Algorithmic Intelligence Lab

Transfer and Continual Learning

Al602: Recent Advances in Deep Learning
Lecture 8

Slide made by

Sihyun Yu, Hyuntak Cha, Hankook Lee, Sangwoo Mo
KAIST Graduate School of Al

Table of Contents

1. Introduction
* Limited training samples in real-world applications
* What is transfer learning?
* Overview of various scenarios of transfer learning

2. Transfer Learning Methods
* Fine-tuning
* Domain adaptation
* Matching outputs or intermediate features

3. Multi-task Learning
e Sharing architectures
* Loss balancing

4. Continual Learning
* Regularization-based approaches
* Replay-based approaches
* Expansion-based approaches

Table of Contents

1. Introduction
* Limited training samples in real-world applications

* What is transfer learning?
* Overview of various scenarios of transfer learning

Algorithmic Intelligence Lab

Limited Training Samples in Real-world Applications

* Deep learning suffers from a lack of training samples

* Deep learning shows remarkable success in various fields of artificial intelligence
(e.g., object classification, machine translation)

* But, use (VERY) large labeled dataset

Open Images Dataset Vo +
Extensions

* Collecting some annotations is too hard/expensive
* E.g., segmentation labels, bounding boxes, medical data

* For a new task, only few samples are available

* Transfer learning aims to transfer the knowledge @
from source to target domains & tasks

!
o

Algorithmic Intelligence Lab * source: https://storage.googleapis.com/openimages/web/index.html, [Pan et al., 2010] 4

https://storage.googleapis.com/openimages/web/index.html

Transfer Learning in Artificial Intelligence

Robots learns skills and transfers that knowledge to other robots
have different kinematics

C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-Step Manipulation
h. IEEE ICRA2017.

2) Execution of four
learned tasks with the
Optimus robot.

Speech recognition: Learn from specific languages/accents transfer
to learn different languages/accents

<=

Algorithmic Intelligence Lab

Simulated robots learn new movements from get
transfer from previous learned task

(Top): from forward movements, learn backward
move

(Bottom): learn faster movements from slow
movements

* source: https://www.youtube.com/watch?v=_tlc_IrEH1k 5

Domains & Tasks

« DomainD ={X,P(X)}
* With a feature space X and a marginal probability distribution P(X) for X € X
* E.g., X is natural or cartoon image spaces / P(X) is dog or cat distribution

* Task 7T ={YV,P(Y|X)}
* With a label space) and a conditional probability distribution P(Y'|X) for Y €
* E.g., Visdigit (0, 1, ...) or animal (dog, cat, ...) spaces

Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Algorithmic Intelligence Lab 6

What is Transfer Learning?

* Definition of transfer learning [Pan et al., 2010]

* Given a source domain Dg and learning task 7g, and a target domain D7 and
learning task 71

* Transfer learning aims to improve the learning of the target predictive function f1(+)
using the knowledge in Ds and 7s where Dg # Dr or Ts # Tr

No

Ysand Vr are obs@

Yes Y(V w‘o
“Traditional” Transductive Inductive Unsupervised
Machine Learning Transfer Learning Transfer Learning Transfer Learning

Knowledge Domain Multi-task
Distillation Adaptation Learning
Semi-supervised Continual

Learning Learning

What is Transfer Learning?

* Definition of transfer learning [Pan et al., 2010]

* Given a source domain Dg and learning task 7g, and a target domain D7 and
learning task 71

* Transfer learning aims to improve the learning of the target predictive function f1(+)
using the knowledge in Ds and 7s where Dg # Dr or Ts # Tr

No

Ysand Vr are obs@

Yes Y(iy w‘o
“Traditional” Transductive Inductive Unsupervised
Machine Learning Transfer Learning Transfer Learning Transfer Learning
Knowledge Domain Multi-task We covered here

Distillation Adaptation Learning at last lecture!
Continual (self-supervised

Semi-supervised .
Learning Learning learning)

Type I: Same Tasks and Same Domain

* When tasks and domains are same, usually one can transfer knowledge for
* Making target model that are smaller (model compression)
* But, perform better than scratch learning
* Using the knowledge transferred from the source model

* Knowledge distillation

* Make a target model mimic the source model
* Make outputs (or features) similar
* Since tasks and domains are same, following a source/reference model is useful

, : = Person recognition

v\ <\ L (e.g., John, Aaron, Adam, Will, John)
, ae Person recognition

m /G N 1 (e.g., John, Aaron, Adam, Will, John)

Ds = Dr Ts =Tr

Algorithmic Intelligence Lab

Type ll: Same Tasks, but Different Domains (Transductive Transfer Learning)

* Labels to predict are same but input data samples are different

* Since tasks are same, by learning the features invariant to source and target
domains, a target model can perform well

* In many cases, target domain datasets do not have sufficient labels

* By learning domain invariant features, source model’s representations could be used for
target domain

 Domain adaptation

* Learn representations that confuse source and target domain inputs
* Learn target representations that are similar to source domain

7 “EEEA : = 0-9 digits classification
B o4) — ° (eg,6,2,38,1,0)
: \ ‘ 0-9 digits classification

Ds # Dr Ts =Tt

Algorithmic Intelligence Lab 10

Type lll: Different Tasks (Inductive/Unsupervised Transfer Learning)

» Different tasks: different labels to predict

* When tasks are different, feature extractors and output layers are need to be
adjusted a lot for new tasks

* Multi-task learning/fine-tuning are used to learn appropriate representations for
target tasks from the source model’s representations

* Continual learning learns appropriate representations for target tasks without
losing ones for past tasks.

(8.2 Be)
(5.2 Ble

Ds = Dr

— Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Ts # Tr

Scene classification
(e.g., elevator, gas station, castle,
cafeteria, cabin)

Object classification
(e.g., car, airplane, panda, lion, guitar)

Ts # Tr

Algorithmic Intelligence Lab 11

Table of Contents

2. Transfer Learning Methods
* Fine-tuning

Algorithmic Intelligence Lab

12

Fine-tuning Approach

e Convolutional layers are viewed as a feature extractor.
* Lower convolutional layers capture low-level features. e.g. edges
* Higher convolutional layers capture more complex, high-level features. e.g. eyes

1
|

| SFClabels |

3 | REPRESENTATION |

-~ Cl1: M2: G3: L4: L5z L6:
Calista Flockhart 0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16X5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

* A source model pre-trained by a large dataset, e.g., ImageNet, is well-generalized,
so one can expect it as a good feature extractor or parameter initialization.

* To avoid overfitting, one can often freeze convolutional layers for small target datasets.
* Can transfer to different domains and tasks
* But, same architectures (at least for feature extraction part)

Algorithmic Intelligence Lab * source: [Yaniv et al., 2014] 13

Fine-tuning Approach

(a) Train large model on ImageNet (b) Using pre-trained weights (c) Fine-tuning the weights
as initial parameter of target for new task

model
ImageNet
Pre-trained o Target task Target task
model Weight model
(€.g- ResNet) BTTNEIPEVIoN

Public spaces
nry Mw\ul hﬂry m church

3

lozhowu ﬁ

Target task dataset

ImageNet

e Assumptions for fine-tuning approaches

* Features/Parameters learned from some task are useful for another tasks
* True in many artificial intelligence tasks (e.g. lower-level features of images such as edge)

 When do they fail to work
* When dataset of source and target tasks are very different
* When target tasks have no (or very small) labeled training data

Algorithmic Intelligence Lab 14

Fine-Tuning with Increasing Target Model Capacity

* Increasing the target model capacity in various ways [Wang et al., 2017]
e Channel-wise, depth-wise, (channel+depth)-wise
* Using the pre-trained weights for all the layers except newly augmented layers/channels

* Fine-tuning with target tasks

* Main idea at a high level

* Using the pre-trained weight of source model to initialize the target model
* Increase the capacity of target model in depth/channel-wise

Target task labels
I

Target task
g g FeEETT T T -
SUN C1-C2-C3-C4-C5 4—) FC8 —> Softmax @
i I I
i,, i

Abbey

t‘ Deeper Developmental Transfer }
Source task

Goldfish

Classifier module

— t‘ Wider Developmental Transfer 'W
arget tas

Representation module

— = - == !ii! Abbey
FC8 —> Softmax t

Algorithmic Intelligence Lab

Novel task (] [- ' |, Novel task o Augme.nted
image ground truth 0] Pre-trained
Classifier
(a) Classic Fine-Tuning

Novel task @ [|_, Novel task
Novel task |_, Novel task image ground truth
image ground truth

(b) Depth Augmented Network (c) Width Augmented Network
(DA-CNN) (WA-CNN)

Novel task] (1 Novel task Novel task Novel task
image ground truth image ground truth

(d) Jointly Depth and Width Aug- (¢) Recursively Width Aug-
mented Network (DWA-CNN) mented Network (WWA-CNN)

* source: [Wang et al., 2017] 15

Experimental Results

e Evaluated on MIT-67, 102 Flowers, CUB200-2011, Stanford-40 with ImageNet
pre-trained AlexNet

e Outperform most of task customized CNN or other multi-task learning methods

e Drawbacks:
* Did not apply on architecture like ResNet (model without fully-connected layers)

