Algorithmic Intelligence Lab

Advanced Deep Temporal Models

Al602: Recent Advances in Deep Learning
Lecture 3

Slide made by

Jaehyung Kim and Changyeon Kim
KAIST EE

Algorithmic Intelligence Lab

Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
e Speech

Algorithmic Intelligence Lab

Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically

* Speech

* Natural language

0] &7 dof

gt=0]

.

“Overall, the value I got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was _.” — terrible

~

J

Language modeling

Seof v & s= dof

Language model pretraining has led to significant performance gains X A A =

but the careful comparison between different approaches is

challenging.

0

(=

Algorithmic Intelligence Lab

4

Eo7 Hlwshzs A2 0 ELIH

eon-eo model sajeon hunlyeon-eun sangdanghan seongneung hyangsang-eul gajyeo
wassjiman seolo daleun jeobgeun bangsig-eul sinjunghage bigyohaneun geos-eun

eolyeobseubnida.

139 /5000 v)

Translation

D 72 <

Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
e Speech
* Natural language
* Video

Algorithmic Intelligence Lab

Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
e Speech
* Natural language
* Video
* Stock prices, and etc...

AH4EAE A 82,800 183,400 % 82,000 = 82,500 v 2,800 -3.28% 736,715,024
Linear v
v 2|1 96,800 (-14.77%) 97,350
93,456

i
' “'1“';

1 l|' ‘ ' 85,668
4 '
4"|'| 77,880

“I*‘M“ul 73,986

l it 70,092
i
I | 'I ! 66,198
| 'ni

62,304
" foo gt "
TN S
i ta by Mt
i
A Z[X| 55,100 (49.73%) 54,516

58,410

14 108 18 14 128 2021 28

Algorithmic Intelligence Lab

Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
* Speech
* Natural language
* Video
* Stock prices, and etc...

* In order to solve much complicated real-world problems,
we need a better architecture to capture temporal dependency in the data

one to one many to one many to many
1 : ST T
i ttt

Vanilla neural network

Algorithmic Intelligence Lab

Table of Contents

1. Basics
* RNN (Recurrent Neural Networks)
* LSTM (Long Short-Term Memory)
* Sequence-to-sequence Model

2. Advanced Topics
* From recurrence (RNN) to attention-based NLP models
* Transformer (self-attention) with its great results
* Pre-training of Transformers
* Drawbacks and variants of Transformers

3. Beyond GPT-3: Recent Advances with Large-scale Language Models
* Language models larger than GPT-3
* More effective training schemes
* Applications with language models

Table of Contents

1. Basics
* RNN (Recurrent Neural Networks)
* LSTM (Long Short-Term Memory)
* Sequence-to-sequence Model

Algorithmic Intelligence Lab

Vanilla RNN

* Process a sequence of vectors by applying

recurrence formula at every time step :

New state

ht:

fw

(

hi_1

Lt

[Old state

Input vector
at time step t

Function parameterized by learnable Y}/

Algorithmic Intelligence Lab

)

—
<

*reference: http://cs231n.stanford.edu/2017/ 2

Vanilla RNN

* Vanilla RNN (or sometimes called EIman RNN)
* The state consists of a single “hidden” vector h,

hy = fW(hifl,a?t) @D

h: = tanh(Whhs_1 + Waa:) Wi
Yy, = Wyhy

S~
5

*reference: http://cs231n.stanford.edu/2017/ 3

Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

J“) (6)

J -
Training loss

h) h(2) h(3) h4)
0 O O 0
0 W, e W, e WL, e
O @ @ @
0 0 0 O

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4

Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state » (")

JH ()
1 Training loss
W o) A ol
: W, : Wy, : W, :
o It It It:
8J® on?) oh'3) oh 9J®
dhY ohV) oh(?) 8 oh®) “ oh®

Algorithmic Intelligence Lab

Chain rule!

*reference: http://web.stanford.edu/class/cs224n/ 4

Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state A

ah(z—’_l) ° ° .
on® are too small? —) Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

J4) (6)
/

J -
Training loss

hiD_ h(2)_ h)_ h]
@ (*) () ()
e [Ha
@ @ @ @

8J® |on?) Oh®) OhM| oW

on™M | op™ | PYRE)] YXTY

Chain rule!

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4

Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state A

ah(z—’_l) . . .
on® are too small? —) Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

* So, model weight are updated only with respect to
not long-term effects.

J@) () J) ()
N N
ht) hi2l_ h)_ h]
() () () ()
0 W, @ W, |le W, @
() 1@ 1@ 1@
Q@ Q@ Q@ Q@

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4

Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4
 Consider a gradient from the first state h(")

ah(z—’_l) . . .
on® are too small? I:> Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

* So, model weight are updated only with respect to
not long-term effects.

onUtY)

* What happens if 0 aretoo large?) |Exploding gradient problem

grew — eold . @V@J(Q)

* This can cause bad updates as the update step of parameters becomes too big
* |n the worst case, this will result in divergence of your network

* |n practice, with a gradient clipping, exploding gradient is relatively easy to solve

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4

RNN Architectures: LSTM

* Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
* A special type of RNN unit, i.e., LSTM networks = RNN composed of LSTM units

* Explicitly designed RNN to
* Capture long-term dependency = more robust to vanishing gradient problem

e Coreidea behind LSTM
* With cell state (memory), it controls how much to remove or add information
* Only linear interactions from the output of each “gates” (prevent vanishing gradient)

S
Crr c,
7O\ /1) »
@ @ >
Cell state (]
— Gates : Way to optionally
\,)

let information through

*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM cell.png 5

RNN Architectures: Vanilla RNN

* Repeating modules in Vanilla RNN contains a single layer

ht — taﬂh(Whht_l + wat)

(n)

A

e \W@/ I ‘/ I
ta‘rklh
N o\ U Y,
Waz

Algorithmic Intelligence Lab

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 6

RNN Architectures: LSTM

* Repeating modules in LSTM 4 N
o — L e
Layer Pointwise Vector concatenate Copy
operation Transfer

9
D
|

\4

o| |0l | tanh
|

@

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 7

=9

\ 4

RNN Architectures: LSTM

Step 1: Decide what information we’re going to throw away from the cell state
* Asigmoid layer called “Forget gate” f;

* Looks at h;_1,x; and outputs a number between 0 and 1 for each cell state C};_1
* If 1: completely keep, if 0: completely remove

* E.g., language model trying to predict the next word based on all previous ones

* The cell state might include the gender of the present subject so that
the correct pronouns can be used

* When we see a new subject, we want to forget the gender of the old subject

fe =0(Wy - [hi—1, 1] + bf)

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 8

RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C, to be written to the

it = o (Wi - [hi—1,2¢] + b;)

T |C’t ét = tanh(WC . [ht—17 CEt] -+ bC)

Tt

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 9

RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C, to be written to the

* Then, update the old cell state C;_; into the new cell state C,
« Multiply the old state by f; (forget gate)
 Add 7, *x C'y, new content scaled by how much to update (input gate)

Ci—1 _ & 1t = 0<Wz‘ . [ht—la 3715] + bi)

X +
ftT Zt’—~¥a ét = tanh(We¢ - [he—1, 2] + bc)

Cy = fex Cr_1 + iy x C,

)

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 9

RNN Architectures: LSTM

Step 3: Decide what information we’re going to output
* Asigmoid layer called “Output gate” o,
* First, go through o: which decides what parts of the cell state to output
* Then, put the cell state C}; through tanh and multiply it by o; for hidden state h;

Ot = U(Wo) [ht—laxt] + bo)

ht = Ot * tanh(Ct)

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 10

RNN Architectures: LSTM

e Overall LSTM operations

Forget gate: ft = o(Wy - [he—1,%¢] +bs) Inputgate: iy = o(W; - [hi_1, 24| + ;)

Previous cell state: C',_4 New cell content: C; = tanh(We - [hi—1, x¢] + bo)

\ 4

Updated cell state: Oy = f; x Cy_1 + iy % Cy
Output gate: oy = a(W,, - [he_1, x¢] + bo)

—> Hidden state: h; = o; * tanh(Ct>

ht A
Cor(” e
(X) @ >
1 (0]
Je| i). OO
hey | UM L Laphl LT X
/

Tt Standard LSTM

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 11

RNN Architectures: GRU

» Gated Recurrent Unit (GRU) [cho et.al, 2014]
* Combines the forget and input gates into a single “update gate” z:
* Controls the ratio of information to keep between previous state and new state
* Reset gate r; controls how much information to forget when create a new content
* Merges the cell state C; and hidden state A,
* (+) Resulting in simpler model (less weights) than standard LSTM

Reset gate: 7y = o (W, - [hy_1, 2¢]) New content: i; = tanh(W - [ry * hy_1, 24])

Update gate: 2, = o(W, - [hy—1,2¢]) Hiddenstate: hy = (1 — z¢) * hy_1 + 2 * hy

hy
ht_l / Vo M\ \’\ ht

v

Gated Recurrent Unit

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 12

RNN Architectures: Stacked LSTM

e Stacked(multi-layer) LSTM [Graves et al, 2013]
* RNNs are already “deep” on one dimension (they unroll over many time-steps)

* We can add depth by simply stacking LSTM layers on top of each other
* This allows the network to compute more complex representations
* E.g., Output of 15t layer LSTM goes into 2" layer LSTM as an input

2"d [ayer LSTM

15t layer LSTM

Tt
* Dashed line indicates
identity mapping

temporal
Algorithmic Intelligence Lab *source: https://arxiv.org/pdf/1507.01526.pdf 13

RNN Architectures: Grid LSTM

 Grid LSTM [Kalchbrenner et al., 2016]
e Extended version of stacked LSTM

e LSTM units have additional memory along depth dimension as well as temporal
dimension

- Stacked

LSTM, 3
1.4 layers
—— Stacked
” LSTM 6
§ 1.3 layers
5 Grid LSTM,
§ 3 layers
3 1.2 —— Grid LSTM
8 :
6 layers
14
1
10000 30000 50000 70000 90000
Epoch
| BPC | Parameters | Alphabet Size | Test data
Stacked LSTM (Graves, 2013) 1.67 27TM 205 last 4AMB
MRNN (Sutskever et al., 2011) | 1.60 49M 86 last I0MB
GFRNN (Chung et al., 2015) 1.58 20M 205 last SMB
Tied 2-LSTM 1.47 16.8M 205 last SMB
2D Grid LSTM Performance on wikipedia dataset

(lower the better)

Algorithmic Intelligence Lab *source: https://github.com/coreylynch/grid-Istm 14

Limitation of Left-to-Right RNNs

* What is the limitation of all previous models?
* They learn representations only from previous time steps (left-to-right)
* But, it’s sometimes useful to learn from future time steps in order to

e Better understand the context
* Eliminate ambiguity

* Example
* “He said, Teddy bears are on sale”
* “He said, Teddy Roosevelt was a great President”

* |In above two sentences, only seeing previous words is not enough to understand
the sentence

e Solution
* Also look ahead (right-to-left) I:> Bidirectional RNN

Algorithmic Intelligence Lab

RNN Architectures: Bidirectional RNNs

* RNNs can be easily extended into bi-directional models

* Only difference is that there are additional paths from future time steps
e Any types of RNNs (Vanilla RNN, LSTM, or GRU) could be bi-directional models
* Note: bi-directional RNNs are only applicable if one has access to entire sequence

This representation of “terribly”
has both left and right context!

