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Introduction: What is Few-shot Learning?

* An example from CUB-200 dataset: American goldfinch

American goldfinch *®

From Wikipedia, the free encyclopedia

The American goldfinch (Spinus tristis) is a small North American bird in the finch family. It is migratory, ranging from mid-Alberta to North Carolina during the =
breeding season, and from just south of the Canada-United States border to Mexico during the winter, Ame"_?" Boldfinch

The only finch in its subfamily to undergo a complete molt, the American goldfinch displays sexual dimorphism in its coloration; the male is a vibrant yellow in the
summer and an olive color during the winter, while the female is a dull yellow-brown shade which brightens only slightly during the summer. The male displays
brightly colored plumage during the breeding season to attract a mate.

The American goldfinch is a granivore and adapted for the consumption of seedheads, with a conical beak to remove the seeds and agile feet to grip the stems of
seedheads while feeding, It is a social bird, and will gather in large flocks while feeding and migrating. It may behave territorially during nest construction, but this
aggression is short-lived. Its breeding season is tied to the peak of food supply, beginning in late July, which is relatively late in the year for a finch. This species is
generally monogamous, and produces one brood each year.

Human activity has generally benefited the American goldfinch. It is often found in residential areas, attracted to bird feeders which increase its survival rate in
these areas. Deforestation also creates open meadow areas which are its preferred habitat.

Contents [hide]
1 Taxonomy
2 Description
3 Distribution and habitat

4 Behavior
4.1 Sociality Male American goldfinch in spring
4.2 Breeding plumage
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Introduction: What is Few-shot Learning?

* Which is American goldfinch?
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Introduction: What is Few-shot Learning?

* Which is American goldfinch?

* Humans can quickly learn “unseen” classes with small number of examples
* Since we have learned prior knowledge about visual representations
* This kind of problem is called “1-shot/few-shot” classification problem

Algorithmic Intelligence Lab * source : http://www.vision.caltech.edu/visipedia/CUB-200.htm| 6
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What is Meta-learning?

* Definition from Wikipedia:

Meta learning is a subfield of machine learning where automatic learning
algorithms are applied on metadata ..

the main goal is to
use such metadata
to improve the performance of existing learning
algorithms or to learn (induce) the learning algorithm itself,
learning to learn..

* Meta learning = “Learning to learn”

* All kinds of learning algorithms that learns to improve the learning process itself

* Let’s see an example

Algorithmic Intelligence Lab
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What is Meta-learning?

* In meta-learning, we focus on learning the learning rules
* Consider each dataset as a data sample

* Learn patterns across tasks

* So that the the model can generalize well to possibly “unseen” tasks
Meta-train dataset Meta-test dataset

Train dataset #1: Dogs

Siberian husky Target test dataset : Birds
American
Akita inu goldfinch
European
Idfinch
Utonagan dog golatinc
Hooded
Train dataset #2: Cats Oriole
Siamese cat
Train
Persian cat
Test
Russian blue

Algorithmic Intelligence Lab : * source : https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html 9
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Formulation of Meta-learning

* In contrast to regular deep learning whose a single training instance is a labeled
sample, that for meta-learning is a task episode (e,g., a set of samples).

] °
“episode” °
°

1
D‘Ees)t

* First we need a training set D, (a.k.a. support set) which consists of a couple
of samples belonging to a subset of classes L (or tasks 7 ~ p(7T)).

* We also need to specify samples that we would like to evaluate; then form a test
set D, (a.k.a. guery) belonging to L.

* Together, Di;ain and Dyt form a training episode. The model takes many
episodes one by one.

Algorithmic Intelligence Lab 10



Formulation of Meta-learning

* N-way, k-shot learning task
» N classes per episode, that have not previously been trained upon.
 k labelled examples per class

(k& examples) * N classes

* In classification tasks, the objective of meta-learning is:
log-likelihood

0 = argl(;nax ELNT EDtrainNL,DtestNL [ Z log Pg (ylilj, Dtrain)
(xyy)eptest

* This can be replaced with any ML problems (e.g., regression, language generation,
skill learning)

* We will focus on classification tasks in meta-learning (i.e., few-shot classification)

Algorithmic Intelligence Lab 11



Formulation of Meta-learning

* In test time, the model must be fast adapted to accommodate new classes not
seen in training, given only a few examples of each of the classes.

°
° Meta-training
®  (with training classes)

: Meta-testing
(with unseen classes)

Algorithmic Intelligence Lab 12



Types of Meta-learning

* Recall the objective of few-shot classification:

0 — a’rgma’x ELNT IE:1>tra,in’\’Laljtest"\’L
0

Algorithmic Intelligence Lab
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2

lOg P9 (y|:1:, Dtrain)

(x7y)€Dtest

How to compute?
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Types of Meta-learning

* Recall the objective of few-shot classification:

0 = arggnax Er~T | EDain~L, Dicsi~L [ Z log Py (y|7, Derain)
(xyy)eptest

How to compute?

* Model-based Meta-learning

* The key idea is to build a model and training process designed for rapid generalization
across tasks.

P@(y|x7Dtrain) — f@(xyptrain)

f@ (CIZ‘, Dtrain)

O r~ Dtest
* To compute the set representation of Di;.in, RNN-based models are widely utilized.

Algorithmic Intelligence Lab 14



Types of Meta-learning

* Recall the objective of few-shot classification:

0 = argznax Er~T | EDain~L, Dicsi~L [ Z log Py (y|7, Derain)
(way)eptest

How to compute?

* Metric-based Meta-learning
* The key idea is to learn a metric or distance function on deep neural features over

objects.
PH(y|w7Dtrain) — Z k@(xaxi)yi
(wiyyi)eptrain

‘ Z k@ (CE‘, xz)yz

Q T ~ Dyest
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Types of Meta-learning
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* Recall the objective of few-shot classification:

0 = argimax ]ELNT EDtrainNL,DtestNL [ Z log Pg (y|ZB, Dtrain)

0
x,Y) € Dyxes
(@) €Dt How to compute?

* Optimization-based Meta-learning
* The key idea is to adjust the optimization algorithm with a few examples.

P9 (y|a:, Dtrain) — f@(Dtrain)(w)

g4 Meta-learner ( )

<Meta-test>

Meta-learner
(fix)

<Meta-train>

Learner

\ J Trained on task-
specific loss

X ~ Dtest

|

|

|

|

|

Learner I
|

|

|

|

Dtrain :

* Gradient-based optimization techniques (e.g. gradient descent) are utilized.

Q(Dtrain) —4g (907 {veoﬁ(xi’ yi)}(xi,yi)eptrain)
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Meta-learning with External Memory

* [Graves et al. 14] propose a Neural Turing Machine (NTM), a neural networks
architecture which has external memory.

* With an explicit storage buffer, it is easier for the network to rapidly incorporate
new information and not to forget in the future.

4 A Write 4 A

Inputs >
fo Memory

Outputs < < —
ea
& 4 \ J

* Read and write heads in a NTM external memory module are fully differentiable
and trained for rapid memory encoding and retrieval.

* There are some recent works on meta-learning using external memory units.
 Memory-Augmented Neural Network (MANN) [Santoro et al. 16]

 Meta Networks [Munkhdalai et. al., 17]
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Meta-learning with External Memory

* [Santoro et al. 16] proposed Memory-Augmented Neural Network (MANN) to
rapidly assimilate new data, and to make accurate predictions with few samples.

* They train MANN to perform classification while presenting the data instance

and labels in a time-offset manner to prevent simple mapping from label to label.

Pt

Class Prediction External Memory

External Memory

A LSTM o7 g~ »  |R-2
' A
ik (
Backpropagated
? f ? T' Signal ?
Dtrain (X6 Y1) (Xer1,9) X, X,
I L vi 2 ] |
Bind and Encode Retrieve Bound Information

Episode ]
time-offset manner

* The loss function is the sum of classification loss at each time step.

L(0)=—2,y( logp,

Algorithmic Intelligence Lab
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Meta-learning with External Memory

* [Santoro et al. 16] proposed Memory-Augmented Neural Network (MANN) to
rapidly assimilate new data, and to make accurate predictions with few samples.