* Only augment the layers for fully-connected layers

. MIT-67 102 Flowers CUB200-2011 Stanford-40
Typ Approach Acc(%) | Approach Acc(%) | Approach Acc(%) | Approach Acc(%)
Finetuning-CNN 61.2 |Finetuning-CNN 75.3 |Finetuning-CNN 62.9 |Finetuning-CNN 57.7
ImageNet CNNs Caffe [53] 59.5 |CNN-SVM [32] 74.7 |CNN-SVM [32] 53.3 |Deep Standard [4] 58.9
— — |CNNaug-SVM [32] 86.8 |CNNaug-SVM [32]| 61.8 |— —
Caffe-DAG [53] 64.6 |LSVM [30] 87.1 |LSVM [30] 61.4 |Deep Optimized [4] 66.4
Task Customized — — |MsML+ [30] 89.5 |DeCaf+DPD [7] 65.0 |— —
CNNs Places-CNN [59] 68.2 |MPP [55] 91.3 |MsML+ [30] 66.6 |— —
— — |Deep Optimized [4] 91.3 |MsML+* [30] 679 |— —
Data Augmented CNNs|Combined-AlexNet [18]| 58.8 |Combined-AlexNet [18]| 83.3 |— — |Combined-AlexNet [18]| 56.4
. Joint [22] 639 |— — |Joint [22] 56.6 |— —
Mniti-Task CNNa LwF [22] 645 |— — |LwF[22] 577 |— —
| Ours WA-CNN 66.3 |WA-CNN 92.8 |WA-CNN 69.0 |WA-CNN 67.5 |
Algorithmic Intelligence Lab 16

Experimental Results

* Normalization and scaling activations are important for the performance

improvement

e Reconcile the learning pace of the new and pre-existing units
* Normalization and scaling is more crucial in Width-augmented CNN (WA-CNN)
* Without normalization and scaling, marginally better or worse than fine-tuning method

h¥ = yh*/ [[R*]],

Scaling ’ ‘ Normalization

=3

WA-CNN DA-CNN

- Pre-trained units
- New units

Algorithmic Intelligence Lab

Method Scaling New FCy-new FCg-new All
Fine-tuning CNN § 5363 5475 5429 55.03
wio tand) | 53.82 5647 5625 57.21
DA-CNN w/ 5351 5615 5714 58.07
wio cand) | 53.78 54.66 4972 5134
WA-CNN | wlo (copy+rand) | 53.62 5435 5370 5531
w/ 5681 56.99 57.84 58.95

Performance on SUN-397 dataset by changing the fine-tuning layers
from only new layer to all the layers
w/o (rand): new units are randomly initialized
w/o (copy+rand): initialize by copying FC,, and add random noise
w/: with normalization and scaling

17

Using Pre-Training Can Improve Model Robustness and Uncertainty

* Pre-training also improves other tasks such as robustness and uncertainty

* Considered various scenarios such as label corruption, class imbalance, out-of-
distribution detection, etc.

Using pre-trained weights Train from scratch

Train on ImageNet Train on CIFAR-10&100 CIFAR-10&100

ImageNet

Pre-trained Random init

Pre-trained o
model Weight model model

(G-I hitialization

Better
robustness & uncertainty

Algorithmic Intelligence Lab 18

Using Pre-Training Can Improve Model Robustness and Uncertainty

* Label corruption: when mis-labeled sample existed in train data

CIFAR-10 CIFAR-100
Normal Training | Pre-Training |[Normal Training] Pre-Training
No Correction 28.7 15.9 554 39.1
Forward Correction 25.5 15.7 52.6 42.8
GLC (5% Trusted) 14.0 7.2 46.8 33.7
GLC (10% Trusted) 11.5 6.4 38.9 28.4
e Class imbalance: when labels are imbalanced
Dataset Imbalance Ratio 0.2 04 0.6 0.8 1.0 1.5 2.0
Method Total Test Error Rate / Minority Test Error Rate (%)
o Normal Training 23.7/260 21.8/265 21.1/25.8 20.3/247 20.0/24.5 18.3/23.1 15.8/20.2
; Cost Sensitive 22.6/249 21.8/262 21.1/25.7 202/243 202/24.6 18.1/229 16.0/20.1
< Oversampling 21.0/23.1 194/23.6 19.0/23.2 18.2/222 183/224 17.3/22.2 153/19.8
% SMOTE 19.7/21.7 19.7/240 19.2/234 19.2/234 18.1/22.1 17.2/22.1 15.7/20.4
|Pre—Trainin§_,y 8.0/8.8 79795 7.6/9.2 8.0/9.7 7.4/9.1 7.41719.5 72/9.4 |
= Normal Training 69.7/72.0 66.6/70.5 63.2/69.2 58.7/65.1 572/644 50.2/59.7 47.0/57.1
— Cost Sensitive 67.6/70.6 66.5/70.4 622/68.1 60.5/66.9 57.1/64.0 50.6/59.6 46.5/56.7
Eé Oversampling 62.4/662 59.7/63.8 59.2/655 553/61.7 546/622 49.4/59.0 46.6/56.9
= SMOTE 57.4/61.0 562/603 544/60.2 52.8/59.7 513/584 485/57.9 458/56.3
© Pre-Training 37.8/41.8 36.9/413 36.2/41.7 36.4/423 349/41.5 34.0/419 33.5/42.2

* Out-of-distribution detection: detecting unseen samples in the test set

AUROC AUPR
Normal |Pre-Train| Normal |Pre-Train
CIFAR-10 91.5 94.5 63.4 73.5
CIFAR-100 69.4 83.1 29.7 52.7
Tiny ImageNet 71.8 73.9 30.8 31.0

Algorithmic Intelligence Lab * source: [Hendrycks et al., 2019] 19

Big Transfer (BiT): General Visual Representation Learning

* With a very large dataset, “general visual representation” can be learned
* Authors pre-trained a classifier with JTF-300M dataset (or ImageNet-21K)

* Shows remarkable success on various dataset
* Even with only a few label! (common failure case)
* Generalist SOTA: pre-trained independently of the final task

BiT-L Generalist SOTA
ILSVRC-2012 87.54 + 0.02 86.4 [57]
CIFAR-10 99.37 + 0.06 99.0 [19]
CIFAR-100 93.51 + 0.08 91.7 [55]
Pets 96.62 + 0.23 95.9 [19]
Flowers 99.63 + 0.03 98.8 [55]
VTAB (19 tasks) 76.29 + 1.70 70.5 [58]

B BiT-L (Ours) B Generalist SOTA B Baseline (ILSVRC-2012)

ILSVRC-2012 CIFAR-10 CIFAR-100 Pets Flowers

100 -
95 _ 80_
90-
90 - 60 -
85 - 40 - 80+
i 1

1 1
of labels ~ w9

()]
O

Accuracy [%]

H
O

I
=]
[F=

100 -
full -
full -
1-
13
25 -
10 -
full -
full -

I
= = = .—c n =
3 3 3 3
[“—

Algorithmic Intelligence Lab * source: [Kolesnikov, Beyer and Zhai et al.,2020] 20

Table of Contents

2. Transfer Learning Methods

* Domain adaptation

Algorithmic Intelligence Lab

21

General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [s T
TARGET ‘1 8 ? SI kv
1 12\

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:
* Source/target feature matching: Make features of X and X be similar

Algorithmic Intelligence Lab *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 22

Domain adversarial neural network (DANN)

* Goal: Make features of source data X and target data Xt be similar

* lIdea: Train discriminator D which classifies domain label, and adversarially train
network to fool discriminator fail to distinguish source/target feature

* To this end, gradient from domain classifier is reversely applied for the network

oL,

50, Closs L,
|f‘> E class label y
J

Y
label predictor Gy (-;6,)

domain classifier G4(-;6,)

A
4 \

-~

J soanyeaj

feature extractor G¢(-;60y)

0 a7
0,

forwardprop backprop (and produced derivatives)

|:> Q) domain label d

Algorithmic Intelligence Lab

23

Adversarial discriminative domain adaptation (ADDA)

* Goal: Make features of source data X and target data Xt be similar
* |Instead, one can alternatively update discriminator, similar to GAN scheme
* Also, one can train separate feature extractors for source/target domain

Pre-training _Adversarial Adaptation Testing

source images

source images
+ labels

=

targetimage ~.__

. ! S
domain ! Target ! class
: CNN !

target images label VoL label
Target e -
CNN
, .

* Itis less stable for train, but shows better performance than gradient reversal

class
label

Classifier

ittty |

\ [V

OO0

VZ 5

W2 0o !

\ o 4

.._I_;
—==Y--
1
1

Discriminator
Classifier

MNIST — USPS USPS — MNIST SVHN — MINIST
Method /1712E8 | OIS) IO0ISES /| 7| > REED? MBS /1712
Source only 0.752 £ 0.016 0.571 £0.017 0.601 £0.011
Gradient reversal 0.771 £0.018 0.730 £ 0.020 0.739 [16]
Domain confusion 0.791 &+ 0.005 0.665 £ 0.033 0.681 = 0.003
CoGAN 0.912 + 0.008 0.891 + 0.008 did not converge
ADDA (Ours) 0.894 4 0.002 0.901 4 0.008 0.760 £ 0.018

Algorithmic Intelligence Lab

24

Domain Separation Network (DSN)

* Motivation: Is it rational to exactly match features for source/target data?
* |dea: Consider style of each domain in addition to the shared content
« To this end, train shared content encoder E and private style encoders E, EX
» Classifier ignores styles but only use shared content as an input

Pr::tte Tig.%w_ei%’i). h—;} _______ : /Shared_Decoder: D(E.(x) + E,,(x))\
~ E Lai :rence — | = = %t |-~ £recon
Shared Encoder F5,.(X) — U @ @ . -
o _,@_,@ﬁhz.: - I B
T {H-o-@-] ==
S :])
«° A@H@Hh_z: ::::::1 — 7
' G :rence Classifier G(E.(x"))
Private Source Encoder £, (x") w G ¥
| -2 -
<951
{ L
Model MNIST to | Synth Digits to | SVHN to | Synth Signs to
MNIST-M | SVHN MNIST GTSRB
| Source-only | 56.6 (52.2) | 86.7 (86.7) | 59.2(54.9) | 85.1(79.0) \
CORAL [26] 57.7 85.2 63.1 86.9
MMD (29, 17] 76.9 88.0 71.1 91.1
DANN (8] 77.4 (76.6) | 90.3 (91.0) 70.7 (73.8) | 92.9 (88.6)
DSN w/ MMD (ours) | 80.5 88.5 72.2 92.6
DSN w/ DANN (ours) | 83.2 91.2 82.7 93.1
| Target-only | 98.7 | 924 | 99.5 | 99.8 |

Algorithmic Intelligence Lab

Residual Transfer Network (RTN)

* Motivation: Is it rational to exactly match classifiers for source/target data?

