved by **3 ways**:
 - 1. Run a general-purpose SDE solver (a.k.a. predictor)
 - 2. Utilize the score-based model $s_{\theta}(x, t) \approx \nabla_x \log p_t(x)$ (a.k.a. corrector)

 \rightarrow Combining predictor and corrector gives the **SOTA generation** performance

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$ 2: for $i = N - 1$ to 0 do	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$ 2: for $i = N - 1$ to 0 do
3: $\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}} \mathbf{z}$	3: $\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, i+1)$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor
6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$
9: return \mathbf{x}_0	9: return \mathbf{x}_0

Continuous ver. of NCSN

Continuous ver. of DDPM

- Score matching through SDE [Song et al., 2021]
 - The reverse diffusion process can be solved by **3 ways**:
 - 1. Run a general-purpose SDE solver (a.k.a. predictor)
 - 2. Utilize the score-based model $s_{\theta}(x, t) \approx \nabla_x \log p_t(x)$ (a.k.a. corrector)
 - 3. Convert to deterministic ODE
 - Every SDE (Ito process) has a corresponding deterministic ODE

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt,$$

whose trajectories include the same evolution of densities

- Deterministic ODE defines an invertible model (a.k.a. normalizing flow) [Chen et al., 2018]
- Using this formulation, one can
 - a) Compute exact likelihood
 - b) Manipulate latents with encoder (model is invertible)

Table of Contents

- 1. Introduction
 - Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models
- 3. Energy-based Models (EBM)
 - Energy-based models
 - Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Table of Contents

- 1. Introduction
 - Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models
- 3. Energy-based Models (EBM)
 - Energy-based models
 - Score matching generative models
- 4. Autoregressive and Flow-based Models
 - Autoregressive models
 - Flow-based models

• Autoregressive generation (e.g., pixel-by-pixel for images) :

$$p(\boldsymbol{x}) = \prod_{k=1}^{K^2} p(x_k | x_1, \cdots, x_{k-1})$$
$$= \prod_{k=1}^{K^2} p(x_k | \boldsymbol{x}_{< k})$$

x_1				x_n
		x_i		
				x_{n^2}

• For example, each RBG pixel is generated autoregressively:

$$p(x_k | \boldsymbol{x}_{< k}) = p(x_{k,R}, x_{k,B}, x_{k,G} | \boldsymbol{x}_{< k})$$

= $p(x_{k,R} | \boldsymbol{x}_{< k}) p(x_{k,B} | \boldsymbol{x}_{< k}, x_{k,R}) p(x_{k,G} | \boldsymbol{x}_{< k}, x_{k,R}, x_{k,B})$

• Each pixel is treated as discrete variables, sampled from softmax distributions:

Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

CNN-based

Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

CNN-based
- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

CNN-based

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

- Inference requires iterative forward procedure (slow)
- **Training** requires single forward pass for CNN, but multiple pass for RNN (slow)
- Effective receptive field (context of pixel generation) is unbounded for RNN, but bounded for CNN (constrained)

Algorithmic Intelligence Lab

Next, extending to two-dimensional data

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)

Algorithmic Intelligence Lab

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

Diagonal BiLSTM Algorithmic Intelligence Lab

- Using CNN and RNN for modeling $p(x_k|\boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

- Using CNN and RNN for modeling $p(x_k | \boldsymbol{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

Diagonal BiLSTM Algorithmic Intelligence Lab

• Image generation results from CIFAR-10 and ImageNet:

ImageNet

• Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL

Model	NLL Test	Model	NLL Test (Train)	
PixelCNN: Row LSTM: Diagonal BiLSTM (1 layer, $h = 32$): Diagonal BiLSTM (7 layers, $h = 16$):	81.30 80.54 80.75 79.20	PixelCNN: Row LSTM: Diagonal BiLSTM:	3.14 (3.08) 3.07 (3.00) 3.00 (2.93)	
MNIST		CIFAR-10		

• PixelCNN is easiest to train and Diagonal BiLSTM performs best

ImageGPT

- Generative Pretraining from Pixels [Chen et al., 2020]
 - Apply GPT [Brown et al., 2020] to image domain by flattening image to 1D.
 - Train autoregressive transformer which predicts the pixels without knowledge of 2D input structure.

$$L_{AR} = \mathop{\mathbb{E}}\limits_{x \sim X} [-\log p(x)]$$
 where $p(x) = \prod_{i=1}^n p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, heta)$

- Generative Pretraining from Pixels [Chen et al., 2020]
 - ImageGPT not only learns image representations,
 - It outperforms supervised representation with ImageNet in transfer learning.

