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Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

N Implicit - Learning by
density comparison
Generative | | W - s * Directly I.earn density .p(x)
models * Example: autoregressive, flow
| Explicit | Unnormalized |+ Learn unnormalized density E (x) < p(x)
density density * Example: EBM, score matching
. * Learn approximation (e.g., lower bound)
N AperXI.rtnate of density L(x) < p(x)
ensity * Example: VAE, diffusion model
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Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

Implicit density Explicit density
A 4 + \ 4 +
Learning by com Approximate Unnormalized Exact density
parison (GAN) density (VAE) density (EBM) (AR, flow)

Better generation quality

T
ey

Better density modeling
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Variational Autoencoder (VAE)

* Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable
* e.g., standard Normal distribution

p(z) = N(2;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(Z; faec(2), 1)

* Resulting generative distribution (to optimize):

log p0(2) = log | pale|2)p(z)dz = 1og Exyop(a]2)]

z
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Variational Autoencoder (VAE)

* Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013]

“encoding”
distributign => E qqs(Z|iB) — N(Z§ fenc,u(w)a fenc,a(w))

representation

data

* Each log py(x)term is replaced by its lower bound:

log py(x) = log pp(®) — min KL(gs(2|)||pe (2]))
— logpg(a:) + mgx Ezwq¢(z|a:) [10gp9<z|33) — log Q¢(z|w)]

= mgx]Equ¢(z|m)[10gpe(«’B) + log po(z[x) — log gy (2|x)]

- m£JXEZNq¢(z|w)[logpe(w|z)] o KL(Q¢(Z|$)||p<Z))

 Bound becomes equality when ¢4 (2|) = po(2z|x)
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Variational Autoencoder (VAE)

* The training objective becomes:
tractable between two Gaussian distributions

N V
max ) _logpp(x™) > max max Bz g, (z1a) log po (2)] — KL(g(2[2)]Ip(2))
n=1
N N
A max max Z Z log pg ('™ |2(™*)) — KL(gy(z]2™)||p(2))
n=1k=1
(n,k)

where latent variables are sampled by =z ~ Q¢(Z|~’13(n)>

* However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =) ) — e logps(x™[2"M) + 73 KL(gg(2]2™)][p(2))
n=1 k=1 {L

Since z(™*) is fixed after being sampled, ¢ log p(x™|z™*) =07?
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Variational Autoencoder (VAE)

* Reparameterization trick is based on the change-of-variables formula:

€2NN(€2|M,O') & g2 =+ oe, €0 NN(€0|O,1)

N N

{) 61<—050<_/'\ Eo €1+ W
=> =>

scaling shifting
o ~ N(e0/0,1) e1 ~ N(e1]0,0) g2 ~ N(ez2|p, o)

* Latent variable z("-¥) can be similarly parameterized by encoder network:

Z(n’k) ~ _/\/(Z; fenc,,u(w(n)>7 fenC>U(w(n)))

s

Z(mk) — fenc,,u(w(n)) T fenc,a(w(n)) © €(n,k), €(n,k) ~ N(é"O, 1)
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Variational Autoencoder (VAE)

* Total loss of variational autoencoder:

N N
VoL =)D — Vslogps(x™|z"") + 7KL (gs(2]z'™)|[p(2))
n=1k=1 ~ —~— — T —

ngﬁl V¢£2

e Recall that faec, Jenc,u» Jenc,o are parameterized by ¢

* Derivative of first part:

Vol1 = Vplog N (x"™; faec(zM), 1)
1 4} Iog-n:rma2l distribution
— V¢§Ha’(n) - fdec(z(n’ ))HQ

| 4} reparameterization trick
— V¢§||w<n) o fdeC(fenc,u(w(n)) + feHC,a(w(n)) © €(n’k))H§
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Variational Autoencoder (VAE)

* Total loss of variational autoencoder:
N N

VoL =) ) —elogps(x!™|z"M) + 73KL(gs(z[2™)|[p(2))

ngﬁl V¢£2

e Recall that faec, Jenc,u» Jenc,o are parameterized by ¢

e Derivative of second part:

V¢£1 — V¢KL(N(Z, fenc,u(w(n))a fenc,a(w(n)))HN(z; Oa 1))
4} element-wise factorization (2 = [21,- - , 2K] )

K
=" UKLV (213 fonoyik (™), fonc.on(@™))[IN (2130, 1))

@ KL divergence between normal distributions
K 1 1
=D V6~ 108 fone (@) 4 5 fenc o (@) + 5 fone (@)’
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Variational Autoencoder (VAE)

* Based on the proposed scheme, variational autoencoder successfully
generates images:

Training on MINIST

* Interpolation of latent variables induce transitions in generated images:

O00Q0QQUVQVIITVVVLY
Q0909 QQAQJIIVI VIV 9D »
WECECECEL RN I e R R R R
AR R AL R
330NN gaww—
FE PO MM g e o - —
O @ ® NN Iy by e e e —
TN NN by by 6y ey =~ —
T o eeemininin b tg g s~~~
O o oo oo 0o Uy Oy Oy B S~~~

gygqqq0uno0o

Coroooehbb NSNS~
CorororrrdPhLNB NSNS~
eI L NN
e RN RH NN
SIS NANANNNDNNNNNYN
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Improving VAEs

Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)

Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)

Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
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Importance-weighted Autoencoder (IWAE)

* Observe that ELBO can also be proved by the Jensen’s inequality:

p(x,z) p(x, z)
logp L) = log Ezr\/ [—] Z ]E ~ z|x llog —]
( ) q¢(z|x) Q¢(z|w) zrvgqy(z|) q¢(z|w)

* Based on convexity, interchange order of logarithm and summation

e Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

(k)

p(z, z\"%)
log p(x) = logE,a) ... 2(8) g, (2| ]
94 (2| )K; qs (29 |x)

K

1 |p(z, 2)
> B, 20 gy (z]a) llog K Z qs(z(F)|x)
k=119

also called importance weights

* Becomes original ELBO when K = 1 and becomes exact bound when K = oo

}

K
1~ oz, zM)
E,o .. 2E) gy (z|x) [? Z Be) ~ p(x)

Algorithmic Intelligence Lab 16



Semi-amortized VAE (SA-VAE)

* Inference gap of VAE can be decomposed to approximation gap (model error)
and amortization gap (single neural network amortizes all posteriors)

e Semi-amortized VAE: In addition to the
global inference network, update the

1. Sample x ~ pp(x)
2. Set \y = enc(x;¢)

posterior of each local instance for — shared to all samples
a few steps [Kim et al., 2018] 3. Fork=0,...,K —1, set
e Resembles MAML (see future lecture) Ak+1 = Ap + aVAELBO(A, 0,%)

— specific to each sample x

e Semi-amortized VAE can further reduce ELBO, applied on top of any VAEs

Algorithmic Intelligence Lab

MODEL ORACLE GEN LEARNED GEN
VAE < 21.77 < 27.06
SVI < 22.33 < 25.82
SA-VAE < 20.13 < 25.21
TRUE NLL (EST) 19.63 —

* SVI: Instance-specific posterior only, without amortization
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

» Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE, VQ-GAN)
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Mitigating Posterior Collapse for Continuous Latent-space VAEs

e Posterior collapse [Bowman et al., 2016]:

