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Convolutional neural networks have been tremendously successful in practical 
applications;

Overview: Convolutional Neural Networks
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Detection [Ren et al., 2015] Segmentation [Farabet et al., 2013]

Classification and retrieval [Krizhevsky et al., 2012]
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Neural networks that use convolution in place of general matrix multiplication
• Sharing parameters across multiple image locations

• Translation equivariant (invariant with pooling) operation

Specialized for processing data that has a known, grid-like topology
• e.g., time-series data (1D grid), image data (2D grid)

Overview: Convolutional Neural Networks

3

*sources : 
- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Typically, designing a CNN model requires some effort
• There are a lot of design choices: # layers, # filters, sizes of kernel, pooling, …

• It is costly to measure the performance of each model and choose the best one

Example: LeNet for handwritten digits recognition [LeCun et al., 1998]

• However, LeNet is not enough to solve real-world problems in AI domain
• CNNs are typically applied to extremely complicated domains, e.g. raw RGB images 
• We need to design a larger model to solve them adequately 

Overview: Why do we develop CNN architectures?

4
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Problem: The larger the network, the more difficult it is to design
1. Optimization difficulty

• When the training loss is degraded
• Deeper networks are typically much harder to optimize
• Related to gradient vanishing and exploding

2. Generalization difficulty 
• The training is done well, but the testing error is degraded
• Larger networks are more likely to over-fit, i.e., regularization is necessary

• Good architectures should be scalable that solves both of these problems

Overview: Why do we develop CNN architectures?

5

*sources : 
- He et al. “Deep residual learning for image recognition”. CVPR 2016.
- https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
• ImageNet dataset: a large database of visual objects

• ~14M labeled images, 20K classes
• Human labels via Amazon MTurk

• Classification: 1,281,167 images for training / 1,000 categories

• Annually ran from 2010 to 2017, and now hosted by Kaggle

• For details, see [Russakovsky et al., 2015]

Evolution of CNN Architectures

9*source :  http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png

http://visgraph.cse.ust.hk/ilsvrc/files/tesor.png
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ILSVRC contributed greatly to development of CNN architectures

Evolution of CNN Architectures
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15.32% 13.51%

11.74%

7.33%
6.66%

4.90%
3.57%

2.99%
2.25%

Trend on ILSVRC classification top-5 error rates

2012 20152013 2014 2016 ~

AlexNet (2012)
• 1st place in 2012
• 8-layer CNN
• GPU acceleration 

for training
• Dropout and ReLU

SIFT + FVs (2012)
• 2nd place in 2012
• SIFT + Fisher Vectors 
• Non-CNN

ZF-Net (2013)
• 3rd place in 2013
• By Zeiler & Fergus
• A variant of AlexNet

VGG-Net (2014)
• 2nd place in 2014
• By Oxford Visual Geometry Group
• 19-layer CNN

GoogLeNet (2014)
• 1st place in 2014
• 24-layer CNN
• Memory efficient 

Batch Normalization (2015)
• By Google
• Preventing internal covariate shift

Residual Network (2016)
• 1st place in 2015
• By MSRA
• > 100 layers CNNs via 

identity skip connections
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The first winner to use CNN in ILSVRC, with an astounding improvement
• Top-5 error is largely improved: 25.8% → 15.3%
• The 2nd best entry at that time was 26.2%

• 8-layer CNN (5 Conv + 3 FC) 

• Utilized 2 GPUs (GTX-580 × 2) for training the network
• Split a single network into 2 parts to distribute them into each GPU

Evolution of CNN Architectures: AlexNet [Krizhevsky et al., 2012]

12

Convolutional layer Max pooling Fully-connected layers

*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
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Local response normalization layers (LRN)
• Detects high-frequency features with a big neuron response
• Dampens responses that are uniformly large in a local neighborhood

Useful when using neurons with unbounded activations (e.g. ReLU)

Evolution of CNN Architectures: AlexNet [Krizhevsky et al., 2012]

13*source :  Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012

Next, ZFNet
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A simple variant of AlexNet, placing the 3rd in ILSVRC’13 (15.3% → 13.5%)
• Smaller kernel at input: 11 × 11 → 7 × 7

