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Generative Model and Discriminative Model

* Given an observed variable x and a target variable y

* Discriminative modeling estimates the conditional distribution P(y|x)
* Example: ImageNet classifiers

\&’#"\‘Q

* Generative modeling estimates the joint distribution P(x,y)
e Example: Boltzmann machines, sum-product networks

Shestse

y = cat

Algorithmic Intelligence Lab * source : https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_editl.jpg 2



Why Generative Model?

* Without assuming y, generative models learn P(x) from given data
* P(x) enables us to generate new data similar to the training dataset

* We can use various sampling methods for generation based on P(x)
* Isit possible to do the same thing with discriminative models?
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Why Generative Model?

« P(x) enables us to generate new data similar to the training dataset
* Many real-world problems can be formulated assuming generative models

e Common applications?
* Vision: super-resolution, style transfer, image inpainting, ...

e Audio: audio synthesis, speech generation, voice conversion, ...
* And many more..

‘ horse — zebra
Super-resolution [Ledig et. al., 2017] Style transfer [Zhu et. al., 2017] High-res image generation

[Karras et. al., 2018]
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Two Types of Generative Models

e Explicit models directly estimate the (usually “unnormalized”) data distribution
* Example 1: Multivariate Gaussian distributions
+ P(x) xexp (—5(x — p)Z7H(x — p))
» Tractable inference, low expressive power
* Example 2: Graphical models (RBM, DBM, ...)

. P(X) X exp (Zz b;x; + Zi,j wijxixj>
* Intractable inference, high expressive power with compact representations

* Many more examples: Variational Auto-encoder, Flow-based models, ...
e ... which we will be discussed more in the next lecture

* Generative adversarial network (GAN) is an instance of implicit models
* One does not have to access P(x) for sampling — More efficient in some cases
e P(x)is rather implicitly defined by its model
* GANs assume that P(z) ~ G(z)
* 2 ="“random noise”, and G = “a neural network”
» Sampling? A simple forward computation of G(z)
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Generative Adversarial Networks (GAN)

 Classical (usually explicit) generative methods struggle on complex data
* Sampling from high-dimensional, complex distributions can be intractable

« GANs [Goodfellow, et. al., 2014] do not explicitly model Pmodel (X)
* Two player game between discriminator network D and generator network G
* D tries to discriminate real data and samples generated by GG (“fake” samples)
* (G tries to fool D by generating more “realistic” images
* GAN utilizes neural networks to model the sampling function itself
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Generative Adversarial Networks (GAN)

* Two player game between discriminator network D and generator network G
* Training objective:

1’{01111 I%a’x [Ex’\“pdata lOg Ded (x) + Eszz log(]‘ o Ded (GQQ (Z)))]
g d ' y '

Discriminator output Discriminator output
for real data for generated fake data

* D maximizes the objective: D(z) — 1 and D(G(z)) — 0
* (G minimizes the objective: D(G(z)) — 1

noise 2

Random _{ o ]__»ﬂr

Real or
fake?

Fake samples
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Generative Adversarial Networks (GAN)

* Training objective [Goodfellow, et. al., 2014]:

Helin r%ax V(04,04) = [wavpdata log Dy, (x) + E.~p, log(1 — De, (Geg (Z)))]
g d

 Alternative training between D and G
* Objective for D :

055 [Expi 108 Do () + Bany, og(1 — Doy (Go, ()]
d

* Objective for G :
n%in E.~p. log(l — Dy, (Go,(2)))

* In practice, directly optimizing the G-objective can be problematic
* (cont’d) ... will be discussed in the later slides

Algorithmic Intelligence Lab
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What Happens in the GAN Objective?

* Discriminator
* For fixed GG, the D optimizes:

V(0a,04) = Eznpya l0g Do, (7) + E.np, log(1 — Dy, (Go,(2)))

— /pdata(l’) log(ng(a:))der/pz(z) log(1 — Dy, (G, (2))dz

z

= / Pdata(z)10g(Do, (2)) + py(x) log(1 — Dy, (v))dz

* Optimal discriminator is

pdata(X)
DQ* X) =
d( ) pdata(x> + Dg (X)
1
* If Pdata = Pg, optimal discriminator Dy: (x) = 5

Algorithmic Intelligence Lab
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What Happens in the GAN Objective?

* Generator
* For fixed Dy , the G optimizes:

V(03,04) = Exnpy,. 108 DG;} () + E.np, log(1 — DO; (G(2)))
= By 108 Doy (2) + By, log(1 — Dos ()

pdata(x> ] [ pg (CB) ]
= Ezrpga. [108 + Egpnp, |log
bd [ pdata(x> + Pg (X) P pdata<x) + Py (CE)
— —logd+ KL (pdata £ data; & 9) + KL (pg pdata; pg)

= —log4 + 2 -[JS(pdata || Pg)

* Provided that the discriminator (D) is optimal
* G-objective = minimizing the Jensen-Shannon (JS) divergence
* Many previous generative models used the KL divergence (a.k.a. Max. likelihood)
* KL divergence vs JS divergence?

e JS helps to capture sharper and clearer modes in the distribution
* But JS can cause a missing mode problem (“mode collapse”)

Algorithmic Intelligence Lab 13



GAN Training Algorithm: In Practice

* Training GANs via alternating updates between D and G

* Recall: G optimizes JS divergence when D is optimal
* Q: But how can we ensure that D is indeed “optimal”?
* Simplest practice: Just update D more (e.g., for k-steps) per each G update

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z1), ... z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z*) ... z(™} from data generating distribution
Pdata(T)-

e Update the discriminator by ascending its stochastic gradient:

ng% i [logD (:z:('i)) + log (1 - D (G (z(i))))] .

end for
e Sample minibatch of m noise samples {z(1), .. ., z(™)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

T

Vo_q%;log (1 - D (G (z‘”))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithmic Intelligence Lab * source : Goodfellow, et. al., Generative adversarial nets, NIPS 2014 14



GAN Training Algorithm: In Practice

* Alternative training between D and G
* Objective for D :

Tax [Exwpdata log Dy, () + E.np. log(1 — Do, (G, (Z)))]
d

* Obijective for G :
minE. ., log(1 — Do, (Go,(2)))

* In practice, directly optimizing the G-objective can be problematic

* Gradient vanishing: Especially when GG(z) looks “bad” to D (e.g., early of training)
e Learning via back-propagation becomes significantly difficult

log(1-D(G(x)))

3r 4

Gradients = 0 when /

G is too worse than D

4

. . L .
0 0.2 0.4 0.6 0.8 1
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GAN Training Algorithm: In Practice

* Alternative training between D and G
* Objective for D :

Tax [Ewwfpdata log Dy, () + E.np. log(1 — Do, (G, (Z)>)]
d

* Obijective for G :
n%in E.np, log(l — Dy, (Go,(2)))

g

* Non-saturating loss is practically more favorable in this respect

—log(Dy,(Go,(2)))

* This G-objective gives much stronger gradients in this scenario

log(1-D(G(x)))
-log(D(G(x)) | |

Stronger gradients when /0
G is too worse than D

0 02 0.4 06 038 1
D(G(x))
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Generated Samples with GAN

GAN could generate “sharper” and “clearer” images than previous approaches
* Most of the previous works suffered from “blurred”, unrealistic generations

Bedroom images Faces images ImageNet

* Then, what makes GAN be able to generate realistic samples”?

* GAN utilizes the function approximation power of neural networks
* Butitis also the cases for other models (e.g., Variational Auto-encoder; VAE)
* What else can be a possible explanation?

Algorithmic Intelligence Lab * source : Radford, et. al., Unsupervised representation learning with deep convolutional generative adversarial networks. 18



Difference with Previous Generative Models

* Maximum likelihood methods (= KL divergence minimization)

KL | 75) = [ pawal)tog 2228 g
x py(x)

° pdata(x) > pg(aj)

* When pdata(z) > 0,p4(x) — 0, the integrand grows quickly to infinity

* High penalty when generator’s distribution does not cover parts of the train data
* pdata(x) < pg('x)

* When pgata(z) = 0,p4(x) > 0, the integrand goes to 0

* Low penalty for generating fake looking samples

* KL divergence solution tends to cover all the modes

* Inverse KL divergence K L(py || pdata) te€nds to fit single mode

Algorithmic Intelligence Lab 19



Difference with Previous Generative Models

* Maximum likelihood methods (= KL divergence minimization)

pdata(x)
KL(pausa || p =/paaaslog—da:
(dtH 9) xdt() pg(x>

* KL divergence solution tends to cover all the modes
e Inverse KL divergence K L(p, || pdata) tends to fit single mode

e Jensen-Shannon divergence

Ddata + Pg
2

g

Js(pdata H pg) = KL (pdata, 9

* (A bit like a) combination of the two divergences
* Using JS-divergence instead of KL helps to generate realistic images [Huszar 2015]

Pdata KL(pdata H pg) JS(pdata || pg) KL<pg H pdata)
O
B

Algorithmic Intelligence  * source : https://www.inference.vc/how-to-train-your-generative-models-why-generative-adversarial-networks-work-so-well-2/ 20



Challenges in GANs

1. Training instability
* GANs are notoriously unstable to train, with much sensitivity to hyperparameters

* GAN as a two-player non-cooperative game [Salimans, et. al., 2016]
e The Nash equilibrium of such games can be extremely hard to achieve
* Reducing the D-objective can significantly increase the G’s, and vice versa

2. Mode collapse problem
* G can “collapse” to produce the same outputs to beat D
* G may easily fool D if it is good at making a single perfect image
* JSitself does not explicitly penalize such cases as much as KL

— - ag. I

i

Y % 57

-

Examples of the mode collapse problem in GAN

Algorithmic Intelligence Lab * source : Arjovsky, et. al., Wasserstein GAN, ICML 2017 21
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Conditional GANs