* They train MANN to perform classification while presenting the data instance

and labels in a time-offset manner to prevent simple mapping from label to label.

Pt
Class Prediction
A LSTM f
wr 23l 4]~
B P coe —p 0 X7 ). > —p —P coe 1 2 3 4 5

\f f Shuffle: f f

(X Y1) (Xer1, %) Labels (x1,0) (%2,91) 34 5 1 2
| | Classes
Episode Samples

* Further, they shuffle labels, classes, and samples from episode to episode to
prevent the network from learning sample-class bindings in its weights.

Algorithmic Intelligence Lab
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Meta-learning with External Memory

* The network has an external memory module, M,, that is both read from and
written to.

* The rows of M; serve as memory ‘slots’, with the row vectors themselves
constituting individual memories.

* For reading, a cosine distance measure is computed for the query key vector
(here notated as k;) and each individual row in memory.

Vs D\ ' ) ) , Ky - ML (7)
k < t t2 b .
Query ki K (bt Me(O) = g ML
fe Memory
« M, w (i) U ke Me(D))
Y exp (K (ke Me(5)))
. y Read r; \ )

* Amemory, r;, is then retrieved using these read-weights: r: < Zu{(i)Mt(i)

e Finally, r; is concatenated with the hidden state of the LSTM model.

21



Meta-learning with External Memory

* To write to memory, they implemented an access module called Least Recently
Used Access (LRUA) which writes to either the most recently read location, or
the least recently used location.

% \ f\\

\ 4

lu

fa Write W}SLL Memory W%U — O"(Oé)W;;_l + (1 — O(Oé))Wt_l
M, Mf(?) < Mt_l(i) + w;‘"(7)ka7
& ) & J

» Usage weights W}’ are computed each time-step to keep track of the locations

u

most recently read or written to: w;' < yw,_ | + w; + w;’

lu

* The least-used weights, W, is:

t 1 ifwi(i) <m(wy,n)

where m(v,n) denotes the n-th smallest element of the vector v.

Algorithmic Intelligence Lab

22



Simple Neural Attentlve meta-Learner (SNAIL)

state from one time step to the next.
* This temporally-linear dependency bottlenecks their capacity.

They combine these two modules for simple neural attentive learner (SNAIL):

* Temporal convolutions, which enable the meta-learner to aggregate contextual
information from past experience

* Causal attention, which allow it to pinpoint specific pieces of information within that
context.

These two components complement each other: while the former provide high-

bandwidth access at the expense of finite context size, the latter provide
pinpoint access over an infinitely large context.

Algorithmic Intelligence Lab

Traditional RNN architectures propagate information by keeping it in their hidden

[Mishra et al. 18] propose a model architectures that addresses this shortcoming.
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Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A Dense block applies a causal 1D-convolution, and then concatenates the

output to its input. A Temporal Convolution (TC) block applies a series of dense
blocks with exponentially-increasing dilation rates.

I: function TCBLOCK(inputs, sequence length 7', number of filters D):
2 foriinl,..., [log, T do ‘

3: inputs = DenseBlock(inputs, 2°, D)

4 return inputs

outputs, shape [T, C + D]
] Output
‘ Dilation = 8
concatenate Hidden Layer
[T D] * Dilation = 4
_ V4
TC BIOCk T causal conv, kernel 2 X log T *D'_ild?,e" E‘éyef
dilation R, D filters ranen=
Hidden Layer
‘ Dilation = 1
— Input
inputs, shape [T, C]

Dense Block

Algorithmic Intelligence Lab 24



Simple Neural Attentlve meta-Learner (SNAIL)

* Two of the building blocks that compose SNAIL architectures.

* A attention block performs a causal key-value lookup and also concatenates the
output to the input; they style this operation after the self-attention mechanism.

1: function ATTENTIONBLOCK(inputs, key size K, value size V'):
2: keys, query = affine(inputs, K), affine(inputs, K)
3 logits = matmul(query, transpose(keys))

4: probs = CausallyMaskedSoftmax(logits / VK)

5: values = affine(inputs, V') - \
6: read = matmul(probs, values) outputs, shape [T. C + V]

7: return concat(inputs, read) concatenate s [T

4 [T, VI

[T, V] /T\ [T, T] (masked)

affine, output size vV
[ matmul, masked softmax|

Self-attention relates different (values)

positions of a single sequence in /TT, K] \ [T, K]
. affine, oufput size arnne, output size
order to compute a representation (quferyf, |z| | 2 (kefysf kl

A A

<SS E—

A

. . . inputs, shape [T, C]
Algorithmic Intelligence Lab | )
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Simple Neural Attentlve meta-Learner (SNAIL)

e Overview of the SNAIL for supervised learning:

Predicted Label %t — classification loss (i.e., cross-entropy)

Attention Block

3 3

0 6 O O

v | i

E?/?/?/? E TC Block(= 2 x Dense Block)
0.0 0. 0!

E \%%% E Attention Block

jE= =R

'O O/'O/O E TC Block(= 2 x Dense Block)
I B B

1O O © 0!

Labels)

| S }
(Examples, Xis Xio X || X,
y
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Simple Neural Attentlve meta-Learner (SNAIL)

* SNAIL outperforms state-of-the-art methods in few-shot classification tasks that

are extensively hand-designed, and/or domain-specific (e.g., Matching
networks [Vinyals et al. 16]).

similarly simple and generic.

It significantly exceeds the performance of methods such as MANN that are

Method

I 5-Way Omniglot 20-Way Omniglot
I I-shot | 5-shot 1-shot | 5-shot
Santoro et al. (2016) 82.8% 94.9% - -
Koch (2015) 97.3% 98.4% 88.2% 97.0%
Vinyals et al. (2016) 98.1% 98.9% 93.8% 98.5%
Finn et al. (2017) 98.7% + 0.4% 99.9% =+ 0.3% 95.8% + 0.3% 98.9% + 0.2%
Snell et al. (2017) 97.4% 99.3% 96.0% 98.9%
Munkhdalai & Yu (2017) 98.9% - 97.0% -

SNAIL, Ours | 99.07% +0.16% | 99.78% + 0.09% | 97.64% + 0.30% | 99.36% + 0.18%
Method | 5-Way Mini-ImageNet
| I-shot | 5-shot
Vinyals et al. (2016) 43.6% 55.3%

Finn et al. (2017)
Ravi & Larochelle (2017)
Snell et al. (2017)
Munkhdalai & Yu (2017)

48.7% + 1.84%
43.4% + 0.77%
46.61% + 0.78%
49.21% + 0.96%

63.1% + 0.92%
60.2% + 0.71%
65.77% + 0.70%

SNAIL, Ours

Algorithmic Intelligence Lab

| 55.71% +0.99% | 68.88% + 0.92%
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Matching Networks

* Matching Networks [Vinyals et al. 16] propose to learn a shared embedding
space over multiple subclassification problems.

* In this model, the neural attention mechanism (denoted as a) is used as a
metric function on deep features. The simplest form of a is to use the softmax

over the cosine distance ¢ with embedding functions f and g.

ce(F(@),9(21))

2?21 ec(f(2),9(z5))

(332, y2)

Algorithmic Intelligence Lab
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Matching Networks

* Two issues of embedding functions:

* Each element z; gets embedded by g(x;) independently of other elements in the
support set S.

* S does not modify how we embed the test image ¥ through f.

* To handle this issues, authors proposed full context embeddings: f and g
become f(z,S5), g(x,9) respectively.

* The encoding function for the elements in the support set S, g(x;,.5), is a

bidirectional LSTM: —
g(z:,8) = hi+ h;+ g (x;)

v
v
v

where ¢'(z;) be a convolutional neural network (e.g. VGG or Inception)

30



Matching Networks

* Two issues of embedding functions:

* Each element z; gets embedded by g(x;) independently of other elements in the
support set S.

* S does not modify how we embed the test image ¥ through f.

* To handle this issues, authors proposed full context embeddings: f and g
become f(z,S5), g(x,9) respectively.