• Smaller stride at input: 4 → 2

• The # of hidden filters are doubled

Lessons
1. Design principle: Use smaller kernel, and smaller stride

2. CNN architectures can be very sensitive on hyperparameters

Evolution of CNN Architectures: ZFNet [Zeiler et al., 2014] 

14*source :  Zeiler et al., “Visualizing and understanding convolutional networks”. ECCV 2014
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Networks were getting deeper 
• AlexNet: 8 layers
• VGGNet: 19 layers
• GoogleNet: 24 layers

Both focused on parameter efficiency of each block
• Mainly to allow larger networks computable at that time

Evolution of CNN Architectures: VGGNet and GoogleNet

16

AlexNet

VGGNet

GoogLeNet

*sources : 
- Krizhevsky et al. “Imagenet classification with deep convolutional neural networks”. NIPS 2012
- Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015

Next, VGGNet
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The 2nd place in ILSVRC’14 (11.7% → 7.33%)
• Designed using only 3 × 3 kernels for convolutions

Lesson: Stacking multiple 3 × 3 is advantageous than using other kernels

Example: ( 3×3 ×3) v.s. (7×7)
• Essentially, they get the same receptive field
• ( 3×3 ×3) have less # parameters

• 3× C× 3×3 ×C = 𝟐𝟕𝐂𝟐

• C× 7×7 ×C = 𝟒𝟗𝐂𝟐

• ( 3×3 ×3) gives more non-linearities

Evolution of CNN Architectures: VGGNet [Simonyan et al., 2014]

17*source : Simonyan et al., “Very deep convolutional networks for large-scale image recognition”. arXiv 2014. 

Next, GoogLeNet
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The winner of ILSVRC’14 (11.7% → 6.66%)
• Achieved 12× fewer parameters than AlexNet

Inception module
• Multiple operation paths with different receptive fields
• Each of the outputs are concatenated in filter-wise
• Capturing sparse patterns in a stack of features

Evolution of CNN Architectures: GoogleNet [Szegedy et al., 2015]

18*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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The winner of ILSVRC’14 (11.7% → 6.66%)
• Achieved 12× fewer parameters than AlexNet

Use of 1 × 1 convolutions
• Naïve inceptions can be too expensive to scale up
• Dimension reduction before expensive convolutions
• They also gives more non-linearities

Evolution of CNN Architectures: GoogleNet [Szegedy et al., 2015]

19*source : Szegedy et al., “Going deeper with convolutions”. CVPR 2015
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The winner of ILSVRC’14 (11.7% → 6.66%)
• Achieved 12× fewer parameters than AlexNet

cf. 1 × 1 convolutions
• Linear transformation done in pixel-wise
• Can be represented by a matrix
• Useful for changing # channels efficiently

Evolution of CNN Architectures: GoogleNet [Szegedy et al., 2015]

20

*sources : 
- Szegedy et al., “Going deeper with convolutions”. CVPR 2015
- Lana Lazebnik, “Convolutional Neural Network Architectures: from LeNet to ResNet”.
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ILSVRC contributed greatly to development of CNN architectures

Next, BatchNorm
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Training a deep network well had been a delicate task
• It requires a careful initialization, with adequately low learning rate
• Gradient vanishing: networks containing saturating non-linearity

Ioffe et al. (2015): Such difficulties are come from internal covariate shift

Motivation: “The cup game analogy”

• Similar problem happens during training of deep neural networks
• Updates in early layers may shift the inputs of later layers too much 

Batch normalization [Ioffe et al., 2015]

23

“Go water 
the plants!”

“Got water 
in your pants!”