* Idea: Define source classifier as a residual function of target classifier

X

Xarge fs(x) = fr(z) + Af(x)

l —— l IAf(2)|| < |fr(z)] = |fs(z)]

(i.e. AlexNet, ResNet, etc.)

e S * To ensure that f; learns structure of target domain, minimize
=2 Layer entropy for target data, which is popular method for semi-
supervised learning [Grandvalet & Bengio, 2004]

* Hence, in addition to (supervised) classification loss L and

et feature matching loss D (X, X1) (e.g., GAN loss), use
(unsupervised) entropy loss H on target dataset

Residual
Layers

=
L= Eazs [L(fS(ms)a ys)] + ’YE:ct [H(fT(xt))] +)‘D(XSa XT)

ysource ytarget

Algorithmic Intell *Source: https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Unsupervised Domain Adaptation with Residual Transfer Networks 26

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Unsupervised_Domain_Adaptation_with_Residual_Transfer_Networks

Domain Randomization

* Motivation: Source/target feature matching can be viewed as disentangling
content and style (remove style of each domain but only keep common content)

* Idea: In simulation-to-real (sim2real) setting, we can disentangle content by
domain augmentation

e Train NN on simulations with randomly generated styles
= style sums up, and only content remains

Algorithmic Intelligence Lab

27

Domain Randomization

* Results

| ,‘Vle FROM THE‘nROBOT S CAMERA

N %hﬁc

Algorithmic Intelligence Lab

https://blog.openai.com/generalizing-from-simulation/

General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [s T
TARGET ‘18 ?SI l. :
1 Y

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:

* Target data augmentation: Generate target data (X7, Y1) using domain transfer

Algorithmic Intelligence Lab *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 29

SimGAN

* ldea: Generate target data with domain transfer model G: Xg —» X7

* Given source data (x,, y;) and transfer model G, we can generate labeled target
data (x;, y{) = (G(xs),ys), and use it to train target network

e Popular application is augmenting real images from synthetic images

Synthetic

l ’ - .-
- -- il
|

Refined

| e

Unlabeled Real Images

Simulated images

Training data % of images within d
Synthetic Data 69.7
Refined Synthetic Data 72.4
Real Data 74.5
Synthetic Data 3x 71.7
Refined Synthetic Data 3x 83.3

Algorithmic Intelligence Lab *Source: Shrivastava et al. “Learning from Simulated and Unsupervised Images through Adversarial Training”, CVPR 2017 30

CyCADA

* Motivation: Bridging gap between two approaches: source/target feature
matching and target data augmentation?

 Combine ADDA (feature matching via GAN) and CycleGAN (domain transfer)

target data Reconstructed Source Image ource Prediction Source Label
augmentation K" &
(CycleGAN) i G; ¢

Semantic
Consistency

Source Image Source|Image Stylized as Target

- -
Source image (GTA5S) Adapted source image (Ours) Target image (CityScapes)
Algorithmic Intelligence Lab

source/target
@ feature matching

feat

Target Image

Pixel accuracy on target
Source-only: 54.0%
Adapted (ours): 83.6%

31

Table of Contents

2. Transfer Learning Methods

* Matching outputs or intermediate features

Algorithmic Intelligence Lab

32

Knowledge Distillation

* Learn a source model and distill its knowledge to a target model
* Can lead to a better model with small architecture, or faster training

e Given a teacher network on domain D, enhance the training of (usually smaller)
a student network on same domain D, using knowledge of a teacher network

* Done by matching the output of source and target models

* Design a new loss term (e.g., MISE loss, KL divergence) for making source and target
outputs similar in addition to the original loss term (e.g., cross entropy loss)

Source (teacher) model

ﬁ{ U e
e

Target (student) model
Algorithmic Intelligence Lab 33

, Matchmg output

Knowledge Distillation: Matching Output of Source and Target Model

* [Hinton et al., 2015] propose
* Use temperature T' > 1 to make a softer probability distribution over classes

. _ exp(z;/T)
G.T = T exp(z;/T)

where z;, q; are the i-th logit and probability, respectively
* Use the soft target as additional labels to train student model

L= (1 - a)£ce(Y7q) + aT2£ce(pTaqT>

where Y, 4 and p are ground-truth labels, target model outputs, and source model
outputs, respectively. It is important to multiply soft targets by T2 because the
magnitudes of the gradients produced by them scale as 1/72. (derived in the next page)

soften

Teacher 0.61
network

Algorithmic Intelligence Lab 34

0.12
O'1|5 006 " 0.6

dog cat truck glasses trees dog cat truck glasses trees

0-(i5 0.01 0.|03 o.?1
|

Knowledge Distillation: Effect of Temperature Scaling

 Let C be a cross-entropy loss of softened labels.
C = »Cce(pTaqT)
* The gradient of C, with respect to each target logit z;, and source logit v; :

oC 1 1 exp(z;/T) exp(v; /T)
0z, — TG T P) =7 (zj oxp(z,/T)) T 5, g)Xpwj/T))

* |f the temperature is high compared with the magnitude of the logits,

o0C 1 1—|—Z7;/T . 1-|—Ui/T
azi ~ T N+Zj2j/T N+Zj'l)j/T

* If we assume that the logits have been zero-meaned (i.e. Zj Zj = Zj v; =0)

22. ~ e (2 — vi) =g ai. (E(Z% _ Ui)2l)

scaling

* At high temperatures, the objective is equivalent to a quadratic function.
* Distillation pays much more attention to logits that are negative than the average.

* This is potentially advantageous because these logits (which are not the correct label)
are almost completely unconstrained by the classification loss.

Algorithmic Intelligence Lab 35

Knowledge Distillation: Experimental Results

* MNIST experiments

* Hand-written digits (28x28 grayscale images) ? ? ? (\) f
* 60000 training, 10000 test images 22222 .9

e Source model: 2 hidden layers MLP with 1200 hidden nodes 3
e Target model: 2 hidden layers MLP with 800 hidden nodes 3 533
Y ¥ ¢ Y4
Model Error rate (%) 59 585 3
Source model 0.67 L 6 6 6 G
Target model 1.46 T 77771
(without knowledge distillation) ' ¥ @ 7 ¥ &
Target model 0.74 7 9 9 9 19

(with knowledge distillation, T = 20) '

OO 3500

A

1200 nodes @m @E 800 nodes
1200 nodes O O O O m 800 nodes

Source model Target model

36

Beyond Knowledge Distillation

* Smaller target models get advantages by following larger source models

» Useful when target and source datasets/tasks are same
* Performance may degrade when apply target dataset or task are changed

* Main challenges: what, when, and where to transfer
* Decide the form of transferring knowledge
* Decide when does transfer helps
* Decide which level representations (layers) to transfer

Algorithmic Intelligence Lab

37

Attention Transfer

* Visualizing attention maps in deep CNN is an open problem.

e Recently, a number of methods was proposed to improve attention maps.
* e.g. Guided backpropagation [Springenberg et al., 2015], Grad-CAM[Selvaraju et al.,
2016].

* In CNN models, the attention maps produced by intermediate features can be
transferable knowledge.

Guided Backprop Grad-CAM Guided Grad-CAM

What color is the firehydrant?

Visualization of VQA model.

Algorithmic Intelligence Lab * source: [Selvaraju et al., 2016] 38

Attention Transfer

* Matching the attention of intermediate features [Zagoruyko et al. 2017]
* Make a 2D attention map from feature activations with attention mapping function F

attention

C W ST
F(Apw) = 3 [Achwl”
c=1
* p > 1, feature activation A, ., € REXHXW (C channels, spatial size H x W)
* Train the original loss with the attention map matching regularization term

L.:(0|D) = Lo (0|D) + & Q7 (0,z) QL (0,2)
+(0|D) g(0|D) + 23%31 ool ~ Teseal,

where {p = vec(F(A{f)) and Q% = vec(F(Afg)) are respectively the j-th pair
of target (student) and source (teacher) attention maps.

teacher

groupl group2 group3
attention Teacher
map
attentlon

transfer AT loss AT loss AT loss

I L)

student

Algorithmic Intelligence Lab * source: [Zagoryuko et al., 2017] 39

Attention Transfer: Experimental Results

* Attention transfer works better than original distillation methods or they can be

used together

* Hyper-parametric choices:
e Choose proper attention mapping function
* Layers to transfer the attention map

student teacher student AT | F-ActT | KD | AT+KD | teacher
NIN-thin, 0.2M NIN-wide, IM 9.38 8.93 9.05 8.55 8.33 7.28
WRN-16-1, 0.2M | WRN-16-2, 0.7M 8.77 7.93 8.51 7.41 7.51 6.31
WRN-16-1, 0.2M | WRN-40-1, 0.6M 8.77 8.25 8.62 8.39 8.01 6.58
WRN-16-2, 0.7M | WRN-40-2, 2.2M 6.31 5.85 6.24 6.08 5.71 5.23

CIFAR-10 experiments. AT: attention transfer, F-ActT: full activation transfer, KD: knowledge
distillation AT+KD: applying AT and KD at the same time. AT+KD is best in most cases (for
student networks)

Algorithmic Intelligence Lab

type model ImageNet—CUB | ImageNet—Scenes
student | ResNet-18 28.5 28.2

KD ResNet-18 27 (-1.5) 28.1 (-0.1

AT ResNet-18 27 (-1.5) 27.1 (-1.1)
teacher | KesNet-34 20.3 20

Large-scale experiments. Using ImageNet pre-trained model, fine-
tune source model with target dataset. Then, transfer to student
model learning same target task.

