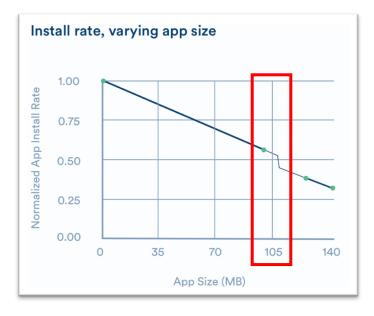
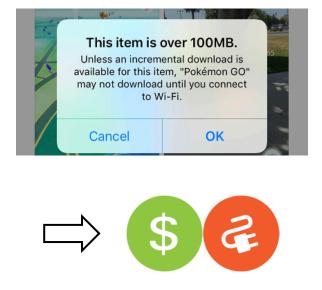
Network Compression

AI602: Recent Advances in Deep Learning


Lecture 9


Slide made by

Jongheon Jeong and Insu Han

KAIST EE

- Deploying deep neural networks (DNNs) has been increasingly difficult
 - Constraints on power consumption, memory usage, inference overhead, ...
- Inference with a large-scale network consumes huge costs
- In mobile apps, such issues become more serious
 - "The dreaded 100MB effect"
- Can we make DNNs to perform inferences more efficiently?

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

- Deep compression
- Binarized neural networks

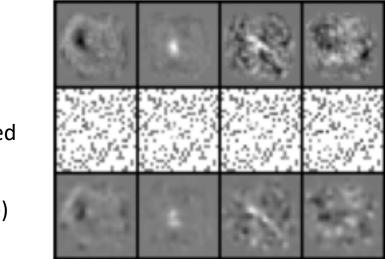
4. Summary

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck


3. Weight Quantization

- Deep compression
- Binarized neural networks

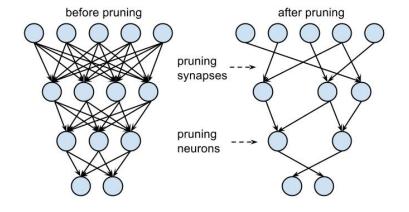
4. Summary

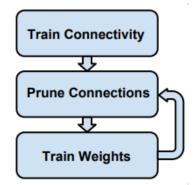
Redundancies in Deep Neural Networks [Denil et al., 2013]

- DNNs include a significant number of redundant parameters
- Denil et al. (2013): Predicting > 95% of weights from < 5%
 - A simple kernel ridge regression is sufficient
 - ... without any drop in accuracy!
 - Many of the weights need not be learned at all

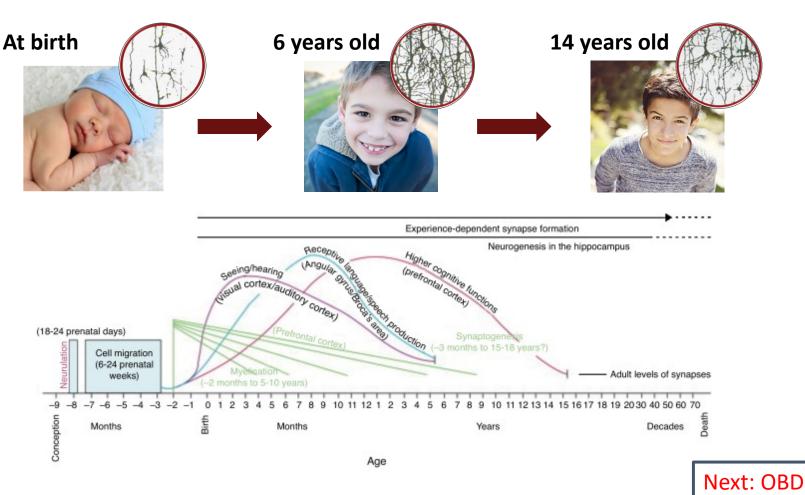
(a) Original weights

(b) Randomly selected

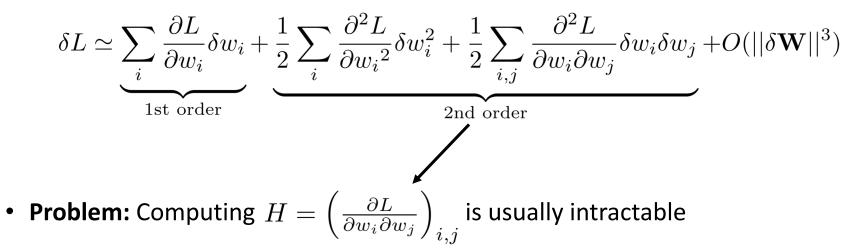

(c) Predicted from (b)


Such redundancy can be exploited via network pruning

Algorithmic Intelligence Lab


Network Pruning

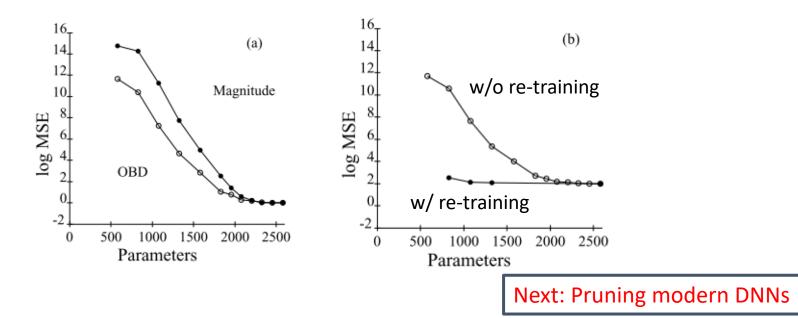
- Determining **low-saliency parameters**, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - 1. Train a deep model until convergence
 - 2. Delete "unimportant" connections w.r.t. a certain criteria
 - 3. Re-train the network
 - 4. Iterate to step 2, or stop
- Defining which connection is unimportant can vary
 - Weight magnitudes (L^2 , L^1 , ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]
 - ...