Model	Acc	Unsup Transfer	Sup Transfer	Model	Acc	Unsup Transfer	Sup Trans
CIFAR-10				CIFAR-10			
ResNet-152	94		\checkmark	AutoAugment	98.5		
SimCLR	95.3	\checkmark		-		1	
iGPT-L	96.3	,		SimCLR	98.6	\checkmark	
		v		GPipe	99.0		\checkmark
CIFAR-100				iGPT-L	99.0	\checkmark	·
ResNet-152	78.0		\checkmark			•	
SimCLR	80.2	\checkmark	·	CIFAR-100			
iGPT-L	82.8	,			00 5	/	
		v		iGPT-L	88.5	\checkmark	
STL-10				SimCLR	89.0	\checkmark	
AMDIM-L	94.2	\checkmark		AutoAugment	89.3		
iGPT-L	95.5	v V		EfficientNet	91.7		1

Linear probing

Full finetuning

• but also shows inpainting ability.

Scaling Autoregressive Video Models (Video Transformer)

- Scaling Autoregressive Video Models [Weissenborn et al., 2020]
 - Apply GPT to video domain by flattening video to 1D.
 - However, using all pixels from a video is computationally infeasible
 - e.g.) 32x32 video of length 16 has 16 * 32 * 32 * 3 = 49,152 pixels
 - Much longer than the input length of GPT3 (=2048), ImageGPT (=3072)
 - Main idea: Reduce the complexity of autoregressive video generation by
 - 1) Designing an efficient self-attention layer for videos
 - 2) Operating on sub-sampled videos instead of pixels

Scaling Autoregressive Video Models (Video Transformer)

- Scaling Autoregressive Video Models [Weissenborn et al., 2020]
 - Apply GPT to video domain by flattening video to 1D.
 - However, using all pixels from a video is computationally infeasible
 - Idea 1: Video Transformer with multiple stacked block-local self-attention
 - Reduces the computation cost of self-attention over videos, by
 - 1. Decompose a video of (T, H, W) into $n_p = t \cdot h \cdot w$ blocks of (t, h, w)
 - 2. Separately apply self attentions over n_p blocks
 - Attention complexity $(T \cdot H \cdot W)^2 \Rightarrow n_p \cdot (t \cdot h \cdot w)^2$
 - 3. Concatenate the outputs and process through a fully connected layer
 - For the connectivity between all pixels, use different block sizes at every layer

Scaling Autoregressive Video Models (Video Transformer)

- Scaling Autoregressive Video Models [Weissenborn et al., 2020]
 - Apply GPT to video domain by flattening video to 1D.
 - However, using all pixels from a video is computationally infeasible
 - Idea 2: Divide the video into non-overlapping 3D blocks
 - Further reduces the complexity by decomposing the video itself
 - Introduce a subscale factor $s = (s_t, s_h, s_w)$ that divides a video into $s = (s_t \cdot s_h \cdot s_w)$ sub-sampled videos (slices)
 - Then, each slice is processed through the block-local self-attention layers

- And sequentially generate $x_{(0,0,0)}, x_{(0,0,1)}, \dots$
 - e.g.) If we use s = (4, 2, 2), each slice consists of 4 * 16 * 16 * 3 = 3072 pixels
 - Attention complexity: $49152^2 \Rightarrow 3072^2$ (256 times lower)

Algorithmic Intelligence Lab

VideoGPT

- VideoGPT [Yan et al., 2021]
 - Other approach for autoregressive video generation
 - Learns downsampled discrete representations over space-time
 - Main idea of VideoGPT
 - 1. Train a VQ-VAE with 3D CNNs on the video data to learn discrete latent representations downsampled over space-time
 - 2. Train autoregressive transformer (Image-GPT architecture) in the latent space for learning a prior
 - 3. Decode the predicted discrete latents using the VQ-VAE decoder

Table of Contents

- 1. Introduction
 - Implicit vs explicit density models
- 2. Variational Autoencoders (VAE)
 - Variational autoencoders
 - Tighter bounds for variational inference
 - Techniques to mitigate posterior collapse
 - Large-scale generation via hierarchical structures
 - Diffusion probabilistic models
- 3. Energy-based Models (EBM)
 - Energy-based models
 - Score matching generative models
- 4. Autoregressive and Flow-based Models
 - Autoregressive models
 - Flow-based models

