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• Recently, deep spatial-temporal modeling is rapidly emerging field of research 
following the advances in spatial models and temporal models

Overview: Deep Spatial-Temporal Models

*source: https://github.com/Zhongdao/Towards-Realtime-MOT

Deep Object Tracking [Wang et al., 2020]

Video Action Recognition [Karpathy et al., 2014]

Deep Motion Forecasting [Rhinehart et al., 2019]

Video Captioning [Pan et al., 2020]

*source: https://towardsdatascience.com/downloading-the-kinetics-dataset-for-human-action-recognition-in-deep-learning-500c3d50f776 
*source: http://www.auto-video-captions.top/2020/

*source: https://sites.google.com/view/precog
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• Advanced Spatial models and temporal models are leveraged in many ways
• Directly expanding extra dimensions for spatial models

(e.g., CNNs and Vision Transformer [Dosovitskiy et al., 2021])

• Fusing spatial and temporal architectures  (e.g., CNN + LSTM)

Overview: Deep Spatial-Temporal Models
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3D Convolutional Neural Networks Video Vision Transformers
*source: https://tomms-solution.tistory.com/52

*source: https://medium.com/smileinnovation/training-neural-network-with-image-sequence-an-example-with-video-as-input-c3407f7a0b0f

*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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• Similarly to the spatial models, classification is considered a fundamental task
• Specifically, recognizing human actions in video is the most active research area
• It is often called Video Action Recognition to clearly depict the objective

• Advanced architectures for video action recognition are the backbones for 
downstream tasks involving spatial-temporal data
• Recall the roles of ResNet [He et al., 2016] and ViT [Dosovitskiy et al., 2021] as the 

backbones for spatial models research

Overview: Deep Spatial-Temporal Models
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*source: https://cs.stanford.edu/people/karpathy/deepvideo/
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Problem: The curse of dimensionality and spatial-temporal information fusion
1. Computation Scale

• Spatial-temporal data (e.g., video) is inherently high-dimensional
• Brute-force extension of spatial models is often intractable
• Data Sub-sampling & approximated network architectures are typically employed

2. Spatial-temporal Information Fusion
• Pipelines for spatial cue (appearance) and temporal cue (motion) are sometimes independent
• The following question naturally arises:

• How to fuse information from the two separate pipelines?
• In which part of the network the fusion should happen?
• Partially related to multimodal machine learning problem

3. Long-range modeling
• Likewise temporal models, the long-range modeling (e.g., recognizing a minutes-long video) is 

challenging

• Good models should be computationally scalable (e.g., linear complexity to temporal dimension) 
and appropriately dealing with information fusion & long-range modeling problems

Overview: Deep Spatial-Temporal Models
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Part 1.  Evolution of CNNs for spatial-temporal data
• Early Works: naïve extension of 2D CNNs
• Multi-stream and Temporal Segment Networks
• 3D CNNs
• CNN-RNN fusion models

Part 2.  Transformers for spatial-temporal data
• Extension of vision transformer for spatial-temporal data
• Approximated attentions
• Unified transformer-CNN model

Table of Contents

6



Algorithmic Intelligence Lab

• Advances in spatial-temporal models has been much slower than image models 
• Lack of public, large-scale and high-quality datasets (e.g., ImageNet)
• Heavy compute scale due to the high-dimensional nature hinders active research
• Less attention as spatial-modeling and temporal-modeling were challenging enough

• There is no clear model genealogy for early deep spatial-temporal models
• Early works are often presented without benchmarks in large-scale datasets
• Though, they are important milestones to recent spatial-temporal models
• Rough chronology of models that will be covered in this lecture:

Evolution of CNN Architectures for Video
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*source: [Zhu et al., 2020] A comprehensive study of deep video action recognition
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Faster
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Algorithmic Intelligence Lab

Part 1.  Evolution of CNNs for spatial-temporal data
• Early Works: naïve extension of 2D CNNs
• Multi-stream and Temporal Segment Networks
• 3D CNNs
• CNN-RNN fusion models

Part 2.  Transformers for spatial-temporal data
• Extension of vision transformer for spatial-temporal data
• Approximated attentions
• Unified transformer-CNN model

Part 3.  Beyond Video Recognition
• Video self-supervised learning
• Temporal 3D point cloud models
• Temporal neural fields
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• How is raw video signal represented in computers?
• A video is 3D signal with height, width and time dimensions
• If we fix the temporal index 𝑇, we obtain a frame image

• It is quite natural to consider applying an image classifier to each frame then 
fusing the outputs to make the final prediction

• Many design choices depending on fusion strategies

Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]
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• DeepVideo [Karpathy et al., 2014]
• Using AlexNet [Krizhevsky et al., 2012] as the image classifier, four different fusion 

strategies are considered:
• Single Frame: predicting video action based on one frame
• Late Fusion: combines information at the last convolutional layer
• Early Fusion: combines information immediately on the pixel level
• Slow Fusion:  combines information at the pixel level and the feature levels

Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

10*source :  Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014

Single Frame Late Fusion Early Fusion Slow Fusion
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• DeepVideo [Karpathy et al., 2014]
• Multi-resolution CNNs

• Inspired by the biological vision system, downscale the original input sizes 
(178×178) to two half-sized inputs (89×89) + (89×89) 

• The forvea stream receives the center-crop at the original scale
• The context stream receives the whole frames in downscaled resolution
• Boosts the wall-clock training time from orders of weeks to a month (4 weeks)

Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

11*source :  Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014
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• DeepVideo [Karpathy et al., 2014]
• The Sports-1M dataset

• Large in scale (1 million videos), but comes with very noisy auto-generated 
labels

• The largest video dataset at the time (not used these days)

• Experimental results in Sports-1M dataset
• Single-Frame model (no fusion) can outperform the naively designed early and 

late fusion models
• Only a sophisticated Slow Fusion model can outperform the Single-Frame model

Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

12*source :  Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014
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• DeepVideo [Karpathy et al., 2014]
• One of the earliest deep video recognition work
• However, the performance is unsatisfactory

• Performs inferior to the a classical hand-craft engineered model

• Lessons:
1. CNNs for Image classification can be leveraged to classify videos
2. Choice of temporal fusion strategies largely affects performances
3. It is non-trivial to beat hand-crafted models with CNNs

(unlike image classification)

Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

13*source :  Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014
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• Extension of vision transformer for spatial-temporal data
• Approximated attentions
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• Two-stream Networks [Simonyan and Zisserman, 2014]

• Intuitively, video understanding can be improved with motion information
• Optical Flow is an effective tool to describe the motions of objects in scene

• Optical Flow
• The representation of distinct motion of objects in scene
• Visualizations of optical flow by FlowNet2 [Ilg et al., 2017]:

• Colors indicate the directions of motions

Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]

15*source : Ilg et al. “Flownet 2.0: Evolution of optical flow estimation with deep networks”. CVPR 2017
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• Two-stream Networks [Simonyan and Zisserman, 2014]
• Spatial Stream

• An image CNN processing a single RGB image from video 
• Temporal Stream

• Another image CNN for processing a stack of x- and y-directional optical flows
• Optical flows for 𝐿 duration around the selected image is used
• Stacking 𝐿 optical flows for x- and y-directions results in 2𝐿 channels

Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]
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*source: [Zhu et al., 2020] A comprehensive study of deep video action recognition
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• Two-stream Networks [Simonyan and Zisserman, 2014]
• Spatial Stream

• An image CNN processing a single RGB image from video 
• Temporal Stream

• Another image CNN for processing a stack of x- and y-directional optical flows

• The final prediction is made with a SVM on the average output of the two streams
(A naïve late fusion)

• The first deep learning approach to achieve the comparable performance to its 
concurrent hand-craft models

Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]
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*source: [Simonyan and Zisserman, 2014] Two-stream convolutional networks for action recognition in videos
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• Two-stream Networks [Simonyan and Zisserman, 2014]
• Spatial Stream

• An image CNN processing a single RGB image from video 
• Temporal Stream

• Another image CNN for processing a stack of x- and y-directional optical flows
• The final prediction is made with a SVM on the average output of the two streams

(A naïve late fusion)
• The first deep learning approach to achieve the comparable performance to its 

concurrent hand-craft models

• Lessons:
1. It may be difficult for CNNs to directly learn motion from raw RGB frames
2. Providing models explicit motion (e.g., Optical Flow) alleviates this issue

Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]
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• Fusion strategy affects performance (as shown by DeepVideo [Karpathy et al., 2014])
• It is quite natural to consider advanced fusion strategies for Two-stream Networks 

[Simonyan and Zisserman, 2014] since it relies on a naïve late fusion

• Fusion [Feichtenhofer et al., 2016]
• The first work to investigate how to perform fusion in two-stream networks
• Considerable amount of experiments are conducted including…

1. Which layer in CNN to perform the fusion
2. Different fusion operators such as convolution, concatenation, sum, etc.
3. Employing a deeper architecture (VGG16)

• Finds some good practices for fusing multiple streams such as:
• Fusing information with learned convolution operators
• Fusing information at the last convolutional layers, before FC-layers

Evolution of CNN Architectures for Video: Fusion for Two-stream Networks

19*source: [Feichtenhofer et al., 2016] Convolutional two-stream network fusion for video action recognition
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Evolution of CNN Architectures for Video: segment-based methods
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• Two-stream Networks model short-term motions with optical flow
• However, they still reveal weaknesses in long-range temporal modeling

• Temporal Segment Networks (TSN) [Wang et al., 2016]
• Divides a video into several snippets, then selects a single frame and optical flow 

within each snippet
• The selected frames and optical flows are processed through a multi-stream (>2) 

network
• Finally, the segmental consensus is fused using a simple average pooling operation

• With this simple architecture, TSN achieves the state-of-the-art performance

*source: [Wang et al., 2016] Convolutional two-stream network fusion for video action recognition
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Evolution of CNN Architectures for Video: segment-based methods
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• TSN [Wang et al., 2016]
• TSN is the first to perfectly beat hand-crafted models by a huge margin (+6.8%)

• TSN is like AlexNet [Krizhevsky et al., 2012] for deep spatial-temporal models

• In addition to splitting video to snippets, empirical gains also come from:
• ImageNet pretraining,  Batch Normalization, and multi-stream pipelines.