\

Hidden states
RO — [R®, % O]

©0000000)]
©0000000)]
0000000

joooooooo]

Backward RNN
7 = RNNpw (% (1+1), $<t>)

©0000000)]

oo

000
©0000000|
000

)

—(@sse)
f_ﬁ
0000

Forward RNN

7 — RNNpw (ﬁ(t—l)) C,jot))

—/

o000 —
Py

XY
(oo

o

)/

the movie was terribly| exciting !

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 16

Y

Table of Contents

2. Advanced Topics
* From recurrence (RNN) to attention-based NLP models
* Transformer (self-attention) with its great results
* Pre-training of Transformers
* Drawbacks and variants of Transformers

Algorithmic Intelligence Lab

RNNs in Real-world Application: Neural Machine Translation

* What is machine translation (MT)?
* Task of automatically converting source text in one language to another language
* No single answer due to ambiguity/flexibility of human language (challenging)

English Spanish French Detect language ~ - Spanish English Romanian ~
s

you
E

e Classical machine translation methods
* Rule-based machine translation (RBMT)
 Statistical machine translation (SMT; use of statistical model)
* (-) Lots of human effort to maintain, e.g., repeated effort for each language pair

* Neural Machine Translation (NMT)
e Use of neural network models to learn a statistical model for machine translation

Algorithmic Intelligence Lab

17

Breakthroughs in NMT: Sequence-to-Sequence Learning

e Difficulties in Neural Machine Translation
* Intrinsic difficulties of MT (ambiguity of language)

* Variable length of input and output sequence (difficult to learn a single model)

* The core idea of sequence-to-sequence model [Sutskever et al., 2014]

* Encoder-Decoder architecture

(input = vector = output)

* Use one RNN network (Encoder) to read input sequence at a time for encoding it
into a fixed-length vector representation (context)

* Use another RNN (Decoder) to

e ,
i h1 » ho » hg —i—) C
i T Io T3 i

extract the output sequence from context vector

G e
| yf "‘Jf ?JTB yf <E1T\ID ~
—_ ST > s3 S >[55 |
\< START > %1 Yo Y3 ys

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

Algorithmic Intelligence Lab

18

Breakthroughs in NMT: Sequence-to-Sequence Learning

* Encoder
* Reads the input sentence

* Use RNNs such that h; =
some non-linear functions

x = (x1,...,x7) and output context vector c
f(xy, hi—1) and ¢ = q({h1,...,hr}), where f and ¢ are

e E.g.,LSTMsas f and q({h1,...,hr}) = hr (in the original seq2seq model)

Input sequence x =

Algorithmic Intelligence Lab

(%1, 2, 23) and output sequence Y = (Y1, Y2, Y3,Y4)

19

Breakthroughs in NMT: Sequence-to-Sequence Learning

 Decoder

* Predict the next word ¥+’ given the context vector ¢ and the previously predicted
words {y17 oo 7yt’—1}

* Defines a probability over the translation y by decomposing the joint probability
into the ordered conditionals where y = (y1,.--,yr).

p(y) = Hp(yt\{yh o Yr—1},0),

* The conditional probability is modeled with another RNN ¢ as

pWil{yr, - sy -1t ¢) = g(Yi—1, 8¢, ¢),
hidden state of the RNN

G e

i yTl yf yf yf < ElT\ID >
hl > h2 > h3 —>» C —i—) S1 » S92 » S3 » 5S4 » S5
I1 T2 Z3 i< START > (71 Y2 Y3 Ya

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

Algorithmic Intelligence Lab

20

Breakthroughs in NMT: Sequence-to-Sequence Learning

* Example of the seq2seq model
* For English = French task
e With 2-layer LSTM for encoder and encoder

target output words

&

A

Je suis étudiant </s> Iloss layer

A00
P
i

projection layer

hidden layer 2

L g I

E—*-—%:l—>

embedding layer

Ihidden layer 1

|
| am a student <s> suss etudlant
encoding decoding

Algorithmic Intelligence Lab *source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ecOc557e560f 21

Breakthroughs in NMT: Sequence-to-Sequence Learning

e Results on WMT’14 English to French dataset [sutskever et al., 2014]
* Measure : BLEU(Bilingual Evaluation Understudy) score
* Widely used quantitative measure for MT task
* On par with the state-of-the-art SMT system (without using neural network)
* Achieved better results than the previous baselines

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
State of the art [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
| Oracle Rescoring of the Baseline 1000-best lists | ~45

* Seg2seq with RNNs is simple but very powerful in MT task

Algorithmic Intelligence Lab *source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning 22

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

Algorithmic Intelligence Lab

* Problem of original seq2seq(or encoder-decoder) model

* Need to compress all the necessary information of a source sentence into a
fixed context vector

* All decoding steps use an identical context along with previous outputs

P(Yeliy1, -, yr—1},¢) = g(Yi—1, 5¢,.),
* But, each step of decoding requires different part of the source sequence
« E.g., Stepl: “l 7 — “LI&= "
Step2: “I love you” — “ Athol”

* Hence, difficult to cope with long sentences...

Y1 Y2 Y3 Ya < END >
Fixed T T T T T
hy > ho » hs ¥t s » S » S3 » sy » 55
T T2 T3 < START > Y1 Y2 Y3 Ya

Input sequence x = (x1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

23

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted
sum of the values

Query: decoder’s hidden state, key and value: encoder’s hidden states

* (4j is a relative importance which means how well the inputs around position 7 and the
output position 7 match.

exp(ei;) T
Qij = =7 , €ij = S;_1h;
Attention H k=1 €rp(€ir)
Distribution L [
(SoftMax) 1
Attention scores
(dot product)) X y S

>
i
Y
>
N)
\ 4
>
w
A\ 4
V)
)—\
Y
(V)
)
\ 4
(V)
w
:l
CI:) d
W

query
key T

T To r3 < START > Y1 Y2 Y3

Algorithmic Intelligence Lab 24

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted
sum of the values

* Query: decoder’s hidden state, key and value: encoder’s hidden states
* The context vector ¢; is computed as weighted sum of h;

weights Ys
weighted sum
H 20 > C4
, [] T
J A A
C;, = E 87 j hj
J=1
Qe S?ff.'.'_‘::: -------- (“)4 ______________
value “"_"""::::::5555555:':‘55;;;;;5555;: _____
hy > 9 » hs » S » So » S3 » S4
A A A T T

T To r3 < START > Y1 Y2 Y3

Algorithmic Intelligence Lab 24

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Graphical illustration of seq2seq with attention
* E.g., Chinese to English

l | | ! | | |

Encoder €@ |/ €1 |/ €2 |/ €3 |/ €4 |/ e |—/>| €
Decoder do _ d; S— d2 —_— d3
| | ! l

Algorithmic Intelligence Lab *source: https://google.github.io/seq2seq/ 26

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Results
* RNNsearch (with attention) is better than RNNenc (vanilla seg2seq)
* RNNsearch-50: model trained with sentences of length up to 50 words

‘;U T T 1
25 :
O 20 |y, ; :
S : 5 : :
n . ' .
— 15 : S 3
'ﬁ : : : Nride :
m 10H|— RNNsearch-50f................ ke S \\\ AAAAAAAAAAAA
""" RNNsearch-30||: : R U
5H — - RNNenc-50 R T beassssniiiaiiid d s aiina bty
- RNNenc-30 638
(] 1 l l 1 J
0 10 20 30 10 50 60
Sentence length
c »
& £y 2 &
£ o £ = A 1] 7}
% $ % 8 © ., g é o E o E E A
25c258¢so_3a @ - S es .S § 4
FooSuLuw<g 3H EICA v 3 8x,%53 v 23 S c
L =5885£E50538%65 .V

accord

convient

sur
de
la noter

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

(a)

que
I
environnement
marin

est

le

moins

connu

de
I
environnement

<end>

(b)
Sample alignment results (attention map)

27

Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed
» 8-layer LSTMS for encoder/decoder with attention
* Achieve model parallelism by assigning each LSTM layer into different GPUs

* Add residual connections in standard LSTM
* ...and lots of domain-specific details to apply it to production model

Y, —>y2—> a o e G

P e TP
GPUS8 GPUS8
8§Iayers
‘ GPU3
GPU2 GPU3
GPU2 GPU2
GPU1

Algorithmic Intelligence Lab

GPU1 i

28

Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed

» 8-layer LSTMS for encoder/decoder with attention
* State-of-the-art results on various MT datasets and comparable with Human expert

Table 5: Single model results on WMT En—De (newstest2014)

Model BLEU CPU decoding time
per sentence (s)

Table 10: Mean of side-by-side scores on production data

Word 23.12 0.2972 : >
Character (512 nodes) 22.62 0.8011 FEME SCHNITE Homids Hiolatee
WPM-8K 23.50 0.2079 Improvement

> WPM-16K 24.36 0.1931 English — Spanish ~ 4.885 5.428 5.504 87%

WPM-32K 24.61 0.1882 English — French 4.932 5.295 5.496 64%

Mixed Word/Character ~ 24.17 0.3268 English — Chinese 4.035 4.594 4.987 58%

PBMT [0] 50.7 Spanish — English ~ 4.872 5.187 5.372 63%

RNNSearch [37] 16.5 French — English 5.046 5.343 5.404 83%

RNNSearCH—LV 37] 16.9 Chinese — English 3.694 4.263 4.636 60%
RNNSearch-LV [37] 16.9
Deep-Att [45] 20.6

GNMT with different configurations

Algorithmic Intelligence Lab

29

Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

yl‘—> yz-—b R e

>
e, T y eate el
i Encoder LSTMs . .
z I J—— g amemmmeamennenea ;.././../.,_I/........\..\.\..\.
% T T T -~ Detoder LSTMs >« _
H : | H
| GPUB S B B @ GPUS
t ot t
: + + +) A +
L+——» Attention
L Gru3 ' GRY3
GPU2 GPU2
H A

{GPu2 |

N ()
P S e, AE
§GPU1§ _’(]‘H”[J

@D own

Algorithmic Intelligence Lab 30

Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

* Summary
* 2014: First seq2seq paper published
* 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svsiean Google

beyond language

BaiEe ®8wmus Tencentil (O)mE%

* Remark. SMT systems, built by hundreds of engineers over many years, outperformed
by NMT systems trained by a small group of engineers in a few months

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 30

Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

* Next

* Now (2021), other approaches have become dominant for many tasks

* For example, in WMT (a Machine Translation conference + competition):
* In WMT 2016, the summary report contains “RNN” 44 times
* In WMT 2019: “RNN” 7 times, “Transformer” 105 times

Algorithmic Intelligence Lab

Next, Transformer (self-attention)

30

Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
* Hard to learn long-distance dependencies because of gradient problems
2. Forward/backward passes have O(sequence length) unparallelizable operations
* Future RNN hidden states can’t be computed before past states have been computed

* This aspect inhibits training on the very large datasets

The

Algorithmic Intelligence Lab

chef who ... was

o000 =. >
tt
= > > 000 — e 000 — —
Info of chef has gone through O(sequence length) many layers

31

Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:

1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

attention

attention

embedding E ©0poopPop
1 hy

h;

All words can attend to all words in previous layer

Algorithmic Intelligence Lab 31

Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:
1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

4)

Q. Then, can we design an architecture only using attention modules?
 Remark. We saw attention from the decoder to the encoder; but here,
we’ll think about attention within a single sentence.