Modifying data distribution by flow (sequence) of invertible transformations:

$$\boldsymbol{x} = \boldsymbol{z}_0 \quad \Rightarrow \quad \boldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(\boldsymbol{z}_0) \qquad \qquad \boldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior $p_T(\boldsymbol{z}_T)$ •
- Data distribution is explicitly modeled by change-of-variables formula: ۲

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

Log-likelihood $\log p(\boldsymbol{x})$ can be maximized directly ٠

Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Modifying data distribution by flow (sequence) of invertible transformations:

$$\boldsymbol{x} = \boldsymbol{z}_0 \quad \boldsymbol{\Rightarrow} \quad \boldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(\boldsymbol{z}_0) \qquad \qquad \boldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior $p_T(\boldsymbol{z}_T)$
- Data distribution is explicitly modeled by change-of-variables formula:

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

- Log-likelihood $\log p(oldsymbol{x})$ can be maximized directly
- Naïvely computing $\log |\det (\partial f_t(\boldsymbol{z}_{t-1})/\partial \boldsymbol{z}_{t-1})|$ requires $\mathcal{O}(K^3)$ complexity, which is not scalable for large-scale neural networks

How to design flexible yet tractable form of invertible transformations?

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

1. Det Identities	2. Coupling Blocks	3. Autoregressive	4. Unbiased Estimation
Planar NF Sylvester NF 	NICE Real NVP Glow	Inverse AF Neural AF Masked AF	FFJORD Residual Flows
(Low rank)	 (Lower triangular + structured)	 (Lower triangular)	(Arbitrary)

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

1. Det Identities

Planar NF Sylvester NF

. . .

- Basic layers with linear log-det-Jacobian complexity [Rezende et al., 2015]
- Planar flow: $f(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$
 - Determinant of Jacobian is $\left| \det \frac{\partial f}{\partial \mathbf{z}} \right| = \left| 1 + \mathbf{u}^{\mathsf{T}} h'(\mathbf{w}^{\mathsf{T}} \mathbf{z} + b) \mathbf{w} \right|$
- Radial flow: $f(\mathbf{z}) = \mathbf{z} + \beta h(\alpha, r)(\mathbf{z} \mathbf{z}_0)$ $(r = |\mathbf{z} \mathbf{z}_0|, h(\alpha, r) = 1/(\alpha + r))$
 - Determinant of Jacobian is $[1 + \beta h(\alpha, r)]^{d-1}[1 + \beta h(\alpha, r) + h'(\alpha, r)r)]$

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

- Coupling layer $z_t = f_t(z_{t-1})$ for flow with tractable inference [Dinh et al., 2017]:
 - 1. Partition the variable into two parts:

$$oldsymbol{z}_{t-1}
ightarrow [oldsymbol{z}_{t-1,1:d},oldsymbol{z}_{t-1,d+1:K}]$$

spatial-partition

channel-partition

2. Coupling law defines a simple invertible transformation of the first partition given the second partition (g and m are described later)

$$z_{t,d+1:K} = g(z_{t-1,d+1:K}; m(z_{t-1,1:d}))$$

3. Second partition is left invariant ($m{z}_{t,1:d} = m{z}_{t-1,1:d}$)

• Affine coupling layer was shown to be effective in practice:

$$\boldsymbol{z}_{t,d+1:K} = g(\boldsymbol{z}_{t-1,d+1:K}; m(\boldsymbol{z}_{t-1,1:d}))$$

$$= \boldsymbol{z}_{t-1,d+1:K} \odot \exp(m_1(\boldsymbol{z}_{t-1,1:d})) + m_2(\boldsymbol{z}_{t-1,1:d})$$

$$= \operatorname{lement-wise \ product} \quad \frown \quad \operatorname{neural \ neural \ neural$$

• Jacobian of each transformation becomes a lower triangular matrix:

$$\frac{\partial f_{t-1}(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} = \begin{bmatrix} \mathbb{I} & \mathbf{0} \\ \frac{\partial g_{t-1}(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} & \operatorname{diag}(\exp(m_1(\boldsymbol{z}_{t-1,1:d}))) \end{bmatrix} \checkmark \qquad \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{22} & 0 & \vdots \\ & \ddots & 0 \\ & & & a_{KK} \end{bmatrix}$$