- Human brains are also using pruning schemes as well
- Synaptic pruning removes redundant synapses in the brain during lifetime

*source: Leisman et al., "The neurological development of the child with the educational enrichment in mind.", Psicología Educativa 2015

Optimal Brain Damage (OBD) [LeCun et al., 1990]

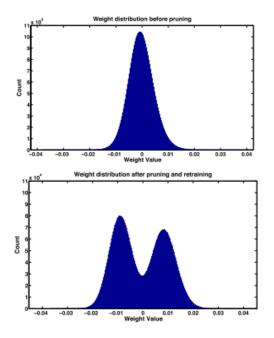
- Network pruning perturbs weights W by zeroing some of them
- How the loss *L* would be changed when **W** is perturbed?
- **OBD** approximates *L* by the 2nd order Taylor series:


- Requires $O(n^2)$ on **#** weights
- Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters \Rightarrow *H* consists \approx **3**. **6**×**10**¹⁵ elements

- **Problem:** Computing $H = \left(\frac{\partial L}{\partial w_i \partial w_j}\right)_{i=i}$ is usually intractable
- Two additional assumptions for tractability
 - **1. Diagonal** approximation: $H = \frac{\partial^2 L}{\partial w_i \partial w_i} = 0$ if $i \neq j$
 - **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$ • It only needs $\operatorname{diag}^{i}(H) \coloneqq \left(\frac{\partial^{2}L}{\partial w^{2}}\right)_{\cdot}$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

• How the loss *L* would be changed when **W** is perturbed?

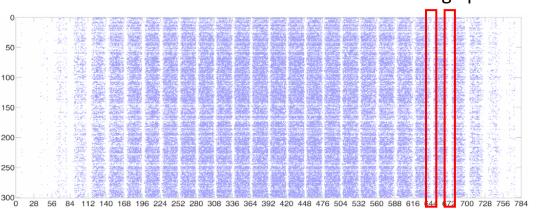
$$L(\delta \mathbf{W}) \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 \eqqcolon \sum_{i} \frac{1}{2} h_{ii} \delta w_i^2$$


- The saliency for each weight $\Rightarrow s_i \coloneqq \frac{1}{2}h_{ii}|w_i|^2$
- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered

*source: LeCun et al., "Optimal Brain Damage", NIPS 1990 10

 $s_i \coloneqq |w_i|$

- Han et al. (2015): Pruning larger DNNs
 - LeNet, AlexNet, VGG-16, ... on ImageNet
 - Highlights the practical efficiency of pruning
- OBD introduces extra computation on larger models
 - It requires an additional, separated backward pass
- The simple **magnitude-based pruning** works very well as long as the network is re-trained


Comparison with other model reduction methods on AlexNet

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
Baseline Caffemodel [26]	42.78%	19.73%	61.0M	1×
Data-free pruning [28]	44.40%	-	39.6M	$1.5 \times$
Fastfood-32-AD [29]	41.93%	-	32.8M	$2\times$
Fastfood-16-AD [29]	42.90%	-	16.4M	$3.7 \times$
Collins & Kohli [30]	44.40%	-	15.2M	$4 \times$
Naive Cut	47.18%	23.23%	13.8M	$4.4 \times$
SVD [12]	44.02%	20.56%	11.9M	$5 \times$
Network Pruning	42.77%	19.67%	6.7M	9 ×

- Han et al. (2015): Pruning larger DNNs
 - Highlights the practical efficiency of pruning
- The magnitude-based pruning works well as long as the network is re-trained

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12 imes
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12 imes
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9×
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13×

• Network pruning detects visual attention regions

Algorithmic Intelligence Lab

*source: Han et al., "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015 12

Edge parts of MNIST images

- The magnitude-based pruning works well as long as the network is re-trained
- Mittal et al. (2018): In fact, pruning criteria are not that important
 - ... as long as the re-training phase exists
- Many strategies cannot even beat random pruning after fine-tuning

Heuristic	25 %	50%	75%
Random	0.650	0.569	0.415
Mean Activation	0.652	0.570	0.409
Entropy	0.641	0.549	0.405
Scaled Entropy	0.637	0.550	0.401
l ₁ -norm	0.667	0.593	0.436
APoZ	0.647	0.564	0.422
Sensitivity	0.636	0.543	0.379

Table 1: Comparison of different filter pruning strategies on VGG-16.