*source: [Wang et al., 2016] Convolutional two-stream network fusion for video action recognition
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Evolution of CNN Architectures for Video: segment-based methods
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• In fact, TSN comes with many advances other than the temporal segmenting

1. Leveraging advanced backbone architectures
• An advanced backbone (e.g., BN-Inception) largely improves recognition

2. Carefully designed initialization and regularizations
• Video datasets have orders of smaller dataset scale than image datasets, 

hence leveraging pretrained weights is important.
• TSN empirically finds that initializing non-RGB streams with the ImageNet 

pretraining is beneficial (i.e., the cross-modality pre-training)
• Batch Normalization [Ioffe et al., 2015] stabilizes training

(See p.23, Lecture 02)

3. Utilizing multiple streams—e.g., RGB, optical flow and warped flow
• TSN introduces new input streams in addition to RGB and Optical Flow
• More data modalities → improved performance!
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Evolution of CNN Architectures for Video: segment-based methods
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• TSN [Wang et al., 2016] has established a de facto standard for splitting a 
video into snippets for video action recognition
• Very recent works (e.g., video transformers [Neimark et al., 2021]) still follow this 

protocol to preprocess data

• TSN gives lesson that introducing advanced backbones, regularization and 
image pretraining is important for video models. 

• TSN simply averages the classification confidence vectors from each segment
• Some follow-up works that discover better fusion & segmenting strategies:

• Temporal Linear Encoding Network [Diba et al., 2017] 

• Introduces a learnable bilinear transform for fusing segments
• Temporal Relation Network [Zhou et al., 2018]

• Introduces multiple time-scales (e.g., 2,3,4) for video snippets

*source: [Zhou et al., 2018] in ECCV 2018
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Part 1.  Evolution of CNNs for spatial-temporal data
• Early Works: naïve extension of 2D CNNs
• Multi-stream and Temporal Segment Networks
• 3D CNNs
• CNN-RNN fusion models

Part 2.  Transformers for spatial-temporal data
• Extension of vision transformer for spatial-temporal data
• Approximated attentions
• Unified transformer-CNN model

Part 3.  Beyond Video Recognition
• Video self-supervised learning
• Temporal 3D point cloud models
• Temporal neural fields
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Evolution of CNN Architectures for Video: 3D CNNs
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• Pre-computing optical flow is computationally intensive

• Recall the raw video signal’s structure:
• A video is 3D tensor with two spatial and one time dimension
• It is quite natural to employ 3D convolutional neural networks for end-to-end 

learning of motion from raw frames

• Some seminal works tried 3D CNNs for video recognition in early days:
• 3D-Conv [Ji et al., 2012] and C3D [Tran et al., 2015]
• Their performances were unsatisfactory due to the optimization difficulty of 3D 

CNNs requiring high-quality & large-scale datasets

*source :  https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Evolution of CNN Architectures for Video: 3D CNNs
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• The situation changed with Inflated 3D (I3D) [Carreira and Zisserman, 2017]

• What has changed with the proposal of I3D?

1. I3D directly adapts a very deep 2D CNN architecture to 3D CNN
• I3D utilizes the Inception architecture
• Instead of training from scratch, I3D leverages ImageNet-pretraining

(How can 3D convolution kernels be pretrained with images?)
• “Kernel Inflating” technique for initializing 3D kernels with 2D kernels

*source :  https://chacha95.github.io/2019-07-04-VideoUnderstanding3/
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Evolution of CNN Architectures for Video: 3D CNNs
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• The situation changed with Inflated 3D (I3D) [Carreira and Zisserman, 2017]

• What has changed with the proposal of I3D? 