“kite bang eat 
face monkey…”

*sources : 
- Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015
- http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
- https://www.quora.com/Why-does-batch-normalization-help

http://pages.cs.wisc.edu/~shavlik/cs638/lectureNotes/Batch_Normalization.pptx
https://www.quora.com/Why-does-batch-normalization-help
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Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

Idea: A normalization layer that behaves differently in training and testing

1. During training, input distribution of     only depends on γ and 𝛽
• Training mini-batches are always normalized into mean 0, variance 1

2. There is some gap between       and             (      , resp.) 
• Noise injection effect for each mini-batch ⇒ Regularization effect

Batch normalization [Ioffe et al., 2015]

24

Normalize Affine transform

Trainable

Training

Testing

*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015
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Batch normalization (BN) accelerates neural network training by eliminating 
internal covariate shift inside the network

• BN allows much higher learning rates, i.e. faster training
• BN stabilizes gradient vanishing on saturating non-linearities
• BN also has its own regularization effect, so that it allows to reduce weight decay, 

and to remove dropout layers

• BN makes GoogLeNet much easier to train with great improvements

Batch normalization [Ioffe et al., 2015]

25
*source :  Ioffe et al., “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift”. ICML 2015

Next, ResNet
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The winner of ILSVRC’15 (6.66% → 3.57%)
• ResNet is the first architecture succeeded to train >100-layer networks

• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
• 56-layer net gets higher training error than 20-layers network

• Deeper networks are much harder to optimize even if we use BNs

• It’s not due to overfitting, but optimization difficulty

• Quiz: Why is that?

ResNet [He et al., 2016a]

26

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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The winner of ILSVRC’15 (6.66% → 3.57%)
• ResNet is the first architecture succeeded to train >100-layer networks

• Prior works could until ~30 layers, but failed for the larger nets

What was the problem?
• It’s not due to overfitting, but optimization difficulty

• Quiz: Why is that?

• If the 56-layer model optimized well, then it must be better than the 20-layer
• There is a trivial solution for the 36-layer: identity

ResNet [He et al., 2016a]

27

20-layers 36-layers

56-layers

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Motivation: A non-linear layer may struggle to represent an identity function
• Due to its internal non-linearities, e.g. ReLU
• This may cause the optimization difficulty on large networks

Idea: Reparametrize each layer to make them easy to represent an identity
• When all the weights are set to zero, the layer represents an identity

ResNet [He et al., 2016a]

28*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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ResNet [He et al., 2016a]

29

Plain nets v.s. ResNets

• Deeper ResNets can be trained without any difficulty

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- He, Kaiming, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
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ResNet [He et al., 2016a] 

30

• Identity connection resolved a major difficulty on optimizing large networks

Revolution of depth: Training >100-layer network without difficulty
• Later, ResNet is revised to allow to train up to >1000 layers [He et al., 2016b] 

• ResNet also shows good generalization ability as well

Revolution of 
depth 

*sources :  
- He et al., “Deep residual learning for image recognition”. CVPR 2016
- Kaiming He, "Deep Residual Networks: Deep Learning Gets Way Deeper.” 2016.
- He et al. "Identity mappings in deep residual networks.", ECCV 2016
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ResNet oriented architectures

31

Comparisons on ImageNet for a single model of popular CNNs

*source :  https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
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ResNet oriented architectures

32

Various architectures now are based on ResNet
• ResNet with stochastic depth [Huang et al., 2016]
• Wide ResNet [Zagoruyko et al., 2016]
• ResNet in ResNet [Targ et al., 2016]
• ResNeXt [Xie et al., 2016]
• PyramidNet [Han et al., 2016]
• Inception-v4  [Szegedy et al., 2017]
• DenseNet [Huang et al., 2017]
• Dual Path Network [Chen et al., 2017]

Transition of design paradigm: Optimization ⇒ Generalization 
• People are now less concerned about optimization problems in a model 
• Instead, they now focus more on its generalization ability
• “How well does an architecture generalize as its scale grows?”

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Wide Residual Networks [Zagoruyko et al., 2016]
• Residuals can also work to enlarge the width, not only its depth
• Residual blocks with ×k wider filters 
• Increasing width instead of depth can be more computationally efficient

• GPUs are much better on handling "wide-but-shallow" than "thin-but-deep“
• WRN-50 outperforms ResNet-152

Deep Networks with Stochastic Depth [Huang et al., 2016]
• Randomly drop a subset of layers during training
• Bypassing via identity connections
• Reduces gradient vanishing, and training time as well