* When paired with powerful decoder, VAEs often ignore the posterior q4(z|x) and
generates generic samples (i.e., reconstruction loss does not decrease well)

* To mitigate posterior collapse, prior works attempt

1. Weaken the KL regularization term [Bowman et al., 2016, Razavi et al., 20193]
* Recall: KL regularization term minimizes KL(py (z]x), p(2))
* Anneal the weight during training, or constraint = 6

2. Match aggregated posterior instead of individuals [Tolstikhin et al., 2018]

* Instead of matching py(z|x) = p(z) for all x, match the aggregated posterior
Ey-pex) Pp(Z]x) = p(2) (each py(z]x) is now a deterministic, single point)

* Need implicit distribution matching techniques (e.g., GAN)

3. Improve optimization procedure [He et al., 2019]
* Strengthen the encoder: update encoder until converge, and decoder once

Algorithmic Intelligence Lab 19



Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]

* Each data is embedded into combination of ‘discrete’ latent vectors: {e1,--- ,ex}
* i.e.) each encoder output is quantized to the nearest vector among K codebook
vectors
Codebook Embedding

Space

€4
\ q(z|x) >l %9
CNN —_— .’\/>_\ 5

Encoder g DecoderJ ¢

e Restriction of latent space achieves high generation quality including:
* Images, videos, audios, etc.

Algorithmic Intelligence Lab
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Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]
* The objective of VQ-VAE composed of three terms:
e Reconstruction loss (1)
* VQloss (2):
* Optimization of codebook vectors
e Commitment loss (3):
* Regularization to get encoder outputs and codebook close

90(€) = all3 + Ilsg(fo(w)) — ell3 + Bl fo(x) — sg(e) 3

T T

(1) 2) 3)

£:

* VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:

* DALL-E (text-image generative model) —image is encoded via VQ-VAE
* Many audio self-supervised learning method

Algorithmic Intelligence Lab
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Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
» Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
* For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training

LLC:/F;I D SR > iiii For global features

Encoder T l Decoder

Bottom
Level / /_>/ /“’ﬁggggf For local features
vVQ
Encoder T l Decoder
\

Original Reconstruction

Algorithmic Intelligence Lab 22



Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
e After VQ-VAE-2 training, train two pixelCNN priors for new image generation
* They autoregressively fill out each quantized latent vector space

Image Generation

sl
Via learned PixelCNN priorsE """ > iiii
1 Condition
L.;ﬂ
Via learned PixelCNN priors E = ﬁgggﬁgg
1 Decoder

Generation

* Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models

24



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Hierarchical VAEs use the factorized latent space pg(z) = [1; g (21|2<;)
* Here, the ELBO objective is given by

LyaE(®) := Ey(ziz) [log p(z|2)] — KL(q(21|2)|[p(21)) — D> Eya_, i) [KL(q(21l2, 2<1)||p(21]2<1))]

* However, prior attempts on hierarchical VAE were not so successful due to:
1. Long-range correlation: upper latents often forget the data information

—» Forgets x
(=) () —
e + e =
() ()
© @ ® ©
Deep Bottom-up VAE with
generative model inference model bottom-up inference

2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since
they jointly learn the prior distribution pg(z)  goth g (z]x) and py (2) are

moving during training .



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 1. Bidirectional encoder (originally from [Kingma et al., 2016])

* Enforce upper latents (e.g., z3) to predict the lower latents (e.g., z;)
— Improve the long-range correlation issue

/
A~ e
+ | ~@® = 22 AL

@
e S

Deep Bidirectional VAE with
generative model inference model bidirectional inference

Better remembers x
(should reconstruct z;)

X

* Training: posterior g4 (z|x) is inferred by both encoder and decoder
(aggregate them) and prior pg(2) is jointly inferred by decoder

* Recall that the KL term is a function of g4 (z|x) and pg(2)

* Inference: Sample prior py (z) from decoder and generate sample x

26



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 2. Taming the unstable KL term

1. Residual normal distribution
* For each factorized prior distribution

p(zli|z<l) = N(pi(z<1),04(2<1)),
define approximate posterior as (instead of directly predict y;, o;)
q(zt|z<1, ) = N (pi(z<1)+Api(z2<, ), 0(2<1)-Aoi (2, ),

* Then, the KL term of ELBO is given by

KL o)) = 5 (75

+ Ac? —log Ac? — 1)

2. Spectral regularization
* Enforce Lipschitz smoothness of encoder to bound KL divergence

* Regularize the largest singular value of convolutional layers (estimated by
power iteration [Yoshida & Miyato, 2017])

27



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Results:
* Generate high-resolution (256x256) images

* SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28 %28 32%32 32. %32 64 x64 256x256 256 %256
NVAE w/o flow 78.01 2.93 - 2.04 - 0.71
NVAE w/ flow 78.19 291 3.92 2.03 0.70 0.69
VAE Models with an Unconditional Decoder
BIVA [36] 78.41 3.08 3.96 2.48 - -
IAF-VAE [4] 79.10 311 - - - -
DVAE++ [20] 78.49 3.38 - - - -
Conv Draw [42] - 3.58 4.40 - - -
Flow Models without any Autoregressive Components in the Generative Model
VFlow [59] - 2.98 - - - -
ANF [60] - 3.05 3.92 - 0.72 -
Flow++ [61] - 3.08 3.86 - - -
Residual flow [50] - 3.28 4.01 - 0.99 -
GLOW [62] - 3.35 4.09

- 1.03 -
Real NVP [63] - 3.49 4.28 3.02 -




Very Deep VAE (VD-VAE)

* VD-VAE [Child, 2021]
* Autoregressive models have outperformed VAEs (will be covered later)
* Main idea: However, very deep VAEs generalize autoregressive models

Latent variables are identical to observed variables
Observation 1: Hierarchical VAEs with N layers
= po(2) (N = dimension of data D) generalizes
ﬁ autoregressive models
- ~_ m * e.g.)learns deterministic identity function
Input Output

Latent variables allow for parallel generation

po(z)
Observation 2: VAEs with fewer layers (N < D) can
R still model data by learning efficient hierarchies of
/ po(x|z) latent variables
/ 4 SRR  e.g.) learns conditional independence
N N |
Input Output

29



Very Deep VAE (VD-VAE)

* VD-VAE [Child, 2021]
* Empirically, deep VAEs often suffer from unstable training
* Recap: NVAE requires complex techniques to stabilize KL

Q: How to make VAE deeper?
* |dea 1: Top-down architecture with bottleneck residual blocks

Bottom-up path Top-down path
res block
(input)
topdown block
(input)
(from bottom-up) e W;X:
BeE sony 2x3
res block topdown block conv 3x3 T
res block topdown block conv 1xl pﬂ(z,.' |z;)
res block | topdown block | ; “ ;
1 conv 1x1
|
';
res block
i
Input Reconstructlon
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Very Deep VAE (VD-VAE)

* VD-VAE [Child, 2021]
* Empirically, deep VAEs often suffer from unstable training
* Recap: NVAE requires complex techniques to stabilize KL

* Q: How to make VAE deeper?
* |dea 2: Additional simple techniques
* Transposed CNNs => Nearest-neighbor upsampling
* Scale down weight initialization of final layer in residual block
* Gradient skipping: skip updates when gradient norm is above threshold

31



Very Deep VAE (VD-VAE)

e VD-VAE [Child, 2021]