2. Availability of the high-quality & large-scale video datasets
• Kinetics dataset [Kay et al., 2017]

• 500k videos with human-annotated labels of 400 action categories
• One of the popular large-scale video benchmark until these days

*source : [Kay et al., 2017] The Kinetics Human Action Video Dataset
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Evolution of CNN Architectures for Video: 3D CNNs
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• Inflated 3D (I3D) [Carreira and Zisserman, 2017]
• The first work to bring 3D CNN to the state-of-the-art video recognition

• Kernel Inflating & large-scale Kinetics pretraining are important

• 3D CNNs and multi-stream networks are not mutually exclusive
• They are just orthogonal ways to model the temporal relationships
• I3D performs even better with the multi-stream network design

*source : [Carreira and Zisserman, 2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
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Evolution of CNN Architectures for Video: 3D CNNs

• Inflated 3D (I3D) [Carreira and Zisserman, 2017]
• 3D Convolutional feature map learned by I3D

• Top row: the 3D filters trained with I3D networks
• Middle row: the 3D filters for optical flow in a 2-stream I3D
• Bottom: the original Inception-v1 (an image CNN) filters

• I3D-trained RGB filters are with patterns no more recognizable by humans
• Interestingly, optical flow filters reveal clear patterns close to the original 2D filters

*source : [Carreira and Zisserman, 2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

I3D RGB

I3D
Optical Flow

time

Original 2D filters

t=1 t=2 t=3 t=4 t=5 t=6 t=7
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Evolution of CNN Architectures for Video: 3D CNNs
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• Further references for 3D CNNs for video action recognition
• ResNet3D [Hara et al., 2018]

• Can Spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?
• Translates ResNet [He et al., 2016] architecture to 3D CNN

(See p.23, Lecture 02)

• ResNeXt for 3D [Chen et al., 2018]
• Multi-Fiber Networks for Video Recognition
• Translates the multiple parallel path to 3D CNN

(See p.34, Lecture 02)

• STCNet [Diba et al., 2018]
• Spatio-Temporal Channel correlation networks
• Translates the Sequeeze-and-Excitation mechanism to 3D CNN

(See p.65, Lecture 02)

• Advanced 2D CNNs for image recognition are actively translated to 3D CNN
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Evolution of CNN Architectures for Video: Efficient 3D CNNs
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• Training and inferring with 3D CNNs can be computationally too expensive
• e.g., I3D [Carreira and Zisserman, 2017] demands computation burden comparable 

to the state-of-the-art video transformer models (100+ GFLOPs)
• Hence, there is a line of research pursuing efficient 3D CNN architectures

• Factorization of 3D kernel
• A 3D CNN kernel of size 𝑷×𝑴×𝑵 can be factorized to two convolutions;

• A spatial 2D kernel (1×𝑀×𝑁) and a temporal 1D kernel (𝑃×1×1)
• R2+1D [Tran et al., 2018] and P3D [Qiu et al., 2017] directly adopts this idea to 

largely save FLOPs

• Application of channel-wise separated convolutions 
• CSN [Tran et al., 2019] shows the efficacy of  separating channel interactions and 

spatiotemporal interactions
• State-of-the-art performance is achieved with ×3 less computations than I3D 

[Carreira and Zisserman, 2017]
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Part 1.  Evolution of CNNs for spatial-temporal data
• Early Works: naïve extension of 2D CNNs
• Multi-stream and Temporal Segment Networks
• 3D CNNs
• CNN-RNN fusion models
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• Extension of vision transformer for spatial-temporal data
• Approximated attentions
• Unified transformer-CNN model
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• Temporal 3D point cloud models
• Temporal neural fields
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Evolution of CNN Architectures for Video: RNN + CNN models
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• A video is essentially a temporal sequence
• It is a natural direction to combine CNNs with RNNs (e.g., LSTM)
• RNN recursively accumulates temporal information as hidden states

(See p.02, Lecture 03)

• This line of research replaces temporal fusion layers in CNN-based spatial-
temporal models with RNN operations

*source : FASTER [Zhu et al., 2020]

*source : http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Evolution of CNN Architectures for Video: RNN + CNN models
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• LRCN [Donahue et al., 2015] & Beyond Short Snippets [Ng et al., 2015]
• Two earliest concurrent works to fuse CNN and RNN architecture for spatial-

temporal model
• Input CNN features to LSTM [Hochreiter and Schmidhuber, 1997]

(See p.05, Lecture 03 for the details about LSTM)
• It is shown that Two-streams Networks [Simonyan and Zisserman, 2014] can 

be improved (a bit) when LSTM-based temporal fusion is introduced

*sources : LRCN [Donahue et al., 2015] and Beyond Short Snippets [Ng et al., 2015] 
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Evolution of CNN Architectures for Video: RNN + CNN models
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• ConvLSTM [Shi et al., 2015] & Lattice-LSTM [Sun et al., 2017]
• ConvLSTM [Shi et al., 2015] is a tweak of LSTM [Hochreiter and Schmidhuber, 1997] 

replacing LSTM’s affine transformation with 2D convolutions

• Lattice LSTM [Sun et al., 2017] introduces ConvLSTM to video recognition
• Long-term modeling performance comparable to Temporal Segment Networks

These affine transforms are replaced with convolutions

*source : Lattice-LSTM [Sun et al., 2017]