ResNet oriented architectures

33*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a 

residual block (“cardinality”)
• Increasing cardinality is more effective than 

going deeper or wider

DenseNet [Huang et al. 2017]
• Passing all the previous representation 

directly via concatenation of features
• Strengthens feature propagation and 

feature reuse

ResNet oriented architectures

34*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University
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ResNeXt [Xie et al., 2016]
• Aggregating multiple parallel paths inside a residual block (“cardinality”)
• Increasing cardinality is more effective than going deeper or wider

DenseNet [Huang et al. 2017]
• Passing all the previous representation directly via concatenation of features
• Strengthens feature propagation and feature reuse

ResNet oriented architectures 

35*source :  Fei-Fei Li et al. (2018), CS231n Lecture 9, Stanford University

Next, NASNet
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Although the CNN architecture has evolved greatly, our design principles are still 
relying on heuristics

• Smaller kernel and smaller stride, increase cardinality instead of width ...

Recently, there have been works on automatically finding a structure which can 
outperform existing human-crafted architectures

1. Search space: Naïvely searching every model is nearly impossible
2. Searching algorithm: Evaluating each model is very costly, and black-boxed

Toward Automation of Network Design

38

A sample architecture found in [Brock et al., 2018]

*source :  Brock et al., “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

Motivation: modern architectures are built simply: a repeated modules
• Try not to search the whole model, but only cells modules
• Normal cell and Reduction cell (cell w/ stride 2)

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

39

CIFAR

ImageNet

*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks

• Each block is determined by selecting methods
1. Select two hidden states from ℎ", ℎ"#$ or of existing block
2. Select methods to process for each of the selected states
3. Select a method to combine the two states

• (1) element-wise addition or (2) concatenation

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

40*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Each cell consists of 𝐵 blocks
• Example: 𝐵 = 4

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

41*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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Designing a good search space is important in architecture searching
• NASNet reduces the search space by incorporating our design principles

• Set of methods to be selected based on their prevalence in the CNN literature

Any searching methods can be used
• Random search [Bergstra et al., 2012] could also work
• RL-based search [Zoph et al., 2016] is mainly used in this paper

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

42*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10
• NASNet-A: State-of-the-art error rates could be achieved
• NASNet-B/C: Extremely parameter-efficient models were also found

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

43*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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NASNet-A
*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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• The pool of workers consisted of 500 GPUs, processing over 4 days 

All architecture searches are performed on CIFAR-10

Cells found in CIFAR-10 could also transferred well into ImageNet

Toward Automation of Network Design: NASNet [Zoph et al., 2018]

45*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018
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46*source :  Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR 2018



Algorithmic Intelligence Lab

Architecture searching is still an active research area
• AmoebaNet [Real et al., 2018]
• Efficient-NAS (ENAS) [Pham et al., 2018]
• NAONet [Luo et al., 2018]

Toward Automation of Network Design

47*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018

Next, EfficientNet
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Although Scaling up CNNs is widely used to achieve better generalization, the 
process of scaling has never been understood

• The common way is scaling model depth, width, and image resolution

Question: Is there a principled scaling method for better accuracy and efficiency?

Toward Automation of Network Design: Principle of Network Scaling

48*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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The state-of-the-art ILSVRC classification in 2019 (top-5 error rate 2.9%)
• EfficientNet uniformly scales network width, depth, and resolution with a set of fixed 

scaling coefficients (called “compound scaling”)

Motivation: There exists certain relationship between network width, depth and 
image resolution

• Scaling single dimension has a limitation
• Gain diminishes for bigger models.

• Scaling all together with a fixed ratio

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

49

Depth 𝒘 Width 𝒅 Resolution 𝒓

*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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• Compound scaling: Scaling all together with a fixed ratio 𝜙 in a principled way
• Depth 𝑑 = 𝛼%, 𝛼 ≥ 1
• Width 𝑤 = 𝛽%, 𝛽 ≥ 1
• Resolution 𝑟 = 𝛾%, 𝛾 ≥ 1
• Finding 𝛼, 𝛽, 𝛾 under compound constraint 𝛼 ⋅ 𝛽& ⋅ 𝛾& ≈ 2

• Why? Such scaling approximately increases total FLOPS by 𝛼 ⋅ 𝛽& ⋅ 𝛾& % ≈ 2%

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

50*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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Having a good baseline network is also critical!
• Multi-objective neural architecture search