* Results: Very deep VAEs (>50 layers) can outperform autoregressive models with fe
wer parameters while maintaining fast sampling

Model type Params Depth Sampling NLL

CIFAR-10

Pixel CNN++ (Salimans et al., 2017) AR 53M* D 2.92
PixelSNAIL (Chen et al..2017) AR D 2.85
Sparse Transformer (Child et al..2019) AR S59M D 2.80
VLAE (Chen et al., 2016 VAE D <295
IAF-VAE (Kingma et al.[ 2016) VAE 12 1 <3.11
Flow++ (Ho et al..[2019 Flow 31IM 1 < 3.08
BIVA (Maalge et al.[[2019, VAE 103M 15 1 <3.08
NVAE (Vahdat & Kautz][2020) VAE 13IM 30 1 <291
Very Deep VAE (ours) VAE 39M 45 1 <2.87
ImageNet-32

Gated Pixel CNN AR 177M* 10 D 3.83
Image Transformer (Parmar et al|2018) AR D 3.77
BIVA VAE 103M* 15 1 <3.96
NVAE VAE 268M 28 1 <392
Flow++ Flow 169M 1 <3.86
Very Deep VAE (ours) VAE 119M 78 1 < 3.80
ImageNet-64

Gated Pixel CNN AR 177M* D 3.57
SPN (Menick & Kalchbrenner,2018) AR 150M D 3.52
Sparse Transformer AR 152M D 3.44
Glow (Kingma & Dhariwall[2018) Flow 1 3.81
Flow++ Flow 73M 1 < 3.69
Very Deep VAE (ours) VAE 125M 75 1 <3.52
FFHQ-256 (5 bit)

NVAE VAE 36 1 <0.68
Very Deep VAE (ours) VAE 115M 62 1 < 0.61

FFHQ-1024 (8 bit)
Very Deep VAE (ours) VAE 115M 72 1 <242
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

* Diffusion (forward) process: Markov chain that gradually add noise (of same
dimension of data) to data until original the signal is destroyed

q($t|$t—1) = N(th; v 1-— Biwi—_1, 575[)

* Sampling (backward) process: Markov chain with learned Gaussian denoising
transition, starting from standard Gaussian noise p(xzr) = N (x7;0,1)

P0($t—1 \xt) = N(fﬂt—l; Me(wt, t)a 29(33157 t))

Denoising/sampling (reverse)

—
Po(Xe—1[x¢)
O @ @z~

\s-_-’

q(x¢|x¢—1)

Diffusion process (forward)
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
* Here, the forward distribution q(x;_1|x;, xo) can be expressed as a closed form

* Variational Lower Bound (VLB) objective is given by the sum of local KL divergences
(between Gaussians)

Eq[Dxw(q(zr|o)llp(ar)) + Y Drr(q(ze-1]ze, zo)|Ips(zi-1]x1)) — log po(wolz1))

* Specifically, how to calculate the posterior q(x;_q|x:, xo)?
« Leta, =1— B, and @, = [I._, @, then marginal can be derived:

q(x¢|2z0) = N (265 Vauzo, (1 — ay)I)
Ty =V To + V 1— Qi€
* Using Bayes theorem,
q(wi_1 |2, 20) = N (215 it T0), Bel)

~ 1—(1t1

Bt = ———DB
1 — Qi
\/ Vo (l — oy
iy (th,CBO)' O — 1[315 o+ oy ( _CYt 1)33f,
1 — O 1 — ¢
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
* For modelling pg, we should model gy and Xg

pe(wt—l \331;) = N(£t—1; /ie(ﬂ?t, t)a 29(331;, t))

* DDPM [Ho et al., 2020] proposes a simple objective & model:
* For Xy, DDPM fix the variance 24 (x;, t) = oI, where a? = f3; or [3,
* For ug, DDPM predicts the noise € and use the following derivation:

poist) = <= (1 = oot

\/ Ot \/ 11— Ot
* Where €y is trained by optimizing following objective:
2
Lsimple — Et,xo,e [HE — 69(5675, t>|| ]

* Then, the training/sampling scheme resembles denoising score matching
(will be discussed later in this lecture)

* Intuitively, the reverse process adds the (learned) noise €4 for each step
(resembles stochastic Langevin dynamics)

Algorithmic Intelligence Lab
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

Hillles-nmlEEsssSsssss
Bl NNy

B S = % « X X N W

5 e e e e e

 DDPM also generates high-resolution (256x256) images

Algorithmic Intelligence Lab
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Improved Denoising Diffusion Probabilistic Models

* Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]
* This paper improves upon DDPM by introducing additional techniques:

1. Learned variance instead of fixed variance
Yo(xt,t) = exp(vlog B + (1 — v) log 5y)

Learnable parameters

2. Hybrid objective of VLB and Simple objectives
Liyorid = Lsimple + ALy

2o can be learned through this loss

3. Different diffusion (cosine) schedule ]
* Instead of linear schedule in DDPM 08

0.6 1
0.4 1

0.2 1

0.0 A1

ofo 012 of4 Oi6 0i8 le
. . . diffusion step (t/T)
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Improved Denoising Diffusion Probabilistic Models

* Improved Denoising Diffusion Probabilistic Models [Nichol and Dhariwal, 2021]
* Results: Simple techniques can improve performance of DDPM

Table 3. Comparison of DDPMs to other likelihood-based mod-
els on CIFAR-10 and Unconditional ImageNet 64 x 64. NLL is
reported in bits/dim. On ImageNet 64 X 64, our model is compet-
itive with the best convolutional models, but is worse than fully
transformer-based architectures.

Model ImageNet CIFAR
Glow (Kingma & Dhariwal, 2018) 3.81 3.35
Flow++ (Ho et al., 2019) 3.69 3.08
PixelCNN (van den Oord et al., 2016¢) 3.3 3.14
SPN (Menick & Kalchbrenner, 2018) D2 -
NVAE (Vahdat & Kautz, 2020) - 2.91
Very Deep VAE (Child, 2020) 3.52 287
PixelSNAIL (Chen et al., 2018) 392 2.85
Image Transformer (Parmar et al., 2018) 3.48 2.90
Sparse Transformer (Child et al., 2019) 3.44 2.80
Routing Transformer (Roy et al., 2020) 3.43 -
DDPM (Ho et al., 2020) ST 3.70
DDPM (cont flow) (Song et al., 2020b) - 2.99 l
Improved DDPM (ours) 3.53 294
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Denoising Diffusion Implicit Models (DDIM)

e Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
e Generalizes DDPM with much faster sampling process

* Main idea: Introduce non-Markovian forward process
* Since DDPM obijective only depends on marginal q(x;|x,), any arbitrary infere

nce distribution that has same marginal can be used
* Specifically, DDIM proposes a following inference distribution:

qU(th 1|513t7330)%(33t|330)
C]a(ivt—1|$o)

@ — @ " @ — @

333|-”B2,030 CI(332|5131,330)

4o (mt‘mt 1 mO)

* Where g, is set to have same marginal with DDPM

— VOt
Qo (Ti—1]Xt, T0) = (\/at 1o + \/1 —10up 4, =0 \/ﬁ fI>
- &t
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Denoising Diffusion Implicit Models (DDIM)

e Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]