40

Jacobian Matching

» Several Jacobian-based regularizations have been proposed recently

* Sobolev training [Czarnecki et al., 2017] demonstrated that using higher order
(typically 1st order) derivatives along with the targets can help training.

[Srinivas et al., 2018] showed that matching Jacobians is a special case of previous
distillation methods, when noise is added to the inputs.

 They added a new branch for distillation, and matched the output activations,
attention maps, and their Jacobians (for the largest value of an attention map).

Match with ground

truth labels (from £ o (1)E () n r ()
)y 4 target dataset) — Lxd = — Y.q o PT,qr
Student oM e ’
g Bl VM DN (0,) QL (6,x)
Lo = Q7 s

| L ’ \ L= 2 | Tereal, ~ Tetwr,
Input o . .
(ta.rI:g)et Match a..ttentimj. maps EJac — Z H Ve fj (x) . Ve g_‘7 (£B>
dmser) | wdtherdueobios 0 v owput IVert @l Vg (@)ls

activations
- v 4 - e i . . .
Teacher ‘N N (N N where f, g’ are max points of j-th attention
(Pre-trained net) maps of target and source model, respectively.

vise linear function;
e currect nypuness s enncnied with derivative information.

Algorithmic Intelligence Lab * source: [Czarnecki et al., 2017], [Srinivas et al., 2018] 41

Jacobian Matching: Experimental Results

* Matching Jacobians improves distillation performance in small data.

Distillation performance on the CIFAR100 dataset

of Data points per class — 1 5 10 50 100 500 (full)
Cross-Entropy (CE) training 5.69 139 20.03 37.6 4492 54.28
CE + match activations 12. 13 26.97 3392 4647 50.92 56.65
E + match pbian: 23.94 2.0 4571 1.4 44

CE + match actlvatlons + Jacobians 13 78 33.39 39.55 49.49 52.43 54.57

Match activations only 10.73 2856 33.6 4573 50.15 56.59
Match {activations + Jacobians} 13.09 33.31 38.16 47.79 50.06 51.33

* Matching Jacobians improves performance of all case of transfer learning.

* None of the methods match the oracle performance of pre-trained model.

Transfer performance from Imagenet to MIT Scenes dataset

of Data points per class — 5 10 25 50 Full
Cross-Entropy (CE) training on untrained student network 11.64 20.30 35.19 46.38 59.33
CE on pre-trained student network (Oracle) 2593 4381 57.65 64.18 7142
CE + match activations (Li & Hoiem, 2016) 17.08 27.13 45.08 5522 6522
CE + match {activations + Jacobians} 17.88 28.25 4526 56.49 66.04
E + match {activations + attention} (Zagoruyko & Komodakis, 2017 16.53 28.35 46.01 57.80 67.24
CE + match {activations + attention + Jacobians} 18.02 29.25 47.31 58.35 67.31

Algorithmic Intelligence Lab

42

Variational Information Distillation for Knowledge Transfer

e [Ahn et al., 2019] maximize mutual information between source/target models
* Use the variational information maximization [Barber and Agakov, 2003]
* |nstead of matching a specific form of feature representations

variational information maximization

Teacher * Student
[2] @ =2 I(t;s) = H(t) — H(t|s)
Lo fo s = H(t) + Eq s[log p(t]s)]
estimation = H(t) + Eq s[log q(t]s)] + Es[Dkr(p(t]s)l[q(t]s))]
El(:lf::@:::::::::::::;]_s‘o_j > H(b) + E.. log q(t]s)]

e Use a Gaussian distribution for modeling ¢(t|s) with heteroscedastic mean 1($)
and homoscedastic variance o (s)

tC C 2
—log q(t|s) E logo. + (e 252’h’w(8)) + constant
C

c,h,w

Algorithmic Intelligence Lab * source: [Ahn et al., 2019] 43

Variational Information Distillation for Knowledge Transfer

* Apply Variational Information Distillation (VID) to different locations
* VID-I: between intermediate layers of teacher/student networks

* VID-LP: between penultimate layers of teacher/student networks

Knowledge Distillation on CIFAR-10

Transfer learning from ImageNet to CUB200

M 5000 1000 500 100
Teacher 94.26 - - -
Student 90.72 84.67 79.63 58.84
KD 91.27 86.11 8223 64.24
FitNet 90.64 84.78 80.73 68.90
AT 91.60 87.26 8494 73.40
NST 91.16 86.55 82.61 64.53
VID-I 91.85 89.73 88.09 81.59

KD + AT 91.81 87.34 85.01 76.29
KD+ VID-I 91.7 8859 86.53 78.48

* VID can be applied between CNNs/MLPs

* VID achieves state-of-the-art performance
compared to other MLPs on CIFAR-10

Algorithmic Intelligence Lab

M ~29.95 20 10 5
Student 3722 2433 12.00 7.09
fine-tuning 76.69 71.00 59.25 44.07
LwF 55.18 42.13 26.23 14.27
FitNet 66.63 56.63 46.68 31.04
AT 5462 4144 2890 16.55
NST 55.01 41.87 2376 15.63
VID-LP 3 4.12 2 27.
VID-I 7325 67.20 56.86 46.21
LwF + FitNet 68.69 58.81 48.86 31.30
VID-LP + VID-I 69.71 63.94 52.87 41.12
Network | MLP-4096 MLP-2048 MLP-1024
Student 70.60 70.78 70.90
KD 70.42 70.53 70.79
FitNet 76.02 74.08 72.91
VID-I 85.18 83.47 78.57
Urban et al. [27] 74.32
Lin et al. [17] 78.62

44

Relational Knowledge Distillation

e [Park et al., 2019] transfers the mutual relations of data examples
* Knowledge distillation (KD) only mimic the output of individual data point

e Author considers two types of relations: distance & angle

fe

Distance: L2 distance

1
Yp(ti t;) = ; [t: =151,

Input
‘ —— —— LRKD-D = Z lé(@bD(tiatj),@DD(SiaSj))a
onw /8 0 A8 D A8 fs& (zi,2;)€X?
Output MEREEFECRE BT "ET TS Angle: Cosine similarity
ol & o ;;2,\ Va(ti ty, ti) = cos Lttt = (e, e™)
fa g, o s i Ll ki Tl
" s 052 ts 5(51_‘,_‘____..-1;:;;.:0 2 where e’ = —— e"/ = .
N 6l TGl
.'.053 0%
Point to Point Structure to Structure

ERKD-A — Z l5(¢A(tiatj7tk‘)7wA(SiaSijk'))a

Conventional KD Relational KD (@i, 2) EX

ls: feature matching loss (Huber, L2 etc.)

Algorithmic Intelligence Lab * source: [Park et al., 2019] 45

Relational Knowledge Distillation: Experimental Results

* Apply three types of relational knowledge distillation (RKD)
* RKD-D: only considers distance relationship

* RKD-A: only considers angular relationship
* RKD-DA: considers both, distance and angular relationship

(T?i;lseeg IF fl) FitNet [27] | Attention [47] | DarkRank [7] REDD REL[l)r.s ~ RRD DA
/2 normalization 0] 0] @) @) O / X O/ X O/ X
ResNet18-16 37.71 42.74 37.68 46.84 46.34/48.09 45.59/48.60 45.76/48.14
ResNet18-32 44.62 48.60 45.37 53.53 52.68 /5572 53.43/55.15 53.58/54.88
ResNet18-64 51.55 51.92 50.81 56.30 56.92 /5827 56.77/58.44 57.01/58.68
ResNet18-128 53.92 54.52 55.03 57.17 58.31/60.31 58.41/60.92 59.69/60.67
ResNet50-512 | 6124 |

Recall@1 on CUB-200 dataset. The teacher is ResNet50-512 (model-d refers dimension)

CIFAR-100 [15] | Tiny ImageNet [40]
___ _Baseline | 7126 | 445
RKD-D 72.27 5497
RKD-DA 72.97 56.36 0) :
Sl s A el el 7 Salatel Sres Accuracy (%) on CIFAR-100 and Tiny ImageNet.
HKD+RKD-DA 74.66 58.15 |
FitNet [27] 70.81 55.59 Teacher: ResNet-50, student: VGG11
FitNet+RKD-DA 72.98 55.54 . Clp e
T Awention 171 [T 7268 | 5557~~~ HKD: Conventional knowledge distillation
Attention+RKD-DA 73.53 56.55
Teacher | 77.76 61.55

Algorithmic Intelligence Lab

46

Learning What and Where to Transfer

* Previous methods transfer hand-crafted and fixed source knowledge

* Hand-crafted matching formulations

* E.g., KL divergence [Hinton et al., 2015] between output layers, attention map
[Zagoruyko et al. 2017] between hidden feature maps

* Hand-crafted matching connections
* Transfer on output activations of each group of residual/convolutional blocks

* [Jang et al., 2019] automatically find what and where to transfer based on
meta-learning for maximizing transfer effect

Previous methods Learning What and Where to Transfer (L2T-ww)