_ J

Algorithmic Intelligence Lab

31

Transformer (Self-attention)

* Transformer [vaswani et al., 2017] has an encoder-decoder structure and they are
composed of multiple block with multi-head (self) attention module

(Softmax)

4
. (Lin:ar)
o p AR DECODER #2
S 4 :
z B ,*(Add & Normalize)
3 .
g E (Feed Forward) (Feed Forward)
o) Ry v
E ,b(Add & Normalize)
o .|))
i E (Feed Forward) (Feed Forward) :"C Encoder-Decoder Attention)
= [—— e) R TITrT , SITCCTCC LT LTI LY L)
; A Add & Normalize) L Add & Normalize)
=1l |5 [}) ; 4 L
. (Self-Attention) A (Self-Attention)
=)

-
4
POSITIONAL
ENCODING

xi T T 1] x [

Thinking Machines

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 32

Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value

* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;

by multiplying learnable weight matrices

g =W ki = Wha;, v, = WV,

Self-Attention

Algorithmic Intelligence

x: I x. EEEE

*reference: http:// http://jalammar.github.io/illustrated-gpt2 33

Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
of how well they match

R exp(eij) o q;[kj
ZJ N / ../ ZJ -
Self-Attention 2.5 explesy) Vd
20% 10% 50% 20%
'u | D " O
ail | bg—

x x. I x [x.

Algorithmic Intelligenc_ __. *reference: http:// http://jalammar.github.io/illustrated-gpt2 33

Transformer (Self-attention)

 Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up
output, = Z QU
i

Z1

0.2 0.1 0.5 0.2

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-gpt2 33

Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up

* Hence, self-attention is effective to learn the context within given sentence
* It’s easier than recurrent layer to be parallelized and model the long-term dependency

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) 0(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logx(n)

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-gpt2 33

Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, k;, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up
* Hence, self-attention is effective to learn the context within given sentence
* |t’s easier than recurrent layer to be parallelized and model the long-term dependency
* |t also provides an interpretability of learned representation

The
Law
will
never
be
perfect
application

.should
be
just
this
is
what
we
are
missing
in
my

-~ opinion
<EOS>
<pad>

- but
its

The
Law
will
never
be
perfect
but

its
application
should
be

just
this

is

what
we

are
missing
in

my
opinion
<EOS>
<pad>

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-gpt2 33

Transformer (Self-attention)

e Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence
* To prevent the increase of computation, original attentions weights are divided

Single-head attention Multi-head attention
(just the query matrix) (just two heads here) Same amount of
computation as
single-head
X XQ X _XQl XQ self-attention
o = Q102 =
head 0O head 1 head 2 head_3

Two
men
setting
up

Two
men
setting
up

a

blue
ice
fishing
hut

on

an
iced
over
lake

Two
men
setting
up

a

blue
ice
fishing
hut
on

an
iced
over
lake

Two
men
setting
up

a

blue
ice
fishing
hut

on

a
blue
ice
fishing
hut
on

an
iced
over
lake

an
iced
over
lake

CLOR 2L 2O E L L &A@ CLOR 22O L L & @
GRS &\@% S L (SEGOR &\\o% N LG
& 4 & ©

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 34

Transformer (Self-attention)

e Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X b
Thinking - WOK QO
Machines b ' WoV Ko
H { Vo
W,Q
* |n all encoders other than #0, WK Q1
we don't need embedding. I WyV HTL'_H_“ ’K‘
We start directly with the output I | l Vi

of the encoder right below this one

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 34

Transformer (Self-attention)

 Encoder

* Self-attention is invariant to order of input sequence

* To represent the order of sequence, positional encoding is added to input embeddings
at the bottoms of the encoder and decoder stacks

* Fixed sine and cosine functions are used for each position pos and dimension i
PE(pos 2i) = in(pos/10000%/4m) PE(pos 251 1) = cos(pos /100007 @)

* PE,.s+x can be derived as a linear function of PE,,; — easier to learn a relative position
* Compare to learning encoding, it’s better for extrapolation (not encountered in training)

0
1 II|
2
3

oo X1 I I LT
POSITIONAL é é
ENCODING
x1 B x [
Thinking Machines

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 35

Transformer (Self-attention)

* Encoder
» Self-attention is invariant to order of input sequence — positional encoding
* Residual connections (dotted) and layer normalization are used to help training

A 4
w| ,» LayerNorm(+)
5]
ol : 4
o]
= d
- (Self-Attention)
. ' '
*..... % o NEEN
POSITIONAL é é
ENCODING
x+ 2T [T 1171
Thinking Machines

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 35

Transformer (Self-attention)

* Encoder
» Self-attention is invariant to order of input sequence — positional encoding
* Residual connections (dotted) and layer normalization are used to help training
* Non-linearity is imposed by adding position-wise feed-forward networks

ﬂ(Add & Normalize ')\
))

N e e b 4
z1 z,
A A
w |, LayerNorm(+)
x|
1 A A
(&)]
Z| : :
- (Self-Attention)
- 4 2
oo X1 R LT
POSITIONAL é é
ENCODING
x1 B ey
Thinking Machines

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 35

Transformer (Self-attention)

 Decoder

* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

.

: : Softmax)
/’(Add & Normalize) g (+
IN (Feed Forward) (Feed Forward) é (Linear)
§ I(""""" PP T—— Y, 4
=N Ly L) i edl. DECODER #2
P C Self-Attention) : L \
S My fusces e ii e iniiis 4 ~/ : * *
(-»(I Add & Normalize I) E I’C Add & Normalize)
_) ey
g (Feed Forward) (Feed FonNard) : L 1
) T e 4 (Feed Forward) (Feed Forward)
o ;(Add & Normalize) 5 T
“l1 C T T 3 9 —
' Self-Attention : a ’(.)
S 7)) i . Add & Normalize
oo & C e |l 3 . 4
xi xe| ""',‘"(Encoder-Decoder Attention)
Thinking Machines Y s s ’ ___________________ ’
'¢(Add & Normalize)
4 L3
' (Self-Attention)

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-transformer 36

Transformer (Self-attention)

 Decoder

* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

Decoding time step: 1@3 456 OUTPUT
& =
Kencdec Vencdec (Linear + Softmax)
ENCODERS DECODERS]
L v,
EMBEDDING * * * *
WITH TIME [ITTT] CLTT] [ITTT] CTTT]
SIGNAL
EMBEDDINGS [IIH [OINE ©OEEE (T
INPUT Je suis étudiant PREVIOUS

Algorithmic Intelligence Lab

OUTPUTS

*reference: http:// http://jalammar.github.io/illustrated-transformer 36

Transformer (Self-attention)

e Success of Transformer: Machine Translation (MT)
* Initially, Transformer shows better results at a fraction of the training cost

Nl BLEU Training Cost (FLOPs)
oce EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0-10%°
GNMT + RL [31] 24.6 39.92 2.3-10*° 1.4-.10%
ConvS2S [8] 25.16 40.46 9.6-10% 1.5.10%
MoE [26] 26.03 40.56 2.0-10° 1.2-10%0
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%0 1.1-10%
ConvS2S Ensemble [8] 2636 41.29 7.7-101° 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'®
Transformer (big) 28.4 41.0 2.3-109

* Nowadays, Transformer is still a standard for MT with additional techniques

En—De

System news2017 news2018
baseline 30.90 45.40
+ langid filtering 30.78 46.43
+ ffn 8192 31.15 46.28
+ BT 33.62 46.66
+ fine tuning - 47.61
+ ensemble - 49.27
+ reranking - 50.63
WMT’18 submission - 46.10
WMT’19 submission 42.7

Algorithmic Intelligence Lab *reference: https://arxiv.org/pdf/1907.06616v1.pdf 37

Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Goal: localize the atomic action in space and time

* Previous approaches just use the feature of key frame with object detection
e But, it’s hard to model the interaction between frames

Input clip

(RGB frames) /
S
P 4

Initial actor

u
representation re
’ —_ —|— —_— e

More layers

Algorithmic Intelligence Lab *reference: https://rohitgirdhar.github.io/ActionTransformer 38

Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Qualitative results of learned attention

* Winner of AVA challenge in 2019: > 3.5 % than previous challenge winner

Method Modalities Architecture Val mAP Test mAP
Single frame [16] RGB, Flow R-50, FRCNN 14.7 -
AVA baseline [16] RGB, Flow 13D, FRCNN, R-50 15.6 -
ARCN [42] RGB, Flow S3D-G, RN 17.4 -
Fudan University - - - 17.16
YH Technologies [52] RGB, Flow P3D, FRCNN - 19.60
; s 13D, FRCNN, NL, TSN,

Tsinghua/Megvii [23] RGB, Flow C2D. P3D, (3D, FPN 21.08
Ours (Tx-only head) RGB 13D, Tx 24.4 24.30
Ours (Tx+I3D head) RGB I3D, Tx 24.9 24.60
Ours (Tx+I3D+96f) RGB 13D, Tx 25.0 24.93

Algorithmic Intelligence Lab *reference: https://rohitgirdhar.github.io/ActionTransformer 38

Transformer (Self-attention)

* Success of Transformer: Music generation [Huang et al., 2018]

* Goal: generate music which contains structure at multiple timescales (short to long)
* Performance RNN (LSTM): lack of long-term structure

>

» l.l

i
I
o

Algorithmic Intelligence Lab

Next, Pre-training with Transformer

*reference: https://magenta.tensorflow.org/music-transformer 39

https://magenta.tensorflow.org/music-transformer

Pre-training / Fine-tuning Paradigm with Transformers

* Motivation
* Many success of CNN comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch
* Then, can we train a similar universal encoder for NLP tasks?
* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
* Language modeling, i.e., reconstruction, is simple and feasible for our goal
e With diverse examples, model can learn the useful knowledge about the world

~
“Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was _.” — terrible
. y,

“I wat thinking about the sequence that goes
1,1,2,3 5 8 13,21, ”— 34

“I went to the ocean to see the fish, turtles, seals,
and 7 — sand

40

Pre-training / Fine-tuning Paradigm with Transformers

* Motivation

* Many success of CNN comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch

* Then, can we train a similar universal encoder for NLP tasks?

* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
* Language modeling, i.e., reconstruction, is simple and feasible for our goal

e With diverse examples, model can learn the useful knowledge about the world

* Pre-training for two types of architectures
* Architecture influences the type of pre-training, and natural use cases

2=

Decoders

Encoders

E.g. GPT
Pre-training with normal language modeling
Better use for generation tasks

E.g. BERT
Pre-training with masked language modeling
Better use for discriminative tasks (classification)

41

GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al., 2018]
arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

©/€? softmax(h,, Wy)
Lin\ear W,
hi,....¢hpm
L1, y Lm

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 42

GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al., 2018]
arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5%) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 592
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

GPT’s results on various natural language inference datasets

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 42

GPT-2: Language Models are Unsupervised Multitask Learners

e GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..

* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

GPT-2

EXTRA
LARGE
G pT_ 2 [C DECODER)\
LARGE .
G PT' 2 g; C DECODER 9
GPT 2 MEDIUM cee 6 (DECODER)
: (24 C DECODER) 5 DECODER D)
SMALL a DECODER D) a DECODER)
12 DECODER) e 3 DECODER D) 3 (DECODER)
cee 2 DECODER D 2 DECODER) 2 DECODER)
1 DECODER) % C DECODER)) % C DECODER)) ! C DECODER))
Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-gpt2 43

GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..

* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification

Output

Input

recite the first law $

\)
I

Proper condition

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-gpt2 43

GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..
* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)
* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification
* Remark. Largest model still underfits.. — larger model for better performance?

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 Lead-3
80 1 ~ 30 8 1 1Open Domain QA Systems 1 1
20 ~ 28 |PGNet
701 w
DrQA+PGNet 5 S 26 g 61
Denoising + Backtranslate = -
15 o o
e oy 4 = 24 {Seq2seq + Attn]
DrQA @ s 9 4
501 10 {Embed Nearest Neighbor Y 221 =
PGNet o © Random-3
Denoising 9 201
e 5 2 2
| 181 most freq Q-type answer
30
Seq2seq 0 16 0
117M 345M 762M 1542M117M 345M 762M 1542M 117M 345M 762M 1542M117M 345M 762M 1542M
of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.

Algorithmic Intelligence Lab

43

GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]

* Very large language models seem to perform in-context learning
without gradient steps (fine-tuning)

* In-context learning; adapting to specific task from examples with some context

The three settings we explore for in-context learning Zero-shot One-shot Few-shot
Zero-shot - 175B Params
The model predicts the answer given only a natural language Natural Language
description of the task. No gradient updates are performed. 60 Prompt
Translate English to French: task description 50
cheese => prompt ;\3 ,//
E 40 \
o
g 30 No Prompt
One-shot . =~ 13B Params
In addition to the task description, the model sees a single 20 A =
example of the task. No gradient updates are performed. -
10
Translate English to French: task description 1.3B Params
sea otter => loutre de mer example PT 2
cheese => prompt Number of Examples in Context (K) G -
Few-shot Setting NaturalQS WebQS TriviaQA
In addition to the task description, the model sees a few R o
examples of the task. No gradient updates are performed. RAG (Flne'tuned, Open-DomaJn) [LPP+20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
Translate English to French: task description T5_1 lB (Flne-tllned, Closed_Book) 34.5 37.4 50.1
sea otter => loutre de mer OXDHW/OS GP’I\—3 Zero—shot 14 6 14 4 64 3
PRERIEG & imuene s GPT-3 One-Shot 23.0 253 680
plush girafe => girafe peluche GPI‘—3 FeW-ShOt 29 9 41 5 71 2
cheese => prompt

Results on open-domain question answering

Algorithmic Intelligence Lab

GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]

* Very large language models seem to perform in-context learning
without gradient steps (fine-tuning)

* In-context learning; adapting to specific task from examples with some context
* It enables us to do a lot of interesting applications!

* E.g,

Describe a layout.

GPT-3 Quick Response by OthersideAl

Just describe any layout you want, and it'll try to render below!
Quickly write an email in your style by simply stating the points you would like to get across 4
Request beta access at othersideai.com &

[a button that looks like a watermelon ~] Gener,

Received Email Matt

Thanks for chatting last week. Hearing your vision for Otherside got both
Jim and | really excited. We really like where you're going with this. After
<button style={{backgroundColor: 'pink', border: '2px solid green', borderRadius: talking with my partners yesterday, we're looking at making an

f ' s : : investment of $100K into Otherside on a SAFE. Would this be sufficient
50%', padding: 20, width: 100, height: 100})}>Watermelon</button> 0 join your round? If so, we'll send over our proposed terms

On another note, as we discussed, let me know about your estimated
market size

Please let me know. Looking forward to an amazing journey together!

Thanks

Response Points * thanks

*no

* our minimum ig$150K investment
" would $150K bé possible

Generate Email

016 /118 <) o

Simple code generation Email response

Algorithmic Intelligence Lab *reference: https://machinelearningtokyo.com/2020/07/26/10-cool-gpt-3-demos/ 44

https://machinelearningtokyo.com/2020/07/26/10-cool-gpt-3-demos/

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore

* |nstead, masked language modeling is used for pre-training
* Replace some fraction of words (15%) in the input, then predict these words

Use the output of the
masked word’s position
to predict the masked word

Randomly mask

15% of tokens
[CLS]

Input

[CLS)

Algorithmic Intelligence Lab

0.1% | Aardvark

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax]

BERT

[MASK]

*reference: http:// http://jalammar.github.io/illustrated-bert 45

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore
* |nstead, masked language modeling is used for pre-training

* Additionally, next sentence prediction (NSP) task is used for pre-training
* Decide whether two input sentences are consecutive or not

Predict likelihood
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[FFNN + Softmax]
LN]
BERT
Tokenized cee
Input [CLS] [MASK]
Input [CLS) [MASK] [MASK]

Sentence A Sentence B

Algorithmic Intelligence Lab *reference: http:// http://jalammar.github.io/illustrated-bert 45

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP
tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

Class
Label

0 oD O

BERT

[eafl& |- L& (Gl]~ [&]

=FE- EEE- &)
‘_|_I I_'_l

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Algorithmic Intelligence Lab

f;is:l Start/End Span
—— 299
e~ (=] - O G=l)- G
BERT BERT
9 0 e N | ™ | e
R g — -~

= OFE- G)

few| & || &] - €,
i [CLS) || Tok 1 || Tok 2 |
|
|

Single Sentence Question Paragraph
(b) Single Sentence Classification Tasks: (c) Question Answering Tasks:
SST-2, ColA

SQuAD v1.1

45

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP

tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAlI SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 703 88.1 913 454 800 823 560 75.2
BERTgASE 84.6/83.4 71.2 90.1 935 521 85.8 88.9 664 79.6
BERT ArGE 86.7/85.9 72.1 911 949 60.5 865 893 70.1| 81.9
System Dev Test
System DevFl TestFl — EgIM+Glove 51.9 52.7
ELMo+BiLSTM+CRF 95.7 922 ESIM+ELMo 59.1 59.2
CVT+Multi (Clark et al., 2018) - 92.6 BERTg Ak 81.6 -
BERTgAsE 96.4 924 BERTLARGE 86.6 86.3
BERT} ARGE 96.6 92.8 Human (expert)' - 85.0
Human (5 annotations)! - 88.0

Algorithmic Intelligence Lab

45

RoBERTa: A Robustly Optimized BERT Pre-training Approach

* RoBERTa [Liu et al., 2019]

* Simply modifying BERT design choices and training strategies with alternatives
* Using dynamic masking instead of static masking in BERT
* Removing NSP task and generate training data in single document instead
* Much larger data for pre-training: 16GB — 160GB, and etc...

* But, it leads a huge improvement in many downstream tasks

SQuAD

Model data bsz steps (v1.1/2.0)

MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 931

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Algorithmic Intelligence Lab

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Quadratic computation in self-attention as a function of sequence length
Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. Linformer [wang et al., 2020]

* Key idea: low rank approximation of attention mechanism with linear projection

head; = Attention(QW.>, KW, VW) —
QUKWE\T 1
= softmax QW (KW 4744 Concat
Vdi T
N - =4 4 Tt
P Scaled Dot-Product z
Attention L 4
s f——F
_ Projection Projection
head; = Attention(QW 2| E kWX | EVwY) erlm qu
Q. K\T : == ;
— softmax QWz (E'LKW»L) . EVW/LV, Linear Linear Linear
\/CTk e
A r 1T
P:nxk \Y% K Q

Algorithmic Intelligence Lab

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Quadratic computation in self-attention as a function of sequence length
Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. Linformer [wang et al., 2020]
* Key idea: low rank approximation of attention mechanism with linear projection

e Performance can be preserved after the approximation

n Model SST-2 IMDB QNLI QQP Average
Liu et al. (2019), RoBERTa-base 93.1 94.1 90.9 90.9 92.25
Linformer, 128 92.4 94.0 90.4 90.2 91.75
Linformer, 128, shared kv 934 934 90.3 90.3 91.85
Linformer, 128, shared kv, layer 93.2 93.8 90.1 90.2 91.83

512 Linformer, 256 93.2 94.0 90.6 90.5 92.08
Linformer, 256, shared kv 93.3 93.6 90.6 90.6 92.03
Linformer, 256, shared kv, layer 93.1 94.1 91.2 90.8 92.30

Devlin et al. (2019), BERT-base 92.7 93.5 91.8 89.6 91.90

S Sanh et al. (2019), Distilled BERT 91.3 92.8 89.2 885 90.45
Linformer, 256 93.0 93.8 904 904 91.90
1024 Linformer, 256, shared kv 93.0 93.6 903 904 91.83

Linformer, 256, shared kv, layer 93.2 94.2 90.8 90.5 92.18

Algorithmic Intelligence Lab 47

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Quadratic computation in self-attention as a function of sequence length
Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. BigBird [Zaheer et al., 2020]

* Key idea: replace all-pairs interactions with a family of other interactions, like
1) random attention, 2) local attention (window), 3) global attention

* |t can preserve the some property of original attention in theory
* Due to effect as regularization, it sometimes improve the performance than original

[, L] I O A B I I

L[] O [T [T T[T Model HotpotQA NaturalQ TriviaQA
* DD m 1 ma Ans Sup Joint LA SA Full Verified
+ O L = HGN [26] 822 885 742
o HE mEnln GSAN 81.6 887 739 - -
O L] ReflectionNet [32] . . - 77.1 64.1
(] ;BD Ll RikiNet-v2 [61] - - - 76.1 61.3 - -
o m l = 1 o = Fusion-in-Decoder [39] - - - - - 84.4 90.3
MM mE EE T SpanBERT [42] - - - - - 79.1 86.6
_)) _ MRC-GCN [87] - - - - - - -
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD MultiHop [14] = - - - - - -
. . X A . . o Longformer [8] 812 883 732 - - 713 85.3
Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with r = 2, (b) sliding window attention with w = 3 (c) global BigBIRD-FIC 82 894 136 W8 372 s 924
attention with g = 2. (d) the combined BIGBIRD model.
Algorithmic Intelligence Lab 48

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Position representations
Q. Are simple absolute indices the best we can do to represent position?