- Inference for such transformations can be done in tractable time
 - Determinant of lower triangular matrix is a product of diagonals

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^T \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

Algorithmic Intelligence Lab

- For each coupling layer, there exists asymmetry since the first partition $z_{t-1,1:d}$ is left invariant
 - Two coupling layers are paired alternatively to overcome this issue

- Multi-scale architectures are used
 - Half variables follow Gaussian distribution at each scale

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

- Inverse autoregressive flow (IAF) modifies each dimension of variable in autoregressive manner [Kingma et al., 2016]:
 - Forward pass $z_0 \rightarrow z_T$ is fast, but backward pass $z_T \rightarrow z_0$ is slow
 - Used for VAE posterior: Only forward pass is required for approx. posterior

$$oldsymbol{z}_{t,d} = \mu_{t,d}(oldsymbol{z}_{t-1,1:d-1}) + \sigma_{t,d}(oldsymbol{z}_{t-1,1:d-1})oldsymbol{z}_{t-1,d}$$

updates done in parallel

• Inference for corresponding normalizing flow is efficient:

$$\log q(\boldsymbol{z}|\boldsymbol{x}) = \log q_0(\boldsymbol{z}_0|\boldsymbol{x}) + \sum_{t=1}^T \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right| \checkmark \boldsymbol{\sigma} \begin{bmatrix} \sigma_{t,1} & 0 & \cdots & 0 \\ \sigma_{t,2} & 0 & \vdots \\ \vdots & \ddots & 0 \\ & & \sigma_{t,K} \end{bmatrix}$$

Algorithmic Intelligence Lab

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

4. Unbiased Estimation

FFJORD Residual Flows

(Arbitrary)

• Discrete normalizing flows need a carefully designed (less expressive) layers to achieve affordable (not cubic) complexity

→ Continuous normalizing flow affords an arbitrary network architecture

• Consider a continuous transformation $\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$ (instead of $\mathbf{z}_1 = f(\mathbf{z}_0)$), then the sampling can be done by an ordinary differential equation (ODE):

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, heta) dt$$

• Here, the change in log-probability also follows an ODE:

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) dt$$

- **Remark:** We only need a **trace** (not a **determinant**) to compute likelihood
- The network $f(z(t), t, \theta)$ is learned by gradient descent (backpropagation follows another ODE) [Chen et al., 20018; Grathwohl et al., 2019]

References (VAE)

[Kingma et al., 2013] Auto-Encoding Variational Bayes, ICLR 2013 link: <u>https://arxiv.org/abs/1802.06455</u>

[Burda et al., 2016] Importance Weighted Autoencoders, ICLR 2016 link: <u>https://arxiv.org/abs/1509.00519</u>

[Kim et al., 2018] Semi-Amortized Variational Autoencoders, ICML 2018 link: <u>https://arxiv.org/abs/1802.02550</u>

[Bowman et al., 2016] Generating Sentences from a Continuous Space, CONLL 2016 link: <u>https://arxiv.org/abs/1511.06349</u>

[Razavi et al., 2019a] Preventing Posterior Collapse with delta-VAEs, ICLR 2019 link: <u>https://arxiv.org/abs/1901.03416</u>

[Tolstikhin et al., 2018] Wasserstein Auto-Encoders, ICLR 2018 link: <u>https://arxiv.org/abs/1711.01558</u>

[He et al., 2019] Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 2019 link: <u>https://arxiv.org/abs/1901.05534</u>

[Oord et al., 2017] Neural Discrete Representation Learning, NeurIPS 2017 link: <u>https://arxiv.org/abs/1711.00937</u>

[Razavi et al., 2017b] Generating Diverse High-Fidelity Images with VQ-VAE-2, NeurIPS 2019 link: <u>https://arxiv.org/abs/1906.00446</u>

[Vahdat et al., 2020] NVAE: A Deep Hierarchical Variational Autoencoder, NeurIPS 2020 link: <u>https://arxiv.org/abs/2007.03898</u>

[Child et al., 2021] Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images, ICLR 2021 link: <u>https://arxiv.org/abs/2011.10650</u>

References (VAE)

[Sohl-Dickstein et al., 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015 link: <u>https://arxiv.org/abs/1503.03585</u>

[Ho et al., 2020] Denoising Diffusion Probabilistic Models, NeurIPS 2020 link: <u>https://arxiv.org/abs/2006.11239</u>