• Optimizing both accuracy and FLOPS
• Search space is the same as MnasNet [Tan et al., 2019]

• Mobile-size baseline, called EfficientNet-B0
• Main building block is mobile inverted bottleneck, MBConv
• Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

51*source : Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile”, CVPR 2019

Factorized Hierarchical Search SpaceMBConv
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Having a good baseline network is also critical!
• Multi-objective neural architecture search

• Optimizing both accuracy and FLOPS
• Search space is the same as MnasNet [Tan et al., 2019]

• Mobile-size baseline, called EfficientNet-B0
• Main building block is mobile inverted bottleneck, MBConv
• Adding squeeze-and-excitation (SE) optimization [Hu et al., 2018]
• DWConv denotes depthwise convolution [Howard et al ., 2017]

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

52

Architecture of EfficientNet-B0

*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile”, CVPR 2019

MBConv
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From EfficientNet-B0 to B7
• EfficientNet-B0: Baseline model with 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15
• EfficientNet-B1 to B7: Scaling up EfficientNet-B0 with different 𝜙

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

53*source : Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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From EfficientNet-B0 to B7
• EfficientNet-B0: Baseline model with 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15
• EfficientNet-B1 to B7: Scaling up EfficientNet-B0 with different 𝜙

Principle of Network Scaling: EfficientNet [Tan et al., 2019]

54*source : Luo et al., “Neural Architecture Optimization”, Arxiv 2018

EfficientNet-B7 achieves 
new state-of-the-art 84.3% 
top-1 accuracy but being 
1.3x smaller than NASNet-A. 

EfficientNet-B1 is 7.6x 
smaller and 5.7x faster than 
ResNet-152

Next, Dilated Conv
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Objects in real-world often contain sophisticated spatial information
• Multiple scales
• Irregular shapes

Drawbacks: geometric transformations are assumed fixed and known
• Different size and shape of kernels may be required
• But, regular kernels have fixed-size and shape

Dilated and Deformable Convolution

56*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Objects in real-world often contain sophisticated spatial information
• Multiple scales
• Irregular shapes

Drawbacks: geometric transformations are assumed fixed and known
• Different size and shape of kernels may be required
• But, regular kernels have fixed-size and shape

Dilated and Deformable Convolution

57*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Motivation: Images in real-world usually contain multi-scale objects
• Regular convolution has a fixed-size of field of view
• Different size of kernels are required for multi-scale objects
• But, large-size of kernels may increase computational costs

Dilated convolution: Filling with zero values inside of large-size of kernels for 
efficient computation

• It can enlarge field-of-view to incorporate multi-scale context

Dilated Convolution [Chen et al., 2017]

58*source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019
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Motivation: Images in real-world usually contain multi-scale objects
• Regular convolution has a fixed-size of field of view
• Different size of kernels are required for multi-scale objects
• But, large-size of kernels may increase computational costs

• Example: Dilated convolution in semantic segmentation

Dilated Convolution [Chen et al., 2017]
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Image
Dilated Convolution

*source: Chen et al., “Rethinking atrous convolution for semantic image segmentation”, ArXiv, 2019
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

60*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf

Different types of sampling locations
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

61*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf

(offset field)
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Deformable convolution: Learning sampling location of kernels to capture 
irregular shape of objects

• Adding offset field to generate irregular sampling locations

Deformable Convolution [Dai et al., 2017]

62*source : https://jifengdai.org/slides/Deformable_Convolutional_Networks_Oral.pdf
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Motivation: Shape of objects in the real world are usually irregular
• Different shape of kernels are required for irregular objects
• Regular convolution has a fixed-shape of kernel

Learned offsets in the deformable convolution layers are highly adaptive to the 
image content

• Different size and shape of kernels for multiple objects

Deformable Convolution [Dai et al., 2017]

63

Next, SENet
*source: Dai et al., “Deformable Convolutional Networks”, ICCV, 2017

Visualizations of sampling locations
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

Squeeze and Excitation Network [Hu et al., 2018] 
• It selectively emphasizes informative feature maps and suppress less useful ones via 

global information in two steps
• Squeeze step: obtaining global information by shrinking feature maps