PE (pos 2i) = 8in(pos/10000%/ @ty PE(pos 954.1) = cos(pos /10000%/ dmocet)

A. Relative [Shaw et al., 2018] and structural [wang et al., 2019] position representations

* To consider pairwise relationships, additional weights afj, a/?j are introduced
(consider a relative positionupto /)

exp(eij) q;T]CJ
Original: output, = » v, = 0 —
g 1 ; 1377 1] Zj’ eXp(eij/) 1] \/E
output, = Y aij(v; + afj) eij = 4 (k + o)

Relative: J \/E

a;}j = wglip(j—i,l) a?j = wflip(j—i,n clip(z,!) = max(—I, min(l, z))

49

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Position representations
Q. Are simple absolute indices the best we can do to represent position?

PE(pos,Zi) = Sin(pos/]-oooo%/dmdel) PE(pos,2i+1) = COS(pOS/].OOOO%/dm"del)

A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations

* Imposing the structural information obtained from the classical NLP literature

Bush%Sharon
Bush held a talk with Sharon a/ with/
AbsolutePosition | 0 | 1 [2 | 3 [4 | s | 1 [o 21 [2]1]
Relative Position | 3 | -2 | -1 | o | +1 | +2 | IEREREE R
(a) Sequential Position Encoding (b) Structural Position Encoding

Algorithmic Intelligence Lab 50

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are

some remaining issues

* Position representations

Q. Are simple absolute indices the best we can do to represent position?

PE(pos,Zz') = Sin(pos/lOO()()?i/dmodel)

P E(pos,2i+1) = cos(pos/ 100002i/dmodel)

A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations

* Imposing the structural information obtained from the classical NLP literature

. Zh=En En=-De

Model Arelniectre MT03 MT04 MTO05 MT06 Avg | WMTI14
Hao et al. (2019c¢) - - - - - 28.98
Transformer-Big 4530 4649 4521 44.87 4547 | 28.58
+ Structural PE 45.62 47.127 45.84 45.64T 46.06 | 28.88
+ Relative Sequential PE || 4545 47.01 45.65 45.87" 46.00 | 28.90

+ Structural PE 45.85" 47371 46207 46.18" 46.40 | 29.191

Algorithmic Intelligence Lab

50

Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Bias and privacy problem in pre-trained Transformers
* Private information can be extracted from pre-trained language model [carlini et al., 2020]

* Pre-trained language models generate biased sentences [sheng et al., 2019]

Prefix Prompt Generated text
East Stroudsburg Stroudsburg. ..] The man worked as a car salesman at the local
Wal-Mart

The woman worked as| a prostitute under the name of

Hariya
GPT-2 The Black man a pimp for 15 years.

worked as
p . The White man a police officer, a judge, a
Memorized text | " worked as prosecutor, a prosecutor, and the
HO rporation Seabank Centre president of the United States.
TaT ARIFEIE FETERE SR e The gay person was | his love of dancing, but he also did
_ oo known for drugs
+ill 7 5 49 The straight person | his ability to find his own voice and
s e ofile | was known for to speak clearly.
[Carlini et al., 2020] [Sheng et al., 2019]

51

Table of Contents

3. Beyond GPT-3: Recent Advances with Large-scale Language Models
* Language models larger than GPT-3
* More effective training schemes
* Applications with language models

Algorithmic Intelligence Lab

Beyond GPT-3: Recent Advances with Large Language Models

* GPT-3 reveals the effectiveness of large-scale language models and datasets
* Performance improves as the size of model and dataset increase [Kaplan et al., 2020]
* Few-shot adaptability to new task is also significantly improved

Aggregate Performance Across Benchmarks (42 tasks)

4.2 100

—— L=(N/8.8"- 1013)70.076

5.6
4.8

—— L=(D/5.4-1013)700%

Few Shot
—e— One Shot
80 —e— Zero Shot

3.9

3.6 4.0

[=2]
=]

Accuracy
S
o

3.3 3.2

Test Loss

3.0
2.4

2.7 r . - r r
B 108 10° 105 107 10°

Dataset Size Parameters
tokens non-embedding

N
o

0 -
0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions)

» Success of large language models opens up the following research questions:
1. Can we benefit from the larger models than GPT-3 (>135B)?
2. What is a better training scheme for language models than language modeling?
3. Which applications can be newly solved with these large language models?

Algorithmic Intelligence Lab *reference : Kaplan et al., “Scaling Laws for Neural Language Models”. arXiv 2020 88

1. Language Models Larger than GPT-3: MT-NLG

* Megatron-Turing NLG (MT-NLG) [smith et al., 2022]

* 530 billion parameters: 105 Transformer layers with 20480 hidden dimensions
* Largest Transformer-based language model in the world

1000
g GPT-3 Megatron-Turing
= (1758B) NLG (530B)
£ 100
o
©

Megatron-LM
f_ (8.3B) Turing-NLG
5 .
by (17.2B)
2 10
IS T5
= (118B)
iy
é 1 GPT-2
) (1.5B)
N
n
2 BERT-Large
3 o1 (340M)
=
ELMo
(94Mm)
0.01
2018 2019 2020 2021 2022

Trend of sizes of state-of-the-art NLP models with time

.) . * reference : Smith et al., “Using DeepSpeed and Megatron to Train Megatron-Turing NLG 5308,
Algorithmic Intelligence Lab A Large-Scale Generative Language Model”. arXiv 2022 89

1. Language Models Larger than GPT-3: MT-NLG

* Megatron-Turing NLG (MT-NLG) [smith et al., 2022]
* 530 billion parameters: 105 Transformer layers with 20480 hidden dimensions
* Largest Transformer-based language model in the world
* Key contribution: Efficient and scalable parallelism technique
e Other components are similar to GPT-3, e.g., training method
* MT-NLG successfully improves GPT-3 in many downstream tasks
* |t shows that larger model size actually leads to better performance

Task Model Zero-shot One-shot Few-shot Supervised

RACE-h GPT-3 45.50 45.90 46.80
Gopher - - 71.6(ﬁ
LAMBADA (acc) MT-NLG (ours) 47.94 48.42 47.94

Model Zero-shot One-shot Few-shot ALBERT (ensemble) = = . 91.40
GPT-=3 76.20 72.50 86.40 BoolQ GPT-3 60.50 76.70 77.50
Gophes 74.50)) MT-NLG (ours) 78.20 8251 8483

MT-NLG (ours) 76.56 73.06 87.15 T5 + UDG - - - 91.40

Completion Prediction task Reading Comprehension task

l Example

“... Paul and Debbie looked at each other, thenat " — Bob

.) . * reference : Smith et al., “Using DeepSpeed and Megatron to Train Megatron-Turing
Algorithmic Intelligence Lab NLG 530B, A Large-Scale Generative Language Model”. arXiv 2022

1. Language Models Larger than GPT-3 : Gopher

* Gopher [Racetal, 2022]
* 280 billion parameters: 80 Transformer layers with 16,384 hidden dimensions

* Methodological modifications: (1) RMSNorm and (2) relative positional encoding
* RMSNorm [Zhang et al., 2019] removes unnecessary scaling term in LayerNorm

n

1 <)
a; — e E | = .
LayerNorm: a’z e 'u,gl M= n a; o= J ﬁ E (az M)Q
1=1

g =1
RMSNorm: a; = Lg- RMS(a) = li 2
" "7 RMS(a)”" RPN

* Relative positional encoding is more effective for handling long sequences [Dai et al., 2019]

Algorithmic Intelligence Lab

Model r=01r=05r=1.0
Transformer-XL 151M 900 800 700
QRNN 500 400 300
LSTM 400 300 200
Transformer-XL 128M 700 600 500
- use Shaw et al. (2018) encoding 400 400 300
- remove recurrence 300 300 300
Transformer 128 128 128

Relative Effective Context Length

*reference : Dai et al., “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context”. ACL2019 91

1. Language Models Larger than GPT-3 : Gopher

* Gopher [Racetal, 2022]

* New large text dataset, MassiveText, is introduced for pre-training

* Number of tokens in datasets: 2350 B (Gopher) vs 333.7 B (MT-NLG)

* Data distribution affect to performance — Gopher is much effective on Books-like tasks

Algorithmic Intelligence Lab

Percent Improvement

30

20

10

0

-10

-20

-30

Disk Size Documents Tokens Sampling proportion
MassiveWeb 1.9TB 604M 506B 48%
Books 21 TE 4M 560B 27%
C4 0.75TB 361M 182B 10%
News 2.7 TB 1.1B 676B 10%
GitHub 3.1TB 142M 422B 3%
Wikipedia 0.001 TB 6M 4B 2%

Ubuntu IRC?

DM Mathematics?
OpenWebText22
USPTO Backgrounds?
Pile-CC?
HackerNews?

*reference : Rae et al., “Scaling Language Models: Methods, Analysis & Insights from Training Gopher”. arXiv 2022

OpenSubtitles?

GitHub?

NIH ExPorter?

PubMed Abstracts?

FreeLaw?®

StackExchange?

Books22

Phil Papers?

ArXiv?

WikiText-103*

Books32

PubMed Central?

Gutenberg (PG-19)*

92

1. Language Models Larger than GPT-3 : Gopher

* Gopher [Racetal, 2022]
* New large text dataset, MassiveText, is introduced for pre-training
* Overall, Gopher outperforms the previous state-of-the-art language models
* Performance improvement compared to the best among {GPT-3, Jurrasic-1, MT-NLG}
* Gopher improves the performance across 100 / 124 tasks
* |t shows the importance of well curated large dataset along with large model

120%
100%
80%

60%

40%
20%
| [| ulll Il |
] i o '
| "‘

Percent Change

0%

Language Modelling Maths Common Logical Fact Checking STEM & Medicine Humanities & Reading
Ethics Comprehension

Sense Reasoning & General Knowledge

Gopher GpT-3 Megatron-Turing ALBERT Amazon Human

417M 14B 7.1B 280B 175B 530B (ensemble) Turk Ceiling
RACE-h 27.2 26.0 30.6 71.6 46.8 47.9 90.5 69.4 94.2
RACE-m 26.2 25.0 31.8 75.1 58.1 n/a 93.6 85.1 95.4

Algorithmic Intelligence Lab *reference : Rae et al., “Scaling Language Models: Methods, Analysis & Insights from Training Gopher”. arXiv 2022 93

2. Better Training Scheme for Large Language Models

* Although language modeling is an effective training scheme with unlabeled text
data, there are remained limitations

arg max logp(x) = Z po(TnlT1,. ..., Tn_1)

e Zero-shot performance is much worsen that Few-shot performance
* For applying it to new task, one need to provide the example of such task
* Multi-task generalization via LM is indirectly obtained (suboptimality)

Setting NaturalQS WebQS TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP*20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 29.9 41.5 71.2

Results on three open-domain QA tasks [Brown et al., 2020]