* Generative process pét) (x:-1]|x¢) is defined by leveraging g, (x;—1|x¢, X0):
1. From x;, predict “denoised” observation x,

2. Obtain sample x;_; from q,(x;_1|x¢, Xo) using predicted x, and x;

* How to predict x, from x;?
* Marginal: q(x¢|x,) = IQ(xl:tle)dxl:(t—l) = N(x¢; /At X, (1 —a)l)
* From this, we can obtain x; = \/a;xo + /1 — a;€;

* By introducing a model eét) (x;) that predicts €;, prediction of x; is given as:

90 = (e — 1= a, € (x))/ V&

Algorithmic Intelligence Lab
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Denoising Diffusion Implicit Models (DDIM)

e Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
* Resulting generative process:

(1) 2 oy
pg)t) (Ti—1|zs) = {N(fe (1), 011) ift=1

10 | f(gt) (x;)) otherwise,

(t)
x: — 1 — arey (:m)) i \/1 102D

-€p () +  O€
o ey ( tl t€t
i predi;ed xg”

* Which becomes a DDPM when o; = /(1 —a;_1)/(1 — a)\/1 — asfar
* Which becomes a deterministic generative process from x; to xo when o, =0
* i.e., Denoising Diffusion Implicit Model (DDIM)

LTt—1 = /1 <

-~

e e ' random noise
direction pointing to x;

>

* Accelerated generation process
* Objective does not depend on specific forward process if g, (x:|xg) is fixed
* Hence, we can consider “shorter” forward processes

* Forward process over a subset {le, ...,xs} that matches the marginals

* q(xfile) = N(,/axo, (1 - aTi)I)
Po

Algorithmic Intelligence Lab q(x3|z1, T0)
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Denoising Diffusion Implicit Models (DDIM)

e Denoising Diffusion Implicit Models (DDIM) [Song et al., 2021]
* Experiments: Investigation on hyperparameters
* Number of sampling steps S
* Degree of stochasticity o
* Interpolation between DDPM (n = 1) and DDIM (n = 0)

O-TL — T’\/ aTz 1 & (1 o aTz \/1 B aTz/aTz 1

Table 1: CIFAR10 and CelebA image generation measured in FID. = 1.0 and ¢ are cases of
DDPM (although Ho et al. (2020) only considered 7" = 1000 steps, and S < 7' can be seen as
simulating DDPMs trained with .S steps), and = 0.0 indicates DDIM.

CIFAR10 (32 x 32) CelebA (64 x 64)

S 10 20 50 100 1000 10 20 50 100 1000
00| 1336 684 | 467 416| 404 | 1733 1373 917 53| 351
02| 1404 711 — 7 T 409 | 1766 1411 0. 570 3.64
05| 1666 835 525 446 429 | 1986 1606 11.01 809 428
1.0 | 4107 1836 801 578 33.12 2603 1848 13.93

Deterministic generation process (DDIM) can generate good samples
with 10x~100x smaller sampling steps (=fast)
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Diffusion Models Beat GANs on Image Synthesis

* Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
* Main idea: Class information could improve the image fidelity of diffusion model.

* Class-conditional GANs already make heavy use of class information [Brock et
al., 2019].

* Propose classifier guidance to give class information to the diffusion model.
* Trade off between the fidelity and diversity of generated image.

* As strong class guidance is given, the fidelity of images improves but the
diversity decreases.

* Train a classifier pg (y|x¢, t) on noisy images x;, and use gradients
Vi, logpg (V]x;, t) to guide the diffusion sampling process.
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Diffusion Models Beat GANs on Image Synthesis

e Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

* Classifier guided diffusion sampling (as DDPM)
* Substitute the denoising process to conditional likelihood py 4 (x¢|Xt41,¥)

p0,¢($t |513t+17 y) = Zp9($t|$t+1)p¢(y|$t)

where Z is a normalizing constant.
* By approximating log p (y|x;) using a Talyor expansion,

1 _
log(ps (2|1 41)pg (y|2e)) = —5 (2 — = 29)"S oy — p— Xg) + Cs
=logp(z) + Cy,z ~ N(u+ Xg,X)

Here, 9 = Vi, logpg(y|zt)|e,—u which is a gradient from the classifer.

* Conditional transition could be approximated by a Gaussian similar to uncondi
tional transition operator with shifted mean.

Algorithmic Intelligence Lab
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Diffusion Models Beat GANs on Image Synthesis

e Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]

* Classifier guided DDIM sampling
* Score function is derived from the noise prediction model €4 (x;):
1
th logpg(a:t) - _mee(mt)

* Score function for conditional generation is given by,

Vi, log(pe(z1)pe(y|zt)) = Vi, log pe(xt) + Vi, log pe (y|zt)

i
- _m@(xt) + Vz, log pg (y|z¢)

* Hence, we could use the modified noise prediction for the same procedure.

() = eg(xy) — V1 — 0y Vy, log py(y|z)
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Diffusion Models Beat GANs on Image Synthesis

* Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
* Trade off between fidelity and diversity.

* As scaling classifier gradients, metrics indicate quality (IS and precision) improv
es and metrics imply diversity (FID and recall) become worse.

—e— FID —— sFID

0 2 4 6 8 10
gradient scale
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Diffusion Models Beat GANs on Image Synthesis

* Diffusion Models Beat GANs on Image Synthesis [Dhariwal and Nichol, 2021]
* Difussion model guided with classifier outperforms the state of the art generative

models.
Model FID sFID Prec Rec Model FID sFID Prec Rec
LSUN Bedrooms 256 x 256 ImageNet 128 x128
DCTransformer' [42] 6.40 6.66 0.44 0.56 BigGAN-deep [5] 6.02 7.18 0.86 0.35
DDPM [25] 489 9.07 0.60 045 LOGANT [68] 3.36
IDDPM [43] 424 821 0.62 0.46 DM 391 509 070 0635
StyleGAN [27] 235 6.62 0.59 0.48 ADM-G (25 steps) 598 7.04 0.78 0.51
ADM (dropout) 1.90 559 0.66 0.51 ADM-G 297 5.09 0.78 0.59
LSUN Horses 256 <256 ImageNet 256 X256
StyleGAN?2 [28] 384 646 0.63 048 DCTransformer' [42] 36.51 824 036 0.67
ADM 295 594 0.69 0.55 VQ-VAE-2# [51] 31.11 17.38 0.36 0.57
ADM (dropout) 2.57 6.81 0.71 0.55 IDDPM? [43] 1226 542 070 0.62

SR37#[53] 11.30

LSUN Cats 256x256 BigGAN-deep[5S] 695 7.36 0.87 0.8
DDPM [25] 17.1 124 0.53 0.48 DM 10
StyleGAN?2 [28] 725 633 0.58 0.43 ADM-G (25 steps) 544 532 0.81 049
ADM (dropout) 557 6.69 0.63 0.52 ADM-G 4.59 5.25 0.82 0.52
ImageNet 64 x 64 ImageNet 512x512
BigGAN-deep* [5] 406 396 0.79 048 BigGAN-deep [5] 843 8.13 0.88 0.29
IDDPM [43] 292 3.79 0.74 0.62 ADM 2324 1019 073
ADM 2.61 3.77 0.73 0.63 IADM-G (25 steps) 841 9.67 0.83 0.47
ADM (dropout) 207 429 0.74 0.63 ADM-G 772  6.57 0.87 0.42

Algorithmic Intelligence Lab

48



Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

e Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]
* Introduce classifier guidance without training any additional classifier.