 The encoding function for the test sample, f(x,S), is a LSTM with read-attention
over the whole set S':

£(#,8) = attLSTM(f'(2), g(S), K) = hx

P

hy ho hs hx
CT) CTD CTD CT) B, cx = LSTM(f'(Z), (o1, 1] ch1)
t =1t = 2>t =3 Sl — K hi. = i + f'(7)
o 3 o e =22 alhee, g(w)g ()
9(S) C{) d) d) C) a(hk—1,9(x;)) = softmax(h]_,g(x;)))

ff@y @ @) f'(7)
where f’(x) be a convolutional neural network (e.g. VGG or Inception)
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Matching Networks

* The overall architecture is as follows:

. ECICONICT))

Sk, et T @9

~~ o
- —

f(#,8) = attLSTM(f'(2), ¢(S), K)

* The networks are trained by maximizing log-likelihood.

IE’Z)train"“’La,ZDtest'\"L [ Z log P@(ylx, S):| ]

(x7y)€Dtest

0 = argmax Er .1
6

Algorithmic Intelligence Lab
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Matching Networks

* Matching Networks generalize well and thus outperforms baseline classifiers
and meta-learning models (MANN) on few-shot classification tasks.

5-way Acc 20-way Acc

Model Matching Fn  Fine Tune l-shot 5-shot  1-shot S-shot
PIXELS Cosine N 41.7% 632% 267% 42.6%
BASELINE CLASSIFIER Cosine N 80.0% 95.0% 69.5% 89.1%
BASELINE CLASSIFIER Cosine Y 823% 984% 70.6% 92.0%
BASELINE CLASSIFIER Softmax Y 86.0% 97.6% 729% 92.3%
MANN (No ConNv) [21] Cosine N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NET [11] Cosine N 96.7% 98.4%  88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11] Cosine Y 97.3% 98.4% 88.1% 97.0%
MATCHING NETS (OURS) Cosine N 98.1% 989% 93.8% 98.5%
MATCHING NETS (OURS) Cosine Y 97.9% 98.7%  93.5% 98.7%

Table 1: Results on the Omniglot dataset.

* It also works well on harder dataset, such as minilmageNet.

. . o S-way Acc
Model Matching Fn  Fine Tune l-shot 5-shot
PIXELS Cosine N 23.0% 26.6%
BASELINE CLASSIFIER Cosine N 36.6% 46.0%
BASELINE CLASSIFIER Cosine Y 36.2% 52.2%
BASELINE CLASSIFIER Softmax Y 38.4% 51.2%
MATCHING NETS (OURS)  Cosine N 41.2% 56.2%
MATCHING NETS (OURS)  Cosine Y 42.4% 58.0%

MATCHING NETS (OURS) Cosine (FCE) N 44.2% 57.0%
MATCHING NETS (OURS) Cosine (FCE) Y 46.6% 60.0%

Table 2: Results on minilmageNet.

Algorithmic Intelligence Lab



Prototypical Networks

* Prototypical Networks [Snell et al. 17], is based on the idea that there exists an
embedding in which points cluster around a single prototype representation for
each class.

* They use meta-learning to learn a metric space that minimizes the distance
between the prototypes and each training instance.

Class
prototype
Embedded
instance

1
Ck = ‘ Sk:’ Z / ¢<Xi) Prototype of the target class

exp(—d(fy(x),cy [+ : Embedding functions (i.e. CNN)
pe(y =k[x) = o .
> o exp(—d(fs(x),crr)) d : Euclidean, or cosine distance
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Prototypical Networks

* Prototypical networks are trained by minimizing the negative log-probability
J(¢) = —logps(y = k| x) via episodic training.

* The training procedure is:

* Select a subset of classes, then choosing support examples and query examples
within each class for an episode.

© ® oo
@)
(@) OO
o
o ©
% o
O

Algorithmic Intelligence Lab
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Prototypical Networks

* Prototypical networks are trained by minimizing the negative log-probability
J(¢) = —logps(y = k| x) via episodic training.

* The training procedure is:

* Select a subset of classes, then choosing support examples and query examples
within each class for an episode.

* Compute prototype from support examples for each class.

Algorithmic Intelligence Lab
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Prototypical Networks

* Prototypical networks are trained by minimizing the negative log-probability
J(¢p) = —logpy(y = k| x) via episodic training.

* The training procedure is:

* Select a subset of classes, then choosing support examples and query examples
within each class for an episode.

* Compute prototype from support examples for each class.
* Compute negative likelihood loss from query examples and update networks.

IO = | X a0 e,) +log Sy expl-dlfo(x),ox))

(Xay)eptest
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Prototypical Networks

* Prototypical Networks outperform Matching Networks and MAML (to be
introduced) on few-shot classification tasks on Omniglot and minilmageNet

dataset.

* Note that metric-based methods are stronger than others in few-shot
classification tasks.

5-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot  5-shot
. MATCHING NETWORKS [32] Cosine N 98.1% 98.9% 93.8% 98.5%
Omnlglot MATCHING NETWORKS [32] Cosine Y 979% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN [7] - N 98.1% 99.5% 93.2% 98.1%
MAML [9]* - N 98.7% 999% 95.8% 98.9%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 988% 99.7% 96.0% 98.9%

5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot

BASELINE NEAREST NEIGHBORS™ Cosine N 28.86 £0.54%  49.79 £ 0.79%

mini|mageNet MATCHING NETWORKS [32]* Cosine N 4340 +£0.78%  51.09 £0.71%

MATCHING NETWORKS FCE [32]* Cosine N 43.56 £ 0.84%  55.31 &+ 0.73%

META-LEARNER LSTM [24]* - N 4344 £0.77%  60.60 £ 0.71%

MAML [9] - N 48.70 +-1.84% 63.15+091%

PROTOTYPICAL NETWORKS (OURS) Euclid. N 49.42 + 0.78%  68.20 £ 0.66 %

Algorithmic Intelligence Lab
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Relation Networks

* Relation Networks (RN) [Sung et al. 18] is able to classify images by computing
relation scores between query images and the few examples of each new class.

* The model consists of two modules: an embedding module f, and a relation
module g4 (both are CNNs).

* The embedding module produces features maps of the support set.

o embedding module relation module

Feature mapsjconcatenation

Relation One-hot
score  vector

fo 9 u

element-wise sum over the embeddings
of all samples from each class

Algorithmic Intelligence Lab



Relation Networks

* Relation Networks (RN) [Sung et al. 18] is able to classify images by computing
relation scores between query images and the few examples of each new class.

* The model consists of two modules: an embedding module f, and a relation
module g4 (both are CNNs).

* The embedding module produces features maps of the support set.

* The relation module produces a scalar in range of O to 1 representing the similarity
between features, which is called relation score.

embedding module ( relation module \
Lj
Feature maps concatenation TZ,] — g¢ (C(fQD (‘/El)7 fQO (x])))
Rl/ . C: concatenation of
7| feature maps in depth
f(p 9¢ [ |
< Y Objective function
m n
@, ¢ < argmin Z Z(Tz‘,j — 1(y; == y;))”
»,P i=1 j=1
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Relation Networks

» Relation Networks outperforms Matching Networks, Prototypical Networks and
MAML on few-shot learning tasks.

Model Fine Tune 5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot
MANN [32] N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NETS [20] N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NETS [20] Y 97.3% 98.4% 88.1% 97.0%
. MATCHING NETS [39] N 98.1% 98.9% 93.8% 98.5%
Omruglot MATCHING NETS [39] Y 97.9% 98.7% 93.5% 98.7%
SIAMESE NETS WITH MEMORY []&] N 98.4% 99.6% 95.0% 98.6%
NEURAL STATISTICIAN [&] N 98.1% 99.5% 93.2% 98.1%
META NETS [27] N 99.0% - 97.0% -
PROTOTYPICAL NETS [36] N 98.8% 99.7% 96.0% 98.9%
MAML [10] Y 98.7 + 0.4% 99.9 + 0.1% 95.8 +0.3% 98.9 + 0.2%
RELATION NET N 99.6 + 0.2% 99.8+ 0.1% 97.6 + 0.2% 99.1+ 0.1%
Model FT 5-way Acc.
1-shot 5-shot
. | N MATCHING NETS [39] N 4356 £0.84% 55.31 £0.73%
mini mage et META NETS [27] N  49.21 £ 0.96% -
META-LEARN LSTM [29] N 43444+0.77% 60.60 + 0.71%
MAML [10] Y 4870 £1.84% 63.11 £0.92%
PROTOTYPICAL NETS [36] N 4942 4+0.78% 68.20 4 0.66 %
RELATION NET N 5044 +0.82% 65.32 + 0.70%
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Metric-based meta-learning

* Development relationship between different metric-based meta-learning meth

ods.