*source : https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
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Evolution of CNN Architectures for Video: RNN + CNN models
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• FASTER [Zhu et al., 2020]
• Introduces the 3D convolution operations to GRU [Cho et al., 2014]

(See p.12, Lecture 03 for the details about GRUs)
• Similarly to ConvLSTM [Shi et al., 2015], affine transforms of GRU are replaced 

with 3D convolutions

• As discussed, 3D convolutions are with heavy computations
• FASTER [Zhu et al., 2020] introduces ResNet [He et al., 2015]-inspired 

bottleneck layers to their 3D Convolutional GRUs
• Performance comparable to I3D at 5× cheaper GFLOPs

These affine transforms are replaced with convolutions

*source : https://blog.naver.com/laonple/220764986252

Benchmark in Kinetics dataset
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Evolution of CNN Architectures for Video: RNN + CNN models
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• RNN + CNN methods are interesting, yet relatively minor field
(Pros)
• Can better suit for long-range modeling in spatial-temporal recognition

(Since RNNs are originally designed for such purposes!)
• In some works (e.g., FASTER [Zhu et al., 2020]), it is shown that RNN+CNN model 

can achieve comparable performance to state-of-the-art with less computations

(Cons)
• Shows only comparable or marginally improved performances compared to CNN-

only baselines
• Complex designs with doubled hyperparameters due to incorporating two 

different architectures in one model
(Recall the importance of hyperparameter search—See Pg. 66, Lecture 01)

• Instead, recent line of research are majorly toward Transformer architectures 
for spatial-temporal modeling
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Recall: Vision Transformer (ViT) [Dosovitskiy et al., 2021]

• Splits an image into fixed-size patches (16x16)
• Linearly embeds each of them

• Adds position embedding & extra learnable [class] token
• Feeds sequence of vectors to standard Transformer encoder

Transformers for spatial-temporal data : Extension of ViT

40* source : [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Sequence of patch images
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Recall: Vision Transformer (ViT) [Dosovitskiy et al., 2021]

• Splits an image into fixed-size patches (16x16)
• Linearly embeds each of them

• Adds position embedding & extra learnable [class] token
• Feeds sequence of vectors to standard Transformer encoder

• Dosovitskiy et al. (2021) pre-trains models on larger datasets (14M-300M images)
• Vision Transformer achieves competitive performances compared to CNNs

• Vision Transformer (ViT) can be directly extended to videos
• We cover the following two seminal works:

• Video Transformer Network (VTN) [Neimark et al., 2021]

• Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

Transformers for spatial-temporal data : Extension of ViT

41* source : [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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Video Transformer Network (VTN) [Neimark et al., 2021]

• VTN is a 2-stage transformer-based framework for video recognition attending to 
the entire video sequence information

• Processes entire video via a single end-to-end pass from frame to objective task
• Two key modules

• 2D spatial backbone / Temporal attention-based encoder

42

Transformers for spatial-temporal data : Extension of ViT - VTN

* source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021
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Video Transformer Network (VTN) [Neimark et al., 2021]

• 2D spatial feature extraction model
- Can be any network that works on 2D images
- VTN uses ViT [Dosovitskiy et al., 2021] as the backbone architecture
- The backbone produces an set of spatial tokens for each frame, which later will be 

aggregated with temporal encoder

43

Transformers for spatial-temporal data : Extension of ViT - VTN

* source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021
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Video Transformer Network (VTN) [Neimark et al., 2021]

• Temporal attention-based encoder
• Due to Transformer’s quadratic complexity with respect to inputs, the number of 

tokens is limited in long videos
• To alleviate the complexity issue, VTN chooses sliding window attention [Beltagy et al., 2020]

over time that result in linear complexity over time

44

Transformers for spatial-temporal data : Extension of ViT - VTN

* source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021

* source : [Beltagy et al. 2020], arXiv 2020

Sliding window attention [Beltagy et al., 2020]
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Video Transformer Network (VTN) [Neimark et al., 2021]

• Benchmarks
• VTN achieves comparable accuracy to CNN-based baselines
• However…

• Due to more parameters, it takes longer to train and test
• VTN is not pure end-to-end transformer because of the 2-stage designs

45

Transformers for spatial-temporal data : Extension of ViT - VTN

* source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021

Kinetics-400 dataset benchmark
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• ViViT is a pure transformer framework for video classification
• Tubelet embedding (3D extension of ViT)

- Extract non-overlapping, spatial-temporal tubes from input volume
- Linearly project them into ℝ!