[Nichol and Dhariwal, 2021] Improved Denoising Diffusion Probabilistic Models, ICML 2021 link: <u>https://arxiv.org/abs/2102.09672</u>

[Song et al., 2021] Denoising Diffusion Implicit Models, ICLR 2021 link: <u>https://arxiv.org/abs/2010.02502</u>

[Dhariwal and Nichol, 2021] Diffusion Models Beat GANs on Image Synthesis, NeurIPS 2021 link: <u>https://arxiv.org/abs/2105.05233</u>

[Ho et al., 2021] Classifier-Free Diffusion Guidance, NeurIPS Workshop on Deep Generative Models and Downstream Applications 2021

link: https://openreview.net/pdf?id=qw8AKxfYbI

[Nichol et al., 2021] GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, arXiv 20 21

link: https://arxiv.org/abs/2112.10741

[LeCun et al., 2006] A Tutorial on Energy-Based Learning, Technical report 2006 link: <u>http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf</u>

[Du & Mordatch, 2019] Implicit Generation and Generalization in Energy-Based Models, NeurIPS 2019 link: <u>https://arxiv.org/abs/1903.08689</u>

[Welling & Teh, 2011] Bayesian Learning via Stochastic Gradient Langevin Dynamics, ICML 2011 link: <u>https://dl.acm.org/doi/10.5555/3104482.3104568</u>

[Zhao et al., 2017] Energy-based Generative Adversarial Network, ICLR 2017 link: <u>https://arxiv.org/abs/1609.03126</u>

[Grathwohl et al., 2020] Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One, ICLR 2020 link: <u>https://arxiv.org/abs/1912.03263</u>

[Song & Kingma, 2021] How to Train Your Energy-Based Models, arXiv 2021 link: <u>https://arxiv.org/abs/2101.03288</u>

[Hyvärinen, 2005] Estimation of Non-Normalized Statistical Models by Score Matching, JMLR 2005 link: <u>https://jmlr.org/papers/v6/hyvarinen05a.html</u>

[Vincent, 2011] A Connection Between Score Matching and Denoising Autoencoders, Neural Computation 2011 link: <u>https://ieeexplore.ieee.org/document/6795935</u>

[Song et al., 2019] Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS 2019 link: <u>https://arxiv.org/abs/1907.05600</u>

[Song et al., 2021] Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 link: <u>https://arxiv.org/abs/2011.13456</u>

[Oord et al., 2016] Pixel Recurrent Neural Networks, ICML 2016 link: <u>https://arxiv.org/abs/1601.06759</u>

[Chen et al., 2020] Generative Pretraining from Pixels, ICML 2020 link: <u>https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V1_ICML.pdf</u>

[Weissenborn et al., 2020] Scaling Autoregressive Video Models, ICLR 2020 link: <u>https://arxiv.org/abs/1906.02634</u>

[Yan et al., 2021] VideoGPT: Video Generation using VQ-VAE and Transformers, arXiv 2021 link: <u>https://arxiv.org/abs/2104.10157</u>

[Oord et al., 2017] WaveNet: A Generative Model for Raw Audio, arXiv 2017 link: <u>https://arxiv.org/abs/1703.01961</u>

[Rezende et al., 2015] Variational Inference with Normalizing Flows, ICML 2015 link: <u>https://arxiv.org/abs/1705.08665</u>

[Dinh et al., 2017] Density Estimation using Real NVP, ICLR 2017 link: <u>https://arxiv.org/abs/1605.08803</u>

[Kingma et al., 2018] Generative Flow with Invertible 1x1 Convolutions, NeurIPS 2018 link: <u>https://arxiv.org/abs/1807.03039</u>

[Kingma et al., 2016] Improving Inference with Inverse Autoregressive Flows, NeurIPS 2016 link: <u>https://arxiv.org/abs/1710.10628</u>

[Chen et al., 2018] Neural Ordinary Differential Equations, NeurIPS 2018 link: <u>https://arxiv.org/abs/1806.07366</u>

[Grathwohl et al., 2019] FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models, ICLR 2019 link: <u>https://arxiv.org/abs/1810.01367</u>

[Chen et al., 2019] Residual Flows for Invertible Generative Modeling, NeurIPS 2019 link: <u>https://arxiv.org/abs/1906.02735</u>

Algorithmic Intelligence Lab