A

- Meta-networks |:| I, loss : |:|
HI] /' i i

0.05

0.4

Where to Transfer What to Transfer

|:| Source Ij Target ﬁl Layer []Feature map

Algorithmic Intelligence Lab * source: [Jang et al., 2019] 47

Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network f decides useful channels to transfer

Weight for channel ¢

atn (0], 0™")

Sm(m) = RCXHXW

:HWC

w

C

m,nE :

Feature maps of
mthsource layer

A

2]

M

I A

ro(T"(x)) € RCXHXWrdEﬁJJ

Algorithmic Intelligence Lab

ro(T5 (2))cyig — S™ (%) eig)

L2 distance at channel ¢

" (z)

- - I || Feature maps of
nthtarget layer

* source: [Jang et al., 2019] 48

Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network g decides useful pairs of source/target layers to transfer

Weight for pair (m, n)
,wam(mx, ¢) _ Z)\m,nﬁﬁ&n(mx’ wm,n
(m,n)€C Transfer loss on pair (m, n)

1 1 ¥
3,3
g¢’
--S-”-(-a22 ------ » |beee—e——————— » pem——————— » em——————— > :
i i
T I 1 Scaling E
arget 21 133 - A
Samples { wim wim
i)
L] eereecccscssss———— = EeeeeccccccssE————— - U H
Loss Aggregation

Ty(z)

Algorithmic Intelligence Lab * source: [Jang et al., 2019] 49

Learning What and Where to Transfer

Q) How to learn meta-networks f, g?

* [Jang et al., 2019] propose a bilevel scheme for training meta-parameters ¢ of

meta-networks f, g

3. Evaluation:

1. Knowledge transfer:fort =1, ..., T,

Oi11 =0, — aVo Ly (0|2, ¢) < Transfer loss

2. One-step adaption:

0T+2 = 9T-|—1 - av0£org<9T+l ’xa y)

Leta(P) = Eorg<9T+2|xay>-l Task-specific los

4. Update ¢ based on V,Lyueta(¢) using second-order gradients

* Effective for learning ¢ with a small number of steps T
* A popular bilevel scheme [Franceschi et al., 2018] requires many steps

* Joint-learning 8 and ¢ without separate meta-learning phase

Algorithmic Intelligence Lab

50

Learning What and Where to Transfer

* L2T-ww outperforms previous methods on various datasets, architectures

Source task TinyImageNet ImageNet
Target task CIFAR-100 STL-10 CUB200 MIT67 Stanford40 Stanford Dogs
Scratch 67.69+022 65.18+091 42.15+075 48.91+0s53 36.93+068 58.08+0.26
LwF! 69.23+009 68.64+0s8 45.52+066 53.73+214 39.73+163 66.33+045
AT (one-to-one) 67.54+040 74.19+0220 57.74+117 59.18+157 59.29+091 69.70-+0.08
LwFO+AT (one-to-one) 68.75+000 75.06+057 58.90+132 61.42+168 60.20+1.34 72.67+026
FMP! (single) 69.40+067 75.00+034 47.60+031 55.15+093 42.93+148 66.05+076
FMB! (one-to-one) 69.97+024 76.38+118 48.93+040 54.88+124 44.50+096 67.25+0388
L2T-w (single) 70.27+009 74.35+092 51.95+0s3 60.41+037 46.25+366 69.16+070
L2T-w (one-to-one) 70.02+019 76424050 56.61+020 59.78+1900 48.19+14 69.84 1145
L2T-ww (all-to-all) 70.96+061 78.31+t021 65.05:11.19 64.85:1275 63.0810.8 78.08+0.96

* L2T-ww can aggregate multiple source knowledge (left)

* L2T-ww can transfer knowledge effectively on limited-data regime

First source

TinyImageNet (ResNet32)

Second source None TinyImageNet (ResNet20) TinyImageNet (ResNet32) CIFAR-10 (ResNet32)
Scratch 65.18+0.91 65.18+091 65.18+091 65.18+091
LwFlo] 68.64+0.58 68.56+224 68.05+2.12 69.51+063

AT 74.19+022 73.24+012 73.78+1.16 73.99+051
LwFII4 AT 75.06+0.57 74.72+046 74.77 +030 74.41+151
FMPB! (single) 75.00-+0.34 75.83+0.56 75.99+0.11 74.60+073

FMUB! (one-to-one) 76.38+1.1s 77.45+048 77.69+0.79 77.15+041
L2T-ww (all-to-all) 78.31+0.21 79.35+0.41 79.80-+052 80.52+029

Algorithmic Intelligence Lab

Accuracy (%)

90

85

80

75

704

65

604
553 -~y e

50

45

40

35

34 A AT

e LWF

< LWwF+AT

O L2T-ww

t i 1 1
50 100 250 500 1000
Number of Training Samples per Class

* source: [Jang et al,, 2019] 51

Contrastive Representation Distillation

e [Tian et al., 2020] transfers the output similarity of data points
* Maximize the similarity of same data point, and minimize between other points

(o,

:, = fT(x;) and f5(x;) ?s similz?r (-same sample)

S <> p— fT(x;) and f3(x;) is not similar (other N — 1 samples)
/" _

Te;(zher Student

e Contrastive-object maximize the mutual information between models

I(T;S) 2 10g(N) + Eyr s51c=1)[log K" (T, S)] + NEy(1 5/0=0)[log(1 — h* (T, S))]

Maximize similarity Minimize similarity

ed” (1) g°(8)/7 h(T,S) € [0, 1] is a similarity measure
h(T,S) = e (1) g5 (S)/7 L N Where T = fT(x;), S = fS(xj) is the representation
and g7, g° is a linear layer of teacher and student, respectively

Algorithmic Intelligence Lab * source: [Tian et al., 2020] 52

Contrastive Representation Distillation: Experimental Results

* CRD consistently outperforms previous methods on various architectures

Teacher WRN-40-2 WRN-40-2 resnet56 resnetl10 resnetl10 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 7234 7431 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD* 74.92 73.54 7066 70.67 73.08 73.33 72.98
FitNet* 73.58 () 7224()) 69.21()) 68.99 () 71.06()) 73.50 (1) 71.02(])
AT 7408 (1) 72.77(L) 70.55()) 7022()) 72.31() 73.44() 71.43(])
SP 73.83 (1) 7243(1) 69.67 (1) 70.04()) 72.69(]) 72.94(l) 72.68())
cC 7356 (1) 7221(1) 69.63 (1) 69.48 () 7148 () 72.97()) 70.71())
VID 74.11 (1) 73.30()) 70.38() 70.16 () 72.61(l) 73.09()) 71.23(])
RKD 7335()) 7222(1) 69.61()) 69.25()) 71.82([) 71.90()) 71.48(])
PKT 7454 () 7345()) 70.34()) 7025()) 72.61()) 73.64() 72.88())
AB 7250 (1) 7238(l) 6947 (1) 69.53()) 7098 () 73.17(l) 70.94 ()
FT* 7325()) 71.59(1) 69.84 () 70.22()) 7237(l) 72.86() 70.58(])
FSP* 72.91 () na 69.95()) 70.11()) 71.89() 72.62()) 70.23(])
NST* 7’262(@ 7774(@ ﬁQﬁn(i\ ﬁQ§’l(l\ 7106(@ 7’2’Zﬂfl\ 71 §’Z(i\
CRD 7548 (1) 7414 (1) T116()) 7146 (1) 7348 (1) 75.51() 73.94()

CRD+KD 75.64 (1) 74.38(1) 71.63 (1) 71.56(1) 73.75() 75.46()) 7429 ()

 Visualization: difference of correlation matrices of student and teacher logits.
* CRD shows significant matching between student’s and teacher’s correlations

TG 97
T 030 §- 0.30
o 12-
[Ty 16-
. 20-
r 24 -
'

.........................
wwwwwwwwwwwwwwwwwwwwwww

(a) Student: vanilla (b) Student: AT (c) Student: KD (d) Student: ours (CRD)

Algorithmic Intelligence Lab

Table of Contents

3. Multi-task Learning
e Sharing architectures

Algorithmic Intelligence Lab

54

Algorithmic Intelligence Lab

What is Multi-task Learning?

e Definition of multi-task learning [Zhang and Yang, 2017]
* Given m learning tasks {7;}1"1
* where all the tasks or a subset of them are related,

* Multi-task learning (MTL) aims to improve the learning of a model for 7;
using the knowledge contained in all or some of the m tasks

* |n the view of definition of transfer learning [Pan et al., 2010],
all learning tasks {7:}i~1 are considered as both source and target tasks

Domain D, Task 71

Domain D,,
Task 7,

Learn representations which
are useful for arbitrary tasks

55

Cross-stitch Networks for Multi-task Learning

* Cross-stitch units [Misra et al., 2016] try to find the best shared representations
for multi-task learning

74 ¥

Al |:04AA OAB A
1] OB A BB ¥
Ip IR

. xf{, ch are activation map (at location i,j) of networks for task A, B, respectively
* « is trained by backpropagation with different learning rates
* Maintain one cross-stitch unit per channel

Input

Output
Activation Maps

CrOSS_StltCh unlt Activation Maps convl, pooll conv2, pool2 conv3 conv4d conv5, pools fc6 fe7 fc8

Q0 : g
Task A S »MAA OBA > ’?‘1;:1161 *Oi N B IR
g ‘ﬁ o Crossistitcll « ‘ (O] : «
] ’ m @ units a , a \ a
Shared g =
Task B as QBB (A B> Task B §_ | _,%
o)