Algorithmic Intelligence Lab *reference : Brown et al., “Language Models are Few-Shot Learners”. NeurIPS 2020

94

2. Better Training Scheme for Large Language Models: FLAN

* FLAN [weietal., 2022]

* Intuition: NLP tasks can be described via natural language instructions

* E.g., “Is the sentiment of this movie review positive or negative?” (sentiment classification)

* |t offers a natural and intuitive way for adapting LM to the new tasks
* Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
* Remark. Very similar approach is also proposed: TO [Sanh et al., 2022] (promising)

task A

e Typically requires many
task-specific examples

(A) Pretrain—finetune (BERT, T5)
* One specialized model

Pretrained
LM
for each task

Finetune on > Inference
on task A

(C) Instruction tuning (FLAN)

Instruction-tune on
mane' tasks: e
B,C,D

Pretrained
LM

(B) Prompting (GPT-3)

Model learns to perform
many tasks via natural
language instructions

via few-shot prompting
or prompt engineering

Improve performance
Pretrained
LM

_Inference
»> on task A

Inference
on task A

Inference on
unseen task

Algorithmic Intelligence Lab

*reference : Wei et al., “Finetuned Language Models are Zero-shot Learners”. ICLR 2022

2. Better Training Scheme for Large Language Models: FLAN

* FLAN [weietal., 2022]

* Intuition: NLP tasks can be described via natural language instructions

* E.g., “Is the sentiment of this movie review positive or negative?” (sentiment classification)

* |t offers a natural and intuitive way for adapting LM to the new tasks

* Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts
* Toincrease the diversity, multiple instructions are constructed for each task
* Model output is given as text = each class is mapped to corresponding text

Premise

Russian cosmonaut Valery Polyakov
set the record for the longest
continuous amount of time spent in
space, a staggering 438 days,
between 1994 and 1995.

Hypothesis

Russians hold the record for the
longest stay in space.

Target

Entailment
Not entailment

Algorithmic Intelligence Lab

Options:
|=> - yes
- no

Different instructions (i.e., templates) for given example in NLI task

Template 1 Template 3

<premise>

Based on the paragraph
above, can we conclude that
<hypothesis>?
<options>

N

Template 2
7 N

<premise>
Can we infer the following?

"

<hypothesis>

Coptions>)

Read the following and
determine if the hypothesis can
be inferred from the premise:

Premise: <premise>

Hypothesis: <hypothesis>
<options>

_ i
Template 4. ...

~

*reference : Wei et al., “Finetuned Language Models are Zero-shot Learners”. ICLR 2022

96

2. Better Training Scheme for Large Language Models: FLAN

* FLAN [weietal., 2022]

* Method: fine-tuning LMs (e.g., GPT-3) with instructions instead of prompts

* For multi-task generalization, LM is trained with many tasks simultaneously
e There might be an implicit learning with similar task

* To truly measure unseen generalization, relevant tasks are removed when it’s evaluated
* E.g., measure zero-shot on ANLI (R1-R3) = remove other 6 NLI datasets for fine-tuning

(N_g_q_es_atural language inference | E_Qmmo_s_e_s_em (Sentiment \(Paraphrase) (Closed-book QA) fsnu.c.t_tg_text\ (ILanslatign\
(7 datasets) (4 datasets) (4 datasets) (4 datasets) (3 datasets) (4 datasets) (8 datasets)
(ANLI(R1-R3))(_ RTE)[|(__CoPA)||(_ IMDB)||(MRPC)||(ARC easyichal))||(CommonGen) | |(Paracraw ENDE)
(cB) SNL)||(Hellaswag)||(_sent140)||(aap)||(_ Na){|(_ DART)||(Paracraw enes)
(MNLE) wWNL) PieA)| ssT-2 || paws)||(T@A)||(_E2ENLG) || (Paracraw ENIFR)
(__QNnLL) :
m) \(StoryCloze)J | Yelp)J{(_sTs-B)| J\CWEBNLG) || (wwr-16 ENCS)
(Reading comp. Read. comp. w/| [Coreference Misc. Summarization i
(5 datasets) commonsense (3 datasets) (7 datasets) (11 datasets)
("Boola)(0BQA)|| (2datasets) DPR CoQA)(TREC)| | (_AESLC) (Multi-News) (_SamSum)
: QUAC)(_CoLA I [(_AG News) (_Newsroom) (Wiki Lingua EN)
(DROP)(SQuAD)| | (CosmosQA)| |(Winogrande) Wi Y Math)| | CCNNDM) Comeroe o) 36um | | (e
C ReCoRD) (WSC273) (FixPunctuation(NLG)) (Gigaword)COpin-Abs: Movie) A)

Algorithmic Intelligence Lab

*reference : Wei et al., “Finetuned Language Models are Zero-shot Learners”. ICLR 2022

97

2. Better Training Scheme for Large Language Models: FLAN

* FLAN [weietal., 2022]

* FLAN significantly improves the zero-shot performance on many tasks

Natural language inference

ANLI R2
ANLI R3
ANLI R1
CB

RTE

Reading comprehension

MultiRC
OBQA
BoolQ

Closed-book

NQ O
ARC-c
TQA
ARC-e

Translation

ENtoRO O
EN to DE
EN to FR
FRto EN
RO to EN
DE to EN

*
O *

X FLAN 137B
*

O LaMDA-PT137B
* GPT-3 175B
1‘; GLaM 64B/64E

o) 4 k Supervised model

Algorithmic Intelligence Lab

T | I [[I I [1
20 40 60 80 100
Zero-shot performance

*reference : Wei et al., “Finetuned Language Models are Zero-shot Learners”. ICLR 2022

98

Algorithmic Intelligence Lab

2. Better Training Scheme for Large Language Models: FLAN

* FLAN [wei et al., 2022]

* FLAN significantly improves the zero-shot performance on many tasks

* Followings are crucial components for improvement:
1. Number of given instructions during instruction tuning
2. Number of model parameters
3. Specific ways for giving instructions

©
o

Held-out clusters Performance on held-out tasks

/\—/ B 20
70 63.5
60.8 619

55.0 59.3 59.2 — Average
49.9 ~NLI

50 747_‘-,06”‘\ Closed-book QA

30

clusters: 1 2 3 4 5 6 7

(#datasets): (1) (20) (26) (30) (34) (37) (39)

'8"\0(\ W o‘(\Q 6\ Q;fl\ (\oe o>

& &% . &\\‘(\ 2 @@ o
& P P L0 o x© 30

\)((\ x x‘

9

Instruction tuning

D
o

Untuned model

Performance (%)
on held-out cluster
3

Average zero-shot accuracy
on 13 held-out tasks (%)

0.4B 2B 8B 68B 137B

Clusters used for lnstruction tuning Model Size (# parameters)

* Also, FLAN is generalizable with few-shot examples

800 80.8

596 60.0

80
63 g 674
59.3
60 54 7
49.4
40
31 0 33 0
20

Task Cluster: NLI Read. Comp Closed- BookQA Commcnsense Coreference Translatlon Struct to text
datasets:

Performance

FT: no instruction
Eval: instruction

37.3

FT: dataset name

46.6
Eval: instruction

FT: dataset name :] 47.0
Eval: dataset name "

20 30 40 50 60
Zero-shot performance
(4 task cluster avg.)

FT: instruction
Eval: instruction
(FLAN)

Zero-shot FLAN
M Few-shot FLAN

Next, applications

*reference : Wei et al., “Finetuned Language Models are Zero-shot Learners”. ICLR 2022 99

3. New Application with Language Model: Code Generation — Codex

e Codex [Chen etal., 2021]

* Codexis a GPT language model fine-tuned on publicly available codes from GitHub
* |t generates standalone Python functions from docstrings

* 159 GB of unique Python files under 1 MB are used for training
* Codex has a only-decoder structure like GPT-3 (fine-tuned on checkpoint of GPT-3)

def incr_list(l: list):
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 31)
[2, 3, 4] -_—
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 1231)
(6, 4, 6, 3, 4, 4, 10, 1, 124]

E return [1 + 1 for 1 in 1]

, Codex
docstring

Algorithmic Intelligence Lab *source : Chen et al., “Evaluating Large Language Models Trained on Code”. arXiv 2021 100

3. New Application with Language Model: Code Generation — Codex

e Codex [Chenetal., 2021]
e Codex is evaluated on HumanEval dataset
* |tis consisted of 164 hand-written problems for measuring functional correctness
e Codex with 12B parameters solved 28.8% of HumanEval problems

* Repeated sampling from the model improve performance
* E.g., 70.2% of HumanEval is solved with 100 samples per problem

E.g. 1) Find the decimal part of the number E.g. 2) Find only positive numbers in the list
def truncate_number(number: float) —> float: def get_positive(l: list):

""" Given a positive floating point number, """Return only positive numbers in the list.
it can be decomposed into and integer part >>> get_positive([-1, 2, -4, 5, 6])
(largest integer smaller than given number) [2, 5, 6]
and decimals (leftover part always smaller than 1). >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
Return the decimal part of the number. [5, 3 5 3 9, 123, 1] "uw

>>> truncate_number(3.5) A A !

0.5

Algorithmic Intelligence Lab *source : Chen et al., “Evaluating Large Language Models Trained on Code”. arXiv 2021 101

3. New Application with Language Model: Code Generation — AlphaCode

* However, Codex still perform poorly when evaluated on more complex, unseen
problems like competitive programming problems

* Short problems are typically solved by translating a description directly into code
* |n contrast, the model need to understand the task and figure out how to

accomplish it for solving complex problems

Algorithmic Intelligence Lab

Backspace

You are given two strings s and t, both consisting of lowercase English letters.
You are going to type the string s character by character, from the first character
to the last one.

When typing a character, instead of pressing the button corresponding
to it, you can press the “Backspace” button. It deletes the last character you
have typed among those that aren’t deleted yet (or does nothing if there are no
characters in the current string). For example, if s is “abcbd” and you press
Backspace instead of typing the first and the fourth characters, you will get the
string “bd” (the first press of Backspace deletes no character, and the second
press deletes the character ’c’). Another example, if s is “abcaa” and you press
Backspace instead of the last two letters, then the resulting text is “a”.

Your task is to determine whether you can obtain the string t, if you
type the string s and press “Backspace” instead of typing several (maybe zero)
characters of s.

Input

The first line contains a single integer q (1 < q < 10°) the number of test cases.
The first line of each test case contains the string s (1 < |s| < 10%). Each
character of s is a lowercase English letter.

The second line of each test case contains the string t (1 < |t| < 10°). Each
character of t is a lowercase English letter.

It is guaranteed that the total number of characters in the strings over all test
cases does not exceed 2 - 10°.

Output

For each test case, print “YES” if you can obtain the string t by typing the string
s and replacing some characters with presses of “Backspace” button, or “NO” if
you cannot.

You may print each letter in any case (YES, yes, Yes will all be recognized as
positive answer, NO, no and nO will all be recognized as negative answer).

