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• Deploying deep neural networks (DNNs) has been increasingly difficult
• Constraints on power consumption, memory usage, inference overhead, …

• Inference with a large-scale network consumes huge costs

• In mobile apps, such issues become more serious
• “The dreaded 100MB effect”

• Can we make DNNs to perform inferences more efficiently?

Deploying Deep Neural Networks in Real-World

2*source: https://www.recode.net/2016/10/4/13151432/app-size-calculator-bloat-experiment-developers-segment
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• DNNs include a significant number of redundant parameters
• Denil et al. (2013): Predicting > 95% of weights from < 5% 

• A simple kernel ridge regression is sufficient

• … without any drop in accuracy!

• Many of the weights need not be learned at all

• Such redundancy can be exploited via network pruning

Redundancies in Deep Neural Networks [Denil et al., 2013]

5*source: Denil et al., “Predicting Parameters in Deep Learning”, NIPS 2013

(a) Original weights

(b) Randomly selected

(c) Predicted from (b)
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• Determining low-saliency parameters, given a pre-trained network
• Follows the framework proposed by LeCun et al. (1990):

• Defining which connection is unimportant can vary
• Weight magnitudes (!", !#, …)
• Mean activation [Molchanov et al., 2016]
• Avg. % of Zeros (APoZ) [Hu et al., 2016]
• Low entropy activation [Luo et al., 2017]
• …

Network Pruning

6*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990

1. Train a deep model until convergence
2. Delete “unimportant” connections w.r.t. a certain criteria
3. Re-train the network
4. Iterate to step 2, or stop
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• Human brains are also using pruning schemes as well

• Synaptic pruning removes redundant synapses in the brain during lifetime

Synaptic Pruning in Human Brain

7

At birth 6 years old 14 years old

*source: Leisman et al., “The neurological development of the child 
with the educational enrichment in mind.”, Psicología Educativa 2015

Next: OBD
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• Network pruning perturbs weights ! by zeroing some of them

• How the loss " would be changed when ! is perturbed?

• OBD approximates " by the 2nd order Taylor series:

• Problem: Computing                                   is usually intractable

• Requires # $% on # weights

• Neural networks usually have enormous number of weights
- e.g. AlexNet: 60M parameters ⇒' consists ≈ ). +×-.-/ elements

Optimal Brain Damage (OBD) [LeCun et al., 1990]

8*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990
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• Problem: Computing                                   is usually intractable

• Two additional assumptions for tractability

1. Diagonal approximation: 

2. Extremal assumption: 
• ! would be in a local minima if it’s pre-trained

• Now we get: 

• It only needs

• "#$% & can be computed in ' ( , allowing a backprop-like algorithm
• For details, see [LeCun et al., 1987]

Optimal Brain Damage (OBD) [LeCun et al., 1990]

9*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990
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• How the loss ! would be changed when " is perturbed?

• The saliency for each weight ⇒

• OBD shows robustness on pruning compared to magnitude-based deletion
• After re-training, the original test accuracy is recovered

Optimal Brain Damage (OBD) [LeCun et al., 1990]

10*source: LeCun et al., “Optimal Brain Damage”, NIPS 1990

Next: Pruning modern DNNs

w/o re-training

w/ re-training
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• Han et al. (2015): Pruning larger DNNs

• LeNet, AlexNet, VGG-16, … on ImageNet

• Highlights the practical efficiency of pruning

• OBD introduces extra computation on larger models

• It requires an additional, separated backward pass

• The simple magnitude-based pruning works very well
as long as the network is re-trained

Pruning Modern DNNs [Han et al., 2015]

11

Comparison with other model reduction methods on AlexNet

*source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015
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• Han et al. (2015): Pruning larger DNNs
• Highlights the practical efficiency of pruning

• The magnitude-based pruning works well as long as the network is re-trained

• Network pruning detects visual attention regions

Pruning Modern DNNs [Han et al., 2015]

12

Edge parts of MNIST images

*source: Han et al., “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015
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• The magnitude-based pruning works well as long as the network is re-trained

• Mittal et al. (2018): In fact, pruning criteria are not that important
• … as long as the re-training phase exists

• Many strategies cannot even beat random pruning after fine-tuning

• The compressibility of DNNs are NOT due to the specific criterion 
• … but due to the inherent plasticity of DNNs

Pruning Modern DNNs

13

Next: Dense-Sparse-Dense
*source: Mittal et al., “Recovering from Random Pruning: On the 
Plasticity of Deep Convolutional Neural Networks”, WACV 2018
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• Network pruning preserves accuracy of the original network

• Han et al. (2017): Re-wiring the pruned connections improves DNNs further
• “Dense-Sparse-Dense” training flow

Network Re-wiring: Dense-Sparse-Dense Training Flow

14*source: Han et al., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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• Network pruning preserves accuracy of the original network

• Han et al. (2017): Re-wiring the pruned connections improves DNNs further

• “Dense-Sparse-Dense” training flow

• Pruning discovers better optimum that the current training cannot find

Network Re-wiring: Dense-Sparse-Dense Training Flow

15*source: Han et al., “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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• The performance of pruning depends on the initial training scheme
• e.g. Which regularization to use: !" or !#?