Transformers for spatial-temporal data : Extension of ViT - ViViT

46*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
1. (Joint) Spatio-temporal attention

- Simply forwards all pairwise interactions between all spatio-temporal tokens through 
transformer encoder

- Unlike CNN, it can model long-range interactions across the video from the 1st layer
- Requires quadratic complexity, 𝒪 (𝑛! $ 𝑛"$ 𝑛# $), w.r.t number of tokens

Transformers for spatial-temporal data : Extension of ViT - ViViT

47*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
2. Factorized encoder (Similar to VTN)

- Spatial encoder models interactions between tokens from the same temporal index
- Temporal encoder models interactions between tokens from different temporal indices
- Requires more transformer layers (i.e., more parameters) than Design 1
- Requires less complexity, 𝒪( 𝑛! $ 𝑛" $ + 𝑛#$) than Design 1

Transformers for spatial-temporal data : Extension of ViT - ViViT

48*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
3. Factorized self-attention

- First factorize to only compute self-attention spatially (all tokens from same temporal index)
- Then factorize to compute self-attention temporally (all tokens from sample spatial index)
- Requires same number of transformer layers as Design 1
- Requires same less complexity, 𝒪( 𝑛! $ 𝑛" $ + 𝑛#$), as Design 2

Transformers for spatial-temporal data : Extension of ViT - ViViT

49*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021



Algorithmic Intelligence Lab

Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• Suggests different designs of spatial & temporal attention
4. Factorized dot-product attention

- Modify keys and values for each query to only attend over tokens from the same spatial 
index and temporal index 

- Then factorize multi-head dot-product attention operation
- Requires same number of parameters as unfactorized Design 1
- Requires same less complexity, 𝒪( 𝑛! $ 𝑛" $ + 𝑛#$), as Design 2 and 3

Transformers for spatial-temporal data : Extension of ViT - ViViT

50*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

• The factorized encoder (FE, model #2) shows the best accuracy-to-FLOPs ratio
• Although ViViT can be a pure-transformer, they found the model #2 (2-stage 

design similar to VTN) is more efficient.
• In fact, pure-transformer video models with good efficiency often come with 

sophisticatedly designed approximate attention (to be discussed in the next 
chapter)

• Nevertheless, ViViT (model #2) is the first work to surpass the CNN-based models

Transformers for spatial-temporal data : Extension of ViT - ViViT

51*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021

Kinetics-400 dataset benchmarkComparison between model variants
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Brute-force joint spatial-temporal attention is intractable for transformers
• Due to the quadratic complexity with respect to inputs
• This motivates the development of more efficient attention scheme

• Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]
• Video Swin Transformer [Liu et al., 2021]

Transformers for spatial-temporal data : Approximated Attentions

53

Video classification cost in TFLOPs



Algorithmic Intelligence Lab

Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

• Proposes divided space-time attention
• Instead of exhaustively comparing all pairs of patches (i.e., joint space-time attention), 

it separately applies temporal attention and spatial attention one after the other
• Temporal attention

• Each patch (blue) is compared only with the patches at the same spatial location in 
other frames (green) 

• Initialized to zero (so that function as identity mapping in early training stages)
• Spatial attention

• Each patch (blue) is compared only with the patches within the same frame (red)

• Designs may look similar to ViViT (model 3) in a big picture, however, implementation 
details differ including 1) time– then–space att., 2) zero initializations for temporal layers

Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

54*source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021
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Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

• Divided space-time attention leads to dramatic computational savings with 
respect to spatial resolution/video length

• Outperforms SOTA models while requiring less computational complexity
• 𝑂 𝑆"𝑇 + 𝑂(𝑆𝑇") instead of 𝑂(𝑆"𝑇")

Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

55*source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021

3D CNNs

TimeSformer

Kinetics-400 dataset benchmark
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Video Swin Transformer [Liu et al., 2021]

• Recall: Swin Transformer [Liu et al., 2021]

• Design of a hierarchical structure
• Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
• Efficient self-attention computation by using shifted windows scheme
• Concatenating 2 × 2 neighboring patches for downsampling operation
• Powerful performances in dense prediction tasks 

e.g., object detection and semantic segmentation

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

56

Shifted window scheme

*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
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Video Swin Transformer [Liu et al., 2021]

• In videos, pixels that are closer to each other in spatiotemporal distance are more 
likely to be correlated (i.e., spatiotemporal locality)

• Thus, local attention computation well approximates spatiotemporal self-attention
• Video Swin Transformer is a spatial-temporal adaptation of Swin Transformer

i.e., extension from spatial locality to spatial-temporal locality

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

57*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
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Video Swin Transformer [Liu et al., 2021]

• Outperforms SOTA 3D CNN models while requiring smaller computation costs for 
inference

• Also outperforms SOTA transformer-based models while requiring half less 
computational costs

Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

58*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021

Ours

Transformer-
based models

3D CNNs
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Multiscale Vision Transformers (MViT) [Fan et al., 2021]

• Utilizes multiscale channel-resolution stage hierarchy (pyramidal structure)
• The stages progressively expand channel capacity while reducing spatial resolution

• Early layers operate at spatially dense resolution & simple low-level features
• Deeper layers operate at spatially coarse resolution & complex high-dimensional features