* Train a single neural network which parameterize both conditional and
unconditional diffusion model.

* Conditional model pg(z|c) with score €4(2;, €)
* Unconditional diffusion model pg(2) with score €9(z;) = €5(z;, ¢ = 0)

* Perform sampling using the linear combination of conditional and unconditional
score estimates.

€9(z),c) = (1 4+ w)eg(zy, c) — wey(z))

* Inspired by the gradient of an implicit classifier p'(c|z;) « p(z,|c)/p(z;).
* If exact score €*(zy, ¢), €"(z;,) exists, then the gradient of the implicit
classifier is given by 'V, logp‘(c|zy) = —%[e*(zk, c) — €*(zy)]

* |ts guidance would be linear interpolation between two score functions.
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Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]

e Classifier-Free Diffusion Guidance [Ho and Salimans, 2021]
* Suggesting higher guidance generates less diverse and high fidelity images.

Method \ FID ({) | IS (1)
ADM [3] 2.07 -
CDM [6] 1.48 67.95 950
Ours, no guidance | 1.80 | 53.71

Ours, with guidance 200 |- .
w=0.1 1.55 66.11
w=0.2 2.04 78.91 ”
w=0.3 3.03 92.8 = 150
w=04 4.30 106.2
w = 0.5 5.74 119.3
w=0.6 7.19 | 131.1 100 |- A
w=0.7 8.62 141.8
w=0.8 10.08 151.6 50
w = 0.9 11.41 161 | !
w=1.0 12.6 | 170.1 0 5 10 15 20 25
w=2.0 21.03 225.5 _ FID
w = 3.0 24.83 250.4 )
w=40 26.22 260.2 Figure 2: ImageNet 64x64 FID vs. IS

Figure 1: ImageNet 64x64 results
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GLIDE [Nichol et al., 2022]

* GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided D
iffusion Models [Nichol et al., 2022]

* Text conditional image synthesis with classifier-free guidance to diffusion model.

* How to input text as the condition?
* Encode the text into a sequence of K tokens and feed theses tokens into a
Transformer model.

* Final token embedding is used in place of a class embedding.

* The last layer of token embeddings is separately projected to the dimensionali
ty of each attention layer, and then concatenated to the attention context.
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GLIDE [Nichol et al., 2022]

* GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided D
iffusion Models [Nichol et al., 2022]

* Text conditional image synthesis with classifier-free guidance to diffusion model.

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”
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* Energy-based models
* Score matching generative models
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Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,
energy) E(x) such that

po(x) = exp(_ng(x)), Zg = /eX exp(—FEq(x))

* Here, we don’t care about the exact density (which needs to compute the partition
function Zg), but only interested in the relative order of densities

* Training: The gradient of negative log-likelihood (NLL) is decomposed to:

Eznpousa(@) [— V0108 20 (Z)] = Egrp,,ia(2)[VoEo(2)] + Vo log Zo
= Eoppua () V0 B0 (2)] = Earopy(a) [Vo B (2'))

7 N >4
-

data gradient model gradient

* Note that this contrastive objective resembles (Wasserstein) GAN, but EBM uses an
implicit MCMC generating procedure and no gradient through sampling

* One can modify the discriminator of GAN to be an EBM [Zhao et al., 2017]
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Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,

energy) E(x) such that

RCE@) g, /  EP(Fo(®))

po(T) =

* Sampling: Run Markov chain Monte Carlo (MCMC) to draw a sample from pg (x)

* For high-dimensional data (e.g., image generation), stochastic gradient
Langevin dynamics (SGLD) [Welling & Teh, 2011] is popularly used:

* Given an initial sample x9, iteratively update x**1 (k = 0, ..., K — 1)

A L % V. logpe(z®) +¢, €~ N(0,0)

* Due to the Gaussian noise, it does not collapse to the MAP solution but
convergestopg(x)asa - 0and K —» o
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Energy-based Models (EBM)

e Advantages of EBMs
1. Compositionality: One can add or subtract multiple energy functions (e.g., male,
black hair, smiling) to sample the composite distribution

Male

EMaIc - EBIack Hair = ESmiling

Black Hair

Enmate + Eglack Hair + Einﬂg-‘/

~Enate +Eslack Hair + Esmiling

e - Enmate = Elack Hair + Esmiling

2. No generator network: Unlike GAN/VAEs, EBMs do not need a specialized
generator architecture (one can reuse the standard classifier architectures)

3. Adaptive computation time: Since the sampling is given by iterative SGLD, the user
can choose from the fast coarse samples to slow fine samples
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Energy-based Models (EBM) - Appendix

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]
* The gradient of partition function can be reformulated as follow:

Velog Zg = Vg log/ exp(—Fg(x))dx

Algorithmic Intelligence Lab

&) (/exp(—Eg(x))afx)_1 Vg/exp(—Eo(x))dx
-(/ exp(—Ef,(x))dx)_l [ Voes(-Eox)ax
@ ( / exp(—Ee<x>>dx)_l | exp(~Eo(x)(~VoEa(x))dx

- / ( / exp(—Eg(x))dX) _1exp(—Eo(x))(—VoEo(x))dx

(i) / exp(—Eg(x))
Zg

(&) / po(x)(—V g Eg(x))dx
= ]Ex~pg(x) [_VGEO(X)] )

(—VgEg(x))dx
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Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* Use standard classifier architectures for joint distribution EBMs

* Recall that the classifier pg (y|x) is expressed by the logits f5 (x)

exp(fo(z)[y]
y €xD(fo(z)[y/]

* Here, one can re-interpret the logits to define an energy-based model
exp(fo(z)[y] >y exp(fo(z)[y]

* Note that shifting the logits does not affect pg (v|x) but pg(x); hence, EBM gives
an extra degree of freedom

p@(xv y) —

* The objective of JEM is a sum of density and conditional models, where the density
model is trained by contrastive objective of EBM

log po(z,y) = log pe(x) + log pe(y|z)
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Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* JEM achieves a competitive performance as both classifier and generative model

Class Model Accuracy% T ISt FIDJ
Residual Flow 70.3 3.6 464

Glow 67.6 392 489

Hybrid IGEBM 49.1 83 379
JEM p(x|y) factored 30.1 636 61.8

JEM (Ours) 92.9 8.76 384

Disc. Wide-Resnet 95.8 N/A N/A
Gen SNGAN N/A 859 255

) NCSN N/A 891 25.32

* Also, JEM (generative classifier) improves uncertainty and robustness
* (a) calibration, (b) out-of-distribution detection, (c) adversarial robustness

Baseline

1.0 10
x 0 “
. ECE:22.32%
Q
=
3 05 0.5
1
<
0.0 I 0.0
%o 0.5 1.0 %o

Confidence
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Score Matching

e Score matching [Hyvarinen, 2005]
* Score = gradient of the log-likelihood s(x) := V, logp(x)
e Score matching = Match the scores of data and model distribution
* However, we don’t know the scores of data distribution
* Instead, one can use the equivalent form (proof by integration of parts)

1 1
§]Ex~pdata(x)[||39($) — 54ata(Z)[|3) = Epmpea(a) |t1(Vaso(z)) + §\|39(x)||§ + const.