By default, the standard GANs are unconditional

* One cannot control the mode of the distribution to be generated

Conditional GANs (cGANs) aim to incorporate an additional attribute y

* (+) Controllable generation (e.g., class-wise generation)

* (+) Improved quality for complex generation tasks

G D

G D

\
00009 0000

Gscriminator D(xly) \

Mirza et al. (2014) formulated a cGAN objective by:
min max I:Ex’\“pdata log ng (xly) T Eszz log(]‘ o Ded (Geg (Z‘y)))}

Recall: Training objective for unconditional GAN [Goodfellow et al., 2014]:
min max |Ezp,,,, 10g Do, () + E.np. log(1 — Dg, (G, (2)))]

@nerator

G(zly)

00000
00000
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Conditional GANs: Auxiliary Classifier GAN (ACGAN) [Odena et al., 2017]

* Many works have been proposed then to better encode y
* e.g., Reed et al. (2016): Concatenate y to inputs for hidden features of D

* Odena et al. (2017): Auxiliary Classifier GAN (ACGAN)
* Modified D to have an auxiliary classifier for the class of both real and fake inputs

* D should preserve the information to reconstruct the class as well as “real vs. fake”

(X,.eaz (data))

( Xrake )

G

(€ (cass))  (Z (noise))

Conditional GAN
[Mirza et al., 2014]

Algorithmic Intelligence Lab

(real) (c=2)
A

[Xreal (data)] ( X fake J

(C (class)) (Z (noise))

ACGAN
[Odena et al., 2017]

* source : Basart , Analysis of Generative Adversarial Models, 2017 24



Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* The training objective function consists of two parts:
* GAN loss: the log-likelihood of the correct source, L g
Ls = Egnpgaa 108 Do, (2) + E.rp, log(1 — Do, (G, (2)))
= Eynpauia 10g P(S =real|z) + K., log P(S = fake|Gy, (2))

* Classification loss: the log-likelihood of the correct class, L~
Lo = Eonpaaa 108 P(C = c|@) + Eznp. cnp, log P(C = ¢|Go, (2, ¢)))

e D maximizes Ls + L¢c, while G maximizes —Ls + L¢
* Remark: L¢ is used not only for D, but also G
* Remark: There can be some balancing weight for both losses for better training
* j.e., Dand G maximize Ls + A1 L¢c and —Lg + A2 L, respectively

Algorithmic Intelligence Lab 25



Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* ACGAN could allow diverse & higher resolution images than previous cGANs
* The first cGAN approach that could scale up to the ImageNet dataset

1. Evaluation of cGAN conditioning via Inception accuracy
* Increased discriminability on Inception — Better conditioning
* Higher-res conditional generations via ACGAN improves Inception accuracy

16x16 32x32 Real

Fake (128x128)

Real

1) ~

7%

™

1" Fake +(64x64) +

Fake

32 64 128 256
image resolution

i
& g

Algorithmic Intelligence Lab * source : Odena et al., Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017 26



Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* ACGAN could allow diverse & higher resolution images than previous cGANs
* The first cGAN approach that could scale up to the ImageNet dataset

2. Comparison of multiscale structural similarity (MS-SSIM)
* MS-SSIM ranges 0.0 ~ 1.0; Higher MS-SSIM — perceptually more similar
* ACGAN achieves similar MS-SSIM to the training set on many of ImageNet classes

hot dog promontory green apple artichoke 1.0
MS-SSIM = 0.11 MS-SSIM = 0.29 MS-SSIM = 0.41 MS-SSIM = 0.90 .
s 08l Class-wise MS-SSIM
g V .o /
E 2 *e » * .
& S Fer e
s 0.6 %5
2 [TEw
n o~'. .
= e
2 04p ", Worst MS-55IM
S it of training data
B G oy 2
0.2 )R, >
.: ‘
T
) 062 07 05 08 Lo
diverse MS-SSIM: Lower is better ' ; ; ; - :

training data MS-SSIM value

Algorithmic Intelligence Lab * source : Odena et al., Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017 27



Conditional GANs: Conditional Batch Normalization (CBN)

* Conditional BN [Dumoulin et al., 2017, DeVries et al., 2017]
* Recent practice of designing cGAN generator instead of concatenating y
* Modulate Batch Normalization (BN) layers depending on the condition

* ldea: Predict the affine scaling parameters, 7 and 3 in BN, from ¥y

z=(y) - (SE5) + B(y)

ReLU(.) ReLU(.)
4 4
BN (Fi. lvi,BY) BN(F; . |vE+AyE BE + ABY) |«
£y i
Embed

Fi,c,.

t

Yy

Batch Normalization Conditional Batch Normalization

Algorithmic Intelligence Lab * source : de Vries et. al., Modulating early visual processing by language, NIPS 2017 28



Conditional GANs: Projection Discriminator

* Projection discriminator [Miyato et al., 2018]
* Recent practice of designing cGAN discriminator instead of feeding vy

* Miyato et al. (2018): projecting y into D-representation is very effective

Adversarial
loss D(z,y;0) = A(f(z,y;0))
! A : an activation function of design choice
——7—\ (" Inner * e.g., sigmoid for vanilla GAN
L % y pro?uct
o flz,y) ==y Volx) +(o(x))
— The discriminator is modeled by a inner-product
T (projection) of the class embedded vector y
£

Algorithmic Intelligence Lab * source : Miyato et. al., cGANS with Projection Discriminator, ICLR 2018 29



Conditional GANs: Projection Discriminator

* Projection discriminator significantly outperforms “concat” and “ACGAN”

35 Method Inception Score  Intra FID

—=— Projection
AC-GANs 28.5+.20 260.0

30 — ——(& t
0 i concat 21.1+.35 1412
3 25 projection 29.7+.61 103.1—|
.§ 20 *projection (850K iteration) 36.8+.44 92.4
Q.
8
P 600
500
10 s 5 400
00 10 20 30 4.045 2 2 200
iteration 1e5 2 g
a a 200
Inception score: higher is better A R
Intra (class-wise) FID: lower is better 00 100 200 300 400 500 0o 100 200 300 400 500 600
Concat ACGANs

FID for each class
* “Projection” is also more robust against mode-collapse than others

(@) AC-GANs (b) Projection

~z(noise) ~ z(noise) ) (@) Cocat b) Projection

(

(class)
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Wasserstein Distance

* Many heuristics have been proposed to alleviate training issues in GANs
* However, it was hard to explain why they actually work in general

* 1-Wasserstein distance (a.k.a. Earth Mover’s distance):
* A distance measure between two probability distributions

W(pdataapg) — inf E(x,y)wv HCE - yH
YEI(paata,Pg)
* Minimal amount of “work” to transform a distribution P to )

* Work? the amount of dirt in a chunk times the distance it was moved

* Example:

s Step [0] s Step [1] s Step [2] s Step [3]
€ 44 = 41 — | 41 :
P=3,P,=2P=1,P=4 % o H i -] ! . !
s 218 m B 21— B 21 B 21 m
_ _ _ _ o0 A | R N [y o] KCCimen] L
% =1,0=20=4Q=3 "{{ifinll mlinll ndR nH8
P, P, Py P P, P, Py P, P, P, P P P, P, P P
5 5 5 5
S ad 44 4 44
—_ 53‘ 3 A 3 34
W(P7 Q) =9 22 2 2 2
fl- 14 11 14
0- 0- 0- 0-

Q Q Q3 Q4

QA Q Q3 Qs

Algorithmic Intelligence Lab * source : https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan 33



Comparison between Wasserstein Distance and Other Distance Metrics

* Why Wasserstein? - When two distributions have no overlap
* |t still gives non-zero and smooth notion of the distance (and gradients)

* Example [Arjovsky, et. al., 2017]: Wasserstein vs JS (or KL)
* Let Z ~ UJ0,1], po be the distribution of (0, Z) € R?
* go(Z) = (0, Z) with 0, a single real parameter, and py is the distribution of gy(Z)

* Distance between two distributions are:
W (po, ps) = |6 s,
log2 iff#0 S.
JS — ) ~—
(Po || po) {0 020 S .
o it 60, T,
(po |l o) = K L(po || o) {O o K
S
* Parameter § can be learned on the Wasserstein distance :o
* Parameter 6 cannot be learned on JS or KL divergence %
~
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Comparison between Wasserstein Distance and Other Distance Metrics

* This example shows that there exist distributions that

* Don’t converge under the JS, KL, or inverse KL
* For the JS, KL, and inverse KL, there are cases where the gradient is always 0
* This is especially not good from an optimization perspective

* Do converge under the Wasserstein distance

* Easy to get similar results, if Pdata and Pg are on low-dimensional manifolds in
high dimensional space

Low dimensional manifolds in high dimension space can hardly have overlaps.
(Left) two lines in a 3-d space. (Right) two surfaces in 3-d space

Algorithmic Intelligence Lab * source: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan 35



Wasserstein Distance in GAN Objective

* Infimum over joint distribution 7y € II(pdata, Pg) is computationally intractable

* Using Kantorovich-Rubinstein duality [Villani, 2009]:

W(pdata; Pg) = SUP  Eonpyy, [F(2)] = Eanp, [£(2)]
1Fll <1

* The supremum is over all the 1-Lipschitz functions f: X — R
* Let [ is parameterized by w, then one could consider solving the problem

rgleav}é Eﬂ?NPdata [fw (:E)] o EZNPz [f’w (g‘gg (Z))}

* To enforce the Lipschitz constraint, clamp the weights to a fixed box
(e.g., W = [—0.01,0.01]¢, where ¢ is dimension of parameter w € W)