Algorithmic Intelligence Lab * source: [Misra et al., 2016] 56

Cross-stitch Networks for Multi-task Learning

* Multi-task (Surface Normal / Segmentation) learning on NYU-v2 dataset

* Cross-stitch uses 2 convolutional networks
* Ensemble uses 4 convolutional networks (2 for each task)

* |t shows that sharing information can improve the performance

Surface Normal Segmentation
Angle Distance Within £°
(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 225 30 pixacc mlU fwlU
348 190 383 535 592 - - -
One-task - - - - 466 184 331
Ensemble 344 185 387 542 59.7 - - -
- - - - - 48.2 189 338
Split conv4 347 19.1 382 534 592 478 192 338
MTL-shared 347 189 377 535 588 459 16.6 30.1
| Cross-stitch [ours] 34.1 18.2 39.0 544 60.2 472 193 34.0|

 Drawbacks

* Parameter-inefficiency because it requires one CNN per each task

Algorithmic Intelligence Lab

57

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

* One model-patch [Mudrakarta et al., 2019] for each task
* One shared base model for all tasks
* For multi-task learning, train model-patches and shared parts simultaneously
* For transfer learning, freeze the shared parts / train new model-patch only
* Multiple networks share most weights (>95% parameters)

/" Model1) Patch 1 Patch 2 /" Model2) / Worker 0 / Parameter / Worker1
l | i rver i
FC layer BN Iayer BN Iayer FC |ayer TaSk 0 LOSS grad|ents N F:e(t ek O) grad|ents TaSk 1 LOSS
as
) | | f FC (task 0) FC (task 1
FC layer FC layer / BN (task 0) ;
ReLU ReLU FC FC
i Base t t FC (task 1 ,—f—‘
arams.
BN layer — BN layer BN (t?sk 0).|| params. | BN fask 1 P | [BN (t?sk 1)
) t Convolution FC Convolution
- Convolution ; :
Convolution Convolution |) Task 0: Input . Convolution | \ [Task 1: Input

* Two types of model-patch
* Scale-and-bias (S/B) patch: a normalization layer (e.g., BN)
* Depth-wise-convolution (DW) patch: depth-wise separable convolutional layers

Algorithmic Intelligence Lab * source: [Mudrakarta et al., 2019] 58

Algorithmic Intellige

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

* Despite using much fewer parameters, competitive performance is achieved

Table 4: Multi-task learning with MobilenetV2 on ImageNet and Places-365.

Task S/B patch + last layer | Last layer |Independently trained
Imagenet 70.2% 64.4% 71.8%
Places365 54.3% 51.4% 54.2%

total parameters 3.97TM 3.93M 6.05M

One patch for each task ‘
Sharing Most weights One model for each task

n

* When transfer learning, despite fine-tuning much fewer parameters,
it achieves nontrivial performance

Fine-tuned params. | Flowers | Cars | Aircraft

| Acc. #params | Acc. #params | Acc. #params

Last hypr R4 5 20RK 55 402K 45 9 205K
S/B + last layer 90.4 244K 81 437K 70.7 241K
S/B only (random last) | 79.5 36K 33 36K 52.3 36K
All (ours) 93.3 25M 92.3 25M 87.3 25M
All (Cui et al., 2018) 96.3 25M 91.3 25M 82.6 25M

59

Table of Contents

3. Multi-task Learning

* Loss balancing

Algorithmic Intelligence Lab

60

Multi-task Learning Using Task Uncertainty

* The naive approach to combining multi objective losses is to perform a
weighted linear sum of the losses for each individual task.

'Ctotal — Zz EE’L

* [Kendall et al., 2018] proposed that homoscedastic (i.e. task-dependent)
uncertainty can be used as a weight for losses in a multi-task learning problem.

* They adapted a likelihood as below, with a noise scalar o . Note that the probability
distribution becomes uniform as o — oc.

For classification tasks p(y|f™ (x)) = SOftmaX(#fw(x))

For regression tasks p(Y|fW(X)) = N(fW(X)a 02)

* Let's assume that the total likelihood can be factorized over the each output, given
some sufficient statistics.

p(y1s - Y [EY (%)) = p(y1 £V (%)) ... p(yx[f 7 (x))

Algorithmic Intelligence Lab 61

Multi-task Learning Using Task Uncertainty

* The log likelihood for output can be written as

For classification tasks log p(y = c[fW (x)) = SV (x) —log " exp (%fy(x))
Las(W) = —log Softmax(y, fW (x))

For regression tasks ~ log p(y|fWV (x)) o< — 5z |ly — WV (x)||* — log o
Lrog(W) = [ly — £V (x)|?
* If there are two regression tasks,
L(W,01,02) = _logp(Y1aY2‘fW(X))

o gy — EV I+ ks llyz — £ ()2 + log o102

weighted sum

— ﬁﬁl,reg <W> + ﬁ‘CZreg (W) + 10g 0102

* If the 1st task is a regression task, and the 2nd one is a classification task,

‘C(W7O-170-2) — _]‘ng<YIaYQ - C‘fw(x))

< 5oz llyr = FW (x)[]? +log o1 —logp(y2 = c[fW (x))

D ot €XP (éf?(x))
= ﬁ ly1 -tV (x)||?— Uig log Softmax(y2, fW (x))+log o1 +log

T
2
92
>erexp | £V (x)
weighted sum

~|_1 1
Algorithmic Intelligence Lab ~[252 El,reg (W) + 0_3»62,018 (W) +logoy +logoy as 02 — L. 62

Multi-task Learning Using Task Uncertainty

* In practice, the log variance s := log o? is trained by the network .

* This term is added to weighted sum of original multi-task losses.

* In experiments, there are three tasks:
* Semantic segmentation (classification)
* Instance segmentation (regression)

* Depth regression (regression)

Ry it are fpund by grid search

Task Weights Segmentation Instance Inverse Depth

Loss Seg. Inst. Depth IoU [%] Mean Error [px] | Mean Error [pz]
Segmentation only 1 0 0 59.4% - -
Instance only 0 1 0 - 4.61 -
Depth only 0 0 | - - 0.640
Unweighted sum of losses | 0.333 0333 0333 | 50.1% | 3.79 | 0.592
Approx. optimal weights | 0.89 0.01 0.1 | 628% | 3.61 | 0.549

2 task uncertainty weighting v 61.0% 3.42 -

2 task uncertainty weighting v v 62.7% - 0.533

2 task uncertainty weighting v - 3.54 0.539

3 task uncertainty weighting | v/ v v | 634% | 3.50 | 0.522

Algorithmic Intelligence Lab

* source: [Kendall et al., 2018] 63

Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Attimet, the weighted average for multi-task learning = > . w; (t)L; ()

* The gradient for a task might be dominant when multi-task learning
* It depends on task difficulties, loss functions, and so on
* Q) What is correct balance for Wip

L EFE LE"

(GN) (GN)
Ltot = Wqe |1I1Ldeplh + w kp(Lkpt + Whormals Lnonnals Lo = u de ;thdepth +w kplLkpl + Whormals Dnormals

I T
) ome) o) 2l e

L 2
unbalanced grad ~—vy I
gradients \¥ —
balanced
grad our _
wnh our
gra 1 nt |

t
[Chen et al., 2018]

* Key Idea: If a task is not trained enough = norm of its gradient should be large

Algorithmic Intelligence Lab * source: [Chen et al., 2018] 64

Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Gradient norm
. Gg})(t) = [|[Vww;(t)L;(t)]|2 : gradient norm of task i
« Gw(t) =E; [G()(t)] average gradient norm across all tasks

* Training rates for measuring current states of learning of tasks
* Inverse training rates I, (t) = L;(t)/L ;i(0)
« Relative inverse training rates 7;(t) = L;(t)/E;[L; ()]

* Large r;(t) = need to train more = need large gradients
* Our desired gradient norm:

G () = G (1) x [ri (1))
where « is a hyperparameter
* To balance the norms based on training rates, minimize Lgraq over w;

Lesaa(tiwi(t) = Y |G = Gw (1) x [ri(8))”

Algorithmic Intelligence Lab

65

Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Train on NYUv2+kepoint/segmentation dataset with 3 different tasks

Model and Depth Seg. Normals Model and Depth Kpt. Normals
Weighting RMS Err. Err. Err. Weighting RMS Err. Err. Err.
Method (m) (100-IoU) (1-|cos|) Method (m) (%) (1-|cos|)
VGG Backbone ResNet Backbone
Depth Only 1.038 - - Depth Only 0.725 - -
Seg. Only - 70.0 - Kpt Only - 7.90 -
Normals Only - - 0.169 Normals Only - - 0.155
Equal Weights 0.944 70.1 0.192 Equal Weights 0.697 7.80 0.172
GradNorm Static 0.939 67.5 0.171 (Kendall et al., 2017) 0.702 7.96 182
GradNorm o = 1.5 0.925 67.8 0.174 GradNorm Static 0.695 7.63 0.156
T GradNorm o = 1.5 0.663 7.32 0.155

* If using farther weights from GradNorm, then worse results are obtained
Weights during training

3.0
™
8
0
£ 25
5
n
w
g 2.0
22
<
2
E., 1.5
]
=
a3
v 1.0
}_
°
(]
N
© 0.5
E ™M
S R L Y

0.0 T

0 5

Task Weights w;(t) fora=1.5

—— Keypoint Weight
Depth Weight
—— Normals Weight

P I A st vty A et Wi s

Algorithmu. HiLEImgence Ldv

10 15 20 25
Epoch

Performance with various weights

i T B i e Wi

0o _° & A

8 ° Q..:' o° ¢’ .I’ N L X GradNorm
v % I ° ® _
28 o o .-,,8. e a=15
® °s
F) 8 —50 [] o® oo
x 3 °
0% Se
ez E LX)
g0
E~.100{ O .‘.
.g I -
t - A .
N~ g rD []
E
=5 -150 l
v ®
go
]
>
X

-200 far — .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

L, Distance to GradNorm Static Weights

66

Multi-task Learning as Multi-objective Optimization

The loss function for multi-task learning is generally the weighted summation

ming Z;rzl w L+(0)

For finding weights, expensive grid search or heuristics are required
* Heuristics: [Kendall et al., 2018], [Chen et al., 2018]

Pareto optimality (multi-objective optimization formulation)
« Asolutiong dominates @ if L£;(0) < L;(0) for all tasks ¢
« Asolution §*is called Pareto optimal if there is no § that dominates 0
* The Pareto optimal solution can be considered as a solution for multi-task learning

* Q) How to find the Pareto optimal solutions?

