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Overview: Empirical Risk Minimization (ERM)

Empirical risk minimization: Find parameters that minimizes the empirical risk
* A collection of samples (or training set): {(X1,¥1),-- -, (Xn, Yn)}
* A predictive model: f(Xq;; 9) ~ 1); parameterized by 6

min L(6 Z€ (%45 0),y;)

)

o / (~, ) A loss function - e.g., mean squared error (MSE), cross entropy
Example: Regression with a K-layer neural network via MSE
T T T
f(x;0) =00 _19(---d(0; x)))
‘

01 02 non-linearity (e.g., ¢(-) = ReLU(:) := max(0, -))



Overview: Optimization Techniques for Deep Learning

Deep learning is heavily relying on large-scale, non-convex optimization
* What is the key challenges in optimizing deep neural networks?

* How to practically overcome such optimization difficulties?

Loss surface of a neural net (ResNet-50)

Algorithmic Intelligence Lab http://www.telesens.co/loss-landscape-viz/viewer.html 3
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Gradient Descent (GD)

Gradient descent (GD) updates parameters iteratively by taking gradient

parameters  empirical risk /randeinitialization_»
T T 0y - £ s \
041 :=0; —yVL(0,) N S e )
— n W e T
learning rate = n Z V(O x4, yi)
i=1

* (+) Converges to global (local) minimum for convex (non-convex) problem
* (—) Not efficient with respect to computation time and memory space for huge n
* For example, ImageNet dataset hasnn = 1,281, 167 images for training

1.2M of 256 X 256 RGB images
~ 236 GB memory

Algorithmic Intelligence Lab



Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) use a batch of samples to approximate GD

1 — —

VL) == ) VI0;x,y:) —
>3 (=

= % > V6%, y:) o

sample 1€B

* In practice, minibatch size | B| typically ranges from 32 to 512 (single machine)

* Theoretically, SGD can find the global optimum given that:
1. The loss function is convex
2. The gradient estimates have a bounded variance
3. Diminishing learning rates

* Nevertheless, in many practical problems, SGD makes some challenges

https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/ 8



Stochastic Gradient Descent (SGD)

Practical challenges in non-convex (“deep”) SGD:
1. The loss function includes many local minima and critical points

2. SGD can be too noisy and might be unstable @~—  momentum
3. Hard to find a good learning rate ———  adaptive learning rate
4. Gradients are often vanish/explode — »  normalization

Bad local minima . :
Critical point

Loss surface of a neural net (ResNet-50)

Algorithmic Intelligence Lab http://www.telesens.co/loss-landscape-viz/viewer.html 9



Table of Contents

Part 1. Basics

* Adaptive optimizers and learning rate scheduling

Algorithmic Intelligence Lab

10



Adaptive Optimizers: Momentum-based SGD

1. Momentum gradient descent
* Add a decaying term of previous gradients (momentum)

01 =0 —my m; = umy;_1 +yVL(6,)
momintum preservation ratio 1 € [0, 1]

* Equivalent to moving average with the fraction u of previous update
0;1=0: — v (VL(6:) + uVL(0:—1) + u°VL(Or—2) + - )

* (4) Momentum reduces the oscillation and accelerates the convergence
SGD A

friction to vertical fluctuation

SGD + momentum . v

~

acceleration to left

Algorithmic Intelligence Lab 11



Adaptive Optimizers: Momentum-based SGD

1. Momentum gradient descent
* Add a decaying term of previous gradients (momentum)

0i+1 = 0; —my m; = pmy;_1 +yVL (Ht)
momintum preservation ratio p € [0, 1]

* (—) Momentum can fail to converge even for simple convex optimizations
* Nesterov’s accelerated gradient (NAG) [Nesterov’83]
* Use gradients at approximate future positions instead:

m; < umy_1 +yVL (0, — pm;_q)

Momentum update: Nesterov Momentum

YVL(0; — pmy_1)

Gradient “lookahead” gradient

Velocity :
Velocity

actual step
:LLm -1 actual step

.
=

Gradient ”)’VL(Ht)

Algorithmic Intelligence Lab Nesterov. “A method for solving the convex programming problem with convergence rate O(1/k?)”, 1983 12



Adaptive Optimizers: Adaptive Learning Rate

2. Adaptively changing learning rate
* AdaGrad [Duchi’11] re-scales learning rates based on previous gradients

01 =6, — =VL(6,) Vep1 = vy + VL (0;)°
!

sum of all previous squared gradients

* (—) Learning rates strictly decrease and become too small for large iterations

* RMSProp [Tieleman’12] uses the moving average of the squared gradients

Vi1 = pwp + (1 — ) VL (6;)
}

preservation ratio /1t € [0, 1]

* Other variants also exist, e.g., Adadelta [Zeiler’12]

Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.”, JMLR 2011
Tieleman, Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.”, 2012
Algorithmic Intelligence Lab Zeiler, “Adadelta: An Adaptive Learning Rate Method.”, 2012 13



Adaptive Optimizers

Comparison of various optimizers on toy examples

optimization from saddle point optimization from local optimum

-~ SGD =  SGD
= Momentum -  Momentum
-~ NAG —  NAG
— Adagrad — Adagrad
; y ,,;,:,, % ",'"";,"'t Adadelta Adadelta
:,::::"/ 7% I'I'/',',"l',"';’l; Rmsprop Rmsprop
2 o

00
il
ORI

1.0

* Adadelta and RMSprop provide the best convergence for the given scenarios

Algorithmic Intelligence Lab Animations from Alec Radford’s blog 14



Adaptive Optimizers: Adam

1 + 2. Combination of momentum and adaptive learning rate

* Adam (ADAptive Moment estimation) [Kingma’15]
momentum

My 1 < U1MNy -+ (1 — ,ul)VL (Ht)

Or11 < 6, — L,Umt
Vo Vi1 < /LQ’Ut\:" (1 — IILQ)VL (Ht)2

avg. squared gradients (RMSProp)
* Other variants exist, e.g., Adamax [Kingma’15], NAdam [Dozat’16]

310 CIFAR10 Conngt First 3 Epoches . . CIFAR}O ConvNet
— AdaGrad 102k — AdaGrad
— AdaGrad+dropout — AdaGrad+dropout
— SGDNesterov — SGDNesterov
2.5¢ : SGDNesterov+dropout 10tk SGDNesterov+dropout
— Adam — Adam
Adam+dropout Adam+dropout

o 2.0F
@

= 184
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Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
Algorithmic Intelligence Lab Dozat, Incorporating Nesterov Momentum into Adam, 2016 15



Learning Rate Scheduling

3. Learning rate scheduling
e Learning rate is critical for minimizing loss

loss

low learning rate
high learning rate

>

good learning rate

epoch

Too — May ignore the narrow valley, can diverge
Too low — May fall into the local minima, slow converge

Algorithmic Intelligence Lab http://cs231n.github.io/neural-networks-3/ 16



Learning Rate Scheduling

3. Learning rate scheduling: Decay schemes
e Constant learning rate often prevents convergence — needs decaying!

Learning rate Learning rate
010 - |learning rate - |earning rate
0.08
0.08
) o 0.06
© 006 e g
£ 004 £ oos £ —— Constant Ir
= = Time-based
0.02 s - Step decay
i o~ = - Exponential decay
20 0 €0 80 100 20 0 60 ) 100
epoch epoch Y s ©
Step decay Exponential decay Test accuracy

* [Smith’17]: “Decaying the learning rate = Increasing the batch size”

20 20

w

- Decaying learning rate
= Hybrid
- |ncreasing batch size

- Decaying learning rate
= Hybrid
- |ncreasing batch size

Training cross-entropy
o <
& s

Training cross-entropy

0 S0 100 150 200 “ 0 20000 40000 60000 80000
Number of epochs Number of parameter updates

. . . https://towardsdatascience.com/
Algorithmic Intelligence Lab Smith et al., “Don't Decay the Learning Rate, Increase the Batch Size.”, ICLR 2017 17



https://towardsdatascience.com/

Learning Rate Scheduling

3. Learning rate scheduling: Warm-up
* Adaptive optimizers like Adam suffer from large variance in early phase

* Large batch training with momentum SGD also has similar issues
* Warm-up heuristic is used to stabilize training

;IIIIIII

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

“Start from a small LR,
Gradually increase it to the target LR”

EEEEEES 260

400 600 800 1000

* RAdam [Liu'20] rectifies the variance of Adam LRs, with theoretical justifications

* RAdam enjoys the benefits of warm-up, but no need to search for scheduling

Ht—i-l < Ht —

92
2
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86
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82
80—
78

Test accuracy

0O 20 40 60 80 100 120 140 160 180

Algorithmic Intelligence Lab

RAdam

\

Different learning

rates lead to similar g | .

performance.