* Recent works mostly consider denoising score matching [Vincent, 2011]

* Match the score of perturbed distribution g, (%) = [ q,(%|x) pgata (x)
where q,(%X|x) = N (x, o)

* Then, the score matching objective is equivalent to

1 . -
EEiNqa (ilaﬁ)pdata(.’li) [”80 (a:) T v"i log qO' (x|$) H g]
* |tis tractable since the gradient V3 log g, (X¥|x) = Vzlog N (X|x,0) =

12n exp(— % (’%x)z) can be analytically computed

V; log

g
* The objective can learn the scores of data distribution if o = 0
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Score Matching - Appendix

e Score matching [Hyvarinen, 2005]
* The score matching objective can be reformulated as follow:

1

e |t is sufficient to show that

010g Pgatal(T
By Senea(@50(2)] = 3 [ —pasea() R, ()

_ apdata(a:) )
= Ez /_—d:ri Sg,z(at)div
0s0,i
= EZ / Pdata(T) sg;gfx)da:%—const.

* The last equality comes from the integration of parts

[P @@z =@ @], - [ p@)f @)do

and assumption pgaia(x)sg (x) — 0 for both side of infinity

Algorithmic Intelligence Lab
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S B pia(@) 1156 (2) = 5a2ta () 3] = Eornpruea(a) [tr(Vmse(x)) + 5 lIso(@)ll2 | + const.
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Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* Previous works mostly define the score as a gradient of the energy function
sg(x) == —VyEg(x)
* This work: Directly model the score x € R% - s4(x) € R% as an output

e Noise-conditional Score Network Algorithm 1 Annealed Langevin dynamics.
. . . Require: {o;}L ¢ T.
* Denoising score matching is stable for 18 Tializeney
large o but unbiased for small o 2: fori < 1to L do , ,
33 i+ €-0%/o2 > «; is the step size.
* |dea: Learn multiple noise levels (with 4 forf;— 1tole\? :
a single neural network) and anneal the ; Praw B N0
. . . 6: X ¢ X1+ —89(Xe—1,04) + 1/ 2
noise level during sampling oy > >0, . dfor 2
8 Xo ¢ XT
9: end for
return X

* One can extend score matching to continuous version (stochastic differential
equations, SDEs) [Song et al., 2021]

* NCSN and DDPM can be viewed as different discretization of some SDEs
* This view provides a better approach for generation and likelihood estimation
See Appendix for details
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Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* The continuous version of NCSN [Song et al., 2021] is SOTA for both likelihood
estimation and sample generation on CIFAR-10

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Model FID| ISt
Conditional
BigGAN (Brock et al., 2018) 14.73 922

StyleGAN2-ADA (Karras et al., 2020a) 2.42 10.14

Unconditional

StyleGAN2-ADA (Karras et al., 2020a) 2.92 9.83

Model NLL Test | FID |
RealNVP (Dinh et al., 2016) 3.49 -
iResNet (Behrmann et al., 2019) 345 -
Glow (Kingma & Dhariwal, 2018) 3.35 -
MintNet (Song et al., 2019b) 3.32 -
Residual Flow (Chen et al., 2019) 3.28 46.37
FFJORD (Grathwohl et al., 2018) 3.40 -
Flow++ (Ho et al., 2019) 3.29 -
DDPM (L) (Ho et al., 2020) < 3.70" 13.51
DDPM (Lsimple) (Ho et al., 2020) <3.75 3.17
DDPM 3.28 3.37
DDPM cont. (VP) 3.21 3.69
DDPM cont. (sub-VP) 3.05 3.56
DDPM++ cont. (VP) 3.16 3.93
DDPM++ cont. (sub-VP) 3.02 3.16
DDPM++ cont. (deep, VP) 3.13 3.08
DDPM-++ cont. (deep, sub-VP) 2.99 2.92

NCSN (Song & Ermon, 2019) 25.32 8.87 + .12
NCSNvV2 (Song & Ermon, 2020) 10.87 8.40 + .07
DDPM (Ho et al., 2020) 3.17 946 + .11
DDPM++ 2.78 9.64
DDPM++ cont. (VP) 2.55 9.58
DDPM-++ cont. (sub-VP) 2.61 9.56
DDPM-++ cont. (deep, VP) 241 9.68
DDPM++ cont. (deep, sub-VP) 2.41 9.57
NCSN++ 2.45 9.73
NCSN++ cont. (VE) 2.38 9.83
NCSN++ cont. (deep, VE) 2.20 9.89

Algorithmic Intelligence Lab

63



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw )@
| score fction
dx = [f(x,t) — ¢ (t)&x log pi(x)] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [f(x,t) — g(t)*Vx log p:(x)]dt + g(t)dw,
* Then, the reverse diffusion process also follows some SDE:
dx = [f(x,t) — g(t)*Vxlog pe(x)]dt + g(t)dw,

* One can learn the score function by score matching

0* = arg min ]Et{)\(t)IEx(O)]Ex(t)|x(o)[ ||Se (x(t),t) — V() log pot (x(t) | X(O))”Z ] }

0
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Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

| score fction
dx = [f(x,t) — ¢ (t)&x log pi(x)] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [£(x,t) — g(t)*Vyx log ps(x)]dt + g(t)dw,

* Here, NCSN and DDPM can be viewed as different discretizations some stochastic
differential equations (SDEs)

2
* NCSN: dx= del = X;=Xi_1 +4/07 — 02,7
1
« DDPM: dx = —iﬁ(t)x dt + /B(t)dw -  x; =+/1 — Bixi_1 + /Biz;
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Noise-conditional Score Network (NCSN) - Appendix

* Score matching through SDE [Song et al.
* The reverse diffusion process can be sol

1. Run a general-purpose SDE solver (a.k.
2. Utilize the score-based model sg(x, t)

,2021]

ved by 3 ways:

a. predictor)
~ V, logp:(x) (a.k.a. corrector)

— Combining predictor and corrector gives the SOTA generation performance

Algorithm 2 PC sampling (VE SDE) Algorithm 3 PC sampling (VP SDE)

1: xn ~ N(0,02,1) 1
2: fori =N —1to0do 2
3: X < Xit1+ (01'2+1 - 01'2)89* (Xi+1,0i+1) 3
4: z~ N(0,I) 4
5: X« X;+4/02, — 07z -
6: forj =1to M do 6
7. z~N(0,I) 7
8: X; «— X; + 6189*()(1', O'i) + +/2¢€;Z 8
9: return xg 9

: xn ~ N(0,1)

:fori =N —1to0do

X; «— (2= /1= Bit1)Xit1 + Bir1Sek (Xiy1,% + 1)
z ~ N(0,I)

o xg n mz Predictor

for j = 1to M do Corrector
z ~ N(0,1)
X; < X; + €;Sg* (Xo,;, Z) + 1/2¢;2

: return xo

Continuous ver. of NCSN

Algorithmic Intelligence Lab
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Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
* The reverse diffusion process can be solved by 3 ways:

1. Run a general-purpose SDE solver (a.k.a. predictor)
2. Utilize the score-based model sg(x,t) = V., log p;(x) (a.k.a. corrector)

3. Convert to deterministic ODE
* Every SDE (Ito process) has a corresponding deterministic ODE

ax = [£(x,1) - %g(t)2vx log p. ()| .