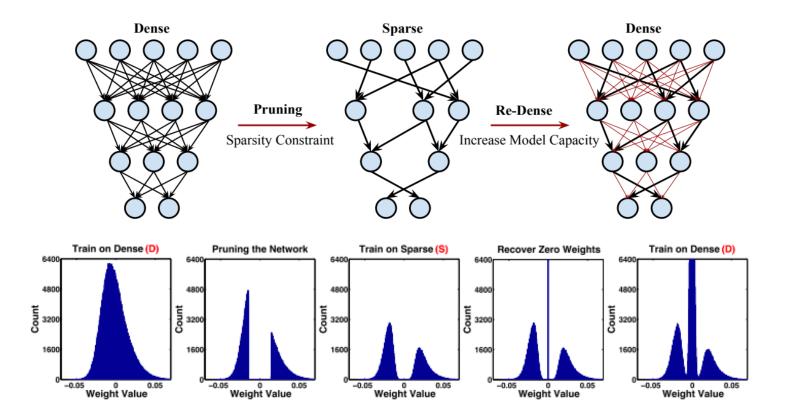

Heuristics	#Layers Pruned	25 %	50%	75%
Random	16	0.722	0.683	0.617
l_1 -norm	16	0.714	0.677	0.610
Random	32	0.696	0.637	0.518
l_1 -norm	32	0.691	0.633	0.514

Table 3: Comparison of different filter pruning strategies on ResNet (Top-1 accuracy of unpruned network is 0.745)

- The compressibility of DNNs are NOT due to the specific criterion
 - ... but due to the inherent plasticity of DNNs

Next: Dense-Sparse-Dense

- Network pruning preserves accuracy of the original network
- Han et al. (2017): Re-wiring the pruned connections improves DNNs further
 - "Dense-Sparse-Dense" training flow

- Network pruning preserves accuracy of the original network
- Han et al. (2017): Re-wiring the pruned connections improves DNNs further
 - "Dense-Sparse-Dense" training flow
- Pruning discovers better optimum that the current training cannot find

Neural Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.2%	1.2%	4.1%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	22.9%	1.1%	4.6%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8^{2}	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	33.6% ³	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% ³	13.4%	1.1%	7.4%

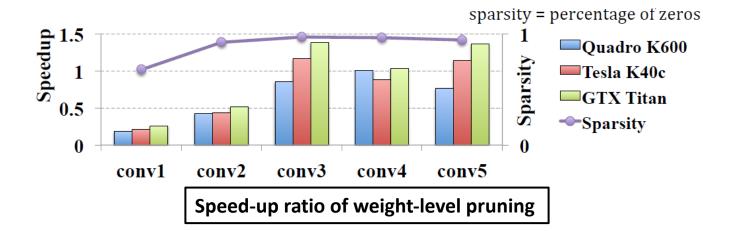
Table of Contents

- 1. Network Pruning and Re-wiring
 - Optimal brain damage
 - Pruning modern DNNs
 - Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization


- Deep compression
- Binarized neural networks

4. Summary

- The performance of pruning depends on the **initial training scheme**
 - e.g. Which regularization to use: L^2 or L^1 ?
- Which training scheme will maximize the pruning performance?
 - We still don't know about the optimal points of a DNN
- One prominent way: Sparse network learning
 - Inducing to a sparse solution from training a network
 - Weights with value 0 can safely be removed ⇒ it **does not** require re-training
- **Example**: *L*¹-regularization

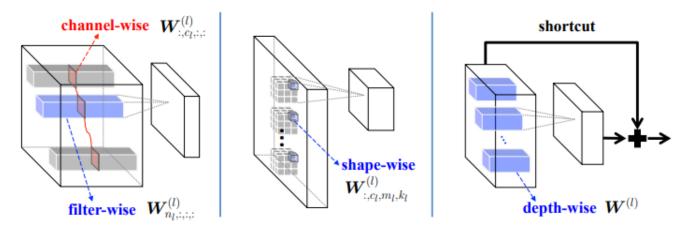
 $\begin{array}{c} \theta_{2} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4} \\ \theta_{6} \\ \theta_{1} \\ \theta_{1}$

- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited

Non-structured sparsity (poor data pattern)

المؤجد يعقد فعزية فيرود أرادين متحد فبران البير العبر أحدرتنا	an a	also developed and the state of	1. The second state of	
the matter of the second second second	interest in the second s	. بها آن القول بريد الشارية بازه الإن وولا يست الاجتبار القاد المعاد المعاد المعاد المعاد		
	[1] AMA (1) (1) (1) (2) (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		The second s	
and the second sec	The second s		- 비누는 것 같은 것 것 좋아요. ~ 상품	Spice of The
AND THE PART WAS ADDRESSED AND ADDRESSED ADDRESS		an a	n na sana sana sana sa baga sa	1944 - L. 1947
		 Marco applicants (2005) and the string of a string of the s		1999
The second	- 20 A 45			A
	Cost of Sec.	1 Provide Contract of the second s	The second se	
and the second	Timer as	1 Sector Sector Contraction Sector Sector Sector Sector		

Structured sparsity (regular data pattern)