* Many variants have been developed from the three representative works:

* Matching Networks
* Prototypical Networks
e Relation Networks

N9

SS Matching Net
(L. Zhang et al-2019)

e
o XS
and
v oo 209

¢e‘\3be\m9 EGNN
2_\3be\'\“9 (J. Kim et al-2018)

Cross-Modulation Nets

(H. Prol et al-2018) 0 @ MACO
o W illi: .
Jeise (3\3\:‘:2\'\6\!\0“‘“@ (N. Hilliard et a2018)
(Q. Cai et al-2018) P2, que!

\as® Deep Comparison

Net (X. Zhang et al-2018)

measure similarity by

ule 1© l
graph neural network GNN

d
r\or_\;;" Todule

Matching Nets
(0. Vinyals et al-2016)

\a!
end € il
e:;ch emped

| (V. Garcia et al-2018)

a covariance memc|
pased relation module

CovaMNet
(W. Li et al-2019)

a local descriptor
based relation module

DN4
(W. Li et al-2019)

perform relation computation
on second-order features SoSN
"1 (H. Zhang et al-2019)

add a self-attention module
SARN

before relation module
(B. Hui et al-2019)

&
Relation Net
(F. Sung et al-2018)

»
>

Micro-set Learning
(K. D. Tang et al-2010)

deep model

Prototypical Nets
(J. Snell et al-2017)

select the task-relevant dimensions for features CT™M
(H. Li et al-2019)

ensemble methods

,;?’a«i“ Diversity with Cooperation
o‘;° & (N. Dvornik et al-2019)
s <
9 — —
¢ Principal Characteristic Nets
“ (Y. Zheng et al-2019)
mAP-Nets TADAM AM3 AAM CFA K-tuplet Nets
(E. Triantafillou et al-2017) (B. N. Oreshkin et al-2018) (C. Xing et al-2019) (F. Hao et al-2019) (P. Hu et al-2019) (X. Li et al-2020)
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Source: [Lu, et. Al., 20] Learning from Very Few Samples: a Survey, Arxiv, 2020 https://arxiv.org/abs/2009.02653
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2. Meta-learning Approaches

* Optimization-based methods
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Optimization-based Meta-learning in Formal Definition

e Optimization-based meta-learning algorithms consist of two levels of learning
(or loops)
* Inner loop: optimizes the base learner (e.g., classifier)
* Parameters ¢ : parameters of the base learner
* Objective: L;,(6|¢) (e.g., cross entropy for classification)

Algorithm 1 Common meta-learning algorithm

1: while not done do
2 fort=1,---,7T do

3 Optimize parameters 6 of learner

4 9(%1) - 0%) VLo fo Inner loop
5: end for
6

7

8:

Optimize meta-parameters ¢
¢ < ¢ — VLo

end while

Algorithmic Intelligence Lab
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Optimization-based Meta-learning in Formal Definition

e Optimization-based meta-learning algorithms consist of two levels of learning
(or loops)
* Inner loop: optimizes the base learner (e.g., classifier)
* Parameters ¢ : parameters of the base learner
* Objective: L;,(0|¢p) (e.g., cross entropy for classification)

* Outer loop (meta-training loop): optimizes the meta-learner
* Meta-parameters ¢: parameters to learn the learning rule (e.g., how much to update 9)
* Meta-objective L,,(0,¢): performance of the base learner on the new task
* Meta-optimization: adjusting ¢ so that the inner loop perform well on Ly,

Algorithm 1 Common meta-learning algorithm
1: while not done do —
2 fort=1,---,T do
3 Optimize parameters 6 of learner fy
4: O+ 9 — V) Lio

5: end for

6

7

8:

Inner loop Outer loop

Optimize meta-parameters ¢
¢ < ¢ — VLo

end while —
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Optimizers for Learning DNNs

* Learning DNNs is an optimization problem

0 = arg mein L(0)
* L be a task-specific objective (e.g., cross-entropy for classification)

* O be parameters of a neural network

* How to find the optimal 8* which minimize L ?
* The parameters are updated iteratively by taking gradient

9t+1 = 975 — nyﬁ(@t)

* DNNs are often trained via “hand-designed” gradient-based optimizers

* e.g., Nesterov momentum [Nesterov, 83], Adagrad [Duchi et al., 11],
RMSProp [Tieleman and Hinton, 12], ADAM [Kingma and Ba, 15]

46



An Example of Optimizers: SGD with Momentum

* Update rules of SGD with momentum:

9t+1 = 9t — My

my = UMi—1 + ’YV@E(@t)

where y is a learning rate and ¢ is a momentum

e Unroll the update steps

Optimizer

Parameters 6 Gradients
to " Vo L(0o)
01 = 0y + Aby " VoL (01)
0, = 601 + Ab, > VQ[,(QQ)

» 1Ty — ’}/VQ,C(QQ)

my1 = pumo + YV L(61)

Algorithmic Intelligence Lab

\ 4

v

A

Mmoo = umy +yVeL(02)

\ 4

v

Updates
A(go = —1MNyo
A@l = —m
AHQ = —M2
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An Example of Optimizers: ADAM

* Update rules of ADAM [Kingma and Ba, 15]:
my = Bimy—1 + (1 — 81)VeL(6;)
vi = Bovi_1 + (1 — B2) (Vg L(6;))?

where y is a learning rate and (1, 5, are decay rates for the moments

Bri1 = 6, —

~

e Unroll the update steps

—My

NG

Parameters 6 Gradients
(90 > VQE(Q())
01 = 0y + Aby " VoL(01)
05 = 0 + A6y > V@E(Qg)

Algorithmic Intelligence Lab

Optimizer Updates
|mo = (1= 51)VeL(b) Ay = ——_my
vo = (1 = B2)(VoL(b)) 0
!
= Brmo + (1 = 51)VeL(01) Al = —iml
v1 = Bavg + (1 — B2)(VeL(61))” o
| M2 = Bimy + (1' — B1)VoL(62) Afy = —LmQ
vy = Byvr + (1= 5) (Vo L(0:))? >




Learning Optimizers for Learning DNNs

* Drawbacks of these hand-designed optimizers (or update rules)
e Potentially poor performance on some problems
» Difficult to hand-craft the optimizer for every specific class of functions to optimize

* Solution: Learning an optimizer in an automatic way [Andrychowicz et al., 16]

Qa(ameter Upgy ™
S
M

optimizer optimizee
Srror Signa\

* Explicitly model optimizers using recurrent neural networks (RNNs)

Ory1 =0t + go(VL(O:), ht) he = fo(VL(O—1), hi—1)
Outputs of RNN Inputs Hidden states

e Cast an optimizer design as a learning problem

¢" = argmin L(67(¢))

where 61(¢) are the T-step updated parameters given the RNN optimizer ¢

Algorithmic Intelligence Lab
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RNN Optimizer

* Update rules based on a RNN fy, g4 parameterized by ¢

9,5_|_1 = Ht + g¢(V[,(9t), ht)

he = fo(VL(O:-1), hi—1)

* Inner-loop: update the parameters 0 via the optimizer for T times

Parameters 0 Gradients Optimizer Updates

to 2 VoL(0g)—{h1 = fs(VL(Oy),0)— Aby = g4»(VL(0o),0)
01 = 0o + Ao —{ Vo L(01) > ha = fo(VL(01), h1) = Ab1 = go(VL(01), h1)
0y =60y + A1 —> VQ,C(@Q) > hy = f¢(V£(92), hg) > AOy = g¢(V£(92), hg)