80
78

—m Variance rectification term

t .
/’Ut (Check the paper for details)
Adam Sensitive to the choice =~ SGD
of the learning rate.
= Tl —— Ir=0.1
88
= —— =003
84
82 e |r = 0.01
80
= |r = 0.003

i 78
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

https://huggingface.co/transformers/main_classes/optimizer_schedules.html
Liu et al., “On The Variance of The Adaptive Learning Rate and Beyond.”, ICLR 2020 18



Learning Rate Scheduling

3. Learning rate scheduling: Cyclical schemes
* [Smith’15] proposed cyclical learning rate

* Increasing learning rate to escape saddle points or bad local minima

CLR - ‘triangular' Policy CIFAR-10
0.006 T T
0.005
&
I 0.004 6F
2 5 f
g 0.003 g . )
0002 0.4 ---Original learning rate
03 ---Exponential
0.001 ' —CLR (our approach)
0 2000 4000 6000 8000 10000 0 1 2 3 4 5 6 7
Training Iterations Iteration

x 10’

* [Loshchilov’17] uses cosine cycling and warm restart
* Traverses several local minima by moving up and down the loss surface
* Snapshot ensemble: Ensemble over multiple local minima found so far

0.010 L Single Model %54 Snapshot Ensemble
04 04+ Cyclic LR Schedule : - A}
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Smith., “Cyclical Learning Rates for Training Neural Networks.” 2015
Loshchilov et al., “SGDR: Stochastic Gradient Descent with Warm Restarts.” ICLR 2017 19
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Normalization

Normalization is a widely-used technique to stabilize training process

» Stabilizes training by adjusting the scale of inputs within unit variance

Data Normalization

Original data Mean subtracted Normalized variance

U
O = N W B

=2F A X

1 | 1
A W N O H O B N W b

-4

3 4 -4 -3 -2 -1 0 1 2 3 4

T —

 Commonly used in training recent deep learning models

transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, ©.224, 0.225])

Algorithmic Intelligence Lab https://towardsdatascience.com/regularization-part-4-2ee8e7aab0ec 21



Normalization: Batch Normalization [loffe’15]

Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

Computed using samples within batch . & xNxCxHxw
h | 1 N H W
Yichw = ’Y ) 5 i=1 h=1w=1
O-C ) 1 N H W ,
l ¢ = NHW L= 2~ (Tichw — i)
Learnable Parameters « i=1 h=1w=1

loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019
Algorithmic Intelligence Lab https://gradientscience.org/batchnorm/ 22



Normalization: Batch Normalization [loffe’15]

Batch Normalization: Normalize the outputs within the network

Standard Network

Adding a BatchNorm layer (between weights and activation function)

* Batch normalization stabilizes training and widely used in recent works

Learning Rate=0.1 Learning Rate=0.5

—— Standard
—— Standard + BatchNorm

—— Standard
50

—— Standard + BatchNorm

Training Accuracy (%)
Training Accuracy (%)

0 5k 10k 15k 0 5k 10k 15k

Steps Steps
VGG Network on CIFAR10

loffe and Szegedy., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, arXiv 2019

Algorithmic Intelligence Lab https://gradientscience.org/batchnorm/ 23



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

1. BN eliminates gradual mean-shift
* Average channel means and variances at initialization
 Mean and variance grow exponentially in unnormalized network

40 —}— channel means, with BN

channel stds, with BN

3.6 —}— channel means, w/o BN
"“1 —— channel stds, w/o BN %

o

©

:g 1.5 ;ﬁjﬁ: |

(@)} |

: 0.0 =) |

e . 1 /

g /| TN
5

6 18 30 42 54 66 78 90 102 110
Layer

* BN eliminates mean-shift by making mean activation zero [Bjorck’21]

Algorithmic Intelligence Lab Bjorck et al., “Understanding Batch Normalization”, NeurIPS 2018 24



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

2. BN downscales the residual branch
* BN is commonly applied to residual path of ResNet [He’16]

* This reduces the scale of activations on residual branches at initialization
* Biases the signal towards the skip path [De’20] — Stable training

f
RelLU

+ )«
’ IIIIIIIIIIIIIIIIIII

Batch norm
f

3x3 Conv . .

Small scale of activation 1 : : Biases the signal towards

on Residual Path RiLU P Identity | the skip path
Batch norm : :
f

3x3 Conv R P :

Algorithmic Intelligence Lab 25



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

3. BN has a regularizing effect
* Noise in the batch statistics acts as a regularizer [Luo’18]
* Using small batch for computing statistics leads to noise in statistics

Computed using samples within batch . xNxOxHExwW

t—| ] N H W

L Lichw| — ,LLC | MC:NHW'SijijiChw
Yichw — ’Y ) | 5 i=1 h=1w=1
O-C 1 N w

* [Hoffer’17] show that test accuracy of batch-normalized network can
further be improved by tuning batch size

Hoffer et al., “Train longer, generalize better: closing the generalization gap in large batch training of neural networks”, NeurIPS 2017
Luo et al., “Towards Understanding Regularization in Batch Normalization”, ICLR 2018 26



Understanding Batch Normalization

Why does Batch Normalization (BN) work?

4. BN allows efficient large-batch training
e [Santurkar’18] show that BN smoothens the loss landscape
* This increases the largest stable learning rate [Bjorck’18]
* ... whichis important for large-batch training

Sensitivity of Loss to learning rate Sensitivity of Gradient to learning rate
L(x+nVL(x)),n €[0.050.4] |[VL(x) —VL(x+nVL(x))||,n € [0.05,0.4]

10!

pm Standard 250 pm Standard
[ Standard + BatchNorm ﬁ [ Standard + BatchNorm
9 g 200
g 2
§ 2 150
B o
oo < 100 |
S § |
100 850 “l le "
(G] )
oM YV B SR AR MDAV ‘;,“,‘.', AR AN
0 5k 10k 15k 0 5k 10k 15k
Steps Steps

Santurkar et al., “How Does Batch Normalization Help Optimization”, NeurlPS 2018
Bjorck et al., “Understanding Batch Normalization”, NeurlIPS 2018

Algorithmic Intelligence Lab https://gradientscience.org/batchnorm/ 27



Variants of Batch Normalization

Layer Normalization [LN; Ba’16]

* LN normalizes over channels, instead of batch

* (+) Works well for small-batch training
* (+) Effective for sequential models

NxCxHxW
Tichw € X

Lichw — i

* BN requires different statistics for each time-step of RNNs

Algorithmic Intelligence Lab

Ba et al., “Layer Normalization”, arXiv 2016

Wu and He., “Group Normalization”, ECCV 2018 28



Variants of Batch Normalization

Instance Normalization [IN; Ulyanov’16]
* IN normalizes over each channel, instead of batch

= XNxCxHxW

Lichw
Lichw — MHic
yichwzfy'( o )‘Fﬁ
1 H W
Hic = ﬁ Z Z Lichw
h=1w=1

* (+) Works well for small-batch training

* (+) Effective for generative models
* Can remove instance-wise differences

High contrast Low contrast

Ulyanov et al., “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016
Algorithmic Intelligence Lab Wu and He., “Group Normalization”, ECCV 2018 29



Variants of Batch Normalization

Group Normalization [GN; Wu’18]
* Performance of LN and IN is limited in visual recognition tasks
* LN normalizes over G group of channels, instead of batch
* Inspired by SIFT/HOG: Group-wise features and normalization

Group Norm

Groups are decided by dividing C by G

36

—+Batch Norm
34 r|-e-Group Norm

* (+) Works well for small-batch training
* (+) Effective for visual recognition

32

30 -

error (%)

28

* (—) Worse than BN in large-batch training 2]
249— - —— e —o
“ 16 8 4 >

batch size (images per worker)

Algorithmic Intelligence Lab Wu and He., “Group Normalization”, ECCV 2018 30
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Normalization-free Networks

BN has been a key component to bypass optimization problems in deep nets

« Still, BN (and its variants) has significant practical disadvantages

1. Sensitive to batch size

2. Computationally expensive
3. Discrepancy in the behavior of model during training and inference time

4. Breaks the independence between training examples in the minibatch
* e.g., it makes subtle errors in distributed training

 What component is essentially needed to stabilize deep nets without BNs?

