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Overview: Deep Spatial-Temporal Models

* Recently, deep spatial-temporal modeling is rapidly emerging field of research
following the advances in spatial models and temporal models

Video Action Recognition [Karpathy et al., 2014] Video Capt|on|ng [Pan et al,, 2020]

*source: https://towardsdatascience.com/downloading-the-kinetics-dataset-for-human-action-recognition-in-deep-learning-500c3d50f776

*source: http://www.auto-video-captions.top/2020/

Deep Object Tracking [Wang et al., 2020] Deep Motion Forecasting [Rhinehart et al., 2

*source: https://github.com/Zhongdao/Towards-Realtime-MOT - .
AIgO rlthmic |nte||igence Lab *source: https://sites.google.com/view/precog



Overview: Deep Spatial-Temporal Models

* Advanced Spatial models and temporal models are leveraged in many ways

* Directly expanding extra dimensions for spatial models
(e.g., CNNs and Vision Transformer [Dosovitskiy et al., 2021])
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*source: https://tomms-solution.tistory.com/52 *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021

3D Convolutional Neural Networks Video Vision Transformers

* Fusing spatial and temporal architectures (e.g., CNN + LSTM)
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******* : https://medium.com/smileinnovation/training-neural-network-with-image-sequence-an-example-with-video-as-input-c3407f7a0b0f
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Overview: Deep Spatial-Temporal Models

» Similarly to the spatial models, classification is considered a fundamental task
» Specifically, recognizing human actions in video is the most active research area
* |tis often called Video Action Recognition to clearly depict the objective

* Advanced architectures for video action recognition are the backbones for
downstream tasks involving spatial-temporal data

* Recall the roles of ResNet [He et al., 2016] and ViT [Dosovitskiy et al., 2021] as the
backbones for spatial models research

Sports Video

Classification

*source: https://cs.stanford.edu/people/karpathy/deepvideo/



Overview: Deep Spatial-Temporal Models

Problem: The curse of dimensionality and spatial-temporal information fusion

1. Computation Scale
* Spatial-temporal data (e.g., video) is inherently high-dimensional
* Brute-force extension of spatial models is often intractable
* Data Sub-sampling & approximated network architectures are typically employed

2. Spatial-temporal Information Fusion
* Pipelines for spatial cue (appearance) and temporal cue (motion) are sometimes independent
* The following question naturally arises:
* How to fuse information from the two separate pipelines?
* In which part of the network the fusion should happen?
* Partially related to multimodal machine learning problem

3. Long-range modeling

* Likewise temporal models, the long-range modeling (e.g., recognizing a minutes-long video) is
challenging

* Good models should be computationally scalable (e.g., linear complexity to temporal dimension)
and appropriately dealing with information fusion & long-range modeling problems

Algorithmic Intelligence Lab
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Evolution of CNN Architectures for Video

* Advances in spatial-temporal models has been much slower than image models
* Lack of public, large-scale and high-quality datasets (e.g., ImageNet)
* Heavy compute scale due to the high-dimensional nature hinders active research
* Less attention as spatial-modeling and temporal-modeling were challenging enough

* There is no clear model genealogy for early deep spatial-temporal models
e Early works are often presented without benchmarks in large-scale datasets
* Though, they are important milestones to recent spatial-temporal models
* Rough chronology of models that will be covered in this lecture:

Early Days Advanced spatial-temporal CNNs Transformers
(Simple Extension of spatial CNNs) Beyond Short Snippets Lattice LSTM
[Ng et al., 2015] [Sunetal., 2017]

TimeSformer
[et al, 2021]
Motionformer
[Patrick et al, 2021]

Two-Stream Netviorks

[Simonyan and Zissernjan, 2044] t Networks

Temporal Segm
al, 2016] CSN

DeepVideo Uniformer
[Karpathy et al., 2014] Inflated 3D (13D) [Tran et al, 2019] [et al, 2022]
/ [Wang et al, 2017] .
- >
2014 2015 2016 2017 2018 \2%9 202& 2021 2022
C3D Fusion

R(2+1)D Faster
[Tran et al., 2015] [Feichtenhofer et al, 2016] [Tran et al, 2018] [zhy et al., 2020]

*source: [Zhu et al., 2020] A comprehensive study of deep video action recognition
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Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

* How is raw video signal represented in computers?
* Avideo is 3D signal with height, width and time dimensions
* If we fix the temporal index T, we obtain a frame image

* Itis quite natural to consider applying an image classifier to each frame then
fusing the outputs to make the final prediction

* Many design choices depending on fusion strategies

Algorithmic Intelligence Lab



Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

* DeepVideo [Karpathy et al., 2014]

* Using AlexNet [Krizhevsky et al., 2012] as the image classifier, four different fusion
strategies are considered:

* Single Frame: predicting video action based on one frame

* Late Fusion: combines information at the last convolutional layer

* Early Fusion: combines information immediately on the pixel level

* Slow Fusion: combines information at the pixel level and the feature levels

Single Frame Late Fusion Early Fusion Slow Fusion
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Algorithmic Intelligence Lab source : Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014 10



Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

* DeepVideo [Karpathy et al., 2014]

e Multi-resolution CNNs

* Inspired by the biological vision system, downscale the original input sizes
(178x%178) to two half-sized inputs (89x89) + (89x89)

* The forvea stream receives the center-crop at the original scale
* The context stream receives the whole frames in downscaled resolution
* Boosts the wall-clock training time from orders of weeks to a month (4 weeks)
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Algorithmic Intelligence Lab source : Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014 11



Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

* DeepVideo [Karpathy et al., 2014]
* The Sports-1M dataset

* Large in scale (1 million videos), but comes with very noisy auto-generated
labels

* The largest video dataset at the time (not used these days)

e Experimental results in Sports-1M dataset

* Single-Frame model (no fusion) can outperform the naively designed early and
late fusion models

* Only a sophisticated Slow Fusion model can outperform the Single-Frame model

Model Clip Hit@1 Video Hit@1 Video Hit@5
Feature Histograms + Neural Net - 55.3 -
Single-Frame 41.1 59.3 71.7
Single-Frame + Multires 424 60.0 78.5
Single-Frame Fovea Only 30.0 49.9 72.8
Single-Frame Context Only 38.1 56.0 712
Early Fusion 389 571 76.8
Late Fusion 40.7 593 18.7
Slow Fusion 41.9 60.9 80.2
CNN Average (Single+Early+Late+Slow) 414 63.9 82.4

* . u ~ . i . . . ”
Algorithmic Intelligence Lab source : Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014 12



Evolution of CNN Architectures for Video: DeepVideo [Karpathy et al., 2014]

* DeepVideo [Karpathy et al., 2014]
* One of the earliest deep video recognition work

* However, the performance is unsatisfactory
* Performs inferior to the a classical hand-craft engineered model

Method UCF-101 | HMDB-51
Improved dense trajectories (IDT) [26, 27] 85_.9% 57.2%
IDT with higher-dimensional encodings [20] 87.9% 61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23]) - 66.8%
Spatio-temporal HMAX network [11, 16] - 22.8%
“Slow fusion” spatio-temporal ConvNet [14] 65.4% -

* Lessons:
1. CNNs for Image classification can be leveraged to classify videos
2. Choice of temporal fusion strategies largely affects performances

3. Itis non-trivial to beat hand-crafted models with CNNs
(unlike image classification)

* . u ~ . o . . . ”
Algorithmic Intelligence Lab source : Karpathy et al. “Large-scale video classification with convolutional neural networks”. CVPR 2014 13
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Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]

* Two-stream Networks [Simonyan and Zisserman, 2014]

* Intuitively, video understanding can be improved with motion information
e Optical Flow is an effective tool to describe the motions of objects in scene

* Optical Flow
* The representation of distinct motion of objects in scene
* Visualizations of optical flow by FlowNet2 [llg et al., 2017]:
* Colors indicate the directions of motions

Ll

Algorithmic Intelligence Lab *source : llg et al. “Flownet 2.0: Evolution of optical flow estimation with deep networks”. CVPR 2017 15



Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]

e Two-stream Networks [Simonyan and Zisserman, 2014]
e Spatial Stream
* Animage CNN processing a single RGB image from video
* Temporal Stream
* Another image CNN for processing a stack of x- and y-directional optical flows
* Optical flows for L duration around the selected image is used
» Stacking L optical flows for x- and y-directions results in 2L channels

video frame Spatial stream

o l

|

optical flow Temporal stream

video

Two-stream Networks

*source: [Zhu et al., 2020] A comprehensive study of deep video action recognition