Algorithmic Intelligence Lab
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Objective for Learning RNN Optimizer

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
£meta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

Parameters 0 Gradients Optimizer Updates
0o > Veﬁ(eo) s hy = f¢(v£(90)7 0) s Ay = 9¢(V£(90), 0)

L L(0g + Abp)
01 = 0o + Abg— Vo L(01) — ha = f¢(€£(91), hi) = A0 = go(VL(01), k1)

L L(61 + Aby)
0y — 01+ A0 Vo £(0) T3 = [o(VL(82), ha) =8> = g0 (VL (0), )

Algorithmic Intelligence Lab
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Learning RNN Optimizer by Gradient Descent

* Objective for the RNN optimizer ¢ on the entire training trajectory

T
ﬁmeta(¢) = Z wtﬁ(ﬁt) where w; weights for each time-step
t=1

* Outer-loop: minimize L,0t4(¢) using gradient descent on ¢
* For simplicity, assume V4 Vg L(8;) = 0 (then, only requires first-order gradients)

Parameters 0 Gradients Optimizer Updates
0o VoL(6y) X h1 = f¢(Y£(90),O) et Ay = g¢(‘V£(90),O)

. L (0o + Aby)
01 = 6o + Aby VoL(01) 3¢ hy = f¢(V:£(91), hi)fe{ Al = g¢(Y£(91), hi)

. backprop L(01 + Abq)
0o = 601 + Aby VoL(02) | hs = f¢(V:£(92), ho) | Aby = g4(VL(62), ha)

Algorithmic Intelligence Lab
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Architecture of RNN Optimizer

* A challenge is optimizing (at least) tens of thousands of parameters
e Computationally not feasible with fully connected RNN architecture

e Use LSTM optimizer which operates coordinate-wise on the parameters

* By considering coordinate-wise optimizer
* Able to use small network for optimizer

e Share optimizer parameters across different parameters of the model
* Input: gradient for single coordinate and the hidden state
* Qutput: update for corresponding model parameter

Algorithmic Intelligence Lab
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Effectiveness of a Learned Optimizer

* Learning models for

* Quadratic functions
L) = X6 -yl
* Optimizer is trained by optimizing random functions from this family
» Tested on newly sampled functions from the same distribution

* Neural network on MNIST dataset
* Trained for 100 steps with MLP (1 hidden layer of 20 units, using a sigmoid function)

e Outperform baseline optimizers
* Also perform well beyond the meta-trained steps (> 100 steps)

Quadratics MNIST MNIST, 200 steps

Loss

R
a4 & Y N P
RN N P NS

w L)

120 140 160 180 200
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Generalization of a Learned Optimizer

* Generalization to different datasets
* Learn LSTM optimizer on CIFAR-10
* Test on subset of CIFAR-10 (CIFAR-5 and CIFAR-2)

* Learn much faster than baseline optimizers
* Even for different (but similar) dataset
e Without additional tuning of the learned optimizer

CIFAR-10 ) CIFAR-5 i CIFAR-2

=== ADAM
=== RMSprop
=== SGD

=== NAG

—— LSTM
= LSTM-sub

Loss

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Step
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Meta-learner LSTM

* [Andrychowicz et al., 16] compute gradients using LSTM.
Orr1 =01 + g (VL(OL), ht) he = fo(VL(O—1), he—1)

Outputs of RNN Inputs Hidden states

* [Ravi and Larochelle, 17] formulate the whole update sequences as LSTM:

Or+1 = gp(VL(O:), L(04), 0, he) hy = [ig, fi]
Inputs Hidden states
= ft—l—l ® (975 + ’it+1 O, VC(Qt) (Xlin)
Input gate i 01
i1 = 0(Wr - [VL(0y), L(0:), 04, 0] + br) Learner-"'.‘(vl./:n)
Forget gate ‘-.,‘

fty1 =0(Wpg - [VL(O:),L(O), 60 ft] + bF) . hi
—>

Meta-learner
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Meta-learner LSTM

* Recall the objective for the RNN optimizer ¢ on the entire training trajectory

T
£meta(¢) = Z wtﬁ(et) where w; weights for each time-step
t=1
* [Ravi and Larochelle, 17] only use the last loss. (i.e., w; = 1[t =17

Emeta((b) — E(QT)

Gradients Optimizer Updates
PRI | i1 =0(Wi-[VL(0o),L(00),0,0] +br) | 01=f1©0
Vo L(0p) fi=c(Wpg-[VL(O),L(0y),00,0] +bp) +i1 ® VL(6o)
- L(601) | 2= o(Wy-[VL(01),L(01),01,i1] + br) | O2= /200
o vec(6y) fo=0(Wpg-[VL(01),L(01),01, f1] +br) +io ©® VL(67)
0ol L(02) | i3 =0(Wr-[VL(02),L(02),02,12] + br) | U5 = f300,
2 VQ£<92) f3 = O'(WF . [Vﬁ(@Q), 5(92), 05, fg] + bF) +13 ® V£((92)
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Meta-learner LSTM

* They used the learnable optimizer for few-shot learning.

* The meta-learning with learnable optimizer can be done by training it over

multiple tasks.
(X1,Y7q)

v
to

91 92
—>
Learner ..‘-,_ (V1, L) “"._(Vz-l:z)
o e
< <
01
S —

Meta-learner

(X2,Y5) (X3,Y3)

(X7, YT)

\

ad

(Vr,

. Y
\ |

Or_1
—

(X,Y)
v
Or

i

L(M(X;0741),Y)

Model

5-class

1-shot

5-shot

Baseline-finetune
Baseline-nearest-neighbor
Matching Network
Matching Network FCE
Meta-Learner LSTM (OURS)

28.86 £+ 0.54%
41.08 £0.70%
43.40 £0.78%
43.56 + 0.84%
43.44 £ 0.77%

49.79 £ 0.79%
51.04 £ 0.65%
51.09 £ 0.71%
55.31 £ 0.73%
60.60 £ 0.71%

* The meta-learning optimizer (Meta-learner LSTM) outperforms Matching

Networks for 5-shot cases.

Algorithmic Intelligence Lab
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Learning Good Initialization for Few-Shot Learning

* Few-shot learning tackles limited-data scenario
* One way to overcome the lack of data is initialization

 Common initialization method: pre-train with ImageNet and fine-tune
(+) Generally works very well on various tasks
(-) Not work when one has only a small number of examples (1-shot, 5-shot, etc.)
(-) Cannot be used when target network architectures are different from source model

pre-trained parameters
0 =0 — aVeL(h)

(new) test task

* Learning initializations of a network that
* Adapt fast with a small number of examples (few-shot learning)
e Simple and easily generalized to various model architecture and tasks
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Model-Agnostic Meta-learning (MAML)

* Key idea
* Train over many tasks, to learn parameter @ that transfers well
* Use objective that encourage ¢ to fast adapt when fine-tuned with small data
* Assumption: some representations are more transferrable than others

* Model find parameter 6 that would reduce the validation loss on each task
* To do that, find (one or more steps of) fine-tuned parameter from 6 for each task
* And reduce the validation loss at fine-tuned parameter for each task
* Meta-update the 6 to direction that would adapt faster on each new task

— meta-learning

9 ---- learning/adaptation
VL
Vi,
Vﬁl ,,,, '93
* 7 \\
1° 05

Algorithmic Intelligence Lab
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Model-Agnostic Meta-learning (MAML)

* Notations and problem set-up

Ti

Task 7 = {x,y, L(x,y)}

Consider a distribution over tasks p(7)

Model is trained to learn new task 7; ~ p(7) from only K samples
Loss function for task 7; is £7;

Model f is learned by minimizing the test error on new samples from 7;

Meta-train set
(K =4 samples per class)
---------------

“ﬁf*

N y ________________________ D J

L7,
L7,
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Algorithms

* Consider a model fy parameterized with 6

* Inner-loop

 Adapting model to a new task 7;

Where « is learning rate,

0 =6 —a

VoL (fo)

0

VL,

— meta-learning
---- learning/adaptation

NV L

/
* .