		 	<u> </u>		-		
			2011C				
					Table Constraints		

 $5\times$ speedup after concatenation of nonzero rows and columns

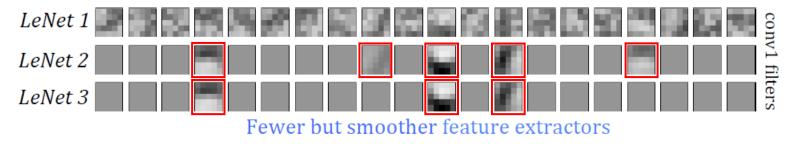
$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

- Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$
- Shape-wise sparsity: $R_g(\mathbf{W}^{(l)}) = \sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|\mathbf{W}_{:,c_l,m_l,k_l}^{(l)}\|_2$
- Depth-wise sparsity (applicable only for ResNet):

$$R_g(\mathbf{W}^{(l)}) = \|\mathbf{W}^{(l)}\|_2$$

Algorithmic Intelligence Lab

*source: Wen et al., "Learning structured sparsity in deep neural networks." NIPS 2016 19


$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet #	Error	Filter # [§]	Channel # §	FLOP §	Speedup §
1 (baseline)	0.9%	20—50	1—20	100%—100%	$1.00 \times -1.00 \times$
2	0.8%	5—19	1—4	25%—7.6%	$1.64 \times -5.23 \times$
3	1.0%	3—12	1—3	15%—3.6%	$1.99 \times -7.44 \times$

[§]In the order of *conv1*—*conv2*

$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

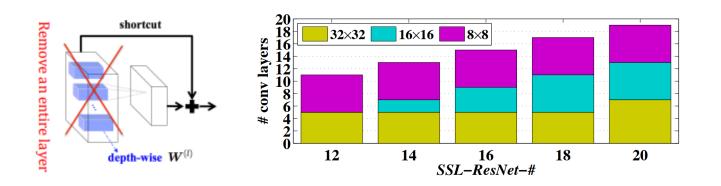
• Shape-wise sparsity: $R_g(\mathbf{W}^{(l)}) = \sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|\mathbf{W}_{:,c_l,m_l,k_l}^{(l)}\|_2$

Table 2: Results after learning filter shapes in LeNet

LeNet #	Error	Filter size §	Channel #	FLOP	Speedup
1 (baseline)	0.9%	25—500	1—20	100%—100%	$1.00 \times -1.00 \times$
4	0.8%	21—41	1—2	8.4%-8.2%	2.33×—6.93×
5	1.0%	7—14	1—1	1.4%-2.8%	5.19×—10.82×

[§] The sizes of filters after removing zero shape fibers, in the order of *conv1*—*conv2*

Learned shapes of conv1 filters:



$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Depth-wise sparsity: $R_g(\mathbf{W}^{(l)}) = \|\mathbf{W}^{(l)}\|_2$

ResNet-20/32: baseline with 20/32 layers SSL-ResNet-#: Ours with # layers after learning depth of ResNet-20

	# layers	error	# layers	error
ResNet	20	8.82%	32	7.51%
SSL-ResNet	14	8.54%	18	7.40%

Next: Sparsification via variational dropout

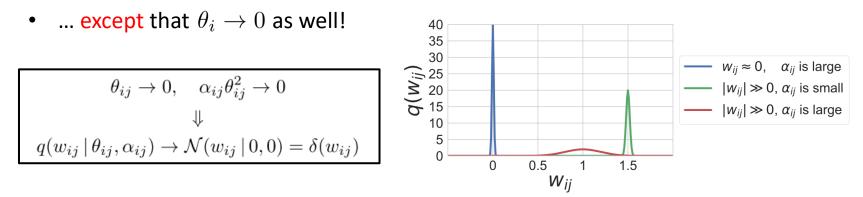
- Variational dropout (VD) allows to learn the dropout rates separately
- Unlike dropout, VD imposes noises on weights θ :

$$w_i := \theta_i \cdot \xi_i, \quad \text{where} \quad p_{\alpha_i}(\xi_i) = \mathcal{N}(1, \alpha_i)$$

- A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
- $\mathbf{w} = (w_i)_i$ is adapted to data in Bayesian sense by optimizing $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}$
- **Re-parametrization trick** allows **w** to be learned via minibatch-based gradient estimation methods [Kingma & Welling, 2013]
 - α and θ can be optimized separated from noises

$$w_i = \theta_i + (\theta_i \sqrt{\alpha_i}) \cdot \varepsilon_i, \quad \text{where} \quad \varepsilon_i \sim \mathcal{N}(0, 1)$$

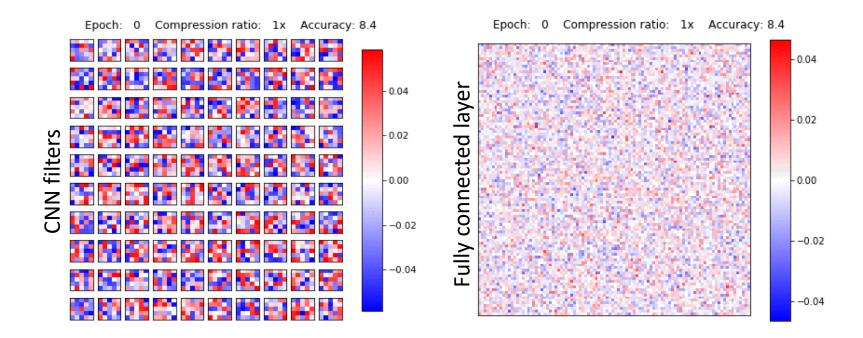
• VD imposes noises on weights θ :


$$w_i := \theta_i \cdot \xi_i, \quad \text{where} \quad p_{\alpha_i}(\xi_i) = \mathcal{N}(1, \alpha_i)$$