Algorithmic Intelligence Lab
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Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]

e Two-stream Networks [Simonyan and Zisserman, 2014]
e Spatial Stream
* Animage CNN processing a single RGB image from video
* Temporal Stream
* Another image CNN for processing a stack of x- and y-directional optical flows

* The final prediction is made with a SVM on the average output of the two streams
(A naive late fusion)

* The first deep learning approach to achieve the comparable performance to its
concurrent hand-craft models

Method UCF-101 | HMDB-51

Improved dense trajectories (IDT) [26, 27] 85.9% 57.2%
IDT with higher-dimensional encodings [20] 87.9% 61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23]) = 00.8%
Spatio-temporal HMAX network [11, 16] - 22.8%
“Slow fusion” spatio-temporal ConvNet [14] 65.4% -
Spatial stream ConvNet 73.0% 40.5%
Temporal stream ConvNet 83.7% 54.6%
Two-stream model (fusion by averaging) 86.9% 58.0%
Two-stream model (fusion by SVM) 88.0% 59.4%

*source: [Simonyan and Zisserman, 2014] Two-stream convolutional networks for action recognition in videos

Algorithmic Intelligence Lab 17



Evolution of CNN Architectures for Video: Two-stream Networks [Simonyan et al., 2014]

e Two-stream Networks [Simonyan and Zisserman, 2014]
e Spatial Stream

* Animage CNN processing a single RGB image from video
* Temporal Stream

* Another image CNN for processing a stack of x- and y-directional optical flows

* The final prediction is made with a SVM on the average output of the two streams
(A naive late fusion)

* The first deep learning approach to achieve the comparable performance to its
concurrent hand-craft models

* Lessons:

1. It may be difficult for CNNs to directly learn motion from raw RGB frames
2. Providing models explicit motion (e.g., Optical Flow) alleviates this issue

Algorithmic Intelligence Lab
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Evolution of CNN Architectures for Video: Fusion for Two-stream Networks

* Fusion strategy affects performance (as shown by DeepVideo [Karpathy et al., 2014])

* |tis quite natural to consider advanced fusion strategies for Two-stream Networks
[Simonyan and Zisserman, 2014] since it relies on a naive late fusion

* Fusion [Feichtenhofer et al., 2016]
* The first work to investigate how to perform fusion in two-stream networks
* Considerable amount of experiments are conducted including...
1. Which layer in CNN to perform the fusion
2. Different fusion operators such as convolution, concatenation, sum, etc.
3. Employing a deeper architecture (VGG16)

:

* Finds some good practices for fusing multiple streams such as: oo
. . . o . fusion

* Fusing information with learned convolution operators L’ ‘J

* Fusing information at the last convolutional layers, before FC-layers ==

Algorithmic InteIIigence Lab *source: [Feichtenhofer et al., 2016] Convolutional two-stream network fusion for video action recognition 19



Evolution of CNN Architectures for Video: segment-based methods

* Two-stream Networks model short-term motions with optical flow
* However, they still reveal weaknesses in long-range temporal modeling

 Temporal Segment Networks (TSN) [Wang et al., 2016]

* Divides a video into several snippets, then selects a single frame and optical flow
within each snippet

* The selected frames and optical flows are processed through a multi-stream (>2)
network

* Finally, the segmental consensus is fused using a simple average pooling operation

* With this simple architecture, TSN achieves the state-of-the-art performance

Video Snippets Temporal Segment Networks

[ ——

BTN
\
-*? : igh o

N

——
|

Algorithmic InteIIigence Lab *source: [Wang et al., 2016] Convolutional two-stream network fusion for video action recognition



Evolution of CNN Architectures for Video: segment-based methods

TSN [Wang et al., 2016]
* TSN is the first to perfectly beat hand-crafted models by a huge margin (+6.8%)
* TSN is like AlexNet [Krizhevsky et al., 2012] for deep spatial-temporal models

HMDB51 UCF101

DT+MVSV [37 55.9%|DT+MVSV (37 83.5%
iDT+FV [2] 57.2%|iDT+FV [38] 85.9%
iDT+HSV [25] 61.1%|iDT+HSV [25] 87.9%
MOoFAP [39] 61.7%|MoFAP [39] 88.3%
Two Stream [1] 59.4%|Two Stream [1] 88.0%
VideoDarwin [18] 63.7%|C3D (3 nets) [13] 85.2%
MPR [40] 65.5%|Two stream +LSTM [4] 88.6%
FsTCN (SCI fusion) [28] 59.1%|FsTCN (SCI fusion) [28] 88.1%
TDD+FV [5] 63.2%|TDD+FV [5] 90.3%
LTC [19] 64.8%|LTC [19] 91.7%
TSN (2 modalities) 68.5%|TSN (2 modalities)

TSN (3 modalities) 69.4%| TSN (3 modalities) 94.2%

* |n addition to splitting video to snippets, empirical gains also come from:
* ImageNet pretraining, Batch Normalization, and multi-stream pipelines.

Modality Performance
Training setting Spatial ConvNets|Temporal ConvNets RGB In'nage 84.5%
Baseline [1] 72,79 81.0% RGB Difference 83.8%
ase L0 70 RGB Image + RGB Difference 87.3%
Optical Flow 87.2%
Pre-train Spatial(same as [1]) 84.1% 81.7% V\grped Flow 86.9‘72
+ Cross modality pre-training 84.1% 86.6% I i
+ Partial BN with dropout 84.5% 87.2% ! Optical Flow + Warped Flow + RGB| 92.3%
AT MOoQalties 9177

Algorithmic InteIIigence Lab *source: [Wang et al., 2016] Convolutional two-stream network fusion for video action recognition 1



Evolution of CNN Architectures for Video: segment-based methods

* In fact, TSN comes with many advances other than the temporal segmenting

1. Leveraging advanced backbone architectures
* An advanced backbone (e.g., BN-Inception) largely improves recognition

2. Carefully designed initialization and regularizations

* Video datasets have orders of smaller dataset scale than image datasets,
hence leveraging pretrained weights is important.

* TSN empirically finds that initializing non-RGB streams with the ImageNet
pretraining is beneficial (i.e., the cross-modality pre-training)

* Batch Normalization [loffe et al., 2015] stabilizes training
(See p.23, Lecture 02)

3. Utilizing multiple streams—e.g., RGB, optical flow and warped flow
* TSN introduces new input streams in addition to RGB and Optical Flow
* More data modalities — improved performance!

Algorithmic Intelligence Lab 22



Evolution of CNN Architectures for Video: segment-based methods

* TSN [Wang et al., 2016] has established a de facto standard for splitting a
video into snippets for video action recognition

* Very recent works (e.g., video transformers [Neimark et al., 2021]) still follow this
protocol to preprocess data

* TSN gives lesson that introducing advanced backbones, regularization and
image pretraining is important for video models.

* TSN simply averages the classification confidence vectors from each segment
* Some follow-up works that discover better fusion & segmenting strategies:
* Temporal Linear Encoding Network [Diba et al., 2017]
* Introduces a learnable bilinear transform for fusing segments
* Temporal Relation Network [zhou et al., 2018]
* Introduces multiple time-scales (e.g., 2,3,4) for video snippets

7 8 9 10 11 12
AN G

4 5

1 2 ! 3 6
T} =
T R AAL LG
Time' " i v i N
1 9 B 10
b i‘ 3

3 8 12

1 4 10 2 5 9
2
Tl e TR IR
CNN ONN
g0 g0

12

*source: [Zhou et al., 2018] in ECCV 2018
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Evolution of CNN Architectures for Video: 3D CNNs

* Pre-computing optical flow is computationally intensive

* Recall the raw video signal’s structure:
* Avideo is 3D tensor with two spatial and one time dimension

* Itis quite natural to employ 3D convolutional neural networks for end-to-end
learning of motion from raw frames

* Some seminal works tried 3D CNNs for video recognition in early days:
* 3D-Conv [Jietal., 2012] and C3D [Tran et al., 2015]

* Their performances were unsatisfactory due to the optimization difficulty of 3D
CNNs requiring high-quality & large-scale datasets

*source : https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Algorithmic Intelligence Lab 25



Evolution of CNN Architectures for Video: 3D CNNs

* The situation changed with Inflated 3D (I13D) [Carreira and Zisserman, 2017]

* What has changed with the proposal of 13D?

1. 13D directly adapts a very deep 2D CNN architecture to 3D CNN
* |3D utilizes the Inception architecture

* Instead of training from scratch, I3D leverages ImageNet-pretraining
(How can 3D convolution kernels be pretrained with images?)