Adding a BatchNorm layer (between weights and activation function)
-

Algorithmic Intelligence Lab https://gradientscience.org/batchnorm/ 33



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets

* Motivation: Wide neural networks as Gaussian process [Neal, 1996]
« Consider an L-layer network: W' ¢ RVi-1xXM 10 ¢ RNo

Xl — ¢(hl), hl — Wlxl—l e bl
* Assume that W' ~ N (0,0, I/N'™1), and b’ ~ N(0, 0,1)

Algorithmic Intelligence Lab  pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017 34



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets
* Motivation: Wide neural networks as Gaussian process [Neal, 1996]
« Consider an L-layer network: W' ¢ RVi-1xXM 10 ¢ RNo
Xl — ¢(hl), hl — Wlxl—l e bl

* Assume that W' ~ N (0,0, I/N'™1), and b’ ~ N(0, 0,1)
* Question: How to “optimally” set g,, and g, ? — The law of large numbers
* Idea: As N'™1 > oo, h! - W (0, ¢'I) where

Algorithmic Intelligence Lab  pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017 35



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets
* Question: How to “optimally” set g,, and g, ? — The law of large numbers
* Idea: As N'™1 > oo, h! - W(0, ¢'I) where
¢ =05 Enonon[o(Vd—Th)?] + o}

* Given two conditions, one can compute a set of optimal (ay,, 75 ):
1. Fixed pointq* = q° = --- = ¢t
* |n many scenarios, ql — q" rapidly in few s
* 0, and g, determines ¢*: ¢* = o2 -EhNN(O,l)[¢(\/q7*h)2] + o}

Algorithmic Intelligence Lab  pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017 36



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets

* Question: How to “optimally” set g,, and g, ? — The law of large numbers
* Idea: As N'™1 > oo, h! - W(0, ¢'I) where

¢ =02 -Epon,1)0(v ¢'='h)?] + o

* Given two conditions, one can compute a set of optimal (ay,, 75 ):
1. Fixed pointq* = q° = --- = ¢t
* |n many scenarios, ql — q" rapidly in few s
* 0, and g, determines ¢*: ¢* = o - Eyun(0.1)[0(V@*h)?]) + o}
2. Criticality)(l =1foralll=1,---,L
* The mean of the squared singular values of D'W*

DZJ = ¢'(h;) 3y

1
¥ = e Eultr(D'WHTDIWY)] = o2 - Eal¢! (Va©h)?
« ! =1 makes that the input output Jacobian to be stable:
l l
6h0 HD W',

Algorithmic Intelligence Lab  pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017 37



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets
* Question: How to “optimally” set g,, and g, ? — The law of large numbers

* Given two conditions, one can compute a set of optimal (ay,, 0}, ):
1. Fixed pointg* = q° = --- = ¢*
¢t =0, 'Eth(0,1)[¢(\/q7*h)2] + 0}
2. Criticality)(l =1foralll=1,---,L

V= B [tr(D'WHTDWY] = 02 - By [ (V@ h)?)

Ni—

* 1+ 2 numerically determines y(a,,, a3, ) = 1: ¢ (h) = Tanh(h)
* ¢ = RelU: (gy,,04 ) = (2,0) o . ¢
* ¢ = Tanh: See the right Figure 2 v
* With a deeper analysis of the spectrum of J, e "
one can further stabilize the training o "

0.05 aotic
* For the details, see [Pennington et al., 2017] A

05 1.0 15 20 25 3.0
2
O-ll‘

Algorithmic Intelligence Lab  pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017 38



Stable Initialization from Dynamical Isometry [Pennington’17]

Good initialization can avoid gradient vanishing/exploding of deep nets

* The idea was later generalized to enable 10,000-layer ConvNets without
BNs nor residual connections [Xiao et al., 2019]

1.0 X - 1.0 T
s Orthogonal Jy-‘“{‘.' Vasy w— depth=32 e ol '.“-'.
— GaUSSIAN J IV |" = depth=128 N h.‘),
' . ’ 0.9 depth=512 tu o S
'j — depth=2048 S < R '
0.8 depth=4096 ey "
08 | e depth=8192 e :
FC Accuracy £ ~
Proposed 07 it
> 0.6 e ana. .G . pars
O initialization - Y
© U 06
5 ©
Y 3
< 0.4 P o ;
0.4 v fd' art
0.2 0s [ 60
e Sy
"
0.2
0.0 L p ]
10° 10° 10° 10° o1l : ,_
10 10¢ 10°
Steps Epochs
4000-layer ConvNet, CIFAR-10 CIFAR-10

(solid: test, dashed: training)

Pennington et al., “Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice”, NeurlPS 2017

Algorithmic Intelligence Lab Xiao et al., Dynamical Isometry and a Mean Field Theory of CNNs, ICML 2019 39



NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties

* Brock et al. (2021b): Normalizer-Free ResNet (NFNet)
* Removes BNs from ResNet while maintaining their strengths
* Achieves strong results on ImageNet benchmark

Algorithmic Intelligence Lab
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Brock et al.,
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NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties

* Brock et al. (2021b): Normalizer-Free ResNet (NFNet)
* Removes BNs from ResNet while maintaining their strengths

1. Scaled weight standardization [Qiao’19]
* To eliminate mean-shifts as BN does
* Re-parameterize the weights of each convolutional layer by:

W, = Vi — i
VNo;

where p; = (1/N) >, Wij, 07 = (1/N) > (Wij — 11:)%,

Weight Standardization

* (+) Computationally cheap
* (+) No discrepancy in training/test behavior
* (+) No dependence between batch samples

Brock et al., “High-Performance Large-Scale Image Recognition Without Normalization”, arXiv 2021
Algorithmic Intelligence Lab Qiao et al., “Micro-Batch Training with Batch-Channel Normalization and Weight Standardization”, arXiv 2019 41



NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties

* Brock et al. (2021b): Normalizer-Free ResNet (NFNet)
* Removes BNs from ResNet while maintaining their strengths

2. Downscaled residual branches
* A small scalar a to suppress the scale of activations from residual branches

f
RelLU

a is set to a small value
(=0.2) @ @

3%X3 Conv Identity
? A
RelU
f
3X3 Conv

A
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NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties

* Brock et al. (2021b): Normalizer-Free ResNet (NFNet)
* Removes BNs from ResNet while maintaining their strengths

3. Adaptive gradient clipping
* Allows efficient large-batch training
* Robust to the clipping threshold hyperparameter A in practice

Measures how much a single gradient
update will change the weights

T

|| - || 7 : frobenius norm

WEI~ ol I|GE
Y, )\WGf if % - )\, G' : Gradient of I-th layer
at s e R
7 G 7 h : W : Weight of I-th layer
( l otherwise. G! : i-th row of of matrix G’

(IS : l
If the update is too drastic, clip the gradient Wi+ i-throw of of matrix W
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NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties

* Brock et al. (2021b): Normalizer-Free ResNet (NFNet)
* Removes BNs from ResNet while maintaining their strengths

4. Additional regularizations
* Dropout [Srivastava’14] and Stochastic depth [Huang’16] during training

0.9 0.5

active inactive
ﬂq@ 1 ><<;>o
Present with Always
probability p present I

(a) At training time ) At test time . ] [ -. qu} -QC} -% XQ-J[
Dropout Stochastic Depth
[Srivastava’14] [Huang’16]
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NFNet: High-performance Normalizer-Free ResNets [Brock’21b]

Better architecture designs (+ training) can overcome the optimization difficulties
e Brock et al. (2021b): Normalizer-Free ResNet (NFNet)

e Experimental results on ImageNet classification
* Achieves better accuracies compared to state-of-the-art BN-based architectures