• Which training scheme will maximize the pruning performance?
• We still don’t know about the optimal points of a DNN 

• One prominent way: Sparse network learning
• Inducing to a sparse solution from training a network
• Weights with value 0 can safely be removed ⇒ it does not require re-training 

• Example: !#-regularization

Sparse Network Learning

17
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• “Un-structured” weight-level pruning may not engage a practical speed-up
• Despite of extremely high sparsity, actual speed-ups in GPU is limited

Structured Sparsity Learning [Wen et al., 2016]

18

Speed-up ratio of weight-level pruning

*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016
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• Structured sparsity can be induced by adding group-lasso regularization

• Filter-wise and channel-wise: 

• Shape-wise sparsity: 

• Depth-wise sparsity (applicable only for ResNet):

Structured Sparsity Learning [Wen et al., 2016]

19*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016

# filters # channels

# groups

width height
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• Structured sparsity can be induced by adding group-lasso regularization

• Filter-wise and channel-wise: 

Structured Sparsity Learning [Wen et al., 2016]

20*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016

# filters # channels
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• Structured sparsity can be induced by adding group-lasso regularization

• Shape-wise sparsity:

Structured Sparsity Learning [Wen et al., 2016]

21*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016

width height
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• Structured sparsity can be induced by adding group-lasso regularization

• Depth-wise sparsity:

Structured Sparsity Learning [Wen et al., 2016]

22

Next: Sparsification via variational dropout
*source: Wen et al., “Learning structured sparsity in deep neural networks.” NIPS 2016
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• Variational dropout (VD) allows to learn the dropout rates separately

• Unlike dropout, VD imposes noises on weights !:

• A Bayesian generalization of Gaussian dropout [Srivastava et al., 2014]
• is adapted to data in Bayesian sense by optimizing " and !

• Re-parametrization trick allows # to be learned via minibatch-based gradient 
estimation methods [Kingma & Welling, 2013]
• " and ! can be optimized separated from noises

Recall: Variational Dropout [Kingma et al., 2015]

23*source : Kingma et al., “Variational dropout and the local reparametrization trick”, NIPS 2015
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• VD imposes noises on weights !:

• The original VD set a constraint for technical reasons
• It corresponds to                in binary dropout

Q. What if              ? What happens when                 ?
•
• will be completely random as 

• Such       will corrupt the expected log likelihood

• … except that               as well! 

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

24*source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017
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Q. What if              ? What happens when                 ?
• It will corrupt the expected log likelihood except that                as well

• Molchanov et al. (2017): Extending VD for               ⇒ Super sparse solutions
• Weights with                    are pruned away during training

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

25*source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017
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Q. What if              ? What happens when                 ?
• It will corrupt the expected log likelihood except that                as well

• Molchanov et al. (2017): Extending VD for               ⇒ Super sparse solutions
• Weights with                    are pruned away during training

Variational Dropout Sparsifies DNNs [Molchanov et al., 2017]

26

Next: Variational information bottleneck

[Han et al., 2015]

[Han et al., 2015]

*source : Molchanov et al., “Variational Dropout Sparsifies Deep Neural Networks”, ICML 2017
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• Motivation: Markov chain interpretation of DNN [Tishby & Zaslavsky, 2015]

1. Maximize !(#$; &) for high-accuracy prediction
2. Minimize !(#$; #$()) for compression ⇒ “information bottleneck”

• Layer-wise losses become:

Variational Information Bottleneck [Dai et al., 2018]

27

The relative strength of bottleneck

Approximate
via tractable

Mutual information

*source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018
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• Layer-wise losses become
• Problem: Computing            is usually intractable
• Instead, we minimize variational upper bound of it

• Variational Information Bottleneck (VIB) model

Variational Information Bottleneck [Dai et al., 2018]

28

variational approx. of !(#$) variational approx. of !(&|#()
)*+,-./0*1,21+33.1/

for classification
for regression

4Reparametrization trick 
[Kingma & Welling, 2013]

*source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018
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• We minimize variational upper bound of 