* “Kernel Inflating” technique for initializing 3D kernels with 2D kernels

Algorithmic Intelligence Lab

3X3x3

B =

Pretrained 3x3

Copy x3
Devide Weights by 1/3

3x1x1

B =

Pretrained 1x1
retrained 1x Copy 13

Devide Weights by 1/3

*source : https://chacha95.github.io/2019-07-04-VideoUnderstanding3/
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Evolution of CNN Architectures for Video: 3D CNNs

* The situation changed with Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* What has changed with the proposal of 13D?

2. Availability of the high-quality & large-scale video datasets
* Kinetics dataset [Kay et al., 2017]
e 500k videos with human-annotated labels of 400 action categories
* One of the popular large-scale video benchmark until these days

*source : [Kay et al., 2017] The Kinetics Human Action Video Dataset

Algorithmic Intelligence Lab
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Evolution of CNN Architectures for Video: 3D CNNs

* Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* The first work to bring 3D CNN to the state-of-the-art video recognition
* Kernel Inflating & large-scale Kinetics pretraining are important

* 3D CNNs and multi-stream networks are not mutually exclusive
* They are just orthogonal ways to model the temporal relationships
* 13D performs even better with the multi-stream network design

Algorithmic Intelligence Lab

| Model | UCF-101 | HMDB-51 |

Two-Stream [27] 88.0 594
IDT [33] 86.4 61.7
Dynamic Image Networks + IDT [2] 89.1 65.2
TDD + IDT [34] 91.5 65.9
Two-Stream Fusion + IDT [8] 93.5 69.2
Temporal Segment Networks [35] 94.2 69.4
ST-ResNet + IDT [7] 94.6 70.3
Deep Networks [15], Sports 1M pre-training 65.2

C3D one network [31], Sports 1M pre-training 82.3

C3D ensemble [31], Sports 1M pre-training 85.2

C3D ensemble + IDT [31], Sports 1M pre-training 90.1 -
RGB-I3D, Imagenet+Kinetics pre-training 95.6 74.8
Flow-I3D, Imagenet+Kinetics pre-training 96.7 77.1
Two-Stream I3D, Imagenet+Kinetics pre-training 98.0 80.7
RGB-I3D, Kinetics pre-training 95.1 74.3
Flow-I3D, Kinetics pre-training 96.5 71.3
Two-Stream I3D, Kinetics pre-training 97.8 80.9

*source : [Carreira and Zisserman, 2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
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Evolution of CNN Architectures for Video: 3D CNNs

* Inflated 3D (I13D) [Carreira and Zisserman, 2017]
* 3D Convolutional feature map learned by 13D

* Interestingly, optical flow filters reveal clear patterns close to the original 2D filters

* Top row: the 3D filters trained with 13D networks
* Middle row: the 3D filters for optical flow in a 2-stream 13D

e Bottom: the original Inception-v1 (an image CNN) filters
* 13D-trained RGB filters are with patterns no more recognizable by humans

t=1 t=2 t=3 t=4 t=5 t=6 t=7

SFBESENRD Shpre=m0 “p oL mwm =) OEEEN =l.l1u--EI =FNEE"EN SN E=Es
EVTEAEYANE SvTEREENE "SS5HRHeE TUSHY UG TEFILVSEL TESEYSEE FOaRYEEE
ANSDENGY SNV S0E 1" laeh SES 1Tl 02 10 «e =FEli da® SNEhNENN
HEFCEETE BEVZENEN EMNe=0NEE FEP=TENE . H."FENE P rZPEEE ERSfZaEER
AHEENNSNE THREEEDNDO FNEENuUE  DXNESILEN FLYSEH R ENF ERET . ENNSEET.
SUNENNEE BOESNNEE DERIEMEE (ICEREZEYER BN 1EN CEOREN)EE EQORSSMEN
EX I ESZEE LI ESTEE GOV ESYEE SOVFOSFal POEENTF N SEVESSHLAN SNvESsssn
FEEEEENE SEEEEEDN FJENEEEI™ JERNENIN FEEFAEIA VEENYEDE VAR EEPED
EENSENEE CEUSESAN ONUaEENN Ol EATN AaND-EEEN SENSENEN SeEEEEan
ESESSESE ESONSEEE EelYV.CHEE EeNrOEEE EFDASESE ESDESETE EEORSEDE
ANESEEEN BNSSESEE =0 AEm &l I7HI] ENSOIFED ENSSEEED ERESEEEDE
ENEREEDE DEERFENE JIU“eras LJiO"Eron NiEEFrNE SdEEEEnDE BEEEEEnE
d=EREE —l e -EI.II!J I:!I.l!‘ OFfTENEFry BCEREC MY TSN
ANEETENE IEVEAESH NCYUNEEC-EH NOJEED-0 ENEGEEESH IEFEEEEEE DEEEEEEE
ANEENESHE ENENNISEE EEI Ne=Ewll EEI NCI=Cf ENINNENDS FEENNNDE EEENNEDE
ENEESEEE dEEENEEE NEEC=EHL 7 “WEMG=HLf NEEOEsELE DESSSNENE DEEEEEEN
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*source : [Carreira and Zisserman, 2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset



Evolution of CNN Architectures for Video: 3D CNNs

* Further references for 3D CNNs for video action recognition
* ResNet3D [Hara et al., 2018]
e Can Spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?

* Translates ResNet [He et al., 2016] architecture to 3D CNN
(See p.23, Lecture 02)

* ResNeXt for 3D [Chen et al., 2018]
* Multi-Fiber Networks for Video Recognition

* Translates the multiple parallel path to 3D CNN
(See p.34, Lecture 02)

* STCNet [Diba et al., 2018]

* Spatio-Temporal Channel correlation networks

* Translates the Sequeeze-and-Excitation mechanism to 3D CNN
(See p.65, Lecture 02)

* Advanced 2D CNNs for image recognition are actively translated to 3D CNN

Algorithmic Intelligence Lab 30



Evolution of CNN Architectures for Video: Efficient 3D CNNs

* Training and inferring with 3D CNNs can be computationally too expensive

* e.g., 13D [Carreira and Zisserman, 2017] demands computation burden comparable
to the state-of-the-art video transformer models (100+ GFLOPs)

* Hence, there is a line of research pursuing efficient 3D CNN architectures

* Factorization of 3D kernel
* A 3D CNN kernel of size (PXMXN) can be factorized to two convolutions;
e Aspatial 2D kernel (1XMXN) and a temporal 1D kernel (PX1Xx1)

* R2+1D [Tran et al., 2018] and P3D [Qiu et al., 2017] directly adopts this idea to
largely save FLOPs

* Application of channel-wise separated convolutions

* CSN [Tran et al., 2019] shows the efficacy of separating channel interactions and
spatiotemporal interactions

* State-of-the-art performance is achieved with X3 less computations than 13D
[Carreira and Zisserman, 2017]
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Evolution of CNN Architectures for Video: RNN + CNN models

* Avideo is essentially a temporal sequence
* Itis a natural direction to combine CNNs with RNNs (e.g., LSTM)

* RNN recursively accumulates temporal information as hidden states
(See p.02, Lecture 03)

RNN LSTM

*source : http://colah.github.io/posts/2015-08-Understanding-LSTMs/

* This line of research replaces temporal fusion layers in CNN-based spatial-
temporal models with RNN operations

CIassuﬁcatlon results Classification results

nainn %é

~lijg e "‘ W g g I‘t’g “'ﬂ f‘fa e~ (g -

Clip (t+1) Clip (t+2) Clip (t+n) Clip (t+n+1) Clip (t+n+2) Clip (t+2n) Clip (t+1) Clip (t+2) p (t+n) Clip (t+n+1) Clip (t+n+2) Clip (t+2n)

*source : FASTER [Zhu et al., 2020]
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Evolution of CNN Architectures for Video: RNN + CNN models

* LRCN [Donahue et al., 2015] & Beyond Short Snippets [Ng et al., 2015]
* Two earliest concurrent works to fuse CNN and RNN architecture for spatial-
temporal model

* |Input CNN features to LSTM [Hochreiter and Schmidhuber, 1997]
(See p.05, Lecture 03 for the details about LSTM)

* |tis shown that Two-streams Networks [Simonyan and Zisserman, 2014] can
be improved (a bit) when LSTM-based temporal fusion is introduced

Method 3-fold Accu-
racy (%) Input Visual Sequence  Output
Improved Dense Trajectories (IDTF)s [23] 87.9 Features Learning
Slow Fusion CNN [14] 65.4
Single Frame CNN Model (Images) [19] 73.0

iy = 0(Wais + Whihi—1 + b;)

fi = o(Wysze + Whphi—1 + by)
0r = 0(Waoxt + Whohi—1 + bo)

gt = tanh(Wexy + Whehe—1 + be)