Algorithmic Intelligence Lab * source: WGAN and Kantorovich-Rubinstein duality https://vincentherrmann.github.io/blog/wasserstein/ 36



https://vincentherrmann.github.io/blog/wasserstein/

WGAN vs GAN

 Comparison of GAN and WGAN

* Discriminator (outputs probability of real or fake) becomes a continuous function
to help compute Wasserstein distance (with weight clamping)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z}), ..., z(™} from noise prior p,(2).
e Sample minibatch of m examples {x(!),... (™)} from data generating distribution
Pdata(T).

e Update the discriminator by ascending its stochastic gradient:

Z | | Lym e @) = LS o0(2O)
Vod% > log D (29) +1og (1- D (G (20)))] . Z}w:wvi’ o[fRzl:\EiD{oéfw,)gw) m 2iet Ju(g0(27))]
w < clip(w, —e¢, ¢)

1=

end for
e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:
1 - — =V 2ty fulge(2"))
Vo, — » lo (1—D(G (z(’)>>>. 96 O'm Lai=1 JwlJ0
%1 m ; 8 0 < 0 — o - RMSProp(6, gs)
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithmic Intelligence Lab 37



WGAN vs GAN

o lﬁl.ﬁﬁ r

(Left) WGAN vs. (Right) GAN with DCGAN archltecture Both produce high quality samples

(Left) WGAN vs. (Right) GAN with MLP generator.
Vanilla GAN does mode collapse, while WGAN still produces good samples

Algorithmic Intelligence Lab * source : Arjovsky, et. al., Wasserstein GAN, ICML 2017 38



Enforcing the Lipschitz Constraint of Discriminator

* WGAN uses the weight clamping to maintain Lipschitz constraint
* (-) Still naive, ad-hoc and heuristic
* (-) It often leads to significant optimization difficulties

* Two representative methods for the direct Lipschitz constraint on D

1. Gradient penalty on Wasserstein GANs (WGAN-GP) [Gulrajani, et. al., 2017]
* Use gradient penalty to maintain Lipschitz constraint

Esnpe |(IV:D(@)], — 1)°]
where & =cx + (1 —¢)G(2)

2. Spectral normalization for generative adversarial networks [Miyato, et. al., 2018]
e Control the Lipschitz constant of D by constraining the spectral norm per layer

Wsn (W) = W/a(W)
where (W) is the spectral norm of W

 Stabilizing GAN dynamics is still an open research topic

Algorithmic Intelligence Lab
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Large-scale Studies on Establishing GAN Practices

 Significant research efforts has been made to stabilize GANs
» Different GAN losses [Arjovsky et al., 2017; Mao et al., 2017; Berthelot et al., 2017]
* Regularization on D [Gulrajani et al., 2017; Roth et al., 2017; Kodali et al., 2017]

* Normalization [Miyato et al., 2018]

GAN DISCRIMINATOR LOSS

GENERATOR LOSS

MMGAN L™ = —E;.p, [log(D(z))] — E log(1 — D())]

E~pg

EE;;.\.\' —FE :log('l _ D(l‘))]

Tr~pg

NS GAN Ly = —Egzrpy[log(D(z))] — Eznp, [log(1 — D(#))]

L"?;SG’\N = _Ei""PQ lOg(D(l))]

WGAN L™ = —Ezmp, [D(2)] + Ezmp, [D(2)]

LA = —Espy [D(3)]

WGANGP Ly = LM 4+ ARz, [(||[VD(az + (1 — ai)||2 — 1)?]

L:\:;’C-.\N(Z-l" — _Ei‘-vpg [D[l‘).

LS GAN LM = —Earpy [(D(z) — 1)?] + Eznp, [D(2)?]

L"l(‘}SGAN = _IEi’VPg (D(I - 1))2]

DRAGAN LN = LN + AR p 4 a(0.0) [([[VD(2)]]2 — 1)?] LGN =Ezp, [log(l — D(2))]
BEGAN  LE™ = B,y [llz — AE(@)[[1] — keEompy [||l& — AE@)[[1]  LEO = Bz, [|[& — AE()]]1]

* Then, which method should we actually use to train our GANs?
* How to choose a proper combination of hyperparameters?
* Should one use a completely different method for different datasets?

Algorithmic Intelligence Lab
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Large-scale Studies on Establishing GAN Practices

Significant research efforts has been made to stabilize GANs

Then, which method should we actually use to train our GANs?
* How to choose a proper combination of hyperparameters?
* Should one use a completely different method for different datasets?

Two large-scale studies empirically evaluate various existing GAN techniques
* [Lucic et al., 2018] “Are GANs Created Equal? A Large-Scale Study”
* [Kurach et al., 2019] “A Large-Scale Study on Regularization and Normalization in GANs”

TL;DR: No evidence that “non-saturating loss” < most of existing methods

mx [Eonpg,,, 108 Do, (2) + Eznp, log(1 — Dy, (G, (2)))]
d
Hglin E.p. —log(Dg,(Ga,(2)))

1. ... Given that there could be sufficient hyperparameter search
2. “Spectral normalization (SN)” is the only that showed consistent gain

Algorithmic Intelligence Lab

41



A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

* Regularization/normalization
* Gradient penalty [Gulrajani et al., 2017] (GP)
* DRAGAN [Kodali et al., 2017] (DR)
* Spectral normalization [Miyato et al., 2018] (SN)
* LayerNorm [Ba et al., 2016] (LN)
* BatchNorm [loffe & Szegedy, 2015] (BN)
* L2 regularization (L2)
* Loss functions
* Non-saturating loss [Goodfellow et al., 2014] (NS)
* Least-squares loss [Mao et al., 2017] (LS)
* Wasserstein loss [Arjovsky et al., 2017] (WGAN)
* Hyperparameter choices: (a) Fixed or (b) Bayesian optimization

PARAMETER DISCRETE VALUE PARAMETER RANGE LoG
Learning rate o« {0.0002, 0.0001,0.001} Learning rate @ [107°,1072]  Yes
Reg. strength A {1,10} A for Lo [1074,10%]  Yes
T -1 102 .
(B1, B2.mais)  {(0.5,0.900,5), (0.5,0.999, 1), Aformon-L,  [107,107  Yes
(0.5,0.999, 5), (0.9,0.999,5) } B1 X Ba [0,1] x [0,1] No
Table 1. Hyperparameter ranges used in this study. The Cartesian Table 2. We use sequential Bayesian optimization (Srinivas et al.,
product of the fixed values suffices to uncover most of the recent 2010) to explore the hyperparameter settings from the specified
results from the literature. ranges. We explore 120 hyperparameter settings in 12 rounds of
optimization.
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A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

1.

Effect of different regularization and normalization

* All the models are trained with non-saturating loss (NS)
* Compared the FID distribution for top 5% models over HPs (lower is better)

55 Dataset = celebahql28

50

a5 4
T
2 40
(1
N =
+
25
O L o) & N D S
& © & Q 9 % Q
Dataset = celebahql28
[a)
= 10°
10° 10*

Algorithmic Intelligence Lab

102

180
160
140
120
100
80
60
40

Dataset = Isun-bedroom

= 1
T e
= -
=
£ 8 P F s> &

Dataset = Isun-bedroom

10* 10?
Budget

43



A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

1. Effect of different regularization and normalization
Remark 1. None of them fully address the stability issues
Remark 2. Spectral normalization (SN) is generally a better practical choice

55 Dataset = celebahq128 Dataset = Isun-bedroom
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A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

2. Effect of different training loss
Remark 1. Non-saturating loss (NS) was enough to achieve good FIDs
Remark 2. SN still consistently improves FID, while GP makes some mixed conclusion

55 Dataset = celebahql28 200 Dataset = Isun-bedroom
180
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Model
e NS
== NS SN
Q 192 =« NSGP5
2 == WGAN SN
x -y = WGAN GP 5
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* Data augmentations for GANs
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Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

Example: Rigid transformation symmetries
* Translation, dilation, rotation, mirror symmetry, ...

* Forms an affine group on pixels: [51] —> [01] + [al a2] [u1]

Translation Dilation Rotation Mirror symmetry

Algorithmic Intelligence Lab *source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf 47
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Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

DA for GANs? (or for generative modeling in general?)
* Not much explored until very recently [Zhang et al., 2019]
* Why? Current DA practices for discriminative modeling might by too strong
* How can we incorporate the distribution shifts P(x) — P(7T'(x))?
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Consistency Regularization for GANs [Zhang et al., 2019]

* How can we incorporate the distribution shifts P(z) — P(T(x))?

* Naive augmentation of real images would shift the data distribution
P(x) P(T(x))

* Zhang et al. (2019): Consistency regularization for GANs (CRGAN)
* Enforcing only “consistency” can effectively incorporate 7'(x)

Image space Manifold space Semantic feature space

e & B

B e -~ -.4\.
(0@ (- &

e e

Algorithmic Intelligence Lab

Before
consistency

After
consistency
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Consistency Regularization for GANs [Zhang et al., 2019]

* Enforcing consistency can effectively incorporate P(z) — P(T(x))

* Training data is not directly augmented by T, but only consider D(x) ~ D(T(x))
* D should learn representation that is invariant to T

Ler = ||D(x) = D(T(2))|,
O =Lp+ AL, LY =Lg.

Algorithm 1 Consistency Regularized GAN (CR-GAN). We use A = 10 by default.

Input: generator and discriminator parameters ¢, #p. consistency regularization coefficient A,
Adam hyperparameters «, (31, 32, batch size M, number of discriminator iterations per gen-
erator iteration Np

1: for number of training iterations do
2: fort=1,...,Npdo
3 fori=1,....M do

4: Sample 2 ~ p(2),  ~ Pgaa(T)

5: Augment x to get T'(x)

6: L& « |D(z) - D(T(z))||"[¢— Only real images are augmented
7: LY « D(G(z)) — D(x)

8: end for ‘ .