Example Input

4
ababa

Example Output

YES
NO
NO
YES

Explanation

In order to obtain “ba” from “ababa”,
you may press Backspace instead
of typing the first and the fourth
characters.

There’s no way to obtain “bb”
while typing “ababa”.

There’s no way to obtain “aaaa”
while typing “aaa”.

In order to obtain “ababa” while
typing “aababa”, you have to press
Backspace instead of typing the
first character, then type all the
remaining characters.

*source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv2022 102

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal, 2022] generates code solution for competitive programming
problems that require deeper reasoning by

* Pre-training with approximately 5x data
* Encoder-decoder Transformer architecture

* Fine-tuning with competitive programming problems with special techniques
* Large sampling and filtering/clustering procedure

Backspace
You are given two strings s and t, both consisting of lowercase English letters.
You are going to type the string s character by character, from the first character
to the last one.

When typing a character, instead of pressing the button corresponding
to it, you can press the “Backspace” button. It deletes the last character you
have typed among those that aren’t deleted yet (or does nothing if there are no
characters in the current string). For example, if s is “abcbd” and you press
Backspace instead of typing the first and the fourth characters, you will get the
string “bd” (the first press of Backspace deletes no character, and the second
press deletes the character ’c’). Another example, if s is “abcaa” and you press
Backspace instead of the last two letters, then the resulting text is “a”.

Your task is to determine whether you can obtain the string ¢, if you
type the string s and press “Backspace” instead of typing several (maybe zero)
characters of s.

Input

The first line contains a single integer g (1 < g < 10%) the number of test cases.
The first line of each test case contains the string s (1 < |s| < 10°). Each
character of s is a lowercase English letter.

The second line of each test case contains the string ¢ (1 < |¢| < 10%). Each
character of ¢ is a lowercase English letter.

It is guaranteed that the total number of characters in the strings over all test
cases does not exceed 2 - 105,

Output

For each test case, print “YES” if you can obtain the string ¢ by typing the string
s and replacing some characters with presses of “Backspace” button, or “NO” if
you cannot.

You may print each letter in any case (YES, yes, Yes will all be recognized as
positive answer, NO, no and nO will all be recognized as negative answer).

Example Input

ababa
ba
ababa
bb

aaa
aaaa
aababa
ababa

Example Output

Explanation

In order to obtain “ba” from “ababa”,
you may press Backspace instead
of typing the first and the fourth
characters.

There’s no way to obtain “bb”
while typing “ababa”.

There’s no way to obtain “aaaa”
while typing “aaa”.

In order to obtain “ababa” while
typing “aababa”, you have to press
Backspace instead of typing the
first character, then type all the

competitive programming problem

Algorithmic Intelligence Lab

t=int(input())

for i in range(t):
s=input()
t=input()

for j in s:
a.append(j)
for j in t:
b.append(j)
il a.reverse()
2 b.reverse()
— 13 c=[1
14 while len(b)!=0 and len(a)!=0:
if a[0]==b[0]:

. 16 c.append(b.pop(0))
17 a.pop(0)
18 elif a[0]!=b[0] and len(a)!=1:
19 a.pop(0)
20 a.pop(0)
AI h 21 elif a[0]!=b[0] and len(a)

p Cl O e 22 a.pop(0)
23 if len(b H
24 print("YES")
25 else:
26 print("NO")

*source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv2022 103

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]

* Unlike Codex (decoder only), AlphaCode has encoder-decoder Transformer
architecture

* It allows 1) a bidirectional description representation like BERT
and 2) an extra flexibility to untie the encoder structure from the decoder

Lcg
output « > target
T
(prediction layer)

LI‘?SK [decoder block

decoder block

encoder block decoder block

encoder block decoder block
T A

input

Algorithmic Intelligence Lab *source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 104

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]

* AlphaCode is pretrained with GitHub Dataset (715.1GB) with several languages
(C++, Go, Java, Python, etc.)
* Then, AlphaCode is fine-tuned and evaluated with a new competitive programming
dataset, CodeContests
* |tincludes problems, solutions and test cases we scraped from the Codeforces platform

———————————————— D A A
GitHub CodeContests ; Codeforces Large set Selected
: of potential small set
@ : Problems solutions of candidates
5) —Q—
___________________________________ 1 e
Filtering
& clustering ‘
_ g i - Large scale Execute
Pre-training — Fine-tuning — sampling < & levaliats

Overall framework

Algorithmic Intelligence Lab *source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 105

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]
* AlphaCode is fine-tuned on CodeContests dataset with some training details
1. Tempering (use constant T before the softmax for sharpening/smoothing)

Pitemp = softmax(D;/T) ‘%E
1Make token distribution OUtqu 1 < »> ta rget
H+ Tempering 3
sharper/smoother N LGOLD
(prediction layer]
A
L"iASK decoder block
decoder block
encoder block decoder block
encoder block decoder block
1‘ A

Input: Problem Description
+ Value Conditioning?? / Value Prediction??

RATING: 1200

TAGS: dp,implementation

LANGUAGE IS python3

CORRECT SOLUTION

Polycarp must pay exactly n burles at the checkout ... (rest of the description)

Algorithmic Intelligence Lab *source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 106

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]

* AlphaCode is fine-tuned on CodeContests dataset with some training details
1. Tempering (use constant T before the softmax for sharpening/smoothing)
2. Value Conditioning / Value Prediction (based on metadata of the problem)

2-1

Inserting whether or not a submission
was correct into the problem
description to the model

Pitemp = softmax(D;/T) ‘%E
IMake token distribution OUtqu 1 < > ta rget
+ Tempering 3
sharper/smoother LGOLD
(prediction layer]
A

LMASK

decoder block

encoder block

encoder block

1A

Input: Problem Description

+ Value Conditioning??! / Value Prediction®? | %2

decoder block

decoder block

decoder block

A

Add additional task (only in training

RATING: 1200

TAGS: dp,implementation

LANGUAGE IS python3
CORRECT SOLUTION

Polycarp must pay exa

ctly n burles at the checkout ... (rest of the description)

stage) for predicting whether the
submission is correct.

Algorithmic Intelligence Lab

*source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 107

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]

* AlphaCode is fine-tuned on CodeContests dataset with some training details
1. Tempering (use constant T before the softmax for sharpening/smoothing)
2. Value Conditioning / Value Prediction (based on metadata of the problem)
3. Use of GOLD loss, instead of cross-entropy. (weight token with high likelihood)

Pitemp = softmax(D;/T) ‘%E
IMake token distribution OUtqu 1 < > ta rget
+ Tempering 3
sharper/smoother LGOLD
(prediction layer]
A
Lmask decoder block Leowp = 2 Pg(s)V1og Py (s)
I seSoultion Tokens
decoder block 3
Focusing on tokens with high likelihood
encoder block decoder block
encoder block decoder block
A
2-1 T

inserting whether or not a submission Input: Problem Description
was correct into the problem ’

PTG X | P i nn2-2 2-2
description to the model + Value Conditioning** / Value Prediction
Add additional task (only in training
RATING: 1200 .
TAGS: dp,implementation stage) for predicting whether the
GORRECT SOLULIOH submission is correct.
Polycarp must pay exactly n burles at the checkout ... (rest of the description)

Algorithmic Intelligence Lab *source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 108

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]

* Large scale sampling with various options
* Generate half of the samples in Python and half in C++,
* Randomize the problem tags and ratings
* Use a relatively high sampling temperature
* Efficient filtering & clustering by semantic equivalence
* Each solution must pass example tests given in the problem statement
* Codes are clustered according to the behavior against generated test input

GitHub CodeContests ' Codeforces Large set Selected
: of potential small set

@ Problems ' > solutions of candidates
—— 9 — 93

____________________________________ i g s Filtering
& clustering
EARNING ----}-

Large scale) Execute
sampling & evaluate

Pre-training —> Fine-tuning —4—

Algorithmic Intelligence Lab *source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv 2022 109

3. New Application with Language Model: Code Generation — AlphaCode

* AlphaCode [Lietal., 2022]
* AlphaCode achieved an average ranking of top 54.3% limiting to 10 submissions per
problem in 10 Codeforces competitions (with > 5000 participants per contest)

e With an actual average of 2.4 submissions for each problem solved

1622

57.5%
66.2%
81.6%

1623 | Average

20.6% | 48.4%
20.9%| 54.3%
55.3% | 77.2%

1620

54.0%
63.3%
75.1%

1619

47.1%
47.3%
88.1%

1618

32.2%
52.2%
53.5%

1617

65.1%
73.9%
82.3%

1615

60.5%
62.4%
90.4%

1613

59.8%
66.1%
75.0%

1608

43.6%
46.3%
95.7%

Contest ID | 1591

Best| 43.5%
Estimated | 44.3%
Worst | 74.5%

* With one hundred thousand samples, AlphaCode solve 31.8% of problems in
validation set, and 29.6% of problems in test set for CodeContest evaluation

Aoproach Validation Set Test Set

PP 10@1k 10@10k 10@100k 10@1M |10@1k 10@10k 10@100k
9B 16.9% 22.6% 27.1% 30.1% | 143% 21.5% 25.8%
41B 16.9% 23.9% 28.2% 31.8% | 15.6% 23.2% 27.7%
41B + clustering | 21.0% 26.2% 31.8% 34.2% | 16.4% 25.4% 29.6%

Algorithmic Intelligence Lab

*source : Li et al., “Competition-Level Code Generation with AlphaCode”. arXiv2022 110

3. New Application with Language Model: Solving Mathematic Problems

* Mathematic problems can be also formulated as text generation [Hendrycks et al., 2021]
* One can generate equations with texts by using LaTeX (graphics with other tool)
* Template example: “(P) Final Answer: <Answer>_”, <P>: problem statement

MATH Dataset (Ours)

Problem: Tom has a red marble, a green marble,
a blue marble, and three identical yellow marbles.
How many different groups of two marbles can
Tom choose?

Solution: There are two cases here: either Tom
chooses two yellow marbles (1 result), or he

chooses two marbles of different colors ((5) = 6
results). The total number of distinct pairs of

marbles Tom can chooseis 1 +6 =7 |

Example data of MATH Dataset [Hendrycks et al., 2021]

Algorithmic Intelligence Lab *source : Hendrycks et al., “Measuring Mathematical Problem Solving With the MATH Dataset”. NeurlPS 2021 111

3. New Application with Language Model: Solving Mathematic Problems

* Mathematic problems can be also formulated as text generation [Hendrycks et al., 2021]

* One can generate equations with texts by using LaTeX (graphics with other tool)
* Template example: “(P) Final Answer: <Answer>_”, <P>: problem statement

* But, even largest models falter to perform multi-step mathematical reasoning
* Here, GPT-2 is fine-tuned with relevant mathematical dataset
* One significant challenge is the high sensitivity to individual mistakes [Shen et al., 2021]

* Autoregressive models have no mechanism to correct intermediate errors.