*of 0

* We can compute ¢/ with one or more gradient descent update steps

Algorithmic Intelligence Lab
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Algorithms

— meta-learning

* Consider a model fy parameterized with 6
---- learning/adaptation

6 that would adapt better than ¢

e Quter-loop
* Model parameters are trained by optimizing the performance of fa;

min Y Lrlfe)= > Lt (fQ—onQETZ.(fg))
Ti~p(T) Ti~p(T)

* So, the meta-optimization:

%—3V9 > Lr(fe)

Ti~p(T)
Where 3 is meta-learning rate

Algorithmic Intelligence Lab
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Meta-Gradients of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

(9/ =0 — CMVQETi (fg)
IMAML = V9£7;.(9') — (Vé’ﬁﬂ(fe’)) ' (VGQI)
= (Vo L7.(for)) - (Vo0 — aVoL7(f5)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T
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First Order Approximation of MAML

* MAML computes 2" gradients Task-specificly optimized parameters
* 1-step optimization example/

Meta-learned initial model parameters

(9/ =0 — CYVQETi (f@)
guamr = VoL, (0)) = (Vo L, (for)) - (Vob))
= (Vo L1, (for)) - (Vao(0 — aVe LT, (fo)))

* High computation cost
e Computation cost is increased with a number of inner-loop iterations T

* Use 1%t order approximation

gvamt = Vo L7, (0") = (Vo L1, (for)) - (Veb)
= Vo L7, (for)

* lIgnore 2" order terms
e Empirically show similar performance

Algorithmic Intelligence Lab
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MAML

* Inner loop
* One (or more) step of SGD on training loss starting from a meta-learned network

e Quter loop
* Meta-parameters: initial weights of neural network
« Meta-objective Lo : validation loss
* Meta-optimizer: SGD

* Learned model initial parameters adapt fast to new tasks

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
1: randomly initialize ¢

2: while not done do

3:  Sample batch of tasks 7; ~ p(7)

4: forall 7; do

5: Evaluate Vo L7, (fo) with respect to K examples

6 Compute adapte(d 1:2arameterls) with gradientpde— Innerloop [~ Outer loop
scent: 0, = 0 — aVoLT (fo)

7:  end for

8 Update 0 <= 0 — BV 1 1 L7:(for) |

9: end while
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €[0.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

Algorithmic Intelligence Lab
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €[0.1,5.0], w € [0,7], € [-5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* MAML regresses well in the region without data (learn periodic nature of sine well)

MAML|K=10 [pretrained,|K=5, step size=0.01 [pretrained,|K=10, step size=0.02

) )

pre-update -+ 1gradstep ==

i - [] )

10 grad steps —— ground truth 4 4 used for grad pre-update - 1gradstep ==+ 10 grad steps

A
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Experiments on Few-Shot Learning Tasks

* Few-shot regression experiments
* Regress the sine wave y = Asin(wx)
« Where A €1[0.1,5.0], we [0,7], € [—5,5] are randomly sampled
* MAML with one gradient update inner loop

* Evaluate performance by fine-tuning the model
* On K-samples, compared with simply pre-trained model

e Adapt much faster with small number of samples (purple triangle below)
* Continue to improve with additional gradient step
* Not overfitted to 6 that only improves after one step
* Learn initialization that amenable to fast adaptation

k-shot regression, k=10

—+— MAML (ours)
- a- pretrained, step=0.02
«- oracle

mean squared error

Algorithmic Intelligence Lab A . number of gradient Sleps
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Experiments on Few-Shot Learning Tasks

* Few-shot classification experiments

* Omniglot

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% = -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.74+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 + 0.2%

* Mini-ImageNet

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 £+ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £+ 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 +0.77%

60.60 + 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 +0.92%

Algorithmic Intelligence Lab
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MAML

« MAML outperforms other baselines and generalizes well on unseen tasks

* It is model-agnostic
* No dependency on network architectures
* Can be used for another task not only few-shot learning (e.g., reinforcement learning)
* Easily applicable to many applications

* Many recent works on meta-learning based on MAML
* Learning the learning rate as well [Li, et. al., 17]
* First-order approximation of MAML [Nichol, et. al., 18]
* Probabilistic MAML [Finn, et. al., 18]
* Visual imitation learning [Finn, et. al., 17]
* LEO [Rusu, et al., 18]
* MT-NET [Lee, et al., 18]
* CAVIA [Zintgraf, et al., 19]
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An Extension: Meta-SGD - Learning Initialization and Learning Rates

« MAML uses the same learning rate for all the task

* Meta-SGD improves MAML by
* Learning the learning rates for each task
* Here the learning rates are vector, so that adjust the gradient direction as well

* Inner loop computation becomes: 6’ =60 — a o VyLr(fo)
* Where a is a vector of learning rates

. )
meta-learning 9;
learning / adaptation
0; =0 —-aoVL(0)

Algorithmic Intelligence Lab
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Experimental Results on Few-Shot Regression

e Same few-shot regression experiment settings with MAML
* By learning the hyperparameter (learning rates) Meta-SGD outperforms MAML

6 1 e Ground Truth 6 1
—— MAML
w— Meta-SGD

wess Ground Truth

Figure 3: Left: Meta-SGD vs MAML on 5-shot regression. Both initialization (dotted) and result
after one-step adaptation (solid) are shown. Right: Meta-SGD (10-shot meta-training) performs

better with more training examples in meta-testing.

Table 1: Meta-SGD vs MAML on few-shot regression

Meta-training Models 5-shot testing | 10-shot testing | 20-shot testing
5-shot training MAML 1.13+0.18 0.85+0.14 0.714+0.12
Meta-SGD | 0.90 +£0.16 | 0.63 +0.12 0.50 +0.10
10-shot training MAML 1.17£0.16 0.77£0.11 0.56 £ 0.08
Meta-SGD | 0.88+0.14 | 0.53 +0.09 0.35 + 0.06
20-shot training MAML 1.29 £+ 0.20 0.76 £0.12 0.48 £0.08
Meta-SGD | 1.01 £0.17 | 0.54 +0.08 0.31 +0.05

Algorithmic Intelligence Lab

73



Experimental Results on Few-Shot Classification

* Omniglot experiments

Table 2: Classification accuracies on Omniglot

S-way Accuracy

20-way Accuracy

1-shot 5-shot 1-shot 5-shot
Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching Nets 98.1% 98.9% 93.8% 98.5%
MAML 98.7 £ 0.4% 99.9 4+ 0.1% 95.8 £ 0.3% 98.9 + 0.2%
Meta-SGD 99.53 +0.26% | 99.93 £ 0.09% | 95.93 +0.38% | 98.97 + 0.19%

* Mini-Imagenet experiments

Table 3: Classification accuracies on Minilmagenet

S-way Accuracy

20-way Accuracy

1-shot

5-shot

1-shot

5-shot

Matching Nets

43.56 £+ 0.84%

55.31 +0.73%

17.31 £ 0.22%

22.69 £ 0.20%

Meta-LSTM

43.44 +0.77%

60.60 + 0.71%

16.70 £ 0.23%

26.06 + 0.25%

MAML

48.70 + 1.84%

63.11 + 0.92%

16.49 + 0.58%

19.29 + 0.29%

Meta-SGD

50.47 + 1.87%

64.03 + 0.94%

17.56 + 0.64%

28.92 + 0.35%

Algorithmic Intelligence Lab

* Meta-SGD outperforms baselines with a large margin
* Especially, it works well with many number of classes (20-way)
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Meta-learning for Learning Various Learning Rules

* Meta-SGD outperforms MAML in many experiments
* Learning hyperparameter is useful as well
* Indicate simple hyperparameter learning also gives benefit

* In many meta-learning methods meta-networks learn also:

* |Optimizer parameters: Learning rates, momentum, or optimizer itself

* Metric space for data distribution similarity comparison
* Weights of loss for each sample for handling data imbalance

* And many other learning rules

Algorithmic Intelligence Lab
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Hallucination-based methods

* To combat with deficiency of labeled data, hallucination based methods learn
generators on base classes to augment the few shots

* It can be combined with other few-shot learning methods, e.g., metric-based one

* The basic assumption is that the intra-class cross-sample relationship learned
from seen (training) classes can be applied to unseen (test) classes

Seen class Unseen class

Learning intra-class
relationship
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Hallucination-based methods

* To combat with deficiency of labeled data, hallucination based methods learn
generators on base classes to augment the few shots

* |t can be combined with other few-shot learning methods, e.g., metric-based one

* The basic assumption is that the intra-class cross-sample relationship learned
from seen (training) classes can be applied to unseen (test) classes

* |n practice, a generator is trained to augment an example.