Model \ #FLOPs  #Params ‘ Top-1  Top-5 ’ TPUv3 Train GPU Train
ResNet-50 410B  26.0M | 78.6 943 |  41.6ms 35.3ms
EffNet-B0 0.39B  53M | 771 933 | 5llms 44.8ms
SENet-50 409B  280M | 794 946 |  64.3ms 59.4ms
NFNet-F0 12388 715M | 83.6 968 | 73.3ms 56.7ms
EffNet-B3 1.80B  12.0M | 81.6 957 | 129.5ms  116.6ms
LambdaNet-152 - 51.5M | 83.0  96.3 | 138.3ms  135.2ms
SENet-152 19.04B  66.6M | 831 964 | 149.9ms  151.2ms
BoTNet-110 10.90B  547M | 828 963 | 181.3ms =

| NFNet-F1 3554B  132.6M | 847 971 | 1585ms  133.9ms |
EffNet-B4 420B  19.0M | 829 964 | 2459ms  221.6ms
BoTNet-128-T5 19.30B  75.IM | 83.5 965 | 355.2ms =

| NFNet-F2 62.59B  193.8M | 85.1 97.3 | 2958ms  226.3ms |
SENet-350 52.90B  1152M | 83.8  96.6 | 593.6ms -
EffNet-B5 9.90B  30.0M | 83.7 96.7 | 450.5ms  458.9ms
LambdaNet-350 - 1058M | 845 97.0 | 471.4ms -
BoTNet-77-T6 2330B  53.9M | 840 967 | 578.1ms =

| NFNet-F3 11476B  2549M | 857 975 | 5322ms  524.5ms |
LambdaNet-420 - 124.8M | 848  97.0 | 593.9ms -
EffNet-B6 19.00B  43.0M | 840 968 | 775.7ms  868.2ms
BoTNet-128-T7 45.80B  75IM | 847  97.0 | 804.5ms -

| NFNet-F4 21524B  316.IM | 859 97.6 | 10333ms  1190.6ms |
EffNet-B7 37.00B  66.0M | 847  97.0 | 1397.0ms  1753.3ms
DelT 1000 epochs - 87.0M 85.2 - — —
EffNet-B8+MaxUp | 62.50B  S7.4M | 858 - - -

| NFNet-F5 289.76B  377.2M | 86.0  97.6 | 13985ms  2177.1ms |
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AdamW: SGD/Adam with Decoupled Weight Decay [Loshchilov’19]

Regularizing loss with £,-norm penalty is one of the most common practices

L(0) = L(0) + A[|10]3
* For SGD, It is equivalent to “weight decay” since its gradient decays weight:

0 —nV (L(O)+A[6]5) <= (1—-2n\)0 —nVL(0)

SGD on €5-norm penalty V0|3 = 26 weight decay

* But, this equivalence does not hold for momentum/adaptive methods! (check)
* This gap supports why Adam < SGD for some tasks, e.g., image classification

1
65 . !
) P
1ne {55 1116
s 1132
L 184 ©

17120 0 © ©

Adam

7

6.5

6

15.5

Initial learning rate

4
11256 - - T -]

35
1/512 1 512

Initial learning rate to be multiplied by 0.1

1/1024 3 1/1024

0 132 1116 18 W4 12 1 2 4 8 18 0 132 W6 18 14 2 1
L2 regularization factor to be multiplied by 0.001 L2 regularization factor to be multlplled by O 001
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AdamW: SGD/Adam with Decoupled Weight Decay [Loshchilov’19]

Loshchilov et al. (2019): Decoupled weight decay from optimizers

* For general momentum-based optimizers, £5-regularization # weight-decay

9,5 — ont(Vft(Qt) + )\/(9)
Ht — oz)\’MtH — ontVft(Qt)

(1 = N, — oM,V £,(6)

 SGDW and AdamW aim to adjust this gap by explicitly adding the WD-term
* Example: Decoupled SGD with momentum (also applicable to Adam)

L2 penalty: ‘9t +1

weight decay: 9t-|— 1

Algorithm 1 SGD with L, regularization and SGD with decoupled weight decay (SGDW) , both

with momentum
1: given initial learning rate « € IR, momentum factor 81 € R, weight decay/L. regularization factor A € R

»

initialize time step ¢ <« 0, parameter vector 8;—o € R", first moment vector m;—o < 0, schedule
multiplier n;—o € R
repeat

t—t+1

V f:(0:—1) < SelectBatch(6:—1) > select batch and return the corresponding gradient

8, — Vfi(0:i—1) [ +A0:—1

1t 4 SetScheduleMultiplier(t) > can be fixed, decay, be used for warm restarts
m; « Bimi_1 + niag,

0; «— 6:—1 —my —Tlt)\ot-l

until stopping criterion is met
return optimized parameters 6,

=O W e kW

P p—
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AdamW: SGD/Adam with Decoupled Weight Decay [Loshchilov’19]

Loshchilov et al. (2019): Decoupled weight decay from optimizers

* For general momentum-based optimizers, £5-regularization # weight-decay

0,5 — OéMt(Vft(Ht) + )\/Q)
Qt — oz)\’MtH — ontVft(Ht)

(1 —=X)0 — aM;V f(0)

L2 penalty: Ht +1

weight decay: 9t-|— 1

* The proposed AdamW consistently outperforms Adam under £,-regularization

Adéam and AdamW with LR=0.001 and different weight decays
10 T T r . . :

Test error (%)

Training loss (cross-entropy)

——— Adam | A\?“"

> | h S . W, W \ |

o e o ta .v., .- : 4 : Y“.n\'v

. % J Y s

N -\ O T N Yl \8 ~

'..' ‘_\Il d " |\ 1

." N N ',. AR \

\ I“\d W\ J 3 N - =

A v {/ 1 g SR

N Y "'-“ A

N

\' VAN

- ——— AdamW | Qv ——— AdamW S

1 1 N 1 1 I 1 1 3 n A " A A A A
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Epochs Epochs
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AdamW: SGD/Adam with Decoupled Weight Decay [Loshchilov’19]

Loshchilov et al. (2019): Decoupled weight decay from optimizers

* For general momentum-based optimizers, £5-regularization # weight-decay

L2 penalty: 9t+1 = 9,5 — Oth(Vft(Qt) + )\’(9)
= Ht — oz)\’MtQ — ontVft(Qt)
weight decay: 9t—|—1 = (1 — )\)Ht — ontVft(@)

* The proposed AdamW consistently outperforms Adam under £,-regularization

Adam AdamWw

-~

12 12

6.5

14 114

1/8
55

116 Feid o5
i‘f’ #

116
1/32 1132

45 s

111280 © © ©O 11128

Initial learning rate to be multiplied by 0.1
Initial learning rate to be multiplied by 0.1

11256 11256
11512 o R 1/512 .
11024 3 11024
0 132 116 18 14 12 1 2 4 8 16 0 132 M6 18 14 112 1 2 4 8 16
L2 regularization factor to be multiplied by 0.001 Weight decay to be multiplied by 0.001
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AdamW: SGD/Adam with Decoupled Weight Decay [Loshchilov’19]

Loshchilov et al. (2019): Decoupled weight decay from optimizers

* For general momentum-based optimizers, £5-regularization # weight-decay

L2 penalty: (9754—1 = Qt — Oth(Vft(Qt) + )\/(9)
= Qt — oz)\’MtQ — ontVft(Qt)

(1 = N, — oM,V £,(6)

weight decay: (9t—|— 1

e Currently, AdamW is adopted for a wide range of state-of-the-art models,
especially for Transformer-based models those employ high weight decays

Data-efficient Image Transformer (DeiT) [Touvron’21]
Swin Transformer [Liu’21]

Masked Auto-encoder (MAE) [He’21]

ConvNeXt [Liu’22]

AlphaCode [Li’22]

Loshchilov et al., “Decoupled Weight Decay Regularization.”, ICLR 2019
Touvron et al., “Training data-efficient image transformers & distillation through attention”, 2021
Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, ICCV 2021

He et al., “Masked Autoencoders Are Scalable Vision Learners”, 2021
Liu et al., “A ConvNet for the 2020s”, 2022
Li et al., “Competition-Level Code Generation with AlphaCode”, 2022 51



AdamP: Adam with Projection on Scale-invariant Weights [Heo’21]

Heo et al. (2021): “Normalization + momentum optimizers” can be problematic

* Normalization layers (e.g., BN) induces scale-invariance weights

T T

Norm(w ' ) = Norm(cw 'x) Ve > 0.

* Problem: Momentum induces an excessive growth of weight norms
* Increased weight norms — Decreased (relative) step size

Iteration 0
[Loss] GD: 4.0000 / GD + momentum: 4.0000 / ours: 4.0000
[Norm] GD: 1.00 / GD + momentum: 1.00 / ours: 1.00

e Example 1: wy > w in R?

lwo
: A
. o w - Wy - t5
— min cos(w, wp) = max : :
|
w w o [Jwllz |lwoll2 | :
) i
i

* GD + momentum “unnecessarily” U :\\ optimal w

. . . . . } 1
increases ||w||, during the optimization i i

- Gradient descent (GD)
GD + momentum
= GD + momentum + projection (ours)
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AdamP: Adam with Projection on Scale-invariant Weights [Heo’21]

Heo et al. (2021): “Normalization + momentum optimizers” can be problematic

* Normalization layers (e.g., BN) induces scale-invariance weights

Norm(w ') = Norm(cw ') Ve > 0.