Single Frame CNN Model (Optical Flow) [19] 73.9
Two-Stream CNN (Optical Flow + Image Frames, | 86.9
Averaging) [19]
Two-Stream CNN (Optical Flow + Image Frames, | 88.0
SVM Fusion) [19]

Our Single Frame Model 73.3 ce=ftOci1+1O g
Conv Pooling of Image Frames + Optical Flow (30 | 87.6 hi =0: ® tanh( Ct)
Frames)

Conv Pooling of Image Frames + Optical Flow | 88.2

(120 Frames)

LSTM with 30 Frame Unroll (Optical Flow + Im- | 88.6
age Frames)

*sources : LRCN [Donahue et al., 2015] and Beyond Short Snippets [Ng et al., 2015]
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Evolution of CNN Architectures for Video: RNN + CNN models

e ConvLSTM [Shi et al., 2015] & Lattice-LSTM [Sun et al., 2017]

* ConvLSTM [Shi et al., 2015] is a tweak of LSTM [Hochreiter and Schmidhuber, 1997]
replacing LSTM’s affine transformation with 2D convolutions

hr

These affine transforms are replaced with convolutions

ConvLSTM ®
o iy = 0(Waizs + Whihi—1 + b;)
BN ft = o(Wasre + Whphi—1 + by
> cr 0; = 0(Waoxt + Whohs—1 + b,
gt = tanh(Wycxy + Whehi—1 + be)

Ct = ftGCt_l +Il/t®gt
- hi h: =0; ® tanh(ct)

x
x% *source : https://medium.com/neuronio/an-introduction-to-convlstm-55¢9025563a7

* Lattice LSTM [Sun et al., 2017] introduces ConvLSTM to video recognition
* Long-term modeling performance comparable to Temporal Segment Networks

C3D (3 nets) [31] 85.2 -
VideoLSTM[19] 89.2 56.4

VeryDeep | 1ppiry 23] 90.3 63.2
Ours L°STM 93.6 66.2

I B L oo
omplex TSN [34] 94 68.5

Algorithmic Intelligence Lab ) *source : Lattice-LSTM [Sun et al., 2017] 35



Evolution of CNN Architectures for Video: RNN + CNN models

* FASTER [Zhu et al., 2020]

* Introduces the 3D convolution operations to GRU [Cho et al., 2014]
(See p.12, Lecture 03 for the details about GRUs)

* Similarly to ConvLSTM [Shi et al., 2015], affine transforms of GRU are replaced

with 3D convolutions

These affine transforms are replaced with convolutions

ri=o0 G'rmxt + Groot—l ’

Zs =0 szxt I Gzoot—l )

* As discussed, 3D convolutions are with heavy computations

* FASTER [Zhu et al., 2020] introduces ResNet [He et al., 2015]-inspired
bottleneck layers to their 3D Convolutional GRUs

* Performance comparable to 13D at 5X cheaper GFLOPs

256-d

1x1, 64

complexity bottleneck
(for ResNet-50/101/152)
*source : https://blog.naver.com/laonple/220764986252

Algorithmic Intelligence Lab

TmageNet
Model Top-1 | pre-train | GFLOPsXclips
13D [5] 72.1 v 108 x4
S3D [43] 72.2 v 66.4xN/A
MF-Net [7] 72.8 v 11.1x50
AZ-Net [6] 74.6 v 40.8x30
S3D-G [47] 74.7 v 71.4xN/A
NL I3D-50 [41] 76.5 v 282x30
NL I3D-101 [41] | 77.7 v 359%30
13D [5] 68.4 - 108 x4
STC [10] 68.7 N/AXN/A
ARTNet [39] 69.2 23.5%250
S3D [43] 69.4 66.4xN/A
ECO [46] 70.0 N/AXN/A
R(2+1)D-34 [36] | 72.0 152x 115
FASTERI6 7.7 14.4x16
FASTER32 75.3 - 67.7x8
Benchmark in Kinetics dataset 36



Evolution of CNN Architectures for Video: RNN + CNN models

* RNN + CNN methods are interesting, yet relatively minor field
(Pros)

* Can better suit for long-range modeling in spatial-temporal recognition
(Since RNNs are originally designed for such purposes!)

* In some works (e.g., FASTER [Zhu et al., 2020]), it is shown that RNN+CNN model
can achieve comparable performance to state-of-the-art with less computations

(Cons)

* Shows only comparable or marginally improved performances compared to CNN-
only baselines

* Complex designs with doubled hyperparameters due to incorporating two
different architectures in one model
(Recall the importance of hyperparameter search—See Pg. 66, Lecture 01)

* Instead, recent line of research are majorly toward Transformer architectures
for spatial-temporal modeling
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Transformers for spatial-temporal data : Extension of ViT

Recall: Vision Transformer (ViT) [Dosovitskiy et al., 2021]
* Splits an image into fixed-size patches (16x16)
* Linearly embeds each of them
* Adds position embedding & extra learnable [class] token
* Feeds sequence of vectors to standard Transformer encoder

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

1
1
i
I
eee I
|
|
o
| o—
age I ( 1
e - gD @) €D 8)8) 60 € @$ e
o
| s
| |
o
|
1

’Ecl:f:sr:]lee"::;)i?ll(eilng [ Linear Projection of Flattened Patches A # A
NEE L] llw NS | Norm |
o o ——— 8 D O e O
w W E Sequence of patch images Embedded

' Patches

Algorithmic Intelligence Lab * source : [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021 40



Transformers for spatial-temporal data : Extension of ViT

Recall: Vision Transformer (ViT) [Dosovitskiy et al., 2021]
* Splits an image into fixed-size patches (16x16)
* Linearly embeds each of them
* Adds position embedding & extra learnable [class] token
* Feeds sequence of vectors to standard Transformer encoder

* Dosovitskiy et al. (2021) pre-trains models on larger datasets (14M-300M images)
* Vision Transformer achieves competitive performances compared to CNNs

 Vision Transformer (ViT) can be directly extended to videos
* We cover the following two seminal works:
* Video Transformer Network (VTN) [Neimark et al., 2021]
* Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]

Algorithmic Intelligence Lab * source : [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021 41



Transformers for spatial-temporal data : Extension of ViT - VTN

Video Transformer Network (VTN) [Neimark et al., 2021]

* VTN is a 2-stage transformer-based framework for video recognition attending to
the entire video sequence information

* Processes entire video via a single end-to-end pass from frame to objective task

* Two key modules
» 2D spatial backbone / Temporal attention-based encoder

MLP Class ID
Head ) “abseiling”

Algorithmic Intelligence Lab * source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021 42



Transformers for spatial-temporal data : Extension of ViT - VTN

Video Transformer Network (VTN) [Neimark et al., 2021]

e 2D spatial feature extraction model

Can be any network that works on 2D images
VTN uses ViT [Dosovitskiy et al., 2021] as the backbone architecture

The backbone produces an set of spatial tokens for each frame, which later will be
aggregated with temporal encoder

MLP Class ID
Head ) “abseiling”

Algorithmic Intelligence Lab * source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021 43



Transformers for spatial-temporal data : Extension of ViT - VTN

Video Transformer Network (VTN) [Neimark et al., 2021]
* Temporal attention-based encoder
Due to Transformer’s quadratic complexity with respect to inputs, the number of

tokens is limited in long videos
* To alleviate the complexity issue, VTN chooses sliding window attention [Beltagy et al., 2020]

over time that result in linear complexity over time

MLP Class ID
Head > “abseiling"

1
|

-based
* source : [Beltagy et al. 2020], arXiv 2020
T

.
AAAAAAY

I
=

I

[
II_L

|,f(.r)| |fm‘ If{.rJ| |f{<r)‘ |.f(.r>| |f(.r)| |f(.r)| |f(.r)|

(a) Full n? attention (b) Sliding window attention

Sliding window attention [seltagy et al., 2020]

* source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021
44
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Transformers for spatial-temporal data : Extension of ViT - VTN

Video Transformer Network (VTN) [Neimark et al., 2021]

* Benchmarks
* VTN achieves comparable accuracy to CNN-based baselines
* However...
* Due to more parameters, it takes longer to train and test
* VTN is not pure end-to-end transformer because of the 2-stage designs

training wall # training validation wall inference params
model . . . . top-1 top-5
runtime (minutes) epochs runtime (minutes) approach ™M)