9: Op « Adam(L M (L)) + ALE), o, By, Ba)

10: end for ]

11:  [Sample a batch of latent variables {z"}1, ~ p(2) ) ) )
12: \ﬁc — Adam(& S (=D(G(2))), a, Br, Ba) G is trained in the standard way

13: end for
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Consistency Regularization for GANs [Zhang et al., 2019]

* Does CR really learn differently than simple augmentation?

- GAN 50 - GAN
=== GAN w/ Aug. === GAN W/ Aug.
=== GAN w/ Cons. Reg. 45 === GAN w/ Cons. Reg.

Test accuracy
© o o
N o

o«
[

o
i

25 —

°
o

0 1000 2000 3000 4000 20 0 1000 2000 3000 4000

Epochs Epochs

* Both CR and Aug. prevent overfitting of the discriminator
* However, CR is the one that could only meaningfully improve FIDs

* Which augmentations should we use?
* The choice of augmentation does matter in GAN training
* For CR, a simple choice of “Random shift & flip” worked best

Metric | Gaussian Noise Random shift & flip Cutout Cutout w/ random shift & flip
FID 21.91+0.32 16.04+0.17 17.10+0.29 19.46+0.26

Table 3: FID scores on CIFAR-10 for different types of image augmentation. Gaussian noise is the
worst, and random shift and flip is the best, consistent with general consensus on the best way to
perform image optimization on CIFAR-10 (Zagoruyko & Komodakis| 2016).

Algorithmic Intelligence Lab
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Consistency Regularization for GANs [Zhang et al., 2019]

* CR surprisingly stabilizes GAN training on various existing practices

27.- SN = True | loss = Hinge 30- SN = True | loss = NS 140- SN = True | loss = WAS
26- === 28 — 120- ?
25-E ! —_— 100+
24- 26- —— 80
2 23.- 24-
w 60 - S
22- 22 w0
21- 1 —————
20- 20- — 20- —_—
=
19' 1 1 1 1 1 18' 1 1 1 1 1 0' 1 1 1 1 1
W/0 GP DR JSR Ours W/0 GP DR JSR Ours W/0 GP DR JSR Ours

* CR further improves state-of-the-art BigGAN training

Dataset SNGAN SAGAN BigGAN BigGAN* CR-BigGAN*
CIFAR-10 17.5 / 14.73 20.42 11.48
ImageNet 27.62 18.65 8.73 1.75 6.66

Comparison of FIDs (lower is better)

CR-BigGAN
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Recall: How can we incorporate the distribution shifts P(z) — P(T(x))?

* Then would it be just enough with CR for GANs?
* Still, CR does not perfectly prevent the shifting issue in GAN
* For certain augmentations, e.g., CutOut, CR often make “leakages”

(a) 8 x 8 cutout. (b) CR samples. (c) bCR samples.

* Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal ”D(l) - D(T(l)>”2
Lfake — ”D(G(;)) o D(T(G(;)))HQ
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal < ||D(l) — D(T(

£))|?

Lke < |D(G(2)) — D(T(G(2)))]]?

re rFo aa

{D(T(x) ~ - D)} {DTX) - DX} {D(G@) - DTG}

D / D

T ‘FT(G(z»
G

G
|

T(X) X z TX) X
Fa— P
(1) CR-GAN (2) bCR-GAN

Algorithmic Intelligence Lab

Algorithm 1 Balanced Consistency Regularization (bCR)

Input: parameters of generator # and discriminator 6 p,
consistency regularization coefficient for real images Ajeq
and fake images Apke, number of discriminator iterations
per generator iteration Np, augmentation transform 7
(for images, e.g. shift, flip, cutout, etc).
for number of training iterations do

fort =1to Np do
Sample batch z ~ p(z), & ~ prea()
Augment both real 7'(«r) and fake 7'(G(z)) images
Lp + D(G(z)) — D(x)
Lrea < || D(w) — D(T'(x))||*
Like + | D(G(2)) — D(T(G(2)))]?
HD — Adalnoptilnizer(LD + )‘l’ealLreul + /\lekeLfake)
end for
Sample batch = ~ p(z)
La + —D(G(z))
O < AdamOptimizer(L¢)
end for

G is still trained in
the standard way
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“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Zhao et al. (2020): Balanced Consistency regularization (bCR)

* Despite its simplicity, bCR could achieve state-of-the-art BigGAN training

FID
N
[N

18

16
W/0 GP
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DR

JSR
methods

CR

= W/0

= GP

DR

=)SR

CR

bCR (ours)

bCR (ours)

Models CIFAR-10 ImageNet
SNGAN 17.50 27.62
BigGAN 14.73 8.73
CR-BigGAN 11.48 6.66
ICR-BigGAN (ours) 9.21 5.38
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

Limitation of CR: Fundamentally hard to incorporate stronger augmentations

Manifold space

Example: Color jittering
* The “redness” is not helpful to improve FID with CR

* Forcing CR for such a stronger augmentation N /\
might be too restrictive for D representation T i..

How can we incorporate stronger augmentations for GANs?

FIp . translation redness
= I Augment: R+F

E [ Consistency
LR T e ———
e ~N
L
| <
o
—

) . v

Original Image Translation Redness N
o 0T 02 ok 0?9 0%, 0P o™
A_aug A aug

Algorithmic Intelligence Lab * source: [ZhaoZ et al., 2020b] Image Augmentations for GAN Training, 2020. 56



Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Is CR really necessary for GANs to incorporate data augmentations?

* How can we incorporate stronger augmentations for GANs?

* Two concurrent works propose a “even simpler” scheme for GANs
* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”
* [Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”

update

Latents Reals Latents a x—’:-]-:(;c)‘:—’ D(T(x)) Latents Reals Latents
o] ma Mol | a i
s > 1(GE)—> D(T(G(z))) : —
Aug Aug - W | Aug | | Aug | | Aug |

] i i . 7 1 7
LD | | D B uPeye lIl)||lDl|

! ——l —l .
=@ | ()T e ¢ e | e, —+D(T(G(z)) (/&) f®) /&)
&) (ff))(( l.,»))(fi ) f)) P s TGl € { ) | G { ) G ¢ )
G loss ) C D loss . o = (i) (G loss) ( D loss )
Balanced CR (bCR) DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

How can we incorporate stronger augmentations for GANs?

Two concurrent works propose a “even simpler” scheme for GANs

* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”

[Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”

Idea: Simply augment every input before D, even when G is trained

* No CR needed anymore, and accept stronger augmentations without leakages

Latents Reals Latents
G | G |
Aug Aug
LD | | D B

[ =1 T :
C@ (FD) G- @ -
(G loss) (

D loss

Balanced CR (bCR)

Algorithmic Intelligence Lab

Latents

x_,:—j"_(;c}':_’ -p D(T(x)) Latents Reals
Lm0 D > s f}
i 1(G(z)i—> D(T(G(2)))

—> 4 3 - &
|Allg||Aug||Aug|
update | D | | D |

) 1) |
_________ — D(T(G(z)) (—f& -f®) f=)
z—> —T(G(z))—> (fi D le ) Cfl )
fmmmmee = (iii) (G loss) ( D loss )

DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Two concurrent works propose a “even simpler” scheme for GANs

* Idea: Simply augment every input before D, even when G is trained

* Then, how could this approach have not been explored so far?
* This requires a differentiable implementation of T'(+) for training G
* Example: Non-saturating loss should minimize E,[— log (D(T(G(z)))]

* Nevertheless, most of the previous implementations of T were non-differentiable
e ...as they were rather considered as pre-processing steps

* |n this respect, the “differentiability” of T is becoming increasingly important

E ______ update '
Latents Reals Latents . X —bi_]:(_ x_)j:» D(T(x)) Latents }])Keals Latents
[ G | [ G | N R e D |— s |

: 4 —hT(G(z)).—b D(T(G L I ]
Aug Aug e (G | Aug | | Aug | | Aug |

, , . 1 ! 7
|D|| D |= update |?||1D1|
x —f®))((x— 1 —=x)) ((x— 1 --------- — D(T(G(z)) (-fix —f)) ~f(=
(f()) (fc D D(f( ) ( >) . TG ) @ ) I
(G loss) C Dloss ) E _______ (i) (G loss) ( D loss )

Balanced CR (bCR) DiffAug ADA
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

* Which augmentation should we use?
* Key point: There should be no leakage of augmentations

* Example: Random 90° rotations as T
* Assume X: generated distribution and y: target distribution
* Q: ADA matches 7x = T y: then, does it always imply Xx = y?
* A: No, imagine when x goes like “E” below — augmentation leakage

Aug. generated 7 x Aug. real Ty
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?
* Key point: There should be no leakage of augmentations

Example: Random 90° rotations as 7

The prob. of
executing T

Idea: The leakage of any 7 can be controlled by settingp € [0, 1]

| it

5-‘5"'.; - ‘ — . Bo—.— 5 T ; C. .#,‘.‘.,_._. ! 5
p=075 08 085 090 095 100 p=075 0.80 0.85 0.90 095 1.00 p=075 08 085 090 095 100
(a) Isotropic image scaling (b) Random 90° rotations (c) Color transformations
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?