* Problem: Momentum induces an excessive growth of weight norms
* Increased weight norms — Decreased (relative) step size

* Example 2: ImageNet training via SGD
* The trend can be still observed in training deep neural networks

Weight norms Effective step sizes Accuracies

4 v 0.004 70.'
£ @ 9
53 2.0.003 2
z [ 360
- v O
52 / g 0.002 : —— SGD w/o momentum
o © & 501 SGD + momentum
=1 © 0.001 &

E ~ —— SGDP (ours)
% 20 40 60 80 100 00005540 60 80 100 485 200 40 60 80 100
Epoch Epoch Epoch

Algorithmic Intelligence Lab Heo et al., “AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights”, ICLR 2021 53



AdamP: Adam with Projection on Scale-invariant Weights [Heo’21]

Heo et al. (2021): “Normalization + momentum optimizers” can be problematic

e Adam — AdamP: Adam with weight projection

W

[y (x) :==x — (W X)W, where w := Twls

* Apply p; < Il (p;) whenever w; - V,f(w;) < & (close to orthogonal)
* In practice, § = 0.1 widely works fine

Algorithm 1: SGDP Algorithm 2: AdamP
Require: Learning rate n > 0, Require: Learning rate n > 0,
momentum 3 > 0, thresholds momentum 0 < £y, 8 < 1,
,Bpt—l Momentum 5,5.> 0. t.hr(?sholds d,e > 0.
i Pi 1: while w; not converged do 1: while w; not converged do
Projection I, 2 Py Bpiy + Ve fi(we) 2 my |
; S ours 3:  if w; -V f(w:) <0 then Bimi_1 + (1 — B1)Vaw fi(w:)
: Lo, (P1) 1 w1  wy — N1y, (Pe) 3 vy ‘ ‘
: else Bavi—1 + (1 — B2) (Ve fr(wi))?
6: Wi ¢ Wy — 1Py 40 pp—my /(U +€)
end if 5:  if w; -V f(wy) < 6 then
» . t) 8: end while 6: Wiy — wy — N1y, (De)
I 7. else
8: Wy ¢ Wy — NPy
9: end if

10: end while

Algorithmic Intelligence Lab Heo et al., “AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights”, ICLR 2021 54



AdamP: Adam with Projection on Scale-invariant Weights [Heo’21]

Heo et al. (2021): “Normalization + momentum optimizers” can be problematic

 Adam — AdamP: Adam with weight projection

[y (x) :=x — (W - X)W, where w := —

 AdamP achieves better generalization across a wide range of tasks

Table 2. ImageNet classification. Accuracies of state-of-the-art networks trained with SGDP and AdamP.

Architecture #params SGD SGDP (ours) Adam AdamW  AdamP (ours)
MobileNetV2 3.5M 71.55 72.09 (+0.54) 69.32 71.21 72.45 (+1.24)
ResNet18 11.7M 7047  70.70 (+0.23)  68.05 70.39 70.82 (+0.43)
ResNet50 25.6M 76.57 76.66 (+0.09) 71.87 76.54 76.92 (+0.38)

ResNet50 + CutMix  25.6M 71.69  T7.77 (+0.08)  76.35 78.04 78.22 (+0.18)

Table 3. MS-COCO object detection. Average pre-
cision (AP) scores of CenterNet (Zhou et al., 2019)
and SSD (Liu et al., 2016a) trained with Adam and

Table 5. Language Modeling. Perplexity on Wiki-
Text103. Lower is better.

AdamP optimizers. Model AdamW AdamP (ours)
— Transformer-XL 23.38 23.26 (-0.12)
Model Initialize Adam AdamP (ours) Transformer-XL + WN  23.96 22.77 (-1.19)

CenterNet Random 26.57 27.11 (+0.54)

CenterNet ImageNet 28.29  29.05 (+0.76) .
SSD Random 2710  27.97 (+0.87) (More in the full paper, e.g.,

SSD ImageNet 28.39  28.67 (+0.28) audio classification, robustness, ...)

Algorithmic Intelligence Lab Heo et al., “AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights”, ICLR 2021 55
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Large Batch Training: Motivation

Deep learning is scaling up very quickly

L GPT-3
140

120
100
80

60

# Parameters (B)

40

20

BERT ROBERTa GPT-2 Turing NLG GPT-3

0

Instagram Dataset c
. . loud TPU v3 Pod
w/ ~1bil. images [Mahajan’18] Model e e

100+ petaflops

32TB HBM
2-D toroidal mesh network

Larger dataset Larger model More compute

Data parallelism enables large-scale training
* With k times more GPUs, global batch size increases by k
* Ignoring communication cost, k times fewer iterations per epoch

2. Synchronize
updated weights
across workers

1. Aggregate
gradient estimates

worker worker worker worker

Mahajan, et al., “Exploring the limits of Weakly Supervised Pretraining”, ECCV 2018

Algorithmic Intelligence Lab Yu, et al., “ImageNet Training in Minutes”, 2018 57



Large Batch Training: Challenge

Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

One popular explanation: Sharp-minima problem [Keskar’17]
* Large batch (LB) training finds a “sharp minimum”

=ee -075 -050 7-7052::70:.:'002 0.275::;;?50 ors 100 %o —o7s 050 -0 oo TIT,Iumnl;! rT:'.m) o -u‘.::;, ~050 -025 000 025 050 (;.l'z 1:.00 100 075 050 —025_0bo 035 080 o035 100
(e) 0.0, 128, 7.37% () 0.0, 8192] 11.07% (g) Se-4, 128, 6.00% (h) 5e-4,[8192,/10.19%

Loss visualization along two random directions in the parameter space (VGG-9, CIFAR-10) [Li’18]

Training Function

! Testing Function
I

High sensitivity of training loss around 6;

ﬁ

rain

f(z)

Loss * . ...
Ot rain is a poor minimizer for test loss

\ifn o
e e \' \V/
Flat Minimum Sharp Minimum

Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017
Algorithmic Intelligence Lab Li et al., “Visualizing the Loss Landscape of Neural Nets”, NeurIPS 2018 58



Large Batch Training: Challenge

Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

One popular explanation: Sharp-minima problem [Keskar’17]

e Caveat: this is not the same as overfitting!

* |n particular, cannot apply early stopping to solve the problem

100
- A Training
A g
Py -
© ”
c -
| 3 Y N
< f < / Testing
',' ; - - SB - Training : 4
A0 e preeeeees — SB-Testing | proeneeeneeed
I . 5 :
30t — - - LB-Training| S
: — LB - Testing
20 l ' 1 1 Epoch
0 20 40 60 80 100
Epoch
LB Training Overfitting
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Large Batch Training: Challenge

Naively increasing batch size = performance degradation
* In particular, generalization performance suffers

Another explanation: Optimization difficulty [Goyal’18]
* [Goyal’18] suggests sharp minimum is not an inherent problem of LB training

* With careful optimization, LB training is possible w/o loss in generalization

S
o
1

ResNet-50

w
(&)}
T

Up to batch size 8096,
No loss of validation accuracy!

w
o
T
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mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.

ImageNet top-1 validation error
N
o
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Large Batch Training: Learning rate warm-up

* Learning rate warm-up [Goyal’18]
1. Linear scaling rule
* Given a fixed number of epochs, increasing batch size B by k times means

k times fewer training iterations, for:
(# iters per epoch)
k

* To make up for this, learning rate must scale linearly with batch size

|Daata| = B - (# iters per epoch) = kB -

2. Warm-up
* During initial training phase, neural network is changing rapidly
* |n this case, large learning rate can be destructive — “warm up” the rate!