Transformers for spatial-temporal data : Approximated Attentions - MViT

59*source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021
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Multiscale Vision Transformers (MViT) [Fan et al., 2021]

• Multi Head Pooling Attention
• Each stage consists of multiple transformer blocks with specific space-time resolution and 

channel dimension
• Pooling Query tenors reduces output space-time resolution (down-sampling)
• Pooling Key, Value tensors reduces attention computation 
• Channel expansion is done with the MLP block of the previous stage

Transformers for spatial-temporal data : Approximated Attentions - MViT

60*source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021
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Multiscale Vision Transformers (MViT) [Fan et al., 2021]

• Without any external pre-training, MViT outperforms both SOTA 3D CNN models & 
transformer-based models with less parameters and computation

Transformers for spatial-temporal data : Approximated Attentions - MViT

61*source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021

MViT

Transformer-
based models

3D CNNs
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X-ViT [Bulat et al., 2021]

• Space-time mixing attention—𝑶 𝑻𝑺𝟐 complexity 
• The following architectural changes in X-ViT reduce the full quadratic complexity 
𝑶 𝑻𝟐𝑺𝟐 to the proposed 𝑶 𝑻𝑺𝟐

1. Restricting attentions within a temporal window of 𝑡 − 𝑡", 𝑡 + 𝑡" for each 𝑞&,#
à The complexity becomes 𝑂(𝑇 2𝑡! + 1 "𝑆")

2. Instead of individual space-time keys, the time compression 𝒇 is applied such that 
a single attention is considered over time with /𝑘&! ≜ 𝑓( 𝑘&!,#(#"; … ; 𝑘&!,#)#" )

3. Instead of general affine transforms, “shift trick” is employed as the implementatio
n of 𝑓 to further save computations:
• Given a key 𝑘&!,#! ∈ ℝ*, split its channels into (2𝑡" + 1) segments, then pick t

he 𝑡+ ∈ [1, 2𝑡" + 1]th index to form the final /𝑘&! à The complexity becomes 𝑂(𝑇(2𝑡! + 1)𝑆")

Transformers for spatial-temporal data : Approximated Attentions - X-ViT

62*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021

*Red is the query vector
*Orange is the key vector that the query vector attends to

X-ViT

⃜

𝑡! = 1 𝑡! = 2 𝑡! = 3 𝑡! = 2𝑡" + 1

𝑘##,%#&' 𝑘##,%#&"$%('⃜

𝑓

⃜

-𝑘##

Can be disregarded as 𝟐𝒕𝒘 + 𝟏 is a small constant

The shift trick in X-ViT

𝑑-dimension
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X-ViT [Bulat et al., 2021]

• Summary
• Attentions restricted to within a temporal window
• Key vector is constructed by mixing tokens from same spatial location within a local tempo

ral window
• Temporal information is aggregated by indexing subset channels from each token at differ

ent temporal locations

• Properties
• With 𝑘 transformer blocks, the temporal receptive field becomes −𝑘𝑡", 𝑘𝑡"

e.g., for a 𝑇 = 8 frames input, 𝑡" = 1 and 𝑘 = 4 suffices to achieve the full receptive field
• Computational complexity scales linearly with number of frames 𝑂 𝑇𝑆$

Transformers for spatial-temporal data : Approximated Attentions - X-ViT

63*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021
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X-ViT [Bulat et al., 2021]

• Achieves comparable performance to SOTA models while requiring significantly 
lower computational complexity
- X-ViT (16-frames, 850 GFLOPs) achieves performance comparable to heavy-weight variants 

of TimeSformer (96-frames, 7140 GFLOPs) and ViViT (32 frames, 4340 GFLOPs)

• Allows for an efficient approximation of local space-time attention at no extra cost

Transformers for spatial-temporal data : Approximated Attentions - X-ViT

64*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021
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Motionformer [Patrick et al., 2021]

• Depending on object/camera move, physical point at one location may move to diffe
rent locations in each frame

• Addressing temporal correspondence, Motionformer proposes trajectory attention
• Aggregates information along implicitly determined motion paths

Transformers for spatial-temporal data : Approximated Attentions - Motionformer

65*source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurIPS 2021
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Motionformer [Patrick et al., 2021]

• Trajectory attention
• Aggregates information along implicitly determined motion paths
• Spatial attention

- Forms a set of ST trajectory tokens for every space-time location
• Temporal attention

- Pools along those trajectories with a 1D temporal attention operation

Transformers for spatial-temporal data : Approximated Attentions - Motionformer

66*source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurIPS 2021
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Motionformer [Patrick et al., 2021]

• Previous works approximate attention structures
• e.g., divided attention by TimeSformer, locallity-aware attention by Swin Transformer

• Motionformer directly attempts to approximate dot-product attention itself
• Orthoformer algorithm

- Approximates attention matrix by selecting most orthogonal subset of queries and keys
- Allows to significantly improve computational and memory efficiency