* Key point: There should be no leakage of augmentations
The prob. of

Idea: The leakage of any 7 can be controlled by setting p € [0, 1] executing 7

ADA also proposes a heuristic to adaptively set p in training by observing 7;,

D(x)

E[D train] - ]E[D Validation]
IE:"[Dtrain] - E[D generated]

* 1, = 0: No overfitting / r,, = 1: Complete overfitting
* p of the augmentation is initially setto 0

* Increase/decrease p when 1, is low/high, resp. | [~ Roel — Gomntnd — Vil deiom = BiatFID>
t=0M ZII\rI 4ll\/i 6ll\/I 811\4 ldNI l?_'M 14M

A &b N o N & o
1 1 1 1 1 1
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

» ADA successfully incorporate wider augmentations than bCR

p=0 p=01 p=02 p=03 p=05 p=0.2.8

* ADA works significantly better than bCR when # sample is small

FID ————T FID Dataset | Baseline ADA +bCR
—— ADA (Ours) 1k | 100.16 21.29 22.61
50 1 —— bCR 100 5k | 49.68 1096 10.58
—— ADA+bCR 10k | 30.74 8.13 7.53

FFHQ

30k | 1231 546  4.57
70k 528 430 391
140k 371 381 3.62
1k | 186.91 43.25 38.82
5k | 96.44 1695 16.80
10k | 50.66 13.13 12.90
30k | 1590 10.50  9.68
100k 856 926 873
200k 798 922  9.03

501
20 A

10 20-

LSUN CaAT

104

Ik 2k Sk 10k 20k SOk 140k 1k 2k Sk 10k 20k 50k 200k

(a) FFHQ (256 x 256) (b) LSUN CAT (256 x 256) (c) Median FID
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Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

* ADA significantly improves GAN training especially on limited-sized datasets

D Method Scratch Transfer | + Freeze-D Method Unconditional Conditional
ataset etho FID le1%3 191133 ]E([BB FID | ISt FID | ISt
METFACEs  Baseline | 5726 3566 3.16 2.05 ProGAN 15.52 8.56+006 | — -
ADA 1822 241 0.81 1.33 AutoGAN 12.42 8.55+010 | - -
Baseline | 97.72 89.76 18.07 6.94 BigGAN - - 14.73 9.22
BRECAHAD -
ADA. 1571 288 3.36 1.91 + Tuning _ _ 8.47 9.07+0.13
AFHQ CAT Baseline 51_% 1.54 1.09 1.00 MultiHinge _ _ 6.40 0.580.09
ADA 355 0.66 0.44 0.35
- FQ-GAN - - 5.59+012 8.48
Baseline | 19.37  9.62 4.63 2.80
AFHQDoG 740 116 1.40 112 Baseline 8.32+009 9.21+009 | 6.96+041 9.53+0.06
Baseline 348 077 0.31 0.12 + ADA (Ours) 5.33:035 10.02:0.07 | 3.49:0.17 10.24:0.07
AFHQ WILD ADA 3.05 045 0.15 0.14 + Tuning (Ours) 2.92:005 9.83:004 | 2.42:0.04 10.14:0.09
(a) Small datasets (b) CIFAR-10
METFACES (new dataset) BRECAHAD AFHQ CAT, DoG, WILD (5122) CIFAR-10
1336 img, 10242, transfer learning from FFHQ 1944 img, 5122 4739 img 50k, 10 cls, 322
%, v __J
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Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

* Previous GANs could produce sharp images, but only at small resolutions
* It was still unstable on higher-resolution training despite some progress

* Karras et al. (2018): Progressive growing of G and D (Progressive-GAN)
* Training GANs to directly generate high-res image might be too difficult!
* Progressive-GAN starts from learning low-resolution images
* It adds new layers to G and D during training for up-scaling into higher-resolution

G Latent Latent Latent
v
ll:]
; [ )
L ]
H i [ ]
: : - .
H ] L J
§ | 1024x1024 |
. BR. - B
. ‘Reals . {Reals . ;Reals
D b o | 1024x1024 l
8 E : ll l'
o [ ]
1 [ )
g { ]
8x8 N —
Training progresses >

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 66



Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

* Smooth fade-in to the new layers during up-scale training
* To prevent “sudden shocks” to the pre-trained smaller-resolution layers

* Example: Upscaling transition (b) from 16 x 16 to 32 x 32 ((a) — (c))

16x16 16x16
G
.
l ) | 32x32 |
[ 32x32 | |
R

il

toRGB toRGB toRGB toRGB
l-avra
R & i
+ ) +
fromRGB fromRGB fromRGB
D

[ 32x32 | [ 32x32 |

fromRGB IEI @
l-u;v a
[ 16x16 |
(b)

L.

(

e Simply treat the higher resolution like a residual block
* The fade-in weight a increases linearly from 0 to 1 during training

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 67



Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

1024x1024 images generated using the CELEBA-HQ dataset
https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

H

Mao et al. (2016b) (128 x 128)  Gulrajani et al. (2017) (128 x 128) Our (256 x 256) R et -" =S

Visual quality comparison: LSUN bedroom LSUN other categories generated image (256x256)

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 68
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Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2019]

* Previous GANs often failed to capture geometric or structural patterns

e Using only convolutional layers may be computationally inefficient
* Especially for modeling long-range dependencies in images

 Self-Attention GAN (SAGAN) [Wang et al., 2018]

* The non-local model (i.e. self-attention module) of for both G and D
* To efficiently model the relationships between spatial regions

i o

— : attention between regions

Algorithmic Intelligence Lab * source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019 69



Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2019]

* The self-attention module of SAGAN

f(x)
transpose 1 )
convolution Ixlcony ‘ ’/ 8
feature maps (x) p | SN i1
e B x(C"x N 2 ...,.l_i
B T e® |
| lxllzlmv ] N
B x(CxN .
Bx(C'x N 6j,’ifori:17'°'7N
J = 17 Ty N

e The Image features are first transformed into two feature spaces.
flz) =Wz, g(x) = Wy
* Then calculate the attention.
5., = exp(s;;)
3t T SN
> _im1 exp(sij)

» [j,: indicates the extent to which the model attends to the i th location when
synthesizing the j th region

, where s;; = f(z;)" g(z;)
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Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2019]

* The self-attention module of SAGAN

f(x)

B x N x N
transpose .
convolution Ix1cony | attention
feature maps (x) ; | N map
I II | BxC"xN qg soTtmax self-attention
[ e® | ] feature maps (0)
Ix1conv - |
BxCxN = | ] h
B X Cl % N IxIconv B C N
X X
N
IxIconv _1_
BxC"x N

* Here the output of the attention layer is:
N
0j = Zﬁjﬂ-h(xi) , hix;) = Whay, v(x;) = Wy,
i=1
* |n addition, multiply the output of the attention layer by a scale parameter and add
back the input feature map (as similar as Residual block).

Yi = Y0; + X
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Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2019]

* SAGAN improves upon state-of-the-art class-conditional ImageNet generation

Model Inception Score | Intra FID | FID
AC-GAN (Odena et al., 2017) 28.5 260.0 /
SNGAN-projection (Miyato & Koyama, 2018) 36.8 92.4 27.62*
SAGAN 52.52 83.7 18.65

Table 2. Comparison of the proposed SAGAN with state-of-the-art GAN models (Odena et al., 2017; Miyato & Koyama, 2018) for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially released weights.

Visualization of generated samples & their attention maps

 Comparison between Self-Attention and Residual block in GANs
* Ablation on the features index where the blocks added

Model no SAGAN Residual

attention [ feats | featis | featsz | featss | feats | featis | featss | feates

FID 22.96 22.98 22.14 18.28 18.65 42.13 22.40 27.33 28.82
IS 42 .87 43.15 45.94 51.43 52.52 23.17 44 49 38.50 38.96

The improvements depend not only on residual connections, but also on attentions
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

e BigGAN is a holistic approach of recent techniques for training GANs

* Current cGAN techniques can be successfully scaled up to generate
high-resolution, diverse samples from complex datasets such as ImageNet
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

* A holistic approach of previous GAN techniques
1. Based on SAGAN [Zhang et al., 2019] + Spectral normalization [Miyato et al., 2018]
2. Class-conditional modeling
* G: Class-conditional BatchNorm [Dumoulin et al., 2017]
* D: Projection discriminator [Miyato et al., 2018]

* Several further techniques needed to stabilize the large-scale training
1. Shared embedding of y across multiple layers
2. Skip connection (residual) of the latent variable
3. Orthogonal regularization weight matrix

Rg(W)=BI|WTW e 1 - D)}

/4 \
] - 1
' Shared embed !
| ey |
BigGAN = | SAGAN + SN = Con(:!ltlor\al BN £a  Skip connection | |
' Projection D I
! Orthogonal reg. :
| |
| |
l\ Baseline Conditioning Stabilizing ,}

Scale up
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

* Shared embedding of class information
* Instead of having a separate layer at the end for embedding [Miyato et al., 2018]
* Linearly projected to each layer’s gains and biases [Perez et al., 2018]

e Skip connections (skip-z) from z across multiple layers of G
e Allows 2 to directly influence the features at different resolutions

4 Class

=

[ Linear ]
— 4x4x16¢ch

skip connection

shared embedding

[ Nondocal |

T ] -

Image

The BigGAN architecture
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BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. | Itr x10° FID IS

256 | 64 815 SA-GAN Baseline 1000 18.65 52.52

512 | 64 815 X X X 1000 15.30 58.77(L1.18)

1024 | 64 815 X X X 1000 14.88 63.03(£1.42)

2048 | 64 81.5 X X X 732 12.39 76.85(£3.83) | | >cale up
2043 | 96 1735 X X X | 205(£18) | 9.54(£0.62) | 92.98(£4.27)

2048 | 96 160.6 7 X X | I85(£11) | 9.18(£0.13) | 94.04(£1.32)

2048 | 96 583 7 7 X 152(£7) | 8.73(£0.45) | 98.76(x2.84) | | Stabilize
2048 | 96 583 7 7 7 | 165(£13) | 8.51(£0.32) | 99.31(%2.10)

2048 | 64 713 7 7 7| 371(£7) | 10.48(£0.10) | 86.90(+0.61)

* Increasing the batch size by 8x improves the state-of-the-art IS by 46%
* Increasing the width (# channels) by 1.5x leads to a further improvement

* Truncation trick could further fine-control FID
* Trade-off between variety vs. fidelity
* Simply truncate the variance of the latent variable