I3D* 30 - 84 multi-view 28 73.5 [11] 90.8 [11]
NL I3D (our impl.) 68 50 150 multi-view 54 74.1 91.7
NL I3D (our impl.) 68 50 31 full-video 54 72.1 90.5
SlowFast-8X8-R50* 70 196 [13] 140 multi-view 35 77.0 [11] 92.6 [11]
SlowFast-8X8-R50* 70 196 [13] 26 full-video 35 68.4 87.1
SlowFast-16X8-R101* 220 196 [13] 244 multi-view 60 78.9 [11] 93.5 [11]
R50-VTN 62 40 32 full-video 168 71.2 90.0
R101-VTN 110 40 32 full-video 187 72.1 90.3
DeiT-Ti-VTN (3 layers) 52 60 30 full-video 10 67.8 87.5
ViT-B-VTN (1 layer) 107 25 48 full-video 96 78.6 934
ViT-B-VTN (3 layers) 130 25 52 full-video 114 78.6 93.7
ViT-B-VTN (3 layers) ' 130 35 52 full-video 114 79.8 94.2

Kinetics-400 dataset benchmark

Algorithmic Intelligence Lab * source : [Neimark et al. 2021] Video Transformer Network, ICCV 2021 45



Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arnab & Dehghani et al., 2021]
e ViViT is a pure transformer framework for video classification
* Tubelet embedding (3D extension of ViT)
- Extract non-overlapping, spatial-temporal tubes from input volume
- Linearly project them into R¢

/
/
/ f
Transform
Posj 'oﬁoken A
Abedding C
/ =
S
== _'8—'
EO: - —08—‘ L x| [self-Attent
=72, - Embed to _.8_‘
- E -:' tokens
- H :
[}
—y

Algorithmic Intelligence Lab *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021 46



Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention
1. (Joint) Spatio-temporal attention

- Simply forwards all pairwise interactions between all spatio-temporal tokens through
transformer encoder

- Unlike CNN, it can model long-range interactions across the video from the 15t layer
- Requires quadratic complexity, O((ny, - Ny, n)?), w.r.t number of tokens

l I-TeLaP;:I }—*CIass

Factorised : Factorised : Factorised

Transformer|Encoder Encoder | Self-Attention : Dot-Product
Position + Token ' i 4
Embedding | | 2
@_’ Me ) I ’ .........
E Temporal i E i
Eéw - (omoont ] ——
: | ! )
_.8_, Lx Self-Attention| '\__@@"; N I _________
- ese
™ el @ | | ot ol e e Y e e
b — Embed to —»: :—> Multi-Head :’ - H :' T E
: tokens Dot-Product ' Spatial l i C———Fuse )
: 5 - At‘[yentl:n E E ! ' i Temporal “
Nz It f
. S Crayertom ] R LU S R )
Algorithmic Intelligence Lab *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention
2. Factorized encoder (Similar to VTN)

Spatial encoder models interactions between tokens from the same temporal index
Temporal encoder models interactions between tokens from different temporal indices
Requires more transformer layers (i.e., more parameters) than Design 1

Requires less complexity, O((ny, - n,,)? + n?) than Design 1

MLP
Temporal Transformer Encoder
€ p Head |->Class
Factorised g2 ¢
Encoder + S A
sl
5
""""""""" Spatial Transformer Spatial Transformer Spatial Transformer
Temporal | S Encoder Encoder Encoder
; E eg
i Temporal : %E ' dos ' ' e ' el . oee
________________ 5 E S S S
------------------ o
| \ a
i [ Spatial ] : I Embed to tokens I
: ‘ Spatial l H
................. : :
L4 -
- et
- D - == =
- )

Algorithmic Intelligence Lab *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021
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Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention
3. Factorized self-attention
- First factorize to only compute self-attention spatially (all tokens from same temporal index)
- Then factorize to compute self-attention temporally (all tokens from sample spatial index)
- Requires same number of transformer layers as Design 1
- Requires same less complexity, O((ny, - n,,)? + n?), as Design 2

Factorised

Self-Attention Transformer Block x L
@ b
) N (Gn) (F7 7 ) ) ()
2 ﬁ’::‘x :: 2
5 » X 5 s &
i NN 3| [<|B= 3| |z
( Token embedding Y + = ~ *éﬁl:* — z — g'.(:;l’: z = an
3 S 3] 3 S8 3
NN
NN
Spatial Self-Attention Block Temporal Self-Attention Block
. J )
-

Algorithmic Intelligence Lab *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021 49



Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* Suggests different designs of spatial & temporal attention
4. Factorized dot-product attention

Algorithmic Intelligence Lab

Modify keys and values for each query to only attend over tokens from the same spatial
index and temporal index

Then factorize multi-head dot-product attention operation
Requires same number of parameters as unfactorized Design 1

Requires same less complexity, O((ny, - n,,)? + n?), as Design 2 and 3

Factorised

Dot-Product I %
— —
— — Multi-Head | Concatenate ]
E Temporal E Dot-product Attention ﬂ h
' d y s 1 ( 1
:\ ________ I _________ ; K | v Q \‘\ [ Scaled Dot-Product Attention }J [ Scaled Dot-Product Attention ]—]
vee \
R S \WR 127127172 R iy 1 =
: | [ Layer Norm ] | |) (e P | (reor J'( cvear P e P
:: \
Temporal “ ‘\ r t r
| H = i \
N J Selfriention Block Y X Spatlal Heads Temporal Heads
\\‘
|

*source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021 5Q



Transformers for spatial-temporal data : Extension of ViT - ViViT

Video Vision Transformer (ViViT) [Arab & Dehghani et al., 2021]
* The factorized encoder (FE, model #2) shows the best accuracy-to-FLOPs ratio

* Although ViViT can be a pure-transformer, they found the model #2 (2-stage
design similar to VTN) is more efficient.

* |n fact, pure-transformer video models with good efficiency often come with
sophisticatedly designed approximate attention (to be discussed in the next
chapter)

* Nevertheless, ViViT (model #2) is the first work to surpass the CNN-based models

Method Topl Top5 Views TFLOPs
blVNet [19] 735 912 - -
STM [33] 737 916 - -
TEA [42] 76.1 925 10x 3 2.10
FLOPs Params Runtime TSM-ResNeXt-101 [43] 76.3 - - -
K400  EK 109 (x10%)  (ms) 13D NL [75] 777 933 10x3 1077
- CorrNet-101 [70] 79.2 - 10 x 3 6.72
Model 1: Spatlo—temporal 80.0 43.1 455.2 88.9 58.9 1p-CSN-152[ ) 79.2 93.8 10 X 3 3.27
Model 2: Fact. encoder 78.8 43.7 284.4 115.1 17.4 LGD-3D R101 [51] 79.4 94.4 _ _
Model 3: Fact. self-attention 77.4 39.1 372.3 117.3 31.7 SlowFast R101-NL [21] 79.8 939 10X 3 7.02
Model 4: Fact. dot product 76.3 39.5 277.1 88.9 22.9 X3D-XXL [20] 804 946 10x3 5.82
Model 2: Ave. pool baseline  75.8  38.8  283.9 86.7 17.3 TimeSformer-L [4] 80.7 947 1x3 7.14
ViViT-L/16x2 FE 80.6  92.7 1x1 3.98
ViViT-L/16x2 FE 81.7 938 1x3 11.94
Comparison between model variants Kinetics-400 dataset benchmark

Algorithmic Intelligence Lab *source: [Arnab & Dehghani et al., 2021] A Video Vision Transformer, ICCV 2021 51
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Transformers for spatial-temporal data : Approximated Attentions

Brute-force joint spatial-temporal attention is intractable for transformers
* Due to the quadratic complexity with respect to inputs
* This motivates the development of more efficient attention scheme
* Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]
* Video Swin Transformer [Liu et al., 2021]

10

-=-Joint Space-Time
-©-Divided Space-Time

-&-Joint Space-Time
-©-Divided Space-Time

Out of memory

Out of memory

TFLOPs
on

32 64 96
# of Input frames

0 ‘ ‘ ‘ 0
224 336 448 560 8
Spatial Crop (Px)

Video classification cost in TFLOPs

Algorithmic Intelligence Lab
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Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

* Proposes divided space-time attention

* Instead of exhaustively comparing all pairs of patches (i.e., joint space-time attention),
it separately applies temporal attention and spatial attention one after the other

* Temporal attention

* Each patch (blue) is compared only with the patches at the same spatial location in
other frames (green)

* Initialized to zero (so that function as identity mapping in early training stages)
* Spatial attention
* Each patch (blue) is compared only with the patches within the same frame (red)

* Designs may look similar to ViViT (model 3) in a big picture, however, implementation
details differ including 1) time— then—space att., 2) zero initializations for temporal layers

I EA
ADSn

I EA 21

Joint Space-Time Divided Space-Time
Attention (ST) Attention (T+S)

Algorithmic Intelligence Lab *source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021 54



Transformers for spatial-temporal data : Approximated Attentions - TimeSformer

Time-Space Transformer (TimeSformer) [Bertasius et al., 2021]

* Divided space-time attention leads to dramatic computational savings with

respect to spatial resolution/video length

* Qutperforms SOTA models while requiring less computational complexity

* O(S%T) + O(ST?) instead of O(S%T?)