Train Test

Generator Generator
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Hallucinator

* [Wang et al., 18] proposed Hallucinator which generates synthetic samples,
trained end-to-end along with a classifier

e Hallucinator is built upon metric-based meta-learning methods, e.g., ProtoNet

Str‘ain

N

Sa"“p'e/ =

( l heron)

A G »
| Strain

PP =

Noise z
a7

* Given an initial support set Si,ain = {xi}qjgiy the hallucinator (generator) ¢
creates an augmented set §G . — {G(Cgi,zi)}i]\il, where z; ~ N(0,1)

train
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Hallucinator

* [Wang et al., 18] proposed Hallucinator which generates synthetic samples,
trained end-to-end along with a classifier

e Hallucinator is built upon metric-based meta-learning methods, e.g., ProtoNet

Str‘ain

N

Samp'e/ =

( , heron)

Noise z

* Given an initial support set Si,ain = {xi}qjgiy the hallucinator (generator) ¢
creates an augmented set §G¢ . — {G(x%zi)}q];\;l’ where z; ~ N(0,1)

train

* The hallucinator GG and a classifier h are jointly trained with following loss:

aug
Z z,Yy)ES L h(x7 Strain)’ y) ’ where St?rl;gin - S‘ﬁrain U Sgain
( ,y) test

Any metric-based

meta-learning method
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Delta-encoder

e [Schwartz et al., 18] proposed delta-encoder, which learns to synthesize new
samples based on a modified auto-encoder (AE)

« Standard AE learns to reconstruct a signal X by minimizing || X — X| 1
« X = D(E(X)) ,where E,D are an encoder and a decoder, respectively

* Delta-encoder takes a pair of same-class examples (X*,Y®), and reconstructs X*
* X*=D(E(X®%,Y*),Y®) )
* Delta-encoder is trained by minimizing || X® — X*||;
* Delta-encoder learns to extract deformation, i.e., delta (A ), between pairs

Xs| —Y°

X |
aeeeee wase OO0
2000 2000
s OO0 e DOOO0)

A

X Xs

Standard Auto-encoder Delta-encoder
Algorithmic Intelligence Lab
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Delta-encoder

* At training time,

* Delta-encoder is trained with a pair of same seen class examples (X?°,Y?)

« X°=D(E(X*Y®),Y®)

* At test time (sample synthesis phase),
* Delta-encoder applies learned deformation from seen class to augment unseen class

* It generates latent vector Z from (X*,Y®),ie., Z = E(X® Y?)

* Then it generates a new sample X

unseen class example Y

Encoder

s (DO

Algorithmic Intelligence Lab

b —

OOO00O

A

2000

- —

Xs

Training time

YS

D(Z,Y™) from the latent vector Z and an

S P—

OO0
2000

OOO00

2y

Encoder

Decoder

Test time
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Delta-encoder

» Generated samples of minilmageNet (12-way 1-shot task)

* Figure a.
* The red crosses mark the original 12 single-samples
* The generated points are colored according to their class

e Figure b.
e The real image seen at training is framed in blue
* All other images represent the synthesized samples

Algorithmic Intelligence Lab

83



Adversarial Feature Hallucination Networks (AFHN)

* AFHN [Li et al. 20] employ GAN to augment features of few-shot samples

 The main idea is to generate an augmented feature s from a given feature
(i.e., condition) s, using a conditional Wasserstein GAN (c(WGAN)

~
2
augmented feature

/ ~
feature L G > S

~
— F — S >
[ 9 BN /

X

* They use WGAN loss with gradient penalty [Gulrajani et al., 17]:

Laan = E(x,y)~nsy [D(8)]=Egx sy [D(8)]+A B y)nsy [(IIVs(D(8))2—1)°]
where s = F(x), s = G(s,2)
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Adversarial Feature Hallucination Networks (AFHN)

* AFHN [Li et al. 20] employ GAN to augment features of few-shot samples

 The main idea is to generate an augmented feature s from a given feature
(i.e., condition) s, using a conditional Wasserstein GAN (c(WGAN)

~
2
augmented feature

/ ~
feature L G > S

/
—_— F  — S >
| RSN /

X

* However, naive GAN training does not guarantee diversity and discriminability
of the generated features s
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Adversarial Feature Hallucination Networks (AFHN)

* Diversity: intra-class variation of the generated features

* Discriminability: discriminative features among the classes

* AFHN consists of c WGAN and two regularizers which handle these issues

* Anti-collapse regularizer: encourage “diversity” of syntheiszed features

* Classification regularizer: encourage “dicriminability” of synthesized features

......................

............................

Generator

Support m
BN

| (y; DlSCl‘lmmatO'D_) r Lo
Query@m 5 PG = N
i b b Feature Few-shot classifiet
S O—

Algorithmic Intelligence Lab

Anti-collapse
regularizer

Classification
regularizer
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Adversarial Feature Hallucination Networks (AFHN)

e Anti-collapse regularizer
* The loss term dispels the generated features from different noise vectors

1— cos(él,ég)]
1 — cos(z1,z2)

Lop= E [

(x&y)NST

* Srisasupport set
« where the generated features Si1(S2) are from random noise Z1(Z2)

Anti-collapse
regularizer

I l ............
P : Discriminato
: ﬁ: > D L L
Feature |—ﬂ Few-shot classifie

..................

extractor
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Adversarial Feature Hallucination Networks (AFHN)

Classification regularizer
* It adopts the loss term of ProtoNet for classification:

L.y = E(Xq,yq)NQT [_ 1Og [P(y — yQ|XQ)]]

B . exp(cos(8¥ F(xq))
P(y - k‘Xq) o Zé\rzl exp(cos(8],F(xq)))

* where Q7 isa query set, and §‘Z = G(s7,2) is the synthesized feature for the j-th class

* It encourages to learn discriminative features among classes

......................

............................

Generator

- . @, D1scr1m1natoDm
Quel‘}’mu. o T { —

Feature |—ﬂ Few-shot classifier i €

..................

Classification
— regularizer

extractor

Algorithmic Intelligence Lab 88



Adversarial Feature Hallucination Networks (AFHN)

* In overall, the total loss is computed by the three terms
* Lgan, and L., are computed for two different random noise vectors 21, 22

2 2
1
i Loan, L.,
Ialgmgx ; GAN; + a; ;T BLW

e The feature extractor I’ is pre-trained with all training samples, and fixed during
meta-learning stage

......................

P —
DS,
Generator l
R : Discriminato
ﬁ D Lca
Feature ;ﬂ Few-shot classifie C

..................

extractor
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Adversarial Feature Hallucination Networks (AFHN)

* Experiments demonstrate the effectiveness of AFHN
* AFHN outperforms Delta-encoder on Mini-Imagenet

| | | Backbone | Reference | 1-shot | 5-shot |
| | ResNetl8 + SVM (baseline) |  ResNetl8 | | 5273+1.44 | 73.31+0.81 |
MetaGAN [45] Conv-32F NeurIPS’18 52.7140.64 68.6340.67
Dual TriNet [4] ResNet18 TIP 19 58.80+£1.37 76.71+0.69
DataAug A-encoder [35] ResNet18 NeurIPS’18 59.90 69.70
[DeMe-Net [4] ResNet18 CVPR’19 59.1440.86 74.63+0.74
AFHN (Proposed) ResNet18 62.38+0.72 78.16£0.56

* With the proposed regularizers, the synthesized features exhibit clear clustering
structure, which helps train a discriminative classifier

1.0

0.8

0.8

0.6

0.6

0.4 0.4

0.2 0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

cWGAN + CR cWGAN + CR + AR

t-SNE visualization of synthesized feature embeddings
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Fine-tuning Baselines for Few-shot Classification