- The original VD set a constraint $\alpha_i \leq 1$ for technical reasons
 - It corresponds to $p \leq 0.5$ in binary dropout

Q. What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?

•
$$p(w_i) = \theta_i \cdot p(\xi_i) = \mathcal{N}(\theta_i, \alpha_i \theta_i^2)$$


- w_i will be completely random as $\alpha_i \to \infty$
- Such w_i will **corrupt** the expected log likelihood

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

Q. What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?

- It will **corrupt** the expected log likelihood except that $\theta_i \rightarrow 0$ as well
- Molchanov et al. (2017): Extending VD for $\alpha_i > 1 \Rightarrow$ Super sparse solutions
 - Weights with $\log \alpha > 3$ are pruned away during training

Q. What if $\alpha_i > 1$? What happens when $\alpha_i \to \infty$?

- It will **corrupt** the expected log likelihood **except** that $\theta_i \to 0$ as well
- Molchanov et al. (2017): Extending VD for $\alpha_i > 1 \Rightarrow$ Super sparse solutions
 - Weights with $\log \alpha > 3$ are pruned away during training

Network	Method	Error %	Sparsity per Layer %	$\frac{ \mathbf{W} }{ \mathbf{W}_{\neq 0} }$
	Original	1.64		1
	Pruning	1.59	92.0 - 91.0 - 74.0	12 [Han et al., 2015]
LeNet-300-100	DNS	1.99	98.2 - 98.2 - 94.5	56
	SWS	1.94		23
(ours)	Sparse VD	1.92	98.9 - 97.2 - 62.0	68
	Original	0.80		1
	Pruning	0.77	34 - 88 - 92.0 - 81	12 [Han et al., 2015]
LeNet-5-Caffe	DNS	0.91	86 - 97 - 99.3 - 96	111
	SWS	0.97		200
(ours)	Sparse VD	0.75	67 - 98 - 99.8 - 95	280

Next: Variational information bottleneck

Motivation: Markov chain interpretation of DNN [Tishby & Zaslavsky, 2015]

$$y \rightarrow x = h_0 \rightarrow h_1 \rightarrow \cdots \rightarrow \frac{h_{i-1} \rightarrow h_i}{p(h_i|h_{i-1})} \rightarrow \cdots \rightarrow \frac{h_L \rightarrow \hat{y}}{Approximate \ p(y|h_L)}$$
Approximate \ p(\hat{y}|h_L) via tractable \ p(\hat{y}|h_L)
cat $\rightarrow \bigcup$ cat
$$color$$
animal type animal type cat
$$color$$

- **1.** Maximize $I(h_i; y)$ for high-accuracy prediction
- 2. Minimize $I(h_i; h_{i-1})$ for compression \Rightarrow "information bottleneck"
- Layer-wise losses become:

Mutual information

$$\mathcal{L}_i = \gamma_i I(\boldsymbol{h}_i; \boldsymbol{h}_{i-1}) - I(\boldsymbol{h}_i; \boldsymbol{y})$$

The relative strength of bottleneck

Variational Information Bottleneck [Dai et al., 2018]

- Layer-wise losses become $\mathcal{L}_i = \gamma_i I(\boldsymbol{h}_i; \boldsymbol{h}_{i-1}) I(\boldsymbol{h}_i; \boldsymbol{y})$
- **Problem**: Computing $I(\cdot; \cdot)$ is usually intractable
- Instead, we minimize variational upper bound of it

$$\begin{split} \mathcal{L}_{i} \leq \tilde{\mathcal{L}}_{i} = \gamma_{i} \mathbb{E}[\mathrm{KL}(p(\boldsymbol{h}_{i}|\boldsymbol{h}_{i-1})||\boldsymbol{q}(\boldsymbol{h}_{i}))] - \mathbb{E}[\log \boldsymbol{q}(\boldsymbol{y}|\boldsymbol{h}_{L})] \\ \boldsymbol{f} \\ \text{variational approx. of } p(\boldsymbol{h}_{i}) \\ \int \mathbf{f} \\ \text{variational approx. of } p(\boldsymbol{y}|\boldsymbol{h}_{L}) \\ \int \mathbf{multinomal for classification} \end{split}$$

Gaussian for regression

• Variational Information Bottleneck (VIB) model

Algorithmic Intelligence Lab

*source : Dai et al., "Compressing Neural Networks using the Variational Information Bottleneck", ICML 2018 28