Method Top-1 Top-5 TFLOPs
R(2+1)D (Tran et al., 2018) 72.0 90.0 17.5
bLVNet (Fan et al., 2019) 735 912 0.84
3 ot SpaseTime Uy ———— TSM (Lin et al., 2019) 7477 N/A N/A
-©-Divided Space-Time S3D-G (Xie et al., 2018) 747 934 N/A
L2 Out of memory 18 Oct-I3D+NL (Chen et al., 2019) 757 N/A 0.84
g g 5 Out ot memon D3D (Stroud et al., 2020) 759 N/A N/A
=1 = I3D+NL (Wang et al., 2018b) 777 933 10.8
ip-CSN-152 (Tran et al., 2019) 77.8 92.8 32
0, ‘ ‘ 0 ‘ CorrNet (Wang et al., 2020a) 792 N/A 6.7
B el Crop () ® etimputiames LGD-3D-101 (Qiuetal,2019) 794 944  N/A
SlowFast (Feichtenhofer et al., 2019b) 79.8 93.9 7.0
X3D-XXL (Feichtenhofer, 2020) 80.4 94.6 5.8
TimeSformer 78.0 93.7 0.59
TimeSformer-HR 79.7 944 5.11
TimeSformer-L 80.7 94.7 7.14

Kinetics-400 dataset benchmark

Algorithmic Intelligence Lab

3D CNNs

TimeSformer

*source: [Bertasius et al. 2021] Is Space-Time Attention All You Need for Video Understanding?, ICML 2021
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Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]
* Recall: Swin Transformer [Liu et al., 2021]
* Design of a hierarchical structure
» Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
» Efficient self-attention computation by using shifted windows scheme
* Concatenating 2 x 2 neighboring patches for downsampling operation
* Powerful performances in dense prediction tasks
e.g., object detection and semantic segmentation

segmentation Shifted window scheme

classlﬁcatlon detection ... classification

ol

//////// // / —

Wz
Yo A
(a) Swin Transformer (ours) (b) ViT

Layer | Layer I+1

A local window to A patch
perform self-attention

Algorithmic Intelligence Lab *source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021



Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]
* Invideos, pixels that are closer to each other in spatiotemporal distance are more
likely to be correlated (i.e., spatiotemporal locality)
* Thus, local attention computation well approximates spatiotemporal self-attention
* Video Swin Transformer is a spatial-temporal adaptation of Swin Transformer

i.e., extension from spatial locality to spatial-temporal locality

. b
3D local window to
perform self-attention
A tbken
3D tokens: T'XH’XW’ = 8x8x8 , ~ Layerl+1
# window: 2X2X2=8 # window: 3X3x3=27

Window size: PXMXM = 4x4x4

Algorithmic Intelligence Lab *source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 57



Transformers for spatial-temporal data : Approximated Attentions - Video Swin Transformer

Video Swin Transformer [Liu et al., 2021]

e Qutperforms SOTA 3D CNN models while requiring smaller computation costs for

inference

* Also outperforms SOTA transformer-based models while requiring half less

computational costs

Algorithmic Intelligence Lab

Method Pretrain Top-1 Top-5 | Views | FLOPs Param
R(2+1)D [37] - 720 900 | 10x1 75 61.8
13D [6] ImageNet-1K | 72.1 90.3 - 108 25.0
NL I3D-101 [40] ImageNet-1K | 77.7 93.3 | 10x3 359 61.8
ip-CSN-152 [36] - 77.8 928 | 10x3 109 32.8
CorrNet-101 [39] - 79.2 - 10x3 224 -
SlowFast R101+NL [13] - 79.8 939 | 10x3 234 59.9
X3D-XXL [12] - 804 946 | 10x3 144 20.3
MVIT-B, 32x3 [10] - 802 944 | 1x5 170 36.6
MVIT-B, 64x3 [10] - 812 951 | 3x3 455 36.6
TimeSformer-L [3] ImageNet-21K | 80.7 94.7 1x3 2380 1214
ViT-B-VTN [29] ImageNet-21K | 786 937 | 1x1 4218 11.04
ViViT-L/16x2 [1] ImageNet-21K | 80.6 947 | 4x3 1446  310.8
ViViT-L/16x2 320 [1] ImageNet-21K | 81.3 947 | 4x3 3992 3108
ip-CSN-152 [36] IG-65M 825 953 |[10x3 109 32.8
ViViT-L/16x2 [1] JFT-300M 82.8 955 | 4x3 1446  310.8
ViViT-L/16x2 320 [1] JFT-300M 835 955 | 4x3 3992 310.8
ViViT-H/16x2 [1] JFT-300M 84.8 958 | 4x3 8316  647.5
Swin-T ImageNet-1K | 78.8  93.6 | 4x3 88 28.2
Swin-S ImageNet-1K | 80.6 945 | 4x3 166 49.8
Swin-B ImageNet-1K | 80.6 94.6 | 4x3 282 88.1
Swin-B ImageNet-21K | 82.7 955 | 4x3 282 88.1
Swin-L ImageNet-21K | 83.1 959 | 4x3 604 197.0
Swin-L (3841) ImageNet-21K | 84.6 96.5 | 4x3 2107  200.0
Swin-L (3841) ImageNet-21K | 84.9 96.7 | 10x5 | 2107  200.0

*source: [Liu et al.

2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021

3D CNNs

Transformer-
based models

Ours
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Transformers for spatial-temporal data : Approximated Attentions - MViT

Multiscale Vision Transformers (MVIT) [Fan et al., 2021]
 Utilizes multiscale channel-resolution stage hierarchy (pyramidal structure)

* The stages progressively expand channel capacity while reducing spatial resolution
* Early layers operate at spatially dense resolution & simple low-level features
* Deeper layers operate at spatially coarse resolution & complex high-dimensional features

s-ca]ez scales

Algorithmic Intelligence Lab *source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021 59



Transformers for spatial-temporal data : Approximated Attentions - MViT

Multiscale Vision Transformers (MVIT) [Fan et al., 2021]

* Multi Head Pooling Attention

* Each stage consists of multiple transformer blocks with specific space-time resolution and
channel dimension

* Pooling Query tenors reduces output space-time resolution (down-sampling)
* Pooling Key, Value tensors reduces attention computation
e Channel expansion is done with the MLP block of the previous stage

T
{ Add & Norm }
Y 7awxp
[ MatMul ]
T A
[ Softmax ]
T THW x THW THW x D
[ MatMul & Scale ] 4
1 Qfﬁﬁfxp ’ KT’mi‘xD
(Pooig)  (Foog]  [Pools ) [Fosly ]
“,,THWXD AATHWXD “A THW x D
K |4
L@E | Linear
N
> A
THW x D

Algorithmic Intelligence Lab *source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021
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Transformers for spatial-temporal data : Approximated Attentions - MViT

Multiscale Vision Transformers (MVIT) [Fan et al., 2021]

* Without any external pre-training, MViT outperforms both SOTA 3D CNN models &

transformer-based models with less parameters and computation

Algorithmic Intelligence Lab

model pre-train top-1 | top-5 | FLOPs x views | Param
Two-Stream 13D [11] - 71.6 |90.0 | 216 x NA| 25.0
ip-CSN-152 [96] - 77.8192.8 | 109x3x10| 32.8
SlowFast 8 x 8 +NL [30] - 78.7193.5| 116x3x10| 59.9
SlowFast 16 x8 +NL [30] - 79.8 1939 | 234x3x10| 59.9
X3D-M [29] - 76.0 | 923 | 6.2x3x10 3.8
X3D-XL [29] - 79.1 {939 | 48.4x3x10| 11.0
ViT-B-VTN [78] ImageNet-1K | 75.6 | 92.4 | 4218x1x1| 114.0
ViT-B-VTN [78] ImageNet-21K | 78.6 | 93.7 | 4218x1x1| 114.0
ViT-B-TimeSformer [6] |ImageNet-21K | 80.7 | 94.7 | 2380x3x1| 121.4
ViT-L-ViViT [1] ImageNet-21K | 81.3 | 94.7 | 3992x3x4| 310.8
ViT-B (our baseline) ImageNet-21K | 79.3 | 93.9 180x1x5| 87.2
ViT-B (our baseline) - 68.5 | 86.9 180x1x5| 87.2
MViT-S - 76.0 [ 92.1 | 329x1x5| 26.1
MYViT-B, 16 x4 - 7841935 | 70.5x1x5| 36.6
MViT-B, 32x3 - 80.2 | 94.4 170x1x5| 36.6
MVIT-B, 64 x3 - 81.2 | 95.1 455%x3x3| 36.6