whose trajectories include the same evolution of densities

* Deterministic ODE defines an invertible model (a.k.a. normalizing flow)
[Chen et al., 2018]

* Using this formulation, one can
a) Compute exact likelihood
b) Manipulate latents with encoder (model is invertible)
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Autoregressive models

* Autoregressive generation (e.g., pixel-by-pixel for images) :

K2
p(w) - Hp(xk’xla 7xk—1)
k=1

K2
= | p(zrlz<r)
k=1

* For example, each RBG pixel is generated autoregressively:

p(zi|le<k) = p(Tr.r, Tk B, Th.G|T<k)

= p(k. r|lT<k)p(Tk.B|T<k, Tk r)D(Tk G| T<ks Tk R, Tk, B)

* Each pixel is treated as discrete variables, sampled from softmax distributions:

T

- - - -
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating T as one-dimensional (instead of two-dimensional) vector:

CNN-based

O
O

w<k >

/’/

(input) O~ ’/ 7 O
’

o O
Q (hidden layer)

masked
convolution
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating T as one-dimensional (instead of two-dimensional) vector:

CNN-based

<k
(input)

O Tk

Q@ (hidden layer) (generation)

o/
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating T as one-dimensional (instead of two-dimensional) vector:

CNN-based

L <k

effective
receptive field

A D A

\O ol
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]

* Simply treating T as one-dimensional (instead of two-dimensional) vector:

CNN-based RNN-based

] LSTM

L <k

effective
receptive field

A D A
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating T as one-dimensional (instead of two-dimensional) vector:

CNN-based effective RNN-based
receptive field
Os O5 LSTM
x| OS T<r | OS
Os O~
effective OS Lk O~ Xk
receptive field ®- \O ® \O

* Inference requires iterative forward procedure (slow)

* Training requires single forward pass for CNN, but multiple pass for RNN (slow)

» Effective receptive field (context of pixel generation) is unbounded for RNN, but
bounded for CNN (constrained)

Next, extending to two-dimensional data
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)

(hidden layer)

masked O O
convolution O O
O O
® 0666

Pixel CNN
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

O O O O O(generation)

O O O O O
O O O
O O O O
masked O @)
convolution O O
O O (hldden layer)
@ ® O
masked
convolution Oi O ig % ;/
®© o0 0 o0
(input)
Pixel CNN
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
©C O O OO

O O O O
O O O O
masked O O O
convolution O O
O O @

@ © @ ©
masked @ O O (row) masked
convolution O O convolution
O (O @

Pixel CNN Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
©C O O OO

O O O O
O O O O
masked O O O 1-dimensional O\ O O
convolution O O convolution e O
O O @

@ © @ @ @ © 0 O
masked @ O&%O (row) masked O OO O
convolution O O convolution O O
O (O (] ® @0 0 O

Pixel CNN Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
O O O O O convolutional connections %
for LSTM hidden states time sequence
O O O for LSTMs

O O O O
masked O O 1-dimensional ON O O
convolution O O convolution e O

@ O @ © @ @
masked (row) masked O O/0O O
convolution O O convolution O O
@ 000 O
C @) Q O] Q © o0 0 O
Pixel CNN Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
convolutional connections
© OO O O for LSTM hidden states D/timesequence
O O O ] for LSTMs
O O O O
masked O O 1-dimensional O
convolution O O convolution O
O O
@ O @ ®© @ @
masked (row) masked O O
convolution O O convolution
@ o 0
0 @) 0 @) 0 @ o0 O 0
Pixel CNN Row LSTM

Next, introducing column-wise dependencies using LSTMs
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

masked

convolution O O

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LSTM

masked
convolution

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LST™M “diagonal”
time sequence

for LSTMs

masked
convolution

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for k)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LSTM lldiagonaln
- time sequence
for LSTMs
ked O O
maske
convolution O O
O O (@}
@ © @ @
masked O O S . R.eceptlve field now covers every
convolution o O pixels generated previously
O O ®@ O
@ o0 0 O

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

* Image generation results from CIFAR-10 and ImageNet:

RS Jo .llpli

CIFAR-10 ‘L ﬂf'
T ERE A ;Elﬁﬁ
SEOTY WA 2

* Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL

Model NLL Test Model NLL Test (Train)
AN e PixelCNN: 3.14 (3.08)
Row LSTM: 80.54
g . s Row LSTM: 3.07 (3.00)
iagonal BiLSTM (1 layer, h = 32): 80.75 Di al BiLSTM: 3.00 (2.93
Diagonal BiLSTM (7 layers, h = 16): 79.20 tagona’ Bt : 00 (2.93)
MNIST CIFAR-10

* PixelCNN is easiest to train and Diagonal BiLSTM performs best
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ImageGPT

* Generative Pretraining from Pixels [Chen et al., 2020]
* Apply GPT [Brown et al., 2020] to image domain by flattening image to 1D.

* Train autoregressive transformer which predicts the pixels without knowledge of
2D input structure.

Lar = EX[— logp(x)] where p(z) = Hp(mm

B s weny Bt auyl0)

I '» " 2 (a) Autoregressive (a) Linear Probe
" N |
$ v (@om
: o0 000000
TTT———— |
@. @ .... (b) Finetune
T e—————————
000000000
0000006000 00000000
: X @00000000
HE B HEE BN e
Target Cat Do
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ImageGPT

* Generative Pretraining from Pixels [Chen et al., 2020]
* ImageGPT not only learns image representations,
* |t outperforms supervised representation with ImageNet in transfer learning.

Model Acc  Unsup Transfer ~ Sup Transfer Model Acc  Unsup Transfer = Sup Transfer
BeeNot 1 22 94 Vi SLAR-TO
CsINet-
SimCLR 953 Y, A.utoAugment 98.5
iGPT-L 96.3 Vi SimCLR 98.6 v
GPipe 99.0 V4
CIFAR-100 iGPT-L 99.0 V4
ResNet-152  78.0 V4
SimCLR 80.2 Vv CIFAR-100
iGPTL 828 v iGPT-L 88.5 ]
STL-10 SimCLR 89.0 v
AMDIM-L 942 Vv AutoAugment 89.3
iGPT-L 95.5 Vv EfficientNet 91.7 V4
Linear probing Full finetuning

* but also shows inpainting ability.