0.4 :
2 —Cosine Decay
x0.3 ' - Step Decay Scales up to
warm-up 0.1 : (ImageNet, ResNet-50)
oo}t e T==
0 20 40 60 80 100 120
Epoch
(a) Learning Rate Schedule

Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, 2018
Algorithmic Intelligence Lab He et al., “Bag of Tricks for Image Classification with Convolutional Neural Networks”, CVPR 2019 61



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* The ratio between weight and its gradient matters

9 Too large: slow learning
9t—|—1 = Ht — ’YVL(Ht) ” t” <

YIIVL(,)|

Too small: divergence

 Note that standard SGD uses a fixed ”Y for all weights
* Observation: For LB training, the ratios are apparently different across layers

Algorithmic Intelligence Lab

weights/gradients ratio in each AlexNet layer in large-batch situation

»en weights norm and gradients norm

raho betwe

o ayer.¢ vyer ayer.8

l); er 1D

You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 62



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Rate Scaling (LARS) [You’17]
* Solution: Different learning rates for each layer

0, ,=0,—~-\.VL(8.)

l ||9l ” local learning rate,
where < 1

= || VL(HZ) || is the trust coefficient

"Y globallearning rate

* By layer-wise scaling, vanishing/exploding gradient problem can be prevented
* Author claims noisy learning signal due to dynamic Ir helps avoiding sharp minima

AlexNet-BN with LARS, Layer 1: Convolutional, Weight AlexNet-BN with LARS, Layer 5: Convolutional, Weight
1.75 4
17.5 —— Batch 256 — Batch 256
—— Batch 1024 1.50 —— Batch 1024
0 —— Batch 8192 —— Batch 8192
® 0 o 1.25
© ©
= 10.0 0;1 1.00
£ 2
g 75 g 075
g L
- 5.0 0.50 1
2.5+ 0.25
. Scales up to
. 0.00
0 20 40 60 80 100 0 20 P 60 80 100 H
ot . 32768 batch size
(a) Local LR, convl-weights (c) Local LR , conv5-weights (ImageN et: ReSN et'SO)

) ) ) You et al., “Large Batch Training of Convolutional Neural Networks”, 2017
Algorithmic Intelligence Lab https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience 63



Large Batch Training: LARS & LAMB

* Layer-wise Adaptive Moments for Batch training (LAMB) [You’20]
* Warm-up [Goyal’18], LARS [You’17] both build on top of momentum-SGD
* LAMB is an extension of LARS to the ‘weight-adaptive’ optimizer Adam
* Successfully scales BERT training (batch size ~32768)
* Trains ResNet-50 with Adam to match the performance of momentum SGD

Table 1: We use the F1 score on SQuAD-v1 as the accuracy metric. The baseline F1 score is the
score obtained by the pre-trained model|(BERT-Large)| provided on BERT’s public repository (as of
February 1st, 2019). We use TPUv3s in our experiments. We use the same setting as the baseline: the
first 9/10 of the total epochs used a sequence length of 128 and the last 1/10 of the total epochs used
a sequence length of 512. All the experiments run the same number of epochs. Dev set means the test
data. It is worth noting that we can achieve better results by manually tuning the hyperparameters.
The data in this table is collected from the untuned version.
Solver | batch size ‘ steps | F1 score on dev set | TPUs | Time

Baseline | 512 | 1000k 90.395 16 | 81.4h
LAMB 512 | 1000k 91.752 16 | 82.8h
LAMB 1k 500k 91.761 32 | 432h
LAMB 2k 250k 91.946 64 | 21.4h No loss in
LAMB 4k 125k 91.137 128 | 693.6m L~ test performance
LAMB 8k 62500 91.263 256 | 3905Mm
LAMB 16k | 31250 91.345 512-7 200.0m
LAMB 32k | 15625 91475 -~ 1024 | 101.2m
LAMB | 64k/32k | 8599 90.584 1024 | 76.19m

Algorithmic Intelligence Lab You et al., “Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes”, ICLR 2020 64



Large Batch Training: LARS & LAMB

Currently, LARS & LAMB are widely adopted in the deep learning community

Optimizer ‘
Momentum SGD
Momentum SGD
LARS (You et al.)
LARS (You et al.)
RMSprop + SGD
LARS (You et al.

’ Teams I Date I Accuracy | Time |

Microsoft (He et al.) 12/10/2015 | 75.3% 29h
Facebook (Goyal et al.) | 06/08/2017 76.3% 65m
11/02/2017 | 753% | 48m
11/07/2017 75.3% 31m
11/12/2017 | 74.9% | 15m
12/07/2017 | 74.9% | 14m )
07/30/2018 75.8% 6.6m |JLARS (You et al.)
11/14/2018 | 750% | 3.7m ||LARS (You et al.)

)
)

Berkeley (You et al.)

Berkeley (You et al.)
PFN (Akiba et al.)
Berkeley (You et al.)

Tencent (Jia et al.)
Sony (Mikami et al.)

11/16/2018 | 76.3% | 2.2m ||LARS (You et al.
Fujitsu (Yamazaki et al.) | 03/29/2019 75.1% 1.25m |JLARS (You et al.
07/10/2019 | 75.9% | 67.1s |[LARS (You et al)

Google (Ying et al.)

Google (Kumar et al.)

ImageNet/ResNet-50 Training Speed Records

8000
6000

4000

Examples/s

Number of machines

LAMB enables scaling Transformer-XL to 128 GPUs

https://www.youtu be.com/watch?v:kwEBP-Wbtd(I

SimCLR Framework

Representation
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SimCLR uses LARS for training

e Training Optimizers
o Fused Adam optimizer and arbitrary torch.optim.Optimizer
o Memory bandwidth optimized FP16 Optimizer
o Large Batch Training with LAMB Optimizer
o Memory efficient Training with ZeRO Optimizer
o CPU-Adam

DeepSpeed (a large-scale DL optimization library)
provides a LAMB implementation

But actually...

Algorithmic Intelligence Lab



https://www.youtube.com/watch?v=kwEBP-Wbtdc&ab_channel=NUSDepartmentofComputerScience
https://amitness.com/2020/03/illustrated-simclr

Large Batch Training: Sanity Check

A recent paper [Nado’21] questions the effectiveness of LARS & LAMB

* Good performances are more due to subtle implementation details

* For ResNet-50,
* Unconventional BatchNorm hyperparameters

* No L2-regularization on bias parameters nor on BN parameters
* Nesterov works just as well with similar modifications

* For BERT,
* Fixing bugs in Adam and LR schedule in BERT’s code = Good performance

Batch size | Step budget | LAMB | Adam

Optimizer | Train Acc | Test Acc 32k 15,625 91.48 | 91.58
Nesterov | 78.97% | 75.93% 65k/32k 8,599 90.58 91-24
LARS | 78.07% | 75.97% ook LIS ..

Tuble 3. Medi ; d : 50 train; f Table 4. Using Adam for pretraining exceeds the reported perfor-
Solc Y ed LT, Ang ScSt ac.curac1es ONer o Ay .runs OT mance of LAMB in You et al. (2019) in terms of F1 score on the
Nesterov momentum Configuration B and LARS. (Batch size 32k) ABRiEHEATSOUEDN 11 task

* Whether layer-wise adaptive learning rate really useful is an open question

Algorithmic Intelligence Lab Nado et al., “A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes”, 2021 66
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Beyond Empirical Risk Minimization

Recall: Empirical risk minimization (ERM)
* Find parameters 0 that minimizes the empirical risk

memR( Z€ Xi,Yi; 0)

* (+) Simple and easy-to-use
* (+) Nice statistical guarantees for i.i.d. data distributions

* Yet, minimizing the average loss as in ERM has known drawbacks
* (—) Models susceptible to outliers [Jiang’18; Khetan’18]
* (—) Unfair to a subgroup in the data [Hashimoto’18; Samadi’18]
* (—) Brittle to shifts in distribution [Lin’17; Namkoong & Duchi’17]

Jiang et al., “MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels”, ICML 2018
Khetan et al., “Learning from noisy singly-labeled data”, ICLR 2018
Hashimoto et al., “Fairness without demographics in repeated loss minimization”, ICML 2018
Samadi et al., “The price of fair PCA: One extra dimension”, NeurlPS 2018
Lin et al., “Focal loss for dense object detection”, ICCV 2017
Algorithmic Intelligence Lab Namkoong & Duchi, “Variance-based regularization with convex objectives”, NeurlPS 2017 68
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Tilted Empirical Risk Minimization (TERM) [Li’21]

Li et al. (2021): A “tilted” version of ERM with t € R\?