• Global average pooling
• Excitation step: recalibrating weights of features by learning channel-wise weights

• MLP of two fully-connected layers

Squeeze and Excitation Module [Hu et al., 2018]

65*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

SE block integrates to Inception and ResNet module
• SENet ranked first in the ILSVRC’17 (2.99% → 2.25%)

Squeeze and Excitation Module [Hu et al., 2018]

66*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018
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Motivation: The deeper the model, the more feature maps are generated
• Many of them might be important for classification task
• Others might redundant or less important

SE block integrates to Inception and ResNet module
• SENet ranked first in the ILSVRC’17 (2.99% → 2.25%)

Squeeze and Excitation Module [Hu et al., 2018]
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Next, Convolutional Block Attention Module
*source: Hu et al., “Squeeze-and-Excitation Networks”, CVPR, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Convolutional Block Attention Module (CBAM) [Woo et al., 2018]
• Learning ‘what’ and ‘where’ to attend in the channel and spatial axes respectively
• Channel and Spatial attention modules

Convolutional Block Attention Module [Woo et al., 2018]

68*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Channel attention module: It helps “what” to focus
• Both average-pooling and max-pooling are important
• Max-pooling provides the information of distinctive object features
• Both pooled features share a MLP with two fully-connected layers

Convolutional Block Attention Module [Woo et al., 2018]

69*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

Spatial attention module: It helps “where” to focus
• Again, Both average-pooling and max-pooling are important
• It aggregates channel information of feature maps by using two pooling operations
• Capturing spatial locality via convolution

Convolutional Block Attention Module [Woo et al., 2018]

70*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018
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Motivation: SENet only considers the contribution of feature maps
• It ignores the spatial locality of the object in image
• The spatial location of the object has a vital role in understanding image

• CBAM module integrated with ResNet outperforms SE module

Convolutional Block Attention Module [Woo et al., 2018]

71*source: Woo et al., “CBAM: Convolutional block attention module”, ECCV, 2018Grad-CAM visualization
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ResNet improved generalization by revolution of depth

Quiz: But, does it fully explain why deep ResNets generalize well?

Increasing depth does not always mean better generalization
• Naïve CNNs are very easy to overfit on deeper networks [Eigen et al., 2014]

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

73*source : Eigen et al., “Understanding Deep Architectures using a Recursive Convolutional Network”, Arxiv 2014
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Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of 
a single ultra-deep network

• Each module in a ResNet receives a mixture of 𝟐𝒏#𝟏 different distributions

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]

74*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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Veit et al. (2016): ResNet can be viewed as a collection of many paths, instead of 
a single ultra-deep network

• Deleting a module in ResNet has a minimal effect on performance
• Similar effect as removing 2)#$ paths out of 2): still 2)#$ paths alive!

ResNets behave like ensembles of relatively shallow nets [Veit et al., 2016]
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Next, visualizing loss functions in CNN

*source : Veit et al., “ResNets behave like ensembles of relatively shallow nets”, NIPS 2016
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Trainability of neural nets is highly dependent on network architecture
• However, the effect of each choice on the underlying loss surface is unclear

• Why are we able to minimize highly non-convex neural loss?
• Why do the resulting minima generalize?

Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

• 𝛿 and 𝜂 are sampled from a random Gaussian distribution
• To remove some scaling effect, 𝛿 and 𝜂 are normalized filter-wise

Visualizing the loss landscape of neural nets [Li et al., 2018]
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Local minima Random directions

𝒊𝐭𝐡 layer, 𝒋𝐭𝐡 filter

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

77

ResNet-56

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

78*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Modern architectures prevent the loss to be chaotic as depth increases

Visualizing the loss landscape of neural nets [Li et al., 2018]

79

ResNet, no shortcuts ⇒ sharp minima

ResNet ⇒ flat minima

*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Li et al. (2018) analyzes random-direction 2D plot of loss around local minima

Wide-ResNet lead the network toward more flat minimizer
• WideResNet-56 with width-multiplier 𝑘 = 1, 2, 4, 8
• Increased width flatten the minimizer in ResNet