• Final variational objective function (VIBNet):

• Pruning criteria:

• Neurons with low value of       ’s are pruned after training

Variational Information Bottleneck [Dai et al., 2018]

29

!Reparametrization trick 
[Kingma & Welling, 2013]

# layers

*source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018
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• VIBNet outperforms various methods by large margins
• !"(%): ratio of # parameters
• !#(%): ratio of memory footprint

Variational Information Bottleneck [Dai et al., 2018]

30

Epoch Epoch

*source : Dai et al., “Compressing Neural Networks using the Variational Information Bottleneck”, ICML 2018

After fine-tuning
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• Quantizing weights can further compress the pruned networks
• Weights are clustered into discrete values
• The network is represented only with several centroid values

• Han et al. (2015): Pruning DNNs ⇒ 9x-13x reduction

• Han et al. (2016): Pruning + Quantization + Huffman ⇒ 35x-49x reduction

Deep Compression [Han et al., 2016] 

32

Network 
Pruning

Weight 
Quantization

Huffman
Encoding

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks 
with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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• Quantizing weights can further compress the pruned networks
• Weights are clustered into discrete values
• The network is represented only with several centroid values

• In the fine-tuning phase, gradients
in each cluster are aggregated:

Deep Compression [Han et al., 2016] 

33

1. Train a deep model until convergence
2. Find ! clusters that minimizes within-cluster sum of squares (WCSS):

3. Quantize with the cluster      via weight sharing 
4. Fine-tune the network with the shared weights

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks 
with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Network Original Size 
Compressed 

Size 

Compression 

Ratio 

Original 

Accuracy (%)

Compressed 

Accuracy (%)

Deep Compression [Han et al., 2016] 

34

LeNet-300 1070KB 27KB 40x 98.36 98.42

LeNet-5 1720KB 44KB 39x 99.20 99.26

AlexNet 240MB 6.9MB 35x 80.27 80.30

VGGNet 550MB 11.3MB 49x 88.68 89.09

GoogLeNet 28MB 2.8MB 10x 88.90 88.92

SqueezeNet 4.8MB 0.47MB 10x 80.32 80.35

• Deep compression reduces the model size significantly

*source : Han et al., “Deep Compression - Compressing Deep Neural Networks 
with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Next: Binarized neural networks
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Binarized Neural Networks [Hubara et al., 2016]

35

• Neural networks can be even binarized (+1 or -1)
• DNNs trained to use binary weights and binary activations

• Expensive 32-bit MAC (Multiply-ACcumulate) ⇒ Cheap 1-bit XNOR-Count
• “MAC == XNOR-Count”: when the weights and activations are ±1

+1

+1

+1

+1

+1−1

−1

−1

−1

−1
−1

−1

*source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016

# 1s in bits
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Binarized Neural Networks [Hubara et al., 2016]

36

• Idea: Training real-valued nets (!") treating binarization (!#) as noise
• Training !" is done by stochastic gradient descent

• Binarization (!" → !#) occurs for each forward propagation
• On each of weights: 
• … also on each activation:  

• Gradients for !" is estimated from          [Bengio et al., 2013]
• “Straight-through estimator”: Ignore the binarization during backward!

• Cancelling gradients for better performance
• When the value is too large

+1

+1

+1

+1

+1−1

−1

−1

−1

−1
−1

−1

*source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016
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Binarized Neural Networks [Hubara et al., 2016]

37

• Neural networks can be even binarized (+1 or -1)
• DNNs trained to use binary weights and binary activations

• BNN yields 32x less memory compared to the baseline 32-bit DNNs
• … also expected to reduce energy consumption drastically

• 23x faster on kernel execution times
• BNN allows us to use XNOR kernels
• 3.4x faster than cuBLAS

*source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016
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Binarized Neural Networks [Hubara et al., 2016]

38

• Neural networks can be even binarized (+1 or -1)
• DNNs trained to use binary weights and binary activations

• BNN achieves comparable error rates over existing DNNs

*source : Hubara et al., “Binarized Neural Networks ”, NIPS 2016
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• Broad economic viability requires energy efficient AI [Welling, 2018]
• “Energy efficiency of a brain is 100x better than current hardware”

• “AI algorithms will be measured by the amount of intelligence per kWh”

• Network pruning and re-wiring
• A simple but effective way to compress DNNs

• Allow us to find better optimum that the current training cannot

• Sparse network learning
• Which training scheme will maximize the pruning performance?

• It has gained significant attention recently

• Various other techniques have been also proposed
• Weight quantization
• Anytime/adaptive networks [Huang et al., 2018]
• … 

Summary

40
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