. 1 1 <
N R(0) = ~loo | = t-£(xi,yi30)
min +(0) clog | — Z e
1=1
« t — 0: Recovers the original ERM R(8)
* t < 0: Robust regression/classification [Wang’13]

* t > 0: Exponential smoothing [Kort & Bertsekas’72; Pee & Royset’11]

linear regression

.»' . '
N |

P

0.75

0.50 ’ t<0 t=0t>0 .1 c
B - min — z S w)
0.25 L
D
0.00 .
Tilted ERM
—0.25 1 1 7
—0.50 min —log| — Z etxiw)
w 1 n“
~0.75 i=1
_3 -2 -1 0 1 2

Li et al., “Tilted Empirical Risk Minimization”, ICLR 2021
Wang et al., “Robust variable selection with exponential squared loss”, 2013
Kort & Bertsekas, “A new penalty function method for constrained minimization”, 1972
Algorithmic Intelligence Lab Pee & Royset, “On solving large-scale finite minimax problems using exponential smoothing”, 2011 70



Tilted Empirical Risk Minimization (TERM) [Li’21]

Li et al. (2021): A “tilted” version of ERM with t € R\?

n

: D . ]‘ ]‘ t-E(X»,;, Z,O)
memRt(H) = Zlog - Ze Y

n -
1=1

« t — 0: Recovers the original ERM R(8)
* t < 0: Robust regression/classification [Wang’13]
* t > 0: Exponential smoothing [Kort & Bertsekas’72; Pee & Royset’11]

point estimation linear regression logistic regression

20 -_— =

t>0 t=0 t<0

0.0 -

-0.5 0.0 0.5
I

flz:0) = %H’ (0

Algorithmic Intelligence Lab

sample mean _° s

. geometric

median

l (6" .'/,)2 flz,y;0) =log(1 +e ¥ : ol

Li et al., “Tilted Empirical Risk Minimization”, ICLR 2021
Wang et al., “Robust variable selection with exponential squared loss”, 2013
Kort & Bertsekas, “A new penalty function method for constrained minimization”, 1972
Pee & Royset, “On solving large-scale finite minimax problems using exponential smoothing”, 2011 71



Tilted Empirical Risk Minimization (TERM) [Li’21]

Li et al. (2021): A “tilted” version of ERM with t € R\?

n

~ 1 1
: 0) — _1 - t-£(xi,yi30)
rrgnRt( ) s log | — ;:16

* Property 1: Reweights the importance of outlier samples

VR(0) = Z w;Vel(x;,yi, 0), where w; oc el ¢(xi-i:0)

£1(8) = (6 +0.2)2, £2(6) = (6 — 0.2)% + 0.1, £5(6) = (6 — 1.2)?

* Property 2: Trade-off between min-/max-loss \%‘ |
e t > —oo0: min-loss /t — oo: max-loss  max-loss

* Property 3: Approximates quantile losses
* They are usually hard to directly optimize
* Example: Median loss

—0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0

Algorithmic Intelligence Lab Li et al., “Tilted Empirical Risk Minimization”, ICLR 2021 72



Tilted Empirical Risk Minimization (TERM) [Li’21]

Li et al. (2021): A “tilted” version of ERM with t € R\?

n

: D . ]‘ ]‘ t-E(Xi, z,O)
memRt(H) = zlog - Ze Y

n -
1=1

» Application 1: Robust regression/classification
* Simply setting t = —2 < 0 significantly improves ERM under label noise
* Better than existing solutions tailored to individual tasks

Table 1: TERM is competitive with robust regres- Table 2: TERM is competitive with robust classification
sion baselines, particularly in high noise regimes. baselines, and is superior in high noise regimes.

test RMSE (Drug Discovery) test accuracy (CIFAR10, Inception)

objectives objectives

20% noise 40% noise 80% noise 20% noise 40% noise 80% noise
ERM 1.87 o, 2835  4.74 (06 ERM 0.775 cooay  0.719 009y 0.284 (004)
Ly 1.15 com 1.70 a2y 4.78 (08 RandomRect (Ren et al., 2018) 0.744 (o0a9y  0.699 (005) 0.384 (005
Huber (Huber, 1964) 1.16 o7 1.78 iy 4.74 (on SelfPaced (Kumar et al., 2010) 0.784 (o0ay 0.733 009y 0.272 (004

STIR (Mukhoty etal.,2019) 116w, 17502 4.74 0w  MentorNet-PD (Jiang et al., 2018) 0.798 co0ey 0.731 o0y 0.312 (005
CRR (Bhatia et al., 2017) 1.10 o, 1518 4.07 w06  GCE (Zhang & Sabuncu, 2018)  0.805 cooe) 0.750 oosy 0.433 (005)
TERM 108 0sy 11005 1.68 03 TERM 0.795 (o0sy  0.768 (00s) 0.455 (005

Algorithmic Intelligence Lab Li et al., “Tilted Empirical Risk Minimization”, ICLR 2021 73



Tilted Empirical Risk Minimization (TERM) [Li’21]

Li et al. (2021): A “tilted” version of ERM with t € R\?

. 1 1 &
min R;(0) := —log | — el t(xi:y:;0)
J t(0) ; g n Z
1=1
* Application 2: Fairness and class-imbalance
* TERM with t > 0 to improve fairness and imbalanced classification

* Competitive with state-of-the-art methods

Fair PCA (Two groups: H/L) Imbalanced classification
Credit oo MNIST 4 and 9 digits
10 —o— edu, standard H edu, standard . A,
—8— L edu, TERM (t=10) H edu, TERM (t=10) s::::;Zzszfffff:::t:::::::::.
08 —* Ledu TERM (t=200) H edu, TERM (£=200) 0.95 e S e, o S
—#*= min-max (Samadi et al.) > B i o .\:\~\~: “:
U ot - \\\ -
© iy ST g
2 0.6 3 0.90 e TERM (t=.100) ~-a \+
ke 9 ® LearnReweight (Ren et al.)._
0.4 -§ ® InverseRatio E .
+ 0.85 e HardMine (Malisiewicz et al.) "+
0.2 e Focalloss (Lin et al.) %
080 ® ERM ‘
0.0
0 5 10 15 20 98.0 99.0 99.5
target dimension common class (%)

Algorithmic Intelligence Lab Li et al., “Tilted Empirical Risk Minimization”, ICLR 2021 74
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Sharpness-aware Minimization (SAM) [Foret’21]

Recall: “Flat-minima” generalize better [Keskar’17]
* Larger batch-sizes tend to make loss surface sharper, leading to worse generalization

mlnlmum

o = _ minimum| 771 NS S iy
(e) 0.0, 128, 7. 37% (f) 0.0, 8192, 11.07% (g) Se-4, 128, 6.00% (h) Se-4, 8192, 10.19%

Loss visualization along two random directions in the parameter space (VGG-9, CIFAR-10) [Li’18]

Training Function
Testing Function

L
I
I
I
I
I
I
I

i

\
1N
fn s ion

Flat Minimum Sharp Minimum

“On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017

Keskar et al.,
“Sharpness-aware Minimization for Efficiently Improving Generalization”, ICLR 2021 76
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Sharpness-aware Minimization (SAM) [Foret’21]

Recall: “Flat-minima” generalize better [Keskar’17]
* Motivated by this, Foret et al. (2021) shows a flatness-based bound:

Theorem (stated informally) 1. For any p > 0, with high probability over training set S generated

from distribution 9,
Lo(w) < max Ls(w+e€) + h([w]B/?)
= Ls(w) + [”g'lagp Ls(w + €) — Ls(w)] +h([[wl3/p%),

-~

“flatness”

where h : R, — R, is a strictly increasing function (under some technical conditions on Lg(w))

Training Function
| ! Testing Function

s # “.“V“‘“ \v/
Flat Minimum Sharp Minimum

Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017
Foret et al., “Sharpness-aware Minimization for Efficiently Improving Generalization”, ICLR 2021 77
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Sharpness-aware Minimization (SAM) [Foret’21]

Recall: “Flat-minima” generalize better [Keskar’17]

Ly(w) < max Ls(w +€) + h(||lw]3/p?)