; A

Variety

— -
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Interpolation on the latent space of GAN yields smooth, but non-linear changes
e Features not in both end-points appear along the interpolation path

CelebA-HQ
1024 x 1024

Latent space interpolations

Latent space interpolations with Progressive GAN

* The input latent space must follow the probability density of the training data,
and this leads to some degree of unavoidable entanglement

e Karras et al. (2019): Intermediate latent space representing a “style”
» Significantly relaxes the restriction, and allowed to be disentangled
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

» StyleGAN proposes to use a non-linear mapping network f : Z2 — W
* Implemented using an 8-layer fully-connected neural network

Random vector
(Latent Code)

Normalize

Mapping
Network

512X1

Y

512X1

(a) Distribution of (b) Mapping from (c) Mapping from
features in training set Z to features W to features

Illustration of disentanglement

* Direct mapping from Z to meaningful features might be too complex

* Mapping from )V to the features, on the other hand, can be more simpler

Algorithmic Intelligence Lab
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Adaptive instance normalization (AdalN)
* Motivated by the instance normalization [Huang et al., 2017]

AdaIN(x;,y) = ¥s.i

* v = (Y5, Vp) is called by a “style”
* A learned affine-transformation of w € W
* Controls high-level attributes (e.g., pose, identity of face images)

X; — p(Xq)

o(x;)

+ ¥Yb,is

* Applied after all the convolutional layer in the synthesis network g

Latent

Code

Normalize

v

512X1

w

Synthesis
Network 9

[Const 4x4x512 ]

|_Upsample |

AdalN

. 8x8

<
<

1 é'xq‘s |

P«

v

1024x1024

512;(1 l—
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w| 1x512

transformation

[ Learned affine J

n channels
o]
2 X €8
i T 3
=% <

2xn

Ys,i

Normalize channel
(by its mean and variance)

NIepy

; Scale and bias

style +——

Yu.i

channel

AdaIN(x;,y) = Y.

X; — p(x;)

O'(Xl') +yll.i?
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Explicit noise inputs for stochastic variation
* Single-channel images of Gaussian noise
* Aims to control the stochastic details, e.g., freckles, hair of face images

* A noise channel n is fed to every layer of the synthesis network g
* Broadcasted across features with learned per-feature scaling factors B

s(xi,n) =z; + B; - n

Synthesis
Network Noise
Latent
Code : | Const 4x4x512 |« Bl
Normalize LBer
B
~A—> +)< Learned per- |
channel scale
AdalN |
S
w
FA—> +)€ B [«
AdalN
8x8‘
Y
v ; —A—> 1024x1024}« B |«
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StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

FID
 StyleGAN improves state-of-the-art in terms of FID 10 o
9 — Style-based (F)
Method CelebA-HQ FFHQ .
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25 L
C + Add mapping and styles 5.34 4.85 6
D + Remove traditional input 5.07 4.88 5 .
E + Add noise inputs 5.06 4.42 §Fuul |
F + MIXIHg regularization 5.17 4.40 40 5M ‘IOM I5M 20M 25M

* Better interpolation properties, and disentangles the latent factors of variation

/|
Source B

i

i il
=
|~

F T |
.

Coarse styles from source B
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): Some buggy-artifacts in StyleGAN samples
* Blob-shaped artifacts found in most of StyleGAN images (and hidden features)

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated
images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

* StyleGAN2 includes several design modifications to address this issue

Configuration FFHQ, 10241024 LSUN Car, 512384
' FID | Path length | Precision T Recall 1 FID | Path length | Precision T Recall 1

A Baseline StyleGAN [24] 4.40 2121 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514

Config A with large networks 3.98 199.2 0.716 0.422 - - - -
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

* Blob-shaped artifacts found in most of StyleGAN images (and hidden features)
1. The anomaly starts to appear around 64X64 resolution
2. It becomes progressively stronger at higher resolutions

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated

images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

* If so, why the discriminator could not detect those artifacts? | Up:mple |
* Karras et al. (2020a): AdalN operation can be problematic | C°“3"3 '___
e AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features o]
relative to each other %S
* Hypothesis: they “sneak” some information past AdalN £l
(a) StyleGAN

Algorithmic Intelligence Lab 83



StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features relative to each other

* Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

* Generator architecture revisited = No artifacts anymore!

1. Bias outside the style block

* StyleGAN applies bias & noise
“within” the style block

* Inversely proportional impact
to the current magnitude

* This design is more predictable

Mod std
Upsample
w3

- A
~ Y

2. No norm/mod for means
* |t was possible after (1) is made

* Much simplifies the design £l ' @
2| by > (D€
2
: by )\f B
(b) StyleGAN kaelailed) (c) Revised ar.é'hiteclure
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately

* This can destroy any magnitude information in the features relative to each other

* Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

* Generator architecture revisited = No artifacts anymore!

3. Weight de-modulation
* A “weaker notion” of AdalN

e AdalN is originally for removing
the effect of input modulation

* StyleGAN2 instead implement these
“Mod + AdalN” by weight re-scaling

0
u"‘ijk

I Y 2
Wijk = le’jk/\/E :u"z’jk T €,
i,k

Algorithmic Intelligence Lab

Si * Wijks

9

Wy — Conv 3x3

b, >D€ (B]
| Upsample |

w3 —>| Coml' 3x3 |

by > (B]

wy—>»  Conv 3x3 |

b, )i( E,

(c) Revised architecture

a

Wy

[Demod>» Conv 3x3 |

b: w B
i

Mod | [ Upsample |
1 1

[Demod»| Conv3x3 |

by ‘- B

Wy

|Demod}-)| Conv 3x3 |

>

(d) Weight demodulation
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

Latent z € Z

 Path length regularization o]
* Recall the mapping network f : Z — W netort /

* Prior: a fixed step in W results in a fixed-sized change in g(w)

2
Ew y~ar(0,1) (HJE;CYHQ - a)

c W ~ f(z)- y: random image
o Jw = Jdg(w)/Ow: The Jacobian matrix

* Improved architectural design
» StyleGAN follows simple feedforward designs T2 ] [256:256 |
* StyleGAN2 considers better architectural choices ®eB 2656 |

o
[T ][ 512%512 ]

v
RGB |- 512x512 | fb].

| Up | [1024x1024 |

v
{RGB [H 1024x1024 |

* Skip connections for G
* Residual network design for D

D original D input skips D residual IRGB > [1A<1024] |Down| [1024x1024 |
FFHQ FID PPL FID PPL FID PPL Do v E
fRGBP»| 512x512 |
G original 432 265 418 235 358 269 Dowa] ) | | 512512 |
G output skips | 4.33 169 377 127 3.31 125 RGBJ>{ 256+256 | @ﬁm |
G residual 435 203 396 229 379 243 — 1

(b) Input/output skips (c) Residual nets
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StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» StyleGAN2 successfully removes the buggy-artifacts of StyleGAN
* Weight de-modulation significantly improves the recall of generations
e Simply using larger StyleGAN could not be comparable with StyleGAN2

Configuration

FFHQ, 10241024

LSUN Car, 512384

FID | Path length | Precision 1 Recall 1 FID | Path length | Precision 1 Recall 1
A Baseline StyleGAN [ 4] 4.40 212.1 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514
Config A with large networks 3.98 199.2 0.716 0.422 - - - -
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

* Karras et al. (2021): Still, some buggy-artifacts in StyleGAN2 latent space
e Texture striking problem in most StyleGAN2 images
* Textures (or details) appear to be fixed in pixel coordinates

StyleGAN2 StyleGAN3 (Ours)

A

Random latent walk using directions from StyleCLIP, GANSpace, and SéFa.

» StyleGAN3 includes several design modifications to address this issue
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

* Current GANs do not synthesize images in a natural hierarchical manner
1. Previous coarse features control the “presence” of finer features

2. Yet, such details to be fixed in pixel coordinates
StyleGAN2 Ours StyleGAN2 Ours

<— latent interpolation — <— latent interpolation —

e =3
HEE ¥

Central

Averaged

* Why? Unintentional positional references drawn on the intermediate layers
* Faint after-images of the pixel grid from non-ideal up-sampling (e.g., nearest)
* Pointwise application of non-linearities (e.g., ReLU)

* Goal: Continuous equivariance to sub-pixel translation (& rotation) in all layers
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

* Nyquist-Shannon sampling theorem [Shannon, 1949]
* Regular, discrete signal can represent any continuous signals of frequencies 0- s /2

e Whittaker-Shannon interpolation formula [Shannon, 1949]

* Ps

S : “sampling rate”

—-~

yA Z

2(x) = (¢s * Z)(x), and Z(x) =1, © z(x)

sin(7x)

¢s(x) := sinc(sxg) - sinc(szy), where sinc(z) =

(@) = 3 o — (X + 1)/

Xez2

X
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

e Continuous representation of network layers
* A neural network operation F works on a discrete feature map: Z' = F(Z)
 Consider its continuous counterpart, z" = f(z), from the correspondence of z & Z

f(2) = ¢y *F(III,02) < F(Z2) =y O f(¢s * Z)
(a) (b)
* ..aslong as both (a) and (b) are band-limited (to s/2 and s'/2, resp.)

“Equivariant” network layer (w.r.t. a spatial transformation t)?