Visualizing the loss landscape of neural nets [Li et al., 2018]
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WRN-56

WRN-56, no shortcuts

Next, minimum energy paths in CNNs
*source : Li et al., “Visualizing the loss landscape of neural nets”, ICLR Workshop 2018
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Draxler et al. (2018) analyzes minimum energy paths [Jónsson et al., 1998] 
between two local minima 𝜃! and  𝜃" of a given model: 

- They found a path 𝜃$ → 𝜃& with almost zero barrier
• A path that keeps low loss constantly both in training and test

- The gap vanishes as the model grows, especially on modern architectures
• e.g. ResNet, DenseNet

• Minima of a loss of deep neural networks 
are perhaps on a single connected manifold

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]
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DenseNet-40-12

*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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For a given model with two local minima 𝜃! and 𝜃", they applied AutoNEB
[Kolsbjerg et al., 2016] to find a minimum energy path 

• A state-of the-art for connecting minima from molecular statistical mechanics

• The deeper and wider an architecture, 
the lower are the saddles between minima 

• They essentially vanish for current-day 
deep architectures

• The test accuracy is also preserved
• CIFAR-10: < +0.5%
• CIFAR-100: < +2.2%

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

82*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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• The deeper and wider an architecture, the lower are the barriers 

• They essentially vanish for current-day deep architectures

Why do this phenomenon happen?
• Parameter redundancy may help to flatten the neural loss

Essentially no barriers in neural network energy landscape [Draxler et al., 2018]

83*source : Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018
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Success of Transformer in Language: GPT-3
• In 2020, GPT-3 achieved near-human results in various tasks

• OpenAI even trained a model with 175 billion parameters (350 GB of memory) and 
showed near-human performance on various few-shot tasks

Trends in Vision Architectures: Transformer architecture

86
*source : https://youtu.be/CSe3_u9P-RM
Draxler et al., “Essentially no barriers in neural network energy landscape”, ICML 2018

https://youtu.be/CSe3_u9P-RM
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What is Transformer?
• Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are 

composed of multiple block with self-attention module

Trends in Vision Architectures: Transformer architecture

87*source: http:// http://jalammar.github.io/illustrated-transformer



Algorithmic Intelligence Lab

What is Transformer?
• Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are 

composed of multiple block with self-attention module

• The self-attention is a function of query (e.g., “Je”) and key/value (e.g., “I”)
• It shows powerful performances in learning sequential input-output relations

Trends in Vision Architectures: Transformer architecture
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Query

Key/value
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Attention mechanism can be used for other type of input data, e.g. image
• Self-attention operation scales quadratically with the sequence length

Question: How to transform an image to sequence data?
• Dosovitskiy et al. (2021): splits an image into patches

Trends in Vision Architectures: Transformer architecture

89
*source: [Chen et al. 2020] Generative Pretraining from Pixels, ICML 2020

[Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Sequence of patch images
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Vision Transformer [Dosovitskiy et al., 2021]
• Splitting an image into fixed-size patches (16x16)

• Linearly embedding each of them
• Adding position embedding & [class] token

Trends in Vision Architectures: Vision Transformer [Dosovitskiy et al., 2021]

90*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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Vision Transformer [Dosovitskiy et al., 2021]
• Splitting an image into fixed-size patches (16x16)

• Linearly embedding each of them
• Adding position embedding & [class] token

• Dosovitskiy et al. (2021) pre-trains models on larger datasets (14M-300M images)
• Vision Transformer achieves competitive performances compared to CNNs

Trends in Vision Architectures: Vision Transformer [Dosovitskiy et al., 2021]

91*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

Vision Transformer CNNs
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Sequence of patch images

Trends in Vision Architectures: Various Image Transformers

92

Various architectures now are based on Vision Transformer
1. Modification for patch splitting

• Token-to-Token Vision Transformer [Li et al., 2021]
• Swin Transformer [Liu et al., 2021]

2. Modification for hierarchical structure
• Pooling-based Vision Transformer [Heo et al., 2021]
• Swin Transformer [Liu et al., 2021]

Question: What's a good way to split an image into a sequence of patches?
• Vision Transformer splits an image into a fixed grid-shape of non-overlapping patches