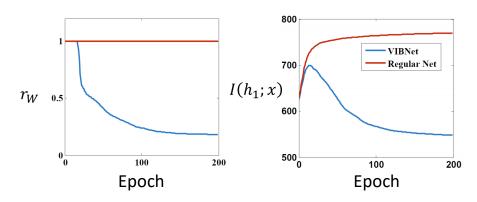
• We minimize variational upper bound of \mathcal{L}_i

$$\mathcal{L}_i \leq \tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}[\mathrm{KL}(p(\boldsymbol{h}_i | \boldsymbol{h}_{i-1}) | | q(\boldsymbol{h}_i))] - \mathbb{E}[\log q(\boldsymbol{y} | \boldsymbol{h}_L)]$$

• Final variational objective function (VIBNet):

$$\tilde{\mathcal{L}} = \sum_{i=1}^{L} \gamma_i \sum_{j} \log \left(1 + \frac{\mu_{ij}^2}{\sigma_{ij}^2} \right) - \underbrace{\frac{\mu_{ij}^2}{L \cdot \mathbb{E}[\log q(\boldsymbol{y}|\boldsymbol{h}_L)]}_{\text{data-fit}}}_{\text{regularization}}$$
Pruning criteria: $\alpha_{ij} \coloneqq \frac{\mu_{ij}^2}{\sigma_{ij}^2} \to 0$

• Neurons with low value of α_{ij} 's are pruned after training


Algorithmic Intelligence Lab

*source : Dai et al., "Compressing Neural Networks using the Variational Information Bottleneck", ICML 2018 29

- VIBNet outperforms various methods by large margins
 - $r_W(\%)$: ratio of # parameters
 - $r_N(\%)$: ratio of memory footprint

Method	$r_W(\%)$	$r_N(\%)$	error(%)	Pruned Model
VD	25.28	58.95	1.8	512-114-72
BC-GNJ	10.76	32.85	1.8	278-98-13
BC-GHS	10.55	34.71	1.8	311-86-14
LO	26.02	45.02	1.4	219-214-100
L0-sep	10.01	32.69	1.8	266-88-33
DN	23.05	57.94	1.8	542-83-61
VIBNet	3.59	16.98	1.6	97-71-33

Table 1. Compression results on MNIST using LeNet-300-100.

Method	$r_W(\%)$	FLOP(Mil)	$r_N(\%)$	error(%)
BC-GNJ	6.57	141.5	81.68	8.6
BC-GHS	5.40	121.9	74.82	9.0
VIBNet	5.30	70.63	49.57	8.8 (8.5)
PF	35.99	206.3	83.97	6.6
SBP	7.01	136.0	80.72	7.5
SBPa	5.78	99.20	66.46	9.0
VIBNet	5.45	86.82	57.86	6.5 (6.1)
NS-Single	11.50	195.5	-	6.2
NS-Best	8.60	147.0	-	5.9
VIBNet	5.79	116.0	59.60	6.2 (5.8)

After fine-tuning

Table 3. Compression results on CIFAR10 using VGG-16.

Method	$r_W(\%)$	FLOP(Mil)	$r_N(\%)$	error(%)
RNP	-	160	-	38.0
VIBNet	22.75	133.6	59.80	37.6 (37.4)
NS-Single	24.90	250.5	-	26.5
NS-Best	20.80	214.8	-	26.0
VIBNet	15.08	203.1	73.80	25.9 (25.7)

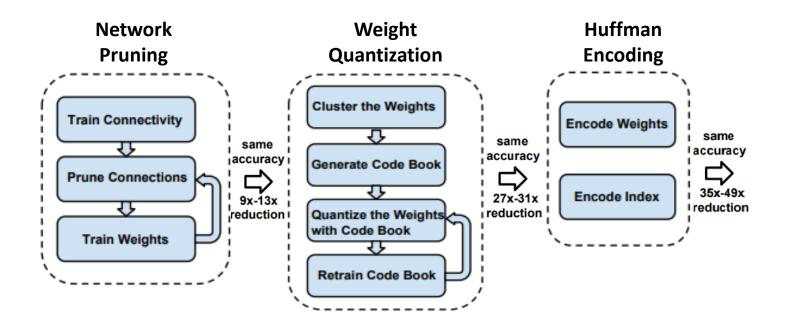
Table 4. Compression results on CIFAR100 using VGG-16.

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning


- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

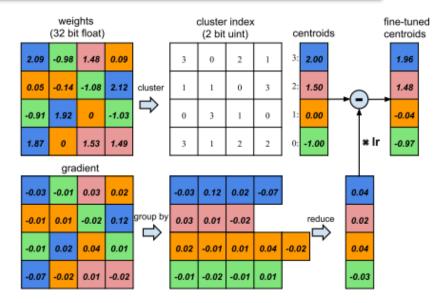
3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

- Quantizing weights can further compress the pruned networks
 - Weights are clustered into discrete values
 - The network is represented only with several centroid values
- Han et al. (2015): Pruning DNNs \Rightarrow 9x-13x reduction
- Han et al. (**2016**): Pruning + Quantization + Huffman ⇒ **35x-49x** reduction

- Quantizing weights can further compress the pruned networks
 - Weights are clustered into discrete values
 - The network is represented only with several centroid values
 - 1. Train a deep model until convergence