 Significant progress has been made in meta-learning approaches
* The complexity of meta-learning algorithms is also growing

Meta-training stage Meta-testing stage

Sampled N classes

Base class data X,

e __M S - | M(IS,)
4y A l lb)_’y Novel support set S,, (l)
> Support set (Novel class data X,, )

(Many)
Base query set conditioned model

___________________________________________ Support set conditioned model A/(-[S)
MatchingNet '/ ProtoNet '/  RelationNet ' MAML :

S S Class S Class - N
‘.\ mean. U —.qu S m § Y

C Euclid - i Relati o i _ Cradient
QJ— 5y o -y o BT

* Recently, [Chen et al. 19] revisit a simple fine-tuning method in the few-shot
classification, and show that their performance has been underestimated
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Fine-tuning Baselines for Few-shot Classification

* In the fine-tuning approach, they do not train the model over a collection of
tasks/episodes as in meta-learning

* Instead, a feature extractor is pre-trained with all classes of training data

Training stage Fine-tuning stage

Base class data Novel class data Fixed
) Feature (Few) Feature @

Classmer

extractor I,,C,,If‘?_sf!f!?'.'

extractor

Y

* Then a classifier is trained on few samples with the fixed feature extractor
* Baseline method trains a linear classifier

* Baseline++ method uses cosine distances between the input feature and the
weight vector

CIaSS|f|er C( W)

Cosine
o(xi)

dlstance
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Fine-tuning Baselines for Few-shot Classification

» Surprisingly, those simple baselines achieve competitive performance
compared with the state-of-the-art meta-learning methods

CUB mini-ImageNet

Method 1-shot 5-shot 1-shot 5-shot

Baseline 4712 +£0.74 64.16 =0.71 42.11 £0.71 62.53 +0.69
Baseline++ 60.53 £ 0.83 7934 4+0.61 4824 +0.75 66.43 +0.63
MatchingNet Vinyals et al. (2016)  60.52 £ 0.88 7529 £0.75 48.14 £0.78 63.48 +0.66
ProtoNet Snell et al. (2017) 5046 £ 0.88 7639 £0.64 4442 4+0.84 64.24 +0.72
MAML Finn et al. (2017) 5473 £097 75.754+0.76 4647 £0.82 62.71 £0.71
RelationNet Sung et al. (2018) 6234 +094 77.84 +£0.68 4931 £0.85 66.60 +0.69

 Moreover, some meta-learning methods are even beaten by Baseline++ with a
deeper backbone, e.g., ResNet-34, in mini-ImageNet 5-shot

* Fine-tuning methods are well generalized in a cross-domain evaluation setting

—A— Baseline —#— Baseline++
ProtoNet  —#— MAML

80%

MatchingNet
—0— RelationNet

B Baseline ®Baseline++ M MatchingNet ¥ ProtoNet @MMAML M RelationNet
90%

80%
75%

70% ST ——— ~
70% :
60% :
65% 1

50% I I

9 1
60% 40% :
1

) ) $ 5 $
=, Lo /%/ 46{? /%% minilmageNet

—————————

\miniimageNet -> CUBI

Small <« P Large

. . . Domain Difference
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Improved Fine-tuning Methods: Transductive Fine-tuning

* There are several strategies have been proposed for improving fine-tuning

baselines on few-shot classification

* Transductive fine-tuning [Dhillon et al. 19] uses information from the test

(query) data while meta-testing stage

* The labels of query data are still not accessible

» After the pre-training stage, transductive fine-tuning method minimizes:

1
O* = arg min N Z —logpe (y | )

© ° (z,y)€Ds

_|_

+ 3 Hpe( | )

d (:B,y)EDq

[
1
)
'l
Cross-entropy Loss !
’l
¥

'
1
1
i Entropy of prediction
#"

Support set (x,y) € Dy

Algorithmic Intelligence Lab
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Improved Fine-tuning Methods

* There are several strategies have been proposed for improving fine-tuning
baselines on few-shot classification

* Transductive fine-tuning [Dhillon et al. 19] uses information from the test
(query) data while meta-testing stage

* The labels of query data are still not accessible

» After the pre-training stage, transductive fine-tuning method minimizes:

1 1
O" = arg min — E —logpe (y | x) +|— g H(po(- | x))
o Ns - Nq
(x,y)EDs (z,y)€Dq

* This regularizer for the unlabeled query sample improves few-shot classification
performance, especially in 1-shot regime

Mini-ImageNet Tiered-ImageNet CIFAR-FS FC-100
Algorithm Architecture 1-shot (%)  5-shot (%) 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%) I-shot (%)  5-shot (%)
Fine-tuning (train) WRN-28-10 57.73 £ 0.62 78.17 049 66.58 £ 0.70 85.55 + 048 68.72 + 0.67 86.11 £+ 0.47 38.25 + 0.52 57.19 + 0.57
Transductive fine-tuning (train) WRN-28-10 65.73 £+ 0.68 78.40 + 0.52 73.34 £ 0.71 85.50 + 0.50 76.58 + 0.68 85.79 + 0.50 43.16 + 0.59 57.57 £ 0.55
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Improved Pre-training Methods

e [Tian et al., 19] propose a pre-training method using self-distillation techniques

* Similar to Born Again Neural Networks [Furlanello et al. 18], they apply
knowledge distillation sequentially to improve the model gradually

Generation 0 Generation 1

Cross-entropy Loss KD from previous model

* At fine-tuning stage, they perform logistic regression on the normalized
features, with augmentation strategies of random crop/flip, and color jitter

* These empirical choices are important for the classification performance
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Improved Pre-training Methods

* This method significantly outperforms state-of-the-art meta-learning methods

* They also show that self-supervised learning (SSL) approaches could achieve
comparable performance to supervised pre-training

minilmageNet 5-way tieredlmageNet 5-way
model backbone 1-shot 5-shot 1-shot 5-shot
MTL [47] ResNet-12 6120+ 1.80  75.50 + 0.80
Variational FSL [64] ResNet-12 61.23 £0.26  77.69 +0.17 - - minilmageNet 5-way
MetaOptNet [26] ResNet-12 62.64+0.61  78.634+046 6599+ 0.72 81.56+ 0.53
Diversity w/ Cooperation [11]  ResNet-18 59.48 £0.65 75.62+0.48 - - model backbone 1-shot 5-shot
Fine-tuning [9] WRN-28-10 57734062 78.174+049 66.58 +0.70  85.55 + 0.48 :
LEO-trainval® [44] WRN-28-10 61.76 £0.08 77.594+0.12 6633 +0.05 81.44+009 Supervised ResNet50 57.56 +0.79  73.81 &+ 0.63
Ours-simple ResNet-12 62,02+ 063 7964+ 044 6974+072 saal+0s5 MoCo[l6] RCSNetSO* 54.19+£ 093 73.04 £ 0.61
Ours-distill ResNet-12 64.82+0.60 82144043 71.52+0.69 86.03+049 CMCI[49]  ResNet50 56.10 £0.89  73.87 + 0.65

* Recent state-of-the-art SSL methods, e.g., [Chen et al., 20], also show their
superior performance on few-shot classification

* A good embedding plays the most important role in few-shot learning

* Q. Do these results negate recent progress in meta-learning?

* A. No. Meta-learning is much broader than just few-shot classification. They
may be suitable in other domains (e.g., reinforcement learning).
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Summary

Meta-learning is a study about learning the learning rules
* Make learner which is fast adapted to unseen task with only few examples

Metric-based meta-learning

* The key idea is to learn a metric or distance function on deep neural features over
objects

Metric-based meta-learning

* The key idea is to learn a metric or distance function on deep neural features over
objects

Optimization-based meta-learning

* The key idea is to adjust the optimization algorithm (e.g. gradient descent) with a few
examples

It is applied for many other fields as well
* Hyperparameter optimization
* Neural network architecture search
* Reinforcement learning
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Summary

* Hallucination-based methods
* The key idea is to augment few samples using learned intra-class relationship

* Fine-tuning methods
* The key idea is to transfer knowledge from a pre-trained model via fine-tuning
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