Multiple Gradient Descent Algorithm (MGDA)

2
. T T
MINqy ..o HZt:l Vo, Lt(Osn, 0t) ‘2 Dimiar=10,2>0

* |ts solution gives Pareto stationary (necessary for optimality) solutions or a descent
direction that improves all tasks

* |t can be efficiently solved by Frank-Wolfe algorithm (detail is omitted)

67

Multi-task Learning as Multi-objective Optimization

* Issue: MGDA needs to compute Vg_, L:(0sn, 0;) for each task ¢
* Linear scaling of the training time

* Solution: Use encoder-decoder architectures
* One shared encoder for all tasks
* One separate decoder for each task
* Encoder-decoder architectures are typically used for multi-task learning

Decoder 1 64 L1

Encoder O

Representations Decoder T O L

* Then, we can state an upper bound and minimize it efficiently
2 2
T T
|5 Vo, Lo 00| < |22 |, [0 2L0(60,0)

< 86311

Independent to oy

Algorithmic Intelligence Lab

2

2

68

Multi-task Learning as Multi-objective Optimization

* 40 binary tasks on CelebA dataset (lower is better)

* This multi-objective optimization [Sener and Koltun, 2018] outperforms uniform
scaling, heuristic weights [Kendall et al., 2018], [Chen et al., 2018]

* Grid search is not available because there are too many tasks

Uniform Scaling
Kendall et al. 2018
Single Task
GradNorm

Ours

Algorithmic Intelligence Lab

69

Table of Contents

4. Continual Learning

Algorithmic Intelligence Lab

70

What is Continual Learning?

* Deep neural networks (DNNs) can be trained well on a given individual task.
* E.g., image classifier

0.99

NISE

(9|l

0000
0000
0000

Xew1jJ0S

cat dog
DNNs

Algorithmic Intelligence Lab 71

What is Continual Learning?

* Deep neural networks (DNNs) can be trained well on a given individual task.

* E.g., image classifier

H -

NN

0000
0000

0000

0.99

2

Xew1jJ0S

EEEN
»
»

DNNSs

cat dog

 Catastrophic Forgetting/Inference: DNNs which trained on multiple tasks in
sequence forget previous tasks.

train
ﬁ

Data: ﬁ H

Init: 0o

Algorithmic Intelligence Lab

pata: A\ g

Init: 91

m 0.99

train test

EEm
[
»

cat dog bird

72

What is Continual Learning?

* Train from scratch with all data of tasks can mitigate forgetting
* However, it takes too much time to training.
* Data of the past task may be unavailable.

Algorithmic Intelligence Lab

73

What is Continual Learning?

* Train from scratch with all data of tasks can mitigate forgetting
* Howeuver, it takes too much time to training.
e Data of the past task may be unavailable.

e Continual Learning

e Learn from a non-iid stream of data without catastrophically forgetting the
previously learned knowledge.

* Humans can learn incrementally throughout their lifetime.

Autonomous drive Logistics

Algorithmic Intelligence Lab

74

What is Continual Learning?

* Preliminary
* Common benchmark

Split MNIST : the original MINIST is split into disjoint subset(task), where each set consists
of two digit classes (a two-way classification).

Split CIFAR-10/100: the original CIFAR-10/100 is split into disjoint subset(task), where
each set consists of two classes (a two-way classification).

Permuted MNIST: MNIST with different random permutation in pixel level, where each
task is a ten-way classification.

* Baseline model

* Fine-tune: trains a model incrementally based on the model parameters learned in the

MNIST-split Permuted MNIST
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 10
- b P (permutation 1) (permutation 2) (permutario1)
0]/ o7 714 EUEED EEEEE - EEEE
T | I | Il R | IR BEEEEA EEERE S

previous stage.

Data: [)q
Init: 4,

Data: Do
Init: 04

Data:
Init:

D3
02

Algorithmic Intelligence Lab

Data:
Init:

D~

75

What is Continual Learning?

* Prelimin

ary

* Basic continual learning setup

* Classification tasks are given with the task description t.

E.g., for MNIST-Split dataset, is it the 1st or 2nd class with given task description?

Data:

Task 1

0] /]

first second
class class

Init:

0o

Task 2

Data:

Init: 04

Train

Data:
219

Init: Op_4

* Advanced continual learning setup (task-free)
* No explicit task identifier/boundary information at train/test time.

e Assume input stream is infinite and non-iid.
* The data domain may gradually shift without any clear task boundary.

* Such setups are recently proposed to assume more realistic/practical situation.

Init:

Data: m

0o

Data:

Init: 91

Algorithmic Intelligence Lab

Train

Data: n

Init: 9T—1

Test

f9T (, t=3) = 15tor 2n%?

Test

Jor (BY) =+

76

What is Continual Learning?

 How to solve this problem?

Algorithmic Intelligence Lab

77

What is Continual Learning?

* How to solve this problem?
* Part 2: Regularization-based Approach

* Elastic Weight Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017] &/

* Learning without Forgetting (LWF) i et a1, 2016]

* Part 3: Replay-based Approach

Current Task

* ER-Reservoir sampling chaudhry et al., 2019] ml New Scholar
* Gradient Episodic Memory (GEM) (1ope;-paz and Ranzato, 2017] e
* Dark Experience Replay (DER) (guzzega, 2020] ;_T

* Deep Generative Replay shin et al., 2017] chozar

* Part 4: Expansion-based Approach
* Progressive Neural Network (rusy and Rabinowitz et al., 2016]
 Dynamically Expandable Networks (DEN) yoon eta. 2018]

Algorithmic Intelligence Lab

78

Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

Sub-optimal parameter of task A

Low error for task A

Algorithmic Intelligence Lab

79

Table of Contents

4. Continual Learning
* Regularization-based approaches

Algorithmic Intelligence Lab

80

Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

hile learning new t v
A

Too plastic:

Low error for task A Forget knOWIEdge Low error for task B
of task A

Algorithmic Intelligence Lab

Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

-

hile learning new task B:..
b~

Too plastic:

Low error for task A Forget knOWIedge Low error for task B
of task A

* How to stabilize important parameters for previous tasks and plasticize other
parameters to learn new tasks?

Algorithmic Intelligence Lab 82

Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

-

hile learning new task B:..
b~

Too plastic:

Low error for task A Forget knOWIedge Low error for task B
of task A

* How to stabilize important parameters for previous tasks and plasticize other
parameters to learn new tasks?

* Fisher information roughly measures the sensitivity of the model’s output

distribution to small changes in the parameters. &21(0)
1(0) = —

* Def (Fisher Information). The negative second derivative of the log likelihood function.

Algorithmic Intelligence Lab 83

Regularization-based Continual Learning

* Elastic WEIght Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017]

* Limiting the learning of parameters critical to the performance of past tasks, as
measured by the Fisher information matrix (FIM).

—
7~

EWC

Low error for task A Low error for task B

Balance Plasticity-Stability

A
L) =Ep0)+)> o Filbi 0%)
Current task loss ¢

* Penalizing output changes of model from changes in model parameter can be used
as regularizer!

Algorithmic Intelligence Lab 84

Regularization-based Continual Learning

* Elastic WEIght Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017]

* Limiting the learning of parameters critical to the performance of past tasks, as
measured by the Fisher information matrix (FIM).

Low error for task A Low error for task B

train A trainB train C

0 - ‘ - EWC

* Results on the permuted MNIST task 3 V 2
* EWC retains previous tasks’ performance.) ?:ij f |
e L2 regularized scheme more tends to E m
stabilize on previous task. 058 - f |
« SGD is too plastic, o " f |
which results in forgetting previous tasks. S 1 ‘

Frac. correct o)
Training time

Algorithmic Intelligence Lab 85

Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]

* Preserve output logit (LwF-logit) of current task samples with the model trained on
previous task: regularize output

Algorithmic Intelligence Lab

86

Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]

* Preserve output logit (LwF-logit) of current task samples with the model trained on
previous task: regularize output

* Use both {sample, target} and {sample, LwF-logit} pairs to train (multi head).

LEARNINGWITHOUTFORGETTING:
Start with:
Input: Target: 0s: shared parameters
0,: task specific parameters for each old task
model (a)’s Xn, Yp: training data and ground truth on the new task
¢ response for Initialize:
new task old tasks Y, + CNN(X,,, 05, 0,) // compute output of old tasks for new data
image > 0. < RANDINIT(|0,|) // randomly initialize new parameters
task Train:
new da;S-uth Define Y, = CNN(X,,, 05, 0,) // old task output
groun Define Y,, = CNN(X,,, 65, 6,) // new task output
9%, 62, 07 < argmin (Aoﬁold(Yo, Vo) + Loew (Yo, Vi) + R(Bs, b0, én))
85,00,0n

Balance Plasticity-Stability

Algorithmic Intelligence Lab

87

Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]
* Preserve output logit (LwF-logit) of current task samples with the model trained on

previous task: regularize output

* Use both {sample, target} and {sample, LwF-logit} pairs to train (multi head).