1. fot=tof (commute)inthe continuous domain
2. f (and t) must not generate frequency above the output bandlimit of s'/2

Four operations in ConvNets: Convolution, Up/down-sampling, and Nonlinearity
* Here, we primarily discuss on the case of translation equivariance
* See the full paper for additional tricks to handle the rotation equivariance
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 1: Convolution—F.,,,(Z) = K * Z
* Consider a discrete kernel K with sampling rate s

feonv(2) = ¢ * (K x (UL ®2)) = K x (¢ * (I © 2)) = K * 2

Commutative 2

* Introduces no new frequencies — the bandlimit requirement fulfilled
e Convolution commutes with translation in the continuous domain

Case 2: Up-sampling (s" > s)-f,,(z) = z

* Translation (and rotation) equivariance follow from being an identity in the
continuous domain

Fup<Z) — ms’Q(Cbs *Z)

* The operation can be simpler to implement when s’ = ns (n: an integer)
* First interleave Z with zeros, and then convolve it with 115/ © ¢4
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 3: Down-sampling (s’ < s) = fgown(2) = Yy * z, where Y := s% - ¢
* Low-pass filter to z to remove frequencies above the output bandlimit
Fdown<Z) = e (7/)3’ * ((bs * Z)) — 1/82 g © (77/).5" k1Y * Z)
= (8'/5)? Uy O (¢s * Z)

* In case of s = ns': a discrete convolution by dropping sample points
 Translation equivariance follows from the commutativity of f3,n
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

Case 4: Non-linearities (e.g., ReLU)

* Pointwise nonlinearity ¢ commutes with translation (and rotation) in the
continuous domain

* However, The bandlimit constraint is problematic
* RelLU in the continuous domain may introduce arbitrarily high frequencies
* Solution: Low-pass filtering of o(z) via 1

f (2) = x0(2) = 5% ps x0(2)
F,(Z) = s I, © (¢s * o(¢s * Z))

* |In practice, F;(Z) can’t be realized without temporarily entering the continuous z
e Solution: Upsampling — ReLU — Downsampling
* Only a 2X temporary upsampling was sufficient for high-quality equivariance
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StyleGAN3: Alias-Free Generative Adversarial Networks [Karras et al., 2021]

» StyleGAN3 successfully achieves equivariance and avoid the texture-striking
* Several techniques (e.g., Fourier features) to compensate worse FID

Configuration FID| EQ-TT EQ-R?

A StyleGAN2 5.14 - -

B+ Fourier features 479 1623  10.81
C + No noise inputs 4.54  15.81 10.84
D + Simplified generator 521 1947 1041
E + Boundaries & upsampling 6.02  24.62 10.97
F + Filtered nonlinearities 6.35 30.60 10.81
G + Non-critical sampling 478 4390 10.84
H + Transformed Fourier features 4.64 4520 10.61
T + Flexible layers (Alias-Free-T) | 4.62  63.01 13.12
R + Rotation equiv. (Alias-Free-R) | 4.50  66.65  40.48
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ViTGAN: Training GANs with Vision Transformers [Lee et al., 2022]

e Discriminator: Proposes several regularization for stabilizing the training

* Enforcing Lipschitzness of Transformer discriminator

* Unbounded Lipschitz constant of conventional self-attention [Kim et al., 2021]
T

)V

* |Instead utilizes “L2 attention”, which enforces Lipschitzness

Attentiony, (X) = softmax(

Euclidean distance

d(XW,, XW},)
Vdn

Attentiony, (X) = softmax( — )XWU, where W, = W,

* Improved spectral normalization (SN)
e Multiplies SN at “initialization” in addition to current SN
e ... as with small Lipschitz constant, Transformer collapse to rank 1 matrices
e Empirically, VITGAN without SN learns in a healthy manner

Wisn (W) := 0(Winit) - W/a(W).
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ViTGAN: Training GANs with Vision Transformers [Lee et al., 2022]

e Discriminator: Proposes several regularization for stabilizing the training

* Overlapping image patches

» Same pre-defined patch grid (P x P ) memorizes local cues and prohibits training
* Use overlapping patch for discriminator to mitigate the issue ( (P + 20) x (P + 20) )

e Convolution projection

* For computing Q, K, V, apply convolutions rather than linear layers
* It promotes to focus on local context as well as global context
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ViTGAN: Training GANs with Vision Transformers [Lee et al., 2022]

e Generator: Proposes a new Transformer-based generator
* ..as baseline Transformers perform poorly compared with CNN-based generator

e Self-modulated LayerNorm
* |Instead of injecting latents as inputs, use to “modulate” the LayerNorm

hy —p

SLN(hy, w) = SLN(hy, MLP(2)) = v,(W) ® ——— + B¢(W)

* Implicit neural representations for patch generation

e Use implicit neural representations to map from patch embedding to pixel values
* Implicit neural representations: MLP with sinusoidal activations (details in Lecture 8)

S
EM' ‘&! 4 )

" * TR
EERaa T

Mapprng Network Mapplng Network] [Mapping Network}

l-{ 4}~
e |
4 }—
4N

Transformer Encoder Transformer Encoder

Latent z Latent z Latent z
(A) (B) ©
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ViTGAN: Training GANs with Vision Transformers [Lee et al., 2022]

* ViTGAN achieves state-of-the-art (or comparable) results to prior arts
* Intriguingly, “naive” extension of ViT for GANs fails

CIFAR10  CelebA 64x64 LSUN 64x64 LSUN 128x128
FID, ISt FID| ISt FID| ISt FID| IS+

BigGAN+ DiffAug (Zhao et al., 2020a) 8.59* 9.25* - - - - -
StyleGAN?2 (Karras et al., 2020b) 560 941 339 343 233 244 326 2.26

Architecture

TransGAN (Jiang et al., 2021) 9.02* 9.26" - - - - - -
Vanilla-ViT 12.7 840 202 257 2181 2.20 - -
ViTGAN (Ours) 492 969 374 321 240 228 248 2.26
StyleGAN2-D+ViTGAN-G (Ours) 457 9.89 - - 149 246 1.87 2.32

() StyleGAN2 (FID = 2.33) (h) Vanilla-ViT (FID = 218.1) (i) VITGAN (FID = 2.40)
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2. Advanced Topics of GANs

* GAN training with pretrained networks
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Projected GANs Converge Faster [Sauer et al., 2021]

e Sauer et al. (2021): GAN training can be improved by projecting generated
and real samples into a fixed, pretrained feature space

Original GAN objective

minmax (Ex[log D()] + E,[log(1 — D(G(2)))))

Projected GAN objective
minmax Y (Ex(log Di(P(x))] + E,[log(1 ~ Di(P(G(2))))])

G {D:} -
leL Not optimize P
Optimize Gand D

* How to effectively utilize pretrained layers {P;}?
* Note. Naive application of using pretrained networks does not lead to SOTA results
1. Multi-scale Discriminators. Enable multi-scale feedback with multiple discriminators

2. Random Projections. Better utilize deeper layers of the pretrained network
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Projected GANs Converge Faster [Sauer et al., 2021]

e Sauer et al. (2021): GAN training can be improved by projecting generated
and real samples into a fixed, pretrained feature space

* Multi-scale Discriminators

* Obtain features from four layers of a pretrained feature network
* Feature resolutions: 8x8, 16Xx16, 32X32, 64%x64
* Associate a separate discriminator D; with the features at layer [, respectively
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Projected GANs Converge Faster [Sauer et al., 2021]

e Sauer et al. (2021): GAN training can be improved by projecting generated
and real samples into a fixed, pretrained feature space

 Random Projections

* A discriminator can focus on a subset of the feature space

e This problem might be especially prominent in the deeper, more semantic layers
* To dilute prominent features, mix features using random projections

* Note. They are fixed after random initialization

3x3 conv. + bilinear upsampling
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Projected GANs Converge Faster [Sauer et al., 2021]

e Sauer et al. (2021): GAN training can be improved by projecting generated
and real samples into a fixed, pretrained feature space

* What is the best pretrained network for GAN training?

EfficientNet ResNet Transformer
liteO litel lite2  lite3 lite4 R18 R50 RS50-CLIP DeiT ViT

Params M) | 296 372 436 642 11.15 11.18 23.51 23.53 9236 317.52
IN top-1 1 75.48 76.64 7747 7982 8154 69.75 79.04 N/A 8542 85.16

FID | 253 165 169 1.79 235 416 440 3.80 246  12.38

* No correlation with ImageNet accuracy
* On the contrary, smaller models = smaller FIDs (i.e., better generation)
* This indicates that a more compact representation is beneficial for training GANs
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Projected GANs Converge Faster [Sauer et al., 2021]

e Sauer et al. (2021): GAN training can be improved by projecting generated
and real samples into a fixed, pretrained feature space

* Projected GANs achieves fast convergence and improved generation quality

* Projected GANs outperforms all baselines on small & large datasets
with a resolution up to 10242 pixels

1 <
—— StyleGAN2-ADA %
StyleGAN2-ADA (converged) A
Projected GAN E
= Projected GAN (converged) Q
=2 [
2
g A
a
10 \:: 17x faste\ . O
o
, \;5 0.6x FID | 2
51 5
3 4 .g
15 5 10 15 2 % A
Training Time [hours|
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial

* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +ViT&CNNasF;, 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
C . . r’ CLF
R L I b o e e R ~ il ToRGB =HE
(@ s —> CNN % Dy-Ds
z e N(0,1)> G,, 5,16x16 ol 1O
- A "Up<224-4
{ Fourierl | CONY o) - Ly > Lo- Lis | LS4 s> ToRGB c—>|EMB
Colors G 32x32 L., ViT % % Dy-D~
O Fixed ol 1O
[ ] Learned G D
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial
* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +ViT&CNNasF;, 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
CLF :
: , =1 Projected GAN
e IEYBl Fourtrt Cony ot L ~ il {ToRGB =HE
G _ —» CNN O % > Do-Ds3
z € N(0,1)»> G,, 5,16x16 S| 1D
- A _,Up<224_4
: e T | Fo-Ls | EorLusf oL~ ToRGE =~EMB
Colors Gs,32x32 L., ViT % %.» Dy-D~
[] Fixed : ol |10
[[] Learned ' G D
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial

* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 22.98 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
o E +ViT & CNNasFj; 1243  56.72
Initialized by . F +CLF guidance (StyleGAN-XL) 12.24 86.21
Pretrained embeddings
c EMB r' o
c€ + Fcfgtlfzr L, ??(mlf Lo-Lg > L§'ih B ToRGB ==
& | Ll ONN || D,-D;
z € N(0,1)»> G,, 5,16x16 S| 1D
- A _,Up<224_4
: e T | Fo-Ls | EorLusf oL~ ToRGE =~{EMB
Colors Gs,32x32 L., ViT % %.» Dy-D~
[] Fixed o] 1O
[] Learned G D
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial
* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +ViT&CNNasF; 1243 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
. : r» CLF
l ey - CNN Gl Do-Ds
z e N(0,1)> G,, Y 5,16x16 ol 1O
Learned 16x1 <2244
7 ox16 P Up c-»>[EMB
Colors L-> ViT % Dy4-Dr
O Fixed ol 1O
[] Learned G D
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial

* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST

A StyleGAN3 53.57 1530

B + Projected GAN & small z 2298 57.62

C + Pretrained embeddings 2091 35.79

D + Progressive growing 19.51 35.74

E +ViT&CNNasF; 12.43 56.72

F + CLF guidance (StyleGAN-XL) 12.24 86.21

C——>»EMB i r' e
c€ + Fcfgtlfzr L, ??:1\1' > Lo-Lg > L§'ih B ToRGB =
G. _ > CNN > Do-D3
2 € N(0,1)p G 2,16x16 Sl [©
- A _,Up<224_4
! Fourierl | CONY o) - Ly > Lo- Lis | LS4 s> ToRGB c~E ——{

Colgrs \ Y J \ Y Gs,32x32 L* ViT (% % Dy-Dr
— Fixed Learned 32x32, = = b

Algorithmic Intelligence Lab

110



StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial
* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

CLF

Projected GAN

CNN

SINE
o) é > Do-D3
O (@)

¢—> EMB ‘{

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +ViT&CNNasF;, 12.43 56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21
Combining CNN and ViT improves performance significantly
Model Type Objective ~ FID | IS7T
Fq Fo F1 Fo F1 Fo

EffNet CNN Class 19.51 35.74 >Up<”44

EffNet ResNet50 CNN CNN Class Class 16.16 49.13

EffNet ResNet50 CNN CNN Class Self 18.53 38.26

EffiNet DeiT-M CNN VIT Class Class 12.43 56.72
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial

* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

* StyleGAN-XL is based on StyleGAN3

Configuration FID| 1IST
A StyleGAN3 53.57 15.30
B + Projected GAN & small z 2298 57.62
C + Pretrained embeddings 2091 35.79
D + Progressive growing 19.51 35.74
E +VIT &CNNasF; 1243  56.72
F + CLF guidance (StyleGAN-XL) 12.24 86.21 When training G,
add classification loss
c EMB r’ S
c€ + Fcfgtlfzr L, ??(mlf Lo-Lg > L§'ih B ToRGB ==
& Ll ONN b Do-Ds
z € N(O, 1)_> G 5,16 x16 O @)
- A _,Up<224_4
{ Fourierl | CONY o) - Ly > Lo- Lis | LS4 s> ToRGB c>[EMB
Colqrs Gs,32x32 L., ViT % %.» Dy-D~
O Fixed ol 1O
[] Learned G D
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StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets [Sauer et al., 2022]

e Scaling StyleGANSs is non-trivial
* Why? Due to architectural constraints or some missing piece in the training strategy?
* Leveraging the benefits of Projected GAN training might enable scaling StyleGAN

e StyleGAN-XL is based on StyleGAN3
* Itis trained with various training techniques: projected GANs, progressive growing, ...
* It enables to demonstrate image synthesis on ImageNet-scale at resolution of 10242

Class-conditioned samples generated by StyleGANs trained on ImageNet at resolution 2562

Golden Retrlever Boathouse

Photocopier

StyleGAN3 StyleGAN-XL
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Table of Contents

3. Beyond Image Generation: More Applications
* GANs for image manipulation
* GANs for video generation
* GANs for medical diagnosis
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GANs for Image Manipulation

* Image manipulation (or image-to-image translation, style transfer)
e The goal is to learn mapping functions between two domains X and Y
* CycleGAN [Zhu et al., 2017] learn GAN (G (X) vs. Y) w/ cycle consistency F(G(X)) ~Y

| a ¥ agge.
D D TN ~ | 17 2 [
G F F
X /\ Y X Y X . Y cycle-consistency
\_/ ' cycle-consistency | ... \ *’.\ ..... loss
F loss - O« /.

(@) | ) ©

* Recent advances with StyleGAN [Yang et al., 2022]
* |Image manipulation via latent space manipulation in StyleGAN
* Given a style image, fine-tune StyleGAN submodules

2 A

(b) cartoon style transfer (c) caricature style transfer (d) anime style transfer
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GANs for Image Manipulation

* Text-driven Image manipulation

e StyleCLIP [Patashnik et al., 2021] manipulates latent variables to satisfy that
the generated image has a similar embedding vector to the given text prompt

* Note. CLIP [Radford et al., 2021] learns a multi-modal (image & text) embedding space

| Leyp("surprised”,) |

g
I PN

M™ StyleGAN

Algorithmi “Gothic church” 116

“Emma Stone” “Mohawk hairstyle” “Without makeup” “Cute cat”



GANs for Video Generation

* Video generation has emerged as the next challenge of deep generative models
* Why difficult? It is continuously correlated across spatial-temporal directions
* A large gap still exists between generated results and large-scale real-world videos

* Motion and Content decomposed GAN (MoCoGAN) [Tian et al., 2021]
* For high quality for each individual frame, use a pre-trained and fixed image generator

* For temporal consistency, generates a sequence of latent codes
* Note. Each latent code is decomposed by motion & content vectors

Moti Pre-trained Generated .
Glenoerl;)tt:)r Generator ’c\/iiieaoc ® Multply
b Add
e Sy ) b >
: : (O?“m =) 2% V:aPCA basis
. ' LST.\I(\HC : Z) Gl _’: X1
Motion 1 ' =g | :
Trajectory ! ' ¥ | :
| . l : : Video
T ! i - ! Discriminator
. €2 — LST-\ldoc . h'_’ ® D Z2 Gl > X2, )
| 1 I\ Yy : '
S : ) 4 / v w
E l E l E E
' €3 E—%v LSTMgec H— h3 X e Z3 @—": X3 ! ]
B e e v P "
A i l "4 e
i €n — LSTMgec - h,, X e Zy GI ! X s
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GANs for Video Generation

* Video generation has emerged as the next challenge of deep generative models
e Why difficult? It is continuously correlated across spatial-temporal directions
* A large gap still exists between generated results and large-scale real-world videos

* Motion and Content decomposed GAN (MoCoGAN) [Tian et al., 2021]

* A better latent space for videos?

* Implicit neural representations (INRs) is a new paradigm for representing continuous
signals, e.g., videos. We will learn INR in Lecture 8!
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GANs for Medical Diagnosis

 Difficulties of training DNNs for medical diagnosis
* It requires expert knowledge to collect labels of medical images
e Designing an augmentation strategy for medical images is non-trivial

* GAN frameworks have several advantages
* GANs can discriminate between normal and anomalous samples
* AnoGAN [Schlegl et al., 2017] learns x — z via minimizing R(x) = min|x — G(2)|
VA

» Detection score = (1 — A)R(x) + AD(x)

(2) Real (b)

Generated
G(2)

Generator G Discriminator D - anomalous
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GANs for Medical Diagnosis

 Difficulties of training DNNs for medical diagnosis
* It requires expert knowledge to collect labels of medical images
* Designing an augmentation strategy for medical images is non-trivial

* GAN frameworks have several advantages
* GANs can discriminate between normal and anomalous samples
* AnoGAN [Schlegl et al., 2017] learns x — z via minimizing R(x) = mzinlx — G(2)]
* Detection score = (1 — A)R(x) + AD(x)

Training, normal Test, normal Test, diseased cases

i i O A
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GANs for Medical Diagnosis

 Difficulties of training DNNs for medical diagnosis
* It requires expert knowledge to collect labels of medical images
e Designing an augmentation strategy for medical images is non-trivial

* GAN frameworks have several advantages
* GANs can discriminate between normal and anomalous samples
* AnoGAN [Schlegl et al., 2017] learns x — z via minimizing R(x) = mZinIx — G(2)]
* Detection score = (1 — A)R(x) + AD(x)
* GANs can create new, realistic samples useful for representation learning
* CovidGAN [Waheed et al., 2020] uses ACGAN for generating chest X-ray images
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Summary

* GAN has been one of the prominent topic in deep learning since 2014

Cumulative number of named GAN papers by month

* Thousands of papers about GAN:
* Theoretical aspects of GANs
* Stabilizing GAN training dynamics

R
38R ENIBELaREq8aRasEEsT

Total number of papers

* Applications of GAN to various Al tasks :
e ...and many more

75
60
45
30
15

0
2014 2015 2016

* GANs are especially good at generating “high-precision” samples
* Achieving “high-recall”, however, is still challenging
* Lots of improvement in loss, regularization, and architecture have been made
* Some large-scale studies have revealed sober views on them, nevertheless

* Recently, the GAN framework has been incorporated with other techniques
* Better generation with diffusion models (we’ll learn in Lecture 6)

* Better representation learning (= self-supervised learning) w/ strong augmentations
(we’ll learn in Lecture 7)

* Better latent space, implicit neural representations (INR; we’ll learn in Lecture 8)

Algorithmic Intelligence Lab * source : https://github.com/hindupuravinash/the-gan-z00122
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