*source: [Fan et al. 2021] Multiscale Vision Transformers, ICCV 2021

3D CNNs

Transformer-
based models

MViT
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Transformers for spatial-temporal data : Approximated Attentions - X-ViT

X-VIT [Bulat et al., 2021]
* Space-time mixing attention—O(TSz) complexity
* The following architectural changes in X-ViT reduce the full quadratic complexity
0(T?52) to the proposed O(TS?)
1. Restricting attentions within a temporal window of [t — t,,,t + t,,] for each q;,
- The complexity becomes O(T(2t,, + 1)252%)
2. Instead of individual space-time keys, the time compression f is applied such that
a single attention is considered over time with ks £ f([ks’,t—twi e ks’,t+tw])
3. Instead of general affine transforms, “shift trick” is employed as the implementatio
n of f to further save computations:
* Givenakey kg 4 € R¢, split its channels into (2t,, + 1) segments, then pick t
he t, € [1, ZtW + 1]th index to form the final kS, - The complexity becomes O(T (2t,,+ 1)52)

Can be disregarded as 2t,, + 1 is a small constant

kS’,tlzl XY X) kS’,tIZZL—W'I'l kS, . . .
u | ! || | | |
u ] —_ d-dimension
— — : (a) Full space-time atten- (b) Spatial-only attention: (c) TimeSformer [3]: (d) Ours: O(T'S 2)
— — tion: O(T2S5?) o(TS?) O(T*S +TS?)
— — H *Red is the query vector X-ViT
- - * is the key vector that the query vector attends to

t'=1 t'=21t=3 t'=2t,+1
The shift trick in X-ViT
A|g0 rith m ic Inte”igence I-a b *source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021 62



Transformers for spatial-temporal data : Approximated Attentions - X-ViT

X-VIT [Bulat et al., 2021]
* Summary

* Attentions restricted to within a temporal window

* Key vector is constructed by mixing tokens from same spatial location within a local tempo
ral window

e Temporal information is aggregated by indexing subset channels from each token at differ
ent temporal locations

* Properties

* With k transformer blocks, the temporal receptive field becomes [—kt,,, kt,,]
e.g.,, foraT = 8 frames input, t,, = 1 and k = 4 suffices to achieve the full receptive field

« Computational complexity scales linearly with number of frames 0(TS?)

(b) Proposed space-time mixing attention.

Algorithmic Intelligence Lab

*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurIPS 2021 63



Transformers for spatial-temporal data : Approximated Attentions - X-ViT

X-VIT [Bulat et al., 2021]

* Achieves comparable performance to SOTA models while requiring significantly

lower computational complexity

- X-ViT (16-frames, 850 GFLOPs) achieves performance comparable to heavy-weight variants
of TimeSformer (96-frames, 7140 GFLOPs) and ViViT (32 frames, 4340 GFLOPs)

* Allows for an efficient approximation of local space-time attention at no extra cost

Method Top-1 Top-5 #Frames Views Params FLOPs (x107%)
bLVNet [14] 735 912 24 x 2 3x3 25M 840
STM [19] 737 916 16 - 24M -
TEA [25] 76.1 92.5 16 10x3 25.6M 2,100
TSM R50 [26] 74.7 - 16 10x3 25.6M 650
I3D NL [44] 777 933 128 10x 3 - 10,800
CorrNet-101 [40] 79.2 - 32 10 x 3 - 6,700
ip-CSN-152 [38] 792 938 8 10x 3 - 3,270
LGD-3D R101 [31] 794 944 16 - - -
SlowFast 8x8 R101+NL [16]  78.7  93.5 8 10x 3 - 3,480
SlowFast 16x8 R101+NL [16] 79.8 939 16 10x 3 - 7,020
X3D-XXL [15] 804 946 - 10x3 20.3M 5,823
TimeSformer-L [3] 80.7 947 96 1x3 121M 7,140
ViViT-L/16x2 [1] 80.6 947 32 4x3 312M 17,352
X-ViT (Ours) 78.5 937 8 1x3 92M 425
X-ViT (Ours) 794 939 8 2x3 92M 850
X-ViT (Ours) 80.2 947 16 1x3 92M 850
X-ViT (Ours) 80.7 94.7 16 2x3 92M 1700

Algorithmic Intelligence Lab

*source: [Bulat et al. 2021] Space-time Mixing Attention for Video Transformer, NeurlPS 2021
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Transformers for spatial-temporal data : Approximated Attentions - Motionformer

Motionformer [patrick et al., 2021]

* Depending on object/camera move, physical point at one location may move to diffe
rent locations in each frame

e Addressing temporal correspondence, Motionformer proposes trajectory attention
* Aggregates information along implicitly determined motion paths

Algorithmic Intelligence Lab *source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021 g5



Transformers for spatial-temporal data : Approximated Attentions - Motionformer

Motionformer [patrick et al., 2021]
* Trajectory attention
» Aggregates information along implicitly determined motion paths
* Spatial attention
- Forms a set of ST trajectory tokens for every space-time location
* Temporal attention
- Pools along those trajectories with a 1D temporal attention operation

~

Spatial
Attention

A:TSxTxS

9 Temporal
= Attention
<
R

%

—
—
Y:TSxD

Y:TSxTxD

Z:TSxD

(%)

_J

Algorithmic Intelligence Lab *source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021 g6



Transformers for spatial-temporal data : Approximated Attentions - Motionformer

Motionformer [patrick et al., 2021]

* Previous works approximate attention structures
e e.g., divided attention by TimeSformer, locallity-aware attention by Swin Transformer
* Motionformer directly attempts to approximate dot-product attention itself
* Orthoformer algorithm
- Approximates attention matrix by selecting most orthogonal subset of queries and keys
- Allows to significantly improve computational and memory efficiency
1. Randomly subsample R queries and keys to avoid linear dependence on sequence length

2.& 3. Compute two attention matrices {1; and , (much smaller than original problem)
4. Multiply them with values

Algorithm 1 Orthoformer (proposed) attention
1: P < MostOrthogonalSubset(Q, K, R)
2 91 = S(QTP/\/B)
3: Q2 =S(P'K/VD)
e Y = Ql(QQV)

Algorithmic Intelligence Lab *source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021 g7



Transformers for spatial-temporal data : Approximated Attentions - Motionformer

Motionformer [pPatrick et al., 2021]
* Motionformer performs favorably against SOTA models

* Achieves strong top-1 accuracy for SSv2 and Epic-Kitchen Nouns datasets, which requ

ire greater motion reasoning

Algorithmic Intelligence Lab

(a) Something-Something V2 (b) Kinetics-400
Model Pretrain Top-1 Top-5 GFLOPs xviews Method Pretrain ~ Top-1 Top-5  GFLOPsX views
SlowFast [27] K-400 617 - 65.7x3x1 13D [12] IN-IK 721 89.3 108 xN/A
TSM [51] K-400 634 885 624%3x2 R(2+1)D [82] -~ 72.0 90.0 152x5%23
STM [36] IN-1K 642 898 66.5x3%10 S3D-G [94] IN-IK 747 934 142.8xN/A
MSNet [44] IN-1K 647 894 67x1x1 X3D-XL [26] - 79.1 939 48.4x3%10
TEA [50] IN-1K 65.1 2 70x3x10  SlowFast [27] - 79.8 939 234x3%10
bLVNet [25] IN-1K 652 903 1286x3x10  \NTs6] INZIK 786 937 218 x1x1
VidTr-L [49] IN-21K+K-400 60.2 2 351x3x10 VidTr-L[49] IN-21K  79.1 93.9 392x3x 10
Tformer-L [8] IN-21K 62.5 - 1703x3x1 TformerL[8] IN-21K  80.7 94.7 2380x3x1
ViViTL [3] IN-21K+K-400 654  89.8 3992x4x3 MVIT-B [24] - 81.2 95.1 455%3x3
MViT-B [24] K-400 671 908 170x3x1 ViViT-L [3] IN-2IK 813 94.7 3992x3x4
Mformer IN-21K+K-400 665  90.1 369.5x3x1 Mformer IN2IK 797 942 369.5%3% 10
Mformer-L  IN-21K+K-400 681  91.2 1185.1x3x1 Mformer-L IN-21K 802 94.8 1185.1x3x 10
Mformer-HR IN-21K+K-400 67.1  90.6 958.8x3x1 Mformer-HR IN-21K  81.1 95.2 958.8%3% 10