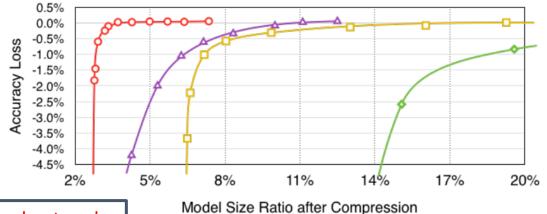

a

2. Find k clusters that minimizes within-cluster sum of squares (WCSS):

$$\operatorname{rgmin}_C \sum_{i=1}^k \sum_{w \in c_i} |w - c_i|^2$$

- **3.** Quantize with the cluster C via weight sharing
- 4. Fine-tune the network with the shared weights
- In the **fine-tuning** phase, gradients in each cluster are aggregated:

$$\frac{\partial \mathcal{L}}{\partial C_k} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \frac{\partial W_{ij}}{\partial C_k}$$
$$= \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \mathbf{1} (W_{ij} \in C_k)$$

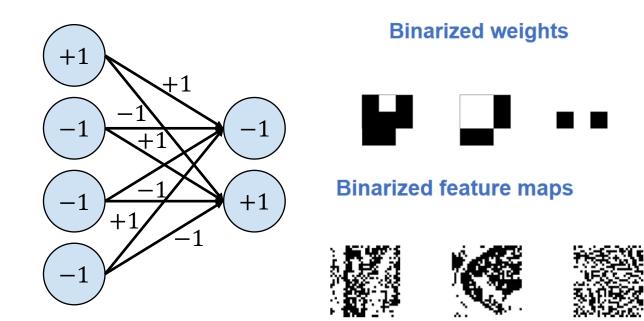


*source : Han et al., "Deep Compression - Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

• **Deep compression** reduces the model size significantly

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy (%)	Compressed Accuracy (%)
LeNet-300	1070КВ —	→ 27KB	40x	98.36 —	→ 98.42
LeNet-5	1720KB —	→ 44KB	39x	99.20 —	→ 99.26
AlexNet	240MB —	→ 6.9MB	35x	80.27 —	→ 80.30
VGGNet	550MB —	→ 11.3MB	49x	88.68 —	→ 89.09
GoogLeNet	28MB —	→ 2.8MB	10x	88.90 —	→ 88.92
SqueezeNet	4.8MB —	→ 0.47MB	10x	80.32 —	→ 80.35

Pruning + Quantization A Pruning Only O Quantization Only SVD

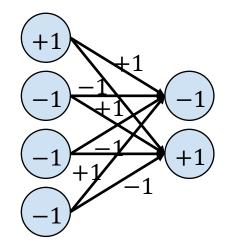


Next: Binarized neural networks

*source : Han et al., "Deep Compression - Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

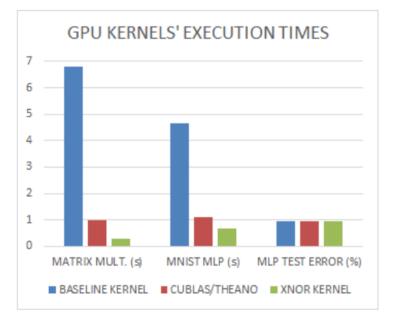
- Neural networks can be even **binarized** (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- Expensive **32-bit MAC** (Multiply-**AC**cumulate) ⇒ Cheap **1-bit XNOR-Count**
 - "MAC == XNOR-Count": when the weights and activations are ± 1

x # 1s in bits



Binarized Neural Networks [Hubara et al., 2016]

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by **stochastic gradient descent**
- **Binarization** $(W_r \rightarrow W_b)$ occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = sign(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_b}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!


$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \mathbf{1}_{|W_r| \le 1}$$
$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \mathbf{1}_{|a_r| \le 1}$$

- Cancelling gradients for better performance
 - When the value is too large

- Neural networks can be even **binarized** (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- BNN yields 32x less memory compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically
- 23x faster on kernel execution times
 - BNN allows us to use XNOR kernels
 - 3.4x faster than cuBLAS

Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1pJ
16bit Floating Point	1.1pJ	0.4pJ
32tbit Floating Point	3.7pJ	0.9pJ

- Neural networks can be even **binarized** (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- **BNN** achieves comparable error rates over existing DNNs

Data set	MNIST	SVHN	CIFAR-10		
Binarized activations+weights, during training and test					
BNN (Torch7)	1.40%	2.53%	10.15%		
BNN (Theano)	0.96%	2.80%	11.40%		
Committee Machines' Array (Baldassi et al., 2015)	1.35%	-	-		
Binarized weights, during training and test					
BinaryConnect (Courbariaux et al., 2015)	$1.29{\pm}~0.08\%$	2.30%	9.90%		
Binarized activations+weights, during test					
EBP (Cheng et al., 2015)	$2.2 \pm 0.1\%$	-	-		
Bitwise DNNs (Kim & Smaragdis, 2016)	1.33%	-	-		
Ternary weights, binary activations, during test					
(Hwang & Sung, 2014)	1.45%	-	-		
No binarization (standard results)					
Maxout Networks (Goodfellow et al.)	0.94%	2.47%	11.68%		
Network in Network (Lin et al.)	-	2.35%	10.41%		
Gated pooling (Lee et al., 2015)	-	1.69%	7.62%		