— lell2<p
= Ls(w) + [ max Ls(w -+ ¢) = Ls(w)| +h(w]3/?)
Ell2>p
“ﬂa;r:ess”

Foret et al. (2021): Sharpness-aware Minimization (SAM)

min LM (w) + A||w||2  where L3 (w) £ max Lg(w + ¢€),
w

lellp<p
e With a linear approximation, SAM can be
optimized via a 2-step gradient descent: o
SAM NN Nowi e SAM
VLM (w) % Vo Ls(W)|lwre)  |mommon e\ pi
=l e = VL(WJ‘(N)
A _ vw LS (’LU) de:,:‘fl’./l 50 !
€(w) =P L Tswls

Keskar et al., “On Large-batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017
Algorithmic Intelligence Lab Foret et al., “Sharpness-aware Minimization for Efficiently Improving Generalization”, ICLR 2021 78



Sharpness-aware Minimization (SAM) [Foret’21]

Foret et al. (2021): Sharpness-aware Minimization (SAM)

L3M(w) £ max Lg(w + €),
lellp<p

min L3*M (w) 4+ \||w||3  where
w

* SAM consistently improves model generalization compared to SGD

SAM Standard Training (No SAM)
e Epoch Top-1 Top-5 Top-1 c Top-5
ResNet-50 100 22.540.1 6.284+0.08 | 22.9+0.1 6.62+0.11
200 214501 9.82+0.03 22.3+0.1 6.37+0.04
400 20.9330.1 5.51:1:0_03 22.3;4:0.1 6-40:t0.06
ResNet-101 100 20.24+0.1 9.1240.03 | 21.2+40.1 5.66+0.05
200 19.4.:0.1 4.76+0.03 | 20.940.1 5.6640.04
400 | 19.04+<0.01 4.65+0.05 | 22.3+0.1 6.41+0.06
ResNet-152 100 19.2+<0.01 4.69+0.04 | 20.4+<0.0 5.394+0.06
200 18.5:0.1 4.37+0.03 20.3+0.2 5.39+0.07
400 | 1844001 4.3540.04 | 20.94<0.0 5.84+0.07

Algorithmic Intelligence Lab
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Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.




Sharpness-aware Minimization (SAM) [Foret’21]

Foret et al. (2021): Sharpness-aware Minimization (SAM)

where L3M(w) £ max Lg(w + €),

min LgAM(w) - )\||'w||§
w

el p<p

* SAM consistently improves model generalization compared to SGD

* SAM also improves transfer learning and robustness to label noise

EffiNet-b7 Prev. SOTA Method Noise rate (%)
Dataset +SAM BT (mageNet only) Sanchez et al. (2019 gg 0 gg g gg 3 gg T
FGVC-Aircraft | 6.804006 8151008 5.3 (TBMSL-Net) oy i (201) 8) 897 87.6 827 67.9
Flowers 0.63.002 1164005 0.7 (BiT-M) Lee et al. (2019) 87.1 818 754 -
Oxford IIIT Pets | 3.971004 4.244009 4.1 (Gpipe) Chen et al. (2019) 89.7 - - 523
Stanford_Cars 9.1840.02 59441006 5.0 (TBMSL-Net) Huang et al. (2019) 926 903 434 -
CIFAR-10 088,000 095,003 1 (Gpipe) MentorNet (2017) 920 912 742 60.0
CIFAR-100 744,006 7.68:006 7.83 (BiT-M) Mi‘rﬁgfﬁg%{g) e 5 o o1
Birdsnap 13.64.15 14.3049.18 15.7 (EffNet) SGD - 3 4j8 68t8 48:2 26?2
Food101 7.024002 7171003 7.0 (Gpipe) Mixup 93.0 90.0 838 702
ImageNet 15.1440.03 15.3 14.2 (KDforAA) Bootstrap + Mixup 933 920 87.6 72.0
SAM 95.1 934 905 77.9
Transfer learnin g Bootstrap + SAM 954 942 918 799

(pretrained on ImageNet)

Algorithmic Intelligence Lab
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Label noise (CIFAR-10)




Sharpness-aware Minimization (SAM) [Foret’21]

Foret et al. (2021): Sharpness-aware Minimization (SAM)

mmLSAM w) + \|w||2  where LSAM £ max Lg(w + €),
2 llellp<p

* SAM consistently improves model generalization compared to SGD
* SAM also improves transfer learning and robustness to label noise

* Visualization of loss surface on two random directions (ResNet)

SGD SAM

Algorithmic Intelligence Lab Foret et al., “Sharpness-aware Minimization for Efficiently Improving Generalization”, ICLR 2021 81



Sharpness-aware Minimization (SAM) [Foret’21]

 SAM has been getting attention due to its particular effectiveness on

recent architectures, e.g., ViT or Mixers [Chen’22]

* Accuracy gains from SAM are more significant in ViTs compared to ResNets
* SAM closes the gap ResNet < ViT in mid-sized datasets, e.g., ImageNet

Throu ut
Model #params (m g/sef/lll()) re) ImageNet Real V2 ImageNet-R  ImageNet-C
ResNet
ResNet-50-SAM 25M 2161 76.7 (+0.7) 83.1 (+0.7) 64.6 (+1.0) 23.3 (+1.1) 46.5 (+1.9)
ResNet-101-SAM 44M 1334 78.6 (+0.8) 84.8 (+0.9) 66.7 (+1.4) 25.9 (+1.5) 51.3 (+2.8)
ResNet-152-SAM 60M 935 79.3 (+0.8) 84.9 (+0.7) 67.3 (+1.0) 25.7 (+0.4) 52.2 (+2.2)
ResNet-50x2-SAM 98M 891 79.6 (+1.5) 85.3 (+1.6) 67.5 (+1.7) 26.0 (+2.9) 50.7 (+3.9)
ResNet-101x2-SAM 173M 519 80.9 (+2.4) 86.4 (+2.4) 69.1 (+2.8) 27.8 (+3.2) 54.0 (+4.7)
ResNet-152x2-SAM 236M 356 81.1 (+1.8) 86.4 (+1.9) 69.6 (+2.3) 28.1 (+2.8) 55.0 (+4.2)
Vision Transformer
ViT-S/32-SAM 23M 6888 70.5 (+2.1)  77.5 (+2.3) 56.9 (+2.6) 21.4 (+2.4) 46.2 (42.9)
ViT-S/16-SAM 22M 2043 78.1 (+3.7) 84.1 (+3.7) 65.6 (+3.9) 24.7 (+4.7) 53.0 (+6.5)
ViT-S/14-SAM 22M 1234 78.8 (+4.0) 84.8 (+4.5) 67.2 (+5.2) 24.4 (+4.7) 54.2 (+7.0)
ViT-S/8-SAM 22M 333 81.3 (+5.3) 86.7 (+5.5) 70.4 (+6.2) 25.3 (+6.1) 55.6 (+8.5)
ViT-B/32-SAM 88M 2805 73.6 (+4.1) 80.3 (+5.1) 60.0 (+4.7) 24.0 (+4.1) 50.7 (+6.7)
ViT-B/16-SAM 8™ 863 79.9 (+5.3) 85.2 (+5.4) 67.5 (+6.2) 26.4 (+6.3) 56.5 (+9.9)
MLP-Mixer
Mixer-S/32-SAM 19M 11401 66.7 (+2.8) 73.8 (+3.5) 52.4 (+2.9) 18.6 (+2.7) 39.3 (+4.1)
Mixer-S/16-SAM 18M 4005 72.9 (+4.1) 79.8 (+4.7) 58.9 (+4.1) 20.1 (+4.2) 42.0 (+6.4)
Mixer-S/8-SAM 20M 1498 75.9 (+5.7) 82.5 (+6.3) 62.3 (+6.2) 20.5 (+5.1) 42.4 (+7.8)
Mixer-B/32-SAM 60M 4209 72.4(+9.9) 79.0 (+10.9) 58.0(+10.4) | 22.8 (+8.2) 46.2(12.4)
Mixer-B/16-SAM 59M 1390 774 (+11.0) 83.5(+11.4) 63.9(+13.1) | 24.7(+10.2) 48.8 (+15.0)
Mixer-B/8-SAM 64M 466 79.0 (+104) 84.4(+10.1) 65.5(+11.6) | 23.5(+9.2) 48.9(+16.9)
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Summary

Deep learning is heavily relying on large-scale, non-convex optimization
* The loss function includes many local minima and critical points
* SGD can be too noisy and might be unstable
* Hard to find a good learning rate
* Gradients are often vanish/explode

Currently, SGD is an essential ingredient for training deep neural networks
 Momentum/adaptive optimizers are widely used
* Learning rate scheduling is often important
* Normalization layers significantly improves stability with some drawbacks

Recent optimization techniques cover more scalable and realistic setups
e Large-batch SGD for distributed training
* Risks beyond ERM for out-of-distribution generalization
* Optimization practices for recent architectures, e.g., Transformers
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