Model Input Completions > Original
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Scaling Autoregressive Video Models (Video Transformer)

* Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible
* e.g.) 32x32 video of length 16 has 16 * 32 * 32 * 3 =49,152 pixels
* Much longer than the input length of GPT3 (=2048), ImageGPT (=3072)

* Main idea: Reduce the complexity of autoregressive video generation by
* 1) Designing an efficient self-attention layer for videos
* 2) Operating on sub-sampled videos instead of pixels
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Scaling Autoregressive Video Models (Video Transformer)

* Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible

* |dea 1: Video Transformer with multiple stacked block-local self-attention
* Reduces the computation cost of self-attention over videos, by
1. Decompose avideo of (T, H,W) inton, =t - h-w blocks of (¢, h,w)
2. Separately apply self attentions over n, blocks
* Attention complexity (T - H-W)? = n, - (t - h - w)?
3. Concatenate the outputs and process through a fully connected layer

* For the connectivity between all pixels, use different block sizes at every layer
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Scaling Autoregressive Video Models (Video Transformer)

* Scaling Autoregressive Video Models [Weissenborn et al., 2020]
* Apply GPT to video domain by flattening video to 1D.
* However, using all pixels from a video is computationally infeasible

* ldea 2: Divide the video into non-overlapping 3D blocks
* Further reduces the complexity by decomposing the video itself

* Introduce a subscale factor s = (s¢, sy, S,,) that divides a video into
s = (St * Sy, + Sy ) sub-sampled videos (slices)

* Then, each slice is processed through the block-local self-attention layers

Subscale Slices
T(0.0.0) L(0,0,1) I(0.1.0) I(1.0.0)

* And sequentially generate x( 9,0y, X(0,0,1) -
* e.g)Ifweuses = (4,2,2), each slice consists of 4 * 16 * 16 * 3 = 3072 pixels
« Attention complexity: 491522 => 30722 (256 times lower)
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VideoGPT

* VideoGPT [Yan et al., 2021]
* Other approach for autoregressive video generation
* Learns downsampled discrete representations over space-time

* Main idea of VideoGPT

1. Train a VQ-VAE with 3D CNNs on the video data to learn discrete latent
representations downsampled over space-time

2. Train autoregressive transformer (Image-GPT architecture) in the latent space
for learning a prior

3. Decode the predicted discrete latents using the VQ-VAE decoder

Dls(.rele Latents . 4 ]
Conv3D Conv3D
Transformer
Codebook

/.

Flattened sequence

Discrete Latents
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Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:

r=2zyp =>» ZT:fTOfT_lO---fl(Z()) ZtGRK

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det (8ft(zt‘1)) |

Ozi—1

T
log p() = log p(z0) = log pr(2zr) + ) _ log
t=1

* Log-likelihood log p(x) can be maximized directly

* source: Jang, https://blog.evjang.com/2018/01/nf1.html,

Algorithmic Intelligence Lab Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
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Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:
=20 =» zr=frofr_i0o-- fi(20) z € RY

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det <8ft(zt‘1)> |

Ozi—1

T
log p(x) = logp(z0) = log pr(2zr) + Z log

t=1
* Log-likelihood log p() can be maximized directly
* Naively computing log |det (Of:(2:—1)/0z:—1)| requires O(K?) complexity,

which is not scalable for large-scale neural networks

[ How to design flexible yet tractable form of invertible transformations? ]
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)

e Stochastic estimator of free-form Jacobian

1. Det Identities 2 Coupling Blocks 3. Autoregressive 4. Unbiased

Planar NF
Sylvester NF

c & Il ik
(U [ ] | I | | N |
O m =it
S @ widndi
©C B =ddidl
AN WY R IR

(Low rank)

Algorithmic Intelligence Lab

. NICE
Real NVP
g Glow

I.

%

. Estimation
Inverse AF FFJORD
. Neural AF . Residual Flows

. Masked AF

(Lower triangular + (Lower triangular) (Arbitrary)

structured)

* source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

1. Det Identities

Planar NF
Sylvester NF

C | | N | an

CU [ "N mn

o m=1mra

S M mbdidi

C = =fd@sakb .

N B RER Y |
(Low rank) 5

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 97



Normalizing Flow (NF)

* Basic layers with linear log-det-Jacobian complexity [Rezende et al., 2015]

e Planarflow: f(z) =2z +uh(w'z +b)
* Determinant of Jacobian is |Jet %| = |1 +uTh/(wTz + b)w]|

+ Radial flow: f(2) =2z + Bh(e,7)(z — 20) (r =z — 20|, h(e,r) =1/(c +7))
* Determinant of Jacobianis [1 4 Bh(a, r)]d—l[l + Bh(a,r) + B (a, 7)T)]

Planar Radial -
K=2 K-10

OlskonEe s
L\ B

Algorithmic Intelligence Lab

Unit Gaussian

ol‘“

- ¢

Uniform
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

2. Coupling Blocks

NICE
Real NVP

Glow
v

N

| (Lower triangular + i
' structured)
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Real-valued Non-volume Preserving Flow (Real NVP)

* Coupling layer z; = f;(z;_1) for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

s B 4 ls]
s B | 357“
Zt—1 — [Zt—l,l:d, Zt—l,d+1:K] _l ]|
H BN ]
spatial-partition channel-partition

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (9 and m are described later)

Zt.d+1: K — g(Zt—1,d+1:K; m(zt—l,lzd))

3. Second partition is left invariant ( 2¢,1:4 = Zt—1,1:d )
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Real-valued Non-volume Preserving Flow (Real NVP)

» Affine coupling layer was shown to be effective in practice:

Zt,d+1: K — g(zt—1,d+1:K; m(zt—1,1:d))

element-wise product /‘ k\ k neural networks

 Jacobian of each transformation becomes a lower triangular matrix:

[ a11 0 -+ 0
8ft—1(zt—1) S I 0 aso 0 :
0z 1 rsals) ding(exp(mi(zi-1,.4)) | -0

* Inference for such transformations can be done in tractable time
* Determinant of lower triangular matrix is a product of diagonals

det (aft(zt‘l))|

0zi—1

T
log p() = log p(z0) = log pr(2zr) + ) _ log
t=1
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Real-valued Non-volume Preserving Flow (Real NVP)

* For each coupling layer, there exists asymmetry since the first partition 2:—1,1:d
is left invariant

* Two coupling layers are paired alternatively to overcome this issue

 Multi-scale architectures are used
e Half variables follow Gaussian distribution at each scale

paired coupling layer
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

3. Autoregressive

Inverse AF
Neural AF
Masked AF

N

i (Lower triangular)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 103



Inverse Autoregressive Flow (IAF)

* Inverse autoregressive flow (IAF) modifies each dimension of variable in
autoregressive manner [Kingma et al., 2016]:

* Forward pass z, — zr is fast, but backward pass z; — z, is slow
* Used for VAE posterior: Only forward pass is required for approx. posterior

Ztd = Mt,d(Zt—11:d-1) + 0t,d(Zt—1,1:d-1)Zt—1.d

2 0l0] 10100

000

caseof d =3 updates done in parallel

* Inference for corresponding normalizing flow is efficient:

ot1 (O --- 0
T .
a — O-t72 O °
log q(z|x) = log qo(z0|z) + » log |det ( g:t 11)) | ~> g
t=1 - K
B Ot,K _
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

4. Unbiased
Estimation

FFJORD
Residual Flows

i (Arbitrary)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 105



Continuous Normalizing Flow (CNF)

* Discrete normalizing flows need a carefully designed (less expressive) layers

to achieve affordable (not cubic) complexity
— Continuous normalizing flow affords an arbitrary network architecture

dz __
. Consider a continuous transformation d; — f(z(¢),1) (instead of Z1 = f(zo) ),

then the sampling can be done by an ordinary differential equation (ODE):

3]

z(t1) = z(tg) + f(z(t),t,0)dt

to

* Here, the change in log-probability also follows an ODE:

t
1 af
1 t1)) =1 to)) — Tr dt
ogp(a(t)) = logp(a(t) ~ [ T (55)
 Remark: We only need a trace (not a determinant) to compute likelihood

* The network f(z(t), t, 0) is learned by gradient descent (backpropagation
follows another ODE) [Chen et al., 20018; Grathwohl et al., 2019]
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