Table of Contents

1. Network Pruning and Re-wiring

- Optimal brain damage
- Pruning modern DNNs
- Dense-Sparse-Dense training flow

2. Sparse Network Learning

- Structured sparsity learning
- Sparsification via variational dropout
- Variational information bottleneck

3. Weight Quantization

- Deep compression
- Binarized neural networks

4. Summary

Summary

Broad economic viability requires energy efficient AI [Welling, 2018]

- "Energy efficiency of a brain is 100x better than current hardware"
- "AI algorithms will be measured by the amount of intelligence per kWh"
- Network pruning and re-wiring
 - A simple but effective way to compress DNNs
 - Allow us to find better optimum that the current training cannot

Sparse network learning

- Which training scheme will maximize the pruning performance?
- It has gained significant attention recently
- Various other techniques have been also proposed
 - Weight quantization
 - Anytime/adaptive networks [Huang et al., 2018]

• ..

• [LeCun, 1987] Lecun, Y. (1987). PhD thesis: Modeles connexionnistes de l'apprentissage (connectionist learning models).

Link: <u>https://nyuscholars.nyu.edu/en/publications/phd-thesis-modeles-connexionnistes-de-lapprentissage-connectionis</u>

- [LeCun et al., 1990] LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in neural information processing systems (pp. 598-605). Link: <u>http://papers.nips.cc/paper/250-optimal-brain-damage.pdf</u>
- [Bengio et al., 2013] Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432. Link: <u>https://arxiv.org/abs/1308.3432</u>
- [Denil et al., 2013] Denil, M., Shakibi, B., Dinh, L., & De Freitas, N. (2013). Predicting parameters in deep learning. In Advances in neural information processing systems (pp. 2148-2156). Link: <u>http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning</u>
- [Kingma & Welling, 2013] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*. Link: <u>https://arxiv.org/abs/1312.6114</u>
- [Han et al., 2015] Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances in neural information processing systems (pp. 1135-1143). Link: <u>http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network</u>
- [Kingma et al., 2015] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems (pp. 2575-2583). Link: <u>http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick</u>

References

- [Leisman et al., 2015] Leisman, G., Mualem, R., & Mughrabi, S. K. (2015). The neurological development of the child with the educational enrichment in mind. Psicología Educativa, 21(2), 79-96. Link: <u>https://www.sciencedirect.com/science/article/pii/S1135755X15000226</u>
- [Tishby & Zaslavsky, 2015] Tishby, N., & Zaslavsky, N. (2015, April). Deep learning and the information bottleneck principle. In Information Theory Workshop (ITW), 2015 IEEE (pp. 1-5). IEEE. Link: <u>https://ieeexplore.ieee.org/abstract/document/7133169</u>
- [Han et al., 2016] Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In International Conference on Learning Representations. Link: <u>https://arxiv.org/abs/1510.00149</u>
- [Hu et al., 2016] Hu, H., Peng, R., Tai, Y. W., & Tang, C. K. (2016). Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250. Link: <u>https://arxiv.org/abs/1607.03250</u>
- [Hubara et al., 2016] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In Advances in neural information processing systems (pp. 4107-4115). Link: <u>http://papers.nips.cc/paper/6573-binarized-neural-networks</u>
- [Molchanov et al., 2016] Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440. Link: <u>https://arxiv.org/abs/1611.06440</u>
- [Wen et al., 2016] Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural networks. In Advances in Neural Information Processing Systems (pp. 2074-2082). Link: <u>http://papers.nips.cc/paper/6503-learning-structured-sparsity-in-deep-neural-networks</u>
- [Han et al., 2017] Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S., ... & Catanzaro, B. (2017). Dsd: Densesparse-dense training for deep neural networks. In International Conference on Learning Representations. Link: <u>https://openreview.net/forum?id=HyoST_9xl</u>

References

- [Luo et al., 2017] Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the IEEE International Conference on Computer Vision (pp. 5058-5066). Link: http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet_A_Filter_ICCV_2017_paper.html
- [Molchanov et al., 2017] Molchanov, D., Ashukha, A. & Vetrov, D.. (2017). Variational Dropout Sparsifies Deep ٠ Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:2498-2507 Link: http://proceedings.mlr.press/v70/molchanov17a.html
- [Dai et al., 2018] Dai, B., Zhu, C., Guo, B. & Wipf, D.. (2018). Compressing Neural Networks using the Variational ٠ Information Bottleneck. Proceedings of the 35th International Conference on Machine Learning, in PMLR 80:1135-1144

Link: http://proceedings.mlr.press/v80/dai18d.html

- [Huang et al., 2018] Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., & Weinberger, K. Q. (2018). Multi-scale dense networks for resource efficient image classification. In International Conference on Learning Representations Link: https://openreview.net/forum?id=Hk2aImxAb
- [Mittal et al., 2018] Mittal, D., Bhardwaj, S., Khapra, M. M., & Ravindran, B. (2018, March). Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 848-857). IEEE. Link: https://www.computer.org/csdl/proceedings/wacv/2018/4886/00/488601a848-abs.html
- [Welling, 2018] Welling, M. (2018). Intelligence per Kilowatthour. Link: https://icml.cc/Conferences/2018/Schedule?showEvent=1866