(c) Epic-Kitchens (d) Kinetics-600
Method Pretrain A A% N  Model Pretrain  Top-1 Top-5 GFLOPs X views

TSN [85] IN-1K 33.2 60.2 460 AttnNAS [89] - 79.8 94.4
TRN [98] IN-1K 353 65.9 454 LGD-3D [62] IN-IK 815 95.6 .
TBN [40] IN-1K 36.7 66.0 472 SlowFast [27] . 81.8 95.1 234x3x10
TSM [51] IN-1K 383 67.9 49.0 X3D-XL [26] 81.9 95.5 484x3%10
SlowFast [27] K-400 385 65.6 500 TformerHR[8] IN-21K 824 960 1703x3x 1
VIiViT-L [3] IN-21K+K-400  44.0 66.4 56.8 ViViT-L [3] IN-21IK  83.0 95.7 3992 x3 x4
Mformer IN-21K+K-400 4311 667 565 MVITB-4[A] - 838 93 236x1x5
Mformer-L IN-21K+K-400  44.1 67.1 57.6 Mformer IN-2IK 816 95.6 369.5%3x 10
Mformer-HR  IN-21K+K-400  44.5 67.0 58.5 Mformer-L IN-2IK 822 96.0 1185.1x3x 10
Mformer-HR  IN-21K 827 96.1 958.8x3x 10

*source: [Patrick et al. 2021] Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers, NeurlPS 2021
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Transformers for spatial-temporal data : Unified transformer-CNN model

3D convolutions vs. Vision Transformers
* 3D convolutions

* Pro: Can capture detailed local spatiotemporal features to suppress local redundancy
* Con: Inefficient to capture global (long-range) dependency due to limited receptive field

* Vision Transformers

* Pro: Can capture global (long-range) dependency by self-attention mechanism
* Con: Inefficient to encode local spatiotemporal feature in shallow layers (local redundancy)

Integrating merits of both, a unified model has been proposed

Input

Frames

- Vision transformer learns local repre
sentations with redundant global at
tention

- This wastes large computation to en
code only very local spatiotemporal

Layer3 representations

Temporal

Attention Time
—= —— — —a = Q a Q —

Layer3
Output
Feature

Layer3
Spatial
Attention

Visualizations of TimeSformer [Bertasius et al., 2021]
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Lietal., 2022]
* Three key modules
* Dynamic Position Embedding (DPE)
* Multi-Head Relation Aggregator (MHRA)
* Feed-Forward Network (FFN)
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*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Dynamic Position Embedding (DPE)
* Previous spatiotemporal position embedding methods:
- Absolute position embedding cannot handle different input sizes because it is
interpolated to target input size with fine-tuning

- Relative position embedding modifies self-attention and performs worse due to lack
of absolute position embedding

Algorithmic Intelligence Lab *source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022 72



Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Dynamic Position Embedding (DPE)

* To overcome these problems, conditional position encoding (CPE) is extended to
dynamic position embedding (DPE)

DPE(X;,) = DWConv(X;,)

* DPE dynamically integrates 3D position information into all tokens
* DWConv is asimple 3D depth-wise convolution with zero paddings
- Shared parameters & locality of convolution tackles permutation-invariance
- In CPE, zero paddings help tokens on the borders be aware of their absolute positions
- That is, all tokens progressively encode their position information via querying their neighbor
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Multi-Head Relation Aggregator (MHRA)

- V, € ]RLX% : token context encoding that transforms original token into context via
linear transformation (L = TXHXW)
A,,: token affinity learning that summarizes context with guidance of token affinity
R, (X) = A,V,,(X): the relation aggregator (RA) in the n-th head
U € R“*C: learnable parameter matrix that integrates N heads

Tackles local redundancy & global dependency problems by flexibly designing A,,
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Multi-Head Relation Aggregator (MHRA)
1) Local MHRA (for shallow layers)

- Aim for shallow layers is to learn detailed video representation from local
spatiotemporal context to reduce redundancy

- Design token affinity to be local learnable parameter matrix, which depends only on
relative 3D position between tokens

- RA learns local spatiotemporal affinity between one anchor token X; and other
tokens in the small tube Q¢*"*®

Alcdl (X, X)) = al7?, where j € QL

saxx Iy W 128x LxE W s2oxix B W s12xLx L W
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Lietal, 2022]
* Multi-Head Relation Aggregator (MHRA)
2) Global MHRA (for deep layers)
- Aim for deep layers is to capture long-term token dependency in global video clip
- Design token affinity via comparing content similarity among all tokens in global view
e@n (X:) T Kn(X;)

lobal
A7 (Xi, X;) = eQn(Xi)T Kn(X;/)

JEQTxHxW

- Xj can be any token in global 3D tube Qrypxw
- Qn(9) and K,,(+) are two different linear transformations
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Multi-Head Relation Aggregator (MHRA)

* Most video transformers requires large amount of calculation because they apply self-
attention in all stages

* While dividing spatial & temporal attention reduces dot-product computation, it
deteriorates spatiotemporal relation among tokens

* MHRA saves computation by performing local relation aggregation in early layers
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Transformers for spatial-temporal data : Unified transformer-CNN model - UniFormer

UniFormer [Liet al., 2022]

* Uniformer outperforms most of the current methods with much fewer

computational cost

* Achieves a preferable balance between computation and accuracy

Algorithmic Intelligence Lab

Method Pretrain | #Frame GFLOPs TOPESV}OP_ S Top-?sv%‘op- S
TSN(Wang et al., 2016) IN-1IK | 16x1x1 66 199 473 300 60.5
TSM(Lin et al., 2019) IN-1K 16x1x1 66 472 77.1 - -

GST(Luo & Yuille, 2019) IN-1IK | 16x1x1 59 486 779 | 62,6 879
MSNet(Kwon et al., 2020) IN-1K 16x1x1 101 521 82.3 64.7 89.4
CT-Net(Li et al., 2021a) IN-1K 16x1x1 75 52.5 80.9 64.5 89.3
CT-Netgy(Li et al., 2021a) IN-1K | 8+12+16+24 | 280 566 839 | 67.8 91.1
TDN(Wang et al., 2020b) IN-1IK | 16x1x1 72 539 821 653 895
TDNg y (Wang et al., 2020b) IN-1K | 8+16 198 56.8  84.1 682 91.6
TimeSformer-HR(Bertasius et al., 2021) | IN-21K | 16x3x1 5109 - - 62.5 -

X-ViT(Bulat et al., 2021) IN-21K | 32x3x1 1270 - - 654  90.7
Mformer-L(Patrick et al., 2021) K400 32x3x1 3555 - - 68.1 91.2
ViViT-L(Arnab et al., 2021) K400 16x3x4 11892 - - 654 898
MViT-B,64 x3(Fan et al., 2021) K400 64x1x3 1365 - - 67.7 909
MViT-B-24,32 x3(Fan et al., 2021) K600 32x1x3 708 - - 68.7 915
Swin-B(Liu et al., 2021b) K400 32x3x1 963 - - 69.6 927
Our UniFormer-S K400 16x1x1 42 53.8 81.9 63.5 88.5
Our UniFormer-S K600 16>31P3l 42 54.4 81.8 65.0 89.3
Our UniFormer-S K400 16x3x1 125 572 849 | 677 914
Our UniFormer-S K600 16x3x1 125 576 849 | 694 921
Our UniFormer-B K400 16x3x1 290 SONIl 862 | 704 928
Our UniFormer-B K600 16x3x1 290 58.8 8.5 | 702 93.0
Our UniFormer-B K400 32x3x1 70 609 873 | 71.2 928
Our UniFormer-B K600 32x3x1 il 61.0 876 | 71.2 928

*source: [Li et al. 2022] Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning, ICLR 2022
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Summary

For spatial-temporal data, one need a specific vision architecture for
processing temporal dependency between frames

CNN architectures for video have developed in a way that
e Can better model motion information in sequence of frames

* Multiteam architectures, Temporal segment networks, and 3D CNNs are key
advances for CNNs for modeling spatial-temporal data

Recently, Transformer is actively applied to video recognition

* As in other sequential tasks, transformer’s ability to model long-range
dependencies largely benefits video recognition performance

* For efficiency, approximated attention mechanisms enable video transformers to
process spatial-temporal data under limited computation resources

Transformer-based video model is rapidly becoming a de-facto standard
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