Model Prealgebra Algebra Number Counting & Geometry Intermediate Precalculus| Average
Theory Probability Algebra
GPT-20.1B 5.2 2 | 5.0 2.8 S:l 6.5 13 5.4 +0%
GPT-2 0.3B 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 +15%
GPT-2 0.7B 6.9 6.1 3.9 5.1 8.2 5.8 Tl 6.4 +19%
GPT-2 1.5B 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 +28%
GPT-3 13B* 4.1 2.4 3.3 4.5 1.0 3.2 2.0 3.0 —44%
GPT-3 13B 6.8 5.3 5.5 4.1 7.1 4.7 5.8 5.6 +4%
GPT-3 175B* 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 4%

Algorithmic Intelligence Lab

*source : Hendrycks et al., “Measuring Mathematical Problem Solving With the MATH Dataset”. NeurIPS 2021

112

3. New Application with Language Model: Solving Mathematic Problems

* Training verifiers to evaluate a correctness of generated solutions [Cobbe et al., 2021]
* Generator is trained via previous language modeling
* Verifier is trained to find answer among multiple candidates
* Somewhat similar scheme with GAN [Goodfellow et al., 2014]
e At test time, a fixed number of candidate solutions are sampled
* Then, select the solution ranked highest by the verifier

® @ ®

Generate and label

100 solutions/problem Arelin Verifior

Train generator

Generator Generator Verifier
Q; | questions T T T ¢ T T T
S; | solutions Q8 S; st o Yl o s!
Y; | labels S > ¥
Qi
L N]
5100 |_g.1 37100

Overall training pipeline

Algorithmic Intelligence Lab *source : Cobbe et al., “Training Verifiers to Solve Math Word Problems”. arXiv 2021 113

3. New Application with Language Model: Solving Mathematic Problems

* Training verifiers to evaluate a correctness of generated solutions [Cobbe et al., 2021]

e At test time, a fixed number of candidate solutions are sampled
* Then, select the solution ranked highest by the verifier

* Results on Grade School Math datasets (GSMS8K)
* Both generator and verifier are initialized with GPT-3 family
* 6B verification model even outperforms 175B fine-tuning model

60 60

50 50

D

o
B
o

Test Solve Rate (%)
w
o
w
o

Test Solve Rate (%)

10 / 101 .
‘ —— 6B Finetuning —— 175B Finetuning
6B Verification 175B Verification
0 500 1000 2000 4000 8000 0 500 1000 2000 4000 8000
Training Set Size Training Set Size

Algorithmic Intelligence Lab *source : Cobbe et al., “Training Verifiers to Solve Math Word Problems”. arXiv 2021 114

Summary

For temporal data, one need a specific architecture which can capture temporal
dependency within data

RNN architectures have developed in a way that
* Can better model long-term dependency & Robust to vanishing gradient problems
* Seq2seq model with attention makes breakthroughs in machine translation
* |t leads to the model only composed with attention — Transformer

* Transformer significantly improves the performance on many sequential tasks

* With pre-training using large model and data, one can get 1) standard initialization
point for many NLP task (BERT) and 2) strong language generator (GPT)

* Large-scale Transformer-based language models is now a de-facto standard
* More training data with more model parameters — Better performance
* |t enables us to use language models for many applications

52

References

[Hochreiter and Schmidhuber, 1997] "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.
link: http://www.bioinf.jku.at/publications/older/2604.pdf

[Graves et al., 2005] "Framewise phoneme classification with bidirectional LSTM and other neural network
architectures." Neural Networks 18.5-6 (2005): 602-610.
Link: ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf

[Graves et al, 2013] "Speech recognition with deep recurrent neural networks." Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on. |IEEE, 2013.
Link: https://www.cs.toronto.edu/~graves/icassp_2013.pdf

[Cho et al., 2014] "Learning phrase representations using RNN encoder-decoder for statistical machine
translation." arXiv preprint arXiv:1406.1078 (2014).
Link: https://arxiv.org/pdf/1406.1078v3.pdf

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks." NIPS 2014.
link : http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks.” NIPS 2014.

[Bahdanau et al., 2015] “"Neural machine translation by jointly learning to align and translate.”, ICLR 2015
Link: https://arxiv.org/pdf/1409.0473.pdf

[Jozefowicz et al., 2015] "An empirical exploration of recurrent network architectures." ICML 2015.
Link: http://proceedings.mlr.press/v37/jozefowicz15.pdf

[Bahdanau et al., 2015] Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning
to align and translate." ICLR 2015
link : https://arxiv.org/pdf/1409.0473.pdf

Algorithmic Intelligence Lab

http://www.bioinf.jku.at/publications/older/2604.pdf
ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf
https://www.cs.toronto.edu/~graves/icassp_2013.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin
https://arxiv.org/pdf/1409.0473.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1409.0473.pdf

References

[Kalchbrenner et al., 2016] "Grid long short-term memory." ICLR 2016
Link: https://arxiv.org/pdf/1507.01526.pdf

[Gehring et al., 2016] "A convolutional encoder model for neural machine translation." arXiv preprint
arXiv:1611.02344 (2016).
Link: https://arxiv.org/pdf/1611.02344.pdf

[Wu et al., 2016] "Google's neural machine translation system: Bridging the gap between human and machine
translation." arXiv preprint arXiv:1609.08144 (2016).
link: https://arxiv.org/pdf/1609.08144.pdf

[Johnson et al., 2016] "Google's multilingual neural machine translation system: enabling zero-shot
translation." arXiv preprint arXiv:1611.04558 (2016).
Link: https://arxiv.org/pdf/1611.04558.pdf

[Gehring et al., 2017] "Convolutional sequence to sequence learning." arXiv preprint arXiv:1705.03122 (2017).
Link: https://arxiv.org/pdf/1705.03122.pdf

[Narang et al., 2017] "Exploring sparsity in recurrent neural networks.”, ICLR 2017
Link: https://arxiv.org/pdf/1704.05119.pdf

[Fei-Fei and Karpathy, 2017] “CS231n: Convolutional Neural Networks for Visual Recognition”, 2017. (Stanford
University)
link : http://cs231n.stanford.edu/2017/

[Salehinejad et al., 2017] "Recent Advances in Recurrent Neural Networks." arXiv preprint arXiv:1801.01078 (2017).
Link: https://arxiv.org/pdf/1801.01078.pdf

Algorithmic Intelligence Lab

https://arxiv.org/pdf/1507.01526.pdf
https://arxiv.org/pdf/1611.02344.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1611.04558.pdf
https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1704.05119.pdf
http://cs231n.stanford.edu/2017/
https://arxiv.org/pdf/1801.01078.pdf

References

[Zaheer et al., 2020] “Big Bird: Transformers for Longer Sequences.” NeurlPS 2020
Link: https://arxiv.org/pdf/2007.14062.pdf

[Wang et al., 2020] “Linformer: Self-Attention with Linear Complexity.” arXiv preprint arXiv:2006.04768
Link: https://arxiv.org/pdf/2006.04768.pdf

[Choromanski et al., 2020] “Rethinking Attention with Performers.” ICLR 2021
link: https://arxiv.org/pdf/2009.14794.pdf

[Sheng et al., 2019] "The Woman Worked as a Babysitter: On Biases in Language Generation.” EMNLP 2019
Link: https://arxiv.org/pdf/1909.01326.pdf

[Carlini et al., 2020] “Extracting Training Data from Large Language Models.” arXiv preprint arXiv:2012.07805
Link: https://arxiv.org/pdf/2012.07805.pdf

[Vaswani et al., 2017] “Attention Is All You Need.” NeurlPS 2017
Link: https://arxiv.org/pdf/1706.03762.pdf

[Radford et al., 2018] “Improving Language Understanding by Generative Pre-training.” OpenAl
Link: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

[Radford et al., 2019] “Language Models are Unsupervised Multitask Learners.” OpenAl
Link: https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

[Brown et al., 2020] “Language Models are Few-Shot Learners.” NeurlPS 2020
Link: https://arxiv.org/abs/2005.14165

[Devlin et al., 2018] “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” EMNLP 2019
Link: https://arxiv.org/abs/1810.04805

[Liu et al., 2019] “RoBERTa: A Robustly Optimized BERT Pretraining Approach.” arXiv preprint arXiv:1907.11692
Link: https://arxiv.org/pdf/1907.11692.pdf

Algorithmic Intelligence Lab

https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2006.04768.pdf
https://arxiv.org/pdf/2009.14794.pdf
https://arxiv.org/pdf/1909.01326.pdf
https://arxiv.org/pdf/2012.07805.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/pdf/1907.11692.pdf

References

[Shaw et al., 2018] “Self-attention with Relative Position Representations.” NAACL 2018
Link: https://arxiv.org/abs/1803.02155

[Wang et al., 2019] “Self-attention with Structural Position Representations.” EMNLP 2019
Link: https://arxiv.org/pdf/1909.00383.pdf

[Huang et al., 2018] “Music Transformer.” arXiv:1809.04281
Link: https://arxiv.org/abs/1809.04281

[Girdhar et al., 2018] “Video Action Transformer Network.” CVPR 2019
Link: https://arxiv.org/pdf/1812.02707.pdf

[Kaplan et al., 2020] “Scaling Laws for Neural Language Models.” arXiv:2001.08361
Link: https://arxiv.org/abs/2001.08361

[Smith et al., 2022] “Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative
Language Model.” arXiv:2201.11990
Link: https://arxiv.org/abs/2201.11990

[Zhang and Sennrich., 2019] “Root Mean Square Layer Normalization.” NeurlPS 2019
Link: https://arxiv.org/abs/1910.07467

[Dai et al., 2019] “Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context.” ACL 2019
Link: https://arxiv.org/abs/1901.02860

[Rae et al., 2022] “Scaling Language Models: Methods, Analysis & Insights from Training Gopher.” arXiv:2112.11446
Link: https://arxiv.org/abs/2112.11446

[Wei et al., 2022] “Finetuned Language Models are Zero-shot Learners” ICLR 2022
Link: https://arxiv.org/abs/2109.01652

Algorithmic Intelligence Lab

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
https://arxiv.org/abs/1809.04281
https://arxiv.org/pdf/1812.02707.pdf
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2109.01652

References

[Chen et al., 2021] “Evaluating Large Language Models Trained on Code.” arXiv:2107.03374
Link: https://arxiv.org/abs/2107.03374

[Li et al., 2022] “Competition-Level Code Generation with AlphaCode.” DeepMind
Link: https://storage.googleapis.com/deepmind-
media/AlphaCode/competition level code generation with alphacode.pdf

[Hendrycsk et al., 2021] “Measuring Mathematical Problem Solving With the MATH Dataset.” NeurlPS 2021
Link: https://arxiv.org/pdf/2103.03874.pdf

[Cobbe et al., 2021] “Training Verifiers to Solve Math Word Problems.” arXiv:2110.14168
Link: https://arxiv.org/abs/2110.14168

Algorithmic Intelligence Lab

https://arxiv.org/abs/2107.03374
https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
https://arxiv.org/pdf/2103.03874.pdf
https://arxiv.org/abs/2110.14168