Transformers for spatial-temporal data : Approximated Attentions - Motionformer

67*source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurIPS 2021

1. Randomly subsample 𝑅 queries and keys to avoid linear dependence on sequence length
2.& 3. Compute two attention matrices Ω# and Ω$ (much smaller than original problem)

4. Multiply them with values
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Motionformer [Patrick et al., 2021]

• Motionformer performs favorably against SOTA models
• Achieves strong top-1 accuracy for SSv2 and Epic-Kitchen Nouns datasets, which requ

ire greater motion reasoning 

Transformers for spatial-temporal data : Approximated Attentions - Motionformer

68*source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurIPS 2021
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3D convolutions vs. Vision Transformers
• 3D convolutions

• Pro: Can capture detailed local spatiotemporal features to suppress local redundancy
• Con: Inefficient to capture global (long-range) dependency due to limited receptive field

• Vision Transformers
• Pro: Can capture global (long-range) dependency by self-attention mechanism
• Con: Inefficient to encode local spatiotemporal feature in shallow layers (local redundancy)

Integrating merits of both, a unified model has been proposed

Transformers for spatial-temporal data : Unified transformer-CNN model

70

- Vision transformer learns local repre
sentations with redundant global at
tention

- This wastes large computation to en
code only very local spatiotemporal 
representations 

Visualizations of TimeSformer [Bertasius et al., 2021]



Algorithmic Intelligence Lab

UniFormer [Li et al., 2022] 

• Three key modules
• Dynamic Position Embedding (DPE)
• Multi-Head Relation Aggregator (MHRA)
• Feed-Forward Network (FFN)

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

71*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Dynamic Position Embedding (DPE)
• Previous spatiotemporal position embedding methods:
- Absolute position embedding cannot handle different input sizes because it is 

interpolated to target input size with fine-tuning
- Relative position embedding modifies self-attention and performs worse due to lack 

of absolute position embedding

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

72*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Dynamic Position Embedding (DPE)
• To overcome these problems, conditional position encoding (CPE) is extended to 

dynamic position embedding (DPE) 

• DPE dynamically integrates 3D position information into all tokens
• 𝑫𝑾𝑪𝒐𝒏𝒗 is a simple 3D depth-wise convolution with zero paddings

- Shared parameters & locality of convolution tackles permutation-invariance
- In CPE, zero paddings help tokens on the borders be aware of their absolute positions
- That is, all tokens progressively encode their position information via querying their neighbor

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

73*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)

• 𝑽𝒏 ∈ ℝ
-×%& : token context encoding that transforms original token into context via 

linear transformation (𝐿 = 𝑇×𝐻×𝑊)
• 𝑨𝒏: token affinity learning that summarizes context with guidance of token affinity
• 𝑹𝒏 𝑿 = 𝑨𝒏𝑽𝒏(𝑿): the relation aggregator (RA) in the 𝑛-th head
• 𝑼 ∈ ℝ/×/:  learnable parameter matrix that integrates N heads
• Tackles local redundancy & global dependency problems by flexibly designing 𝐴0

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

74*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)
1) Local MHRA (for shallow layers)
- Aim for shallow layers is to learn detailed video representation from local 

spatiotemporal context to reduce redundancy
- Design token affinity to be local learnable parameter matrix, which depends only on 

relative 3D position between tokens
- RA learns local spatiotemporal affinity between one anchor token 𝑋1 and other 

tokens in the small tube

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

75*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)
2) Global MHRA (for deep layers)
- Aim for deep layers is to capture long-term token dependency in global video clip
- Design token affinity via comparing content similarity among all tokens in global view

- 𝑋2 can be any token in global 3D tube Ω3×4×5
- 𝑄0($) and 𝐾0($) are two different linear transformations

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

76*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Multi-Head Relation Aggregator (MHRA)
• Most video transformers requires large amount of calculation because they apply self-

attention in all stages
• While dividing spatial & temporal attention reduces dot-product computation, it 

deteriorates spatiotemporal relation among tokens
• MHRA saves computation by performing local relation aggregation in early layers

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

77*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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UniFormer [Li et al., 2022] 

• Uniformer outperforms most of the current methods with much fewer 
computational cost

• Achieves a preferable balance between computation and accuracy

Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

78*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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• For spatial-temporal data, one need a specific vision architecture for 
processing temporal dependency between frames

• CNN architectures for video have developed in a way that
• Can better model motion information in sequence of frames
• Multiteam architectures, Temporal segment networks, and 3D CNNs are key 

advances for CNNs for modeling spatial-temporal data

• Recently, Transformer is actively applied to video recognition
• As in other sequential tasks, transformer’s ability to model long-range 

dependencies largely benefits video recognition performance
• For efficiency, approximated attention mechanisms enable video transformers to 

process spatial-temporal data under limited computation resources

• Transformer-based video model is rapidly becoming a de-facto standard

Summary
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