*source :  He et al., “Deep residual learning for image recognition”. CVPR 2016
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Token-to-Token Vision Transformer [Li et al., 2021]
• (Soft-split) Splitting an image into overlapping patches
• (Re-structurization) Rearranging patch sequences into 2D image shape
• Iterating re-structurization and soft-split before Transformer backbone

Trends in Vision Architectures: Token-to-Token Vision Transformer [Li et al., 2021]

93*source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
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Token-to-Token Vision Transformer [Li et al., 2021]
• (Soft-split) Splitting an image into overlapping patches
• (Re-structurization) Rearranging patch sequences into 2D image shape
• Iterating re-structurization and soft-split before Transformer backbone

Trends in Vision Architectures: Token-to-Token Vision Transformer [Li et al., 2021]

94*source: [Li et al. 2021] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021



Algorithmic Intelligence Lab

Pooling-based Vision Transformer [Heo et al., 2021]
• Design of a hierarchical structure

• Motivation: ResNet gradually downsamples
the features from the input to the output

• Downsampling via the pooling layer based on 
depth-wise convolution 

• Spatial reduction with small parameters

Trends in Vision Architectures: Pooling-based Vision Transformer [Heo et al., 2021]

95*source: [Heo et al. 2021] Rethinking Spatial Dimensions of Vision Transformers , ICCV 2021
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Swin Transformer [Liu et al., 2021]
• Design of a hierarchical structure
• Various spatial resolutions (e.g., patch-shape) can be handled via shifted windows
• Efficient self-attention computation by using shifted windows scheme
• Concatenating 2 × 2 neighboring patches for downsampling operation
• Powerful performances in dense prediction tasks 

e.g., object detection and semantic segmentation

Trends in Vision Architectures: Swin Transformer [Liu et al., 2021]

96*source: [Liu et al. 2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021

Shifted window scheme
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Question: Is the success of Vision Transformers due to 
1. the powerful Transformer architecture?
2. using patches as the input representation?

Trends in Vision Architectures: MLP architectures 

98*source: [Dosovitskiy et al. 2021] An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021
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• Tolstikhin et al. (2021) suggests MLP module as an alternative of self-attention module
• For a given Image 𝐼,

Trends in Vision Architectures: MLP architectures 

99*source : [Yu et al., 2021] MetaFormer is Actually What You Need for Vision, arxiv 2021

Transformer architectures MLP architectures

𝑍 = MLP Norm 𝑌 + 𝑌
= 𝜎 Norm 𝑌 𝑊# 𝑊$ + 𝑌

𝑌 = SelfAttn Norm 𝑋 + 𝑋

𝑋 = InputEmbed 𝐼

𝑍 = MLP Norm 𝑌 + 𝑌
= 𝜎 Norm 𝑌 𝑊# 𝑊$ + 𝑌

𝑌 = MLP Norm 𝑋 + 𝑋

𝑋 = InputEmbed 𝐼
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MLP-Mixer [Tolstikhin et al., 2021]
• Replacing the self-attention into MLP layers
• Removing position embedding & [class] token
• Mixing spatial & channel dimension separately

Trends in Vision Architectures: MLP-Mixer [Tolstikhin et al., 2021]
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MLP-Mixer [Tolstikhin et al., 2021]
• Replacing the self-attention into MLP layers
• Removing position embedding & [class] token
• Mixing spatial & channel dimension separately

• MLP-Mixer shows competitive performances compared to Vision Transformers

Trends in Vision Architectures: MLP-Mixer [Tolstikhin et al., 2021]
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• The larger the network, the more difficult it is to design
1. Optimization difficulty
2. Generalization difficulty

• ImageNet challenge contributed greatly to development of CNN architectures

• ResNet: Optimization ⇒ Generalization
• Many variants of ResNet have been emerged 
• Very recent trends towards network design and scaling

• Many types of CNN modules are explored to capture detailed spatial information
• Dilated and deformable convolution
• Attention based modules
• Many observational study supports the advantages of modern CNN architectures

• Recently, various types of architectures using patch-based input shape are explored
• Transformer architecture: Vision Transformer
• MLP architecture: MLP-Mixer

Summary
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