Input:

new task
image o

Target:

model (a)’s
response for
old tasks

new task
ground truth

LEARNINGWITHOUTFORGETTING:

Start with:
0s: shared parameters
0,: task specific parameters for each old task
Xn, Yn: training data and ground truth on the new task

Initialize:
Y, + CNN(X,, 0., 6,) // compute output of old tasks for new data
0. < RANDINIT(|0,|) // randomly initialize new parameters
Define Y, = CNN(X,, 85, 0,) // old task output
Define ¥, = CNN(X, 05, 6,) // new task output
9%, 62, 07 < argmin ()\oﬁold(Yo, Vo) + Loew (Yo, Vi) + R(Bs, b0, é,,,))

85.00,0n

Balance Plasticity-Stability

* Both EWC and LwF regularize changes in trained model’s parameters or outputs
rather than storing previous tasks’ samples to preserve learned knowledge.
* Control plasticity-stability using a hyperparameter.

Algorithmic Intelligence Lab

88

Table of Contents

4. Continual Learning

* Replay-based approaches

Algorithmic Intelligence Lab

89

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

Algorithmic Intelligence Lab

90

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

Algorithmic Intelligence Lab

91

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous

data is limited to the current task.
* What if we can replay some of the previously observed samples?

 Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.

* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay
* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

* How to generate fake inputs learned from past input distribution and train current
task simultaneously?

92

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
* Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

 How to generate fake inputs learned from past input distribution and train current
task simultaneously?

Algorithmic Intelligence Lab

93

Replay-based Continual Learning

* If one can store samples representative to input distribution, the replayed
samples enable us to partially retrieve previous task.

* Possibly effective to prevent forgetting!

* Sampling strategy: How we keep a fixed buffer of size M to be used as a
representative of the previous samples?

* Reservoir sampling (c,ugnry et ar, 2019) attempts to keep memory to be
representative.

* Basic operations: samples can be stored, discarded or replaced at every update
step.

store discard replace

AN

Buffer l v

Algorithmic Intelligence Lab

94

Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* In the beginning when the buffer is not full, add incoming samples.

Algorithmic Intelligence Lab

95

Replay-based Continual Learning

* Reservoir sampling (ch,udhry et al, 2019]

* In the beginning when the buffer is not full, add incoming samples.

* Once the buffer is full, replace current sample with a probability
(replay buffer size)/(# examples encountered so far).

(replay buffer size)

Prepl t =
l FOPTREEmERY T (# examples encountered so far)

Algorithmic Intelligence Lab

96

Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* In the beginning when the buffer is not full, add incoming samples.

* Once the buffer is full, replace current sample with a probability
(replay buffer size)/(# examples encountered so far).

* The sample to be replaced in the replay buffer is selected with a uniform
distribution.

B (replay buffer size)
Preplacement = (# examples encountered so far)

1
replay buffer size)

1 Pcandidate =— (

* Reservoir sampled instances in replay buffer are representative of the inputs.
* |t also works in the infinite non-iid input stream settings

Algorithmic Intelligence Lab

97

Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* How to train with Reservoir sampled buffer?

Current stream Joint train

v

Populated from buffer J

Joint train

I Uniformly populate

Buffer (episodic memory)

* Populate samples from buffer same sized with batch size and jointly train model.

* Since experience replay with Reservoir sampling is simple yet effective, it is used as
a strong baseline for replay-based continual learning studies.

Algorithmic Intelligence Lab

98

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
* Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

 How to generate fake inputs learned from past input distribution and train current
task simultaneously?

Algorithmic Intelligence Lab

99

Replay-based Continual Learning

¢ Gradient EpiSOdiC Memory (GEM) [Lopez-Paz and Ranzato, 2017]
* Assume the continuum of data is locally iid.

* We update parameters on observed triplet (x, t, y) where (x, y) is a pair of input-
target and t is task identifier.

* Prevent forgetting by optimizing networks on observed triplet only allowed to
decrease loss on populated samples from memory.

* We define average loss on samples from memory

(M) = —— S0 C(fo (wirk))

My
h | | (m’wkvyz)eMk
kt" task memory

* Then, we optimize parameters in what follows

minimizegl (fo(x,t),y)
subject to £ (fg, My) < 6(g_l,Mk) for all k <t

kth task memory

* We store trained triplets in fixed size memory in FIFO(first in first out) manner.

Algorithmic Intelligence Lab 100

Replay-based Continual Learning

¢ Gradient EpiSOdiC Memory (GEM) [Lopez-Paz and Ranzato, 2017]
* Optimization rephrasing : the gradients of past and current task should be aligned.

minimizegl (fo(x,t),y)
subject to ¢ (fp, M) < E(g_l,./\/lk) forall k <t

kth task memory Rephrased

ol (fo(x,t),y) O (fo, M)
= >
(g, 9K) < e , 50 > (), for all k <t

Parameter update
on observed triplet (x, t, y).

* If satisfied, the gradient g is unlikely to increase the loss at previous tasks

* If not satisfied, at least one previous task’s loss is likely to increase after updating
parameter on direction to g.

* If above products are negative, project g to the closest gradient g satisfying
positive transfer.

.. 1 2
minimize; - lg — §1

subject to (g,gr) > 0 for all k < ¢

Algorithmic Intelligence Lab 101

Replay-based Continual Learning

* Dark Experience Replay (DER) (5,,5e¢5 2020]
* Encourage the network to mimic its original responses for past samples.

* Logit matching: retain the network’s logits instead of the ground truth labels.

* Similar to previous replay-based methods, DER also looks for parameters that fit
the current task well while approximating the behavior observed in the old ones.

* However, DER does not approximate past behaviors in gradient spaces.

(1 To be buffered

(\ TN -
Currentsample | & i —> — i 2 ': > Y — Y
— A ===~ Softmax Cross
Augment Entropy
hg
Buffered sample g;’ — — —_— ’Z“’ — Z/
MSE
Augment
Network

Li, + aEg)om [|z — he(“z’)”é]

Algorithmic Intelligence Lab

102

Replay-based Continual Learning

* Dark Experience Replay (DER) (5,,5e¢5 2020]

Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MN.IST R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

JOINT 92.20+0.15 98.31+0.12 59.99+0.19 82.04+0.10 94.33+0.17 95.76+0.04

- SGD 19.62+0.05 61.02+3.33 7.92+0.26 18.31+0.68 40.70+2.33 67.66+8.53

oEWC [36] 19.49+0.12 68.29+3.92 7.58+0.10 19.20+0.31 75.79+2.25 77.35+5.77

S1[42] 19.48+0.17 68.05+5.91 6.58+0.31 36.32+0.13 65.86+1.57 71.91+5.83
T LwF[24] 19.61+0.05 63.29+2.35 8.46+0.22 15.85+0.58 - -
PNN [35] - 95.13+0.72 - 67.84+0.29 - -

ER [33] 44.79+1.86 91.19+0.94 8.49+0.16 38.17+2.00 72.37+0.87 85.01+1.90

GEM [27] 25.54+0.76 90.44+0.94 - - 66.93+1.25 80.80+1.15

A-GEM [9] 20.04+0.34 83.88+1.49 8.07+0.08 22.77+0.03 66.42+4.00 81.91+0.76
iCaRL [32] 49.02+3.20 88.99+2.13 7.53+0.79 28.19+1.47 - -

200 FDR [4] 30.91+2.74 91.01+0.68 8.70+0.19 40.36+0.68 74.77+0.83 85.22+3.35

GSS [1] 39.07+5.59 88.80+2.89 - - 63.72+0.70 79.50+0.41

HAL [8] 32.36+2.70 82.51+3.20 - - 74.15+1.65 84.02+0.98

DER (ours) 61.93+1.79 91.40+0.92 11.87+40.78 40.22+0.67 81.74+1.07 90.04+2.61

DER++ (ours) 64.88+1.17 91.92+0.60 10.96+1.17 40.87+1.16 83.58+0.59 90.43+1.87

ER [33] 57.74+0.27 93.61+0.27 9.99+0.20 48.64+0.46 80.60+0.86 88.91+1.44

GEM [27] 26.20+1.26 92.16+0.69 - - 76.88+0.52 81.15+1.98

A-GEM [9] 22.67+0.57 89.48+1.45 8.06+0.04 25.33+0.49 67.56+1.28 80.31+6.29
iCaRL [32] 47.55+3.95 88.22+2.62 9.38+1.53 31.55+3.27 - -

500 FDR [4] 28.71+3.23 93.29+0.59 10.54+0.21 49.88+0.71 83.18+0.53 89.67+1.63

GSS [1] 49.73+4.78 91.02+1.57 - - 76.00+0.87 81.58+0.58

HAL [8] 41.79+4.46 84.5412.36 - - 80.13+0.49 85.00+0.96

DER (ours) 70.51+1.67 93.40+0.39 17.75+1.14 51.78+0.88 87.29+0.46 92.24+1.12

DER++ (ours) 72.70+1.36 93.88+0.50 19.38+1.41 51.91+0.68 88.21+0.39 92.77+1.05

ER [33] 82.47+0.52 96.98+0.17 27.40+0.31 67.29+0.23 89.90+0.13 93.45+0.56

GEM [27] 25.26+3.46 95.55+0.02 - - 87.42+0.95 88.57+0.40

A-GEM [9] 21.99+2.29 90.10+2.09 7.96+0.13 26.22+0.65 73.32+1.12 80.18+5.52
iCaRL [32] 55.07+1.55 92.23+0.8¢ 14.08+1.92 40.83+3.11 - -

5120 FDR [4] 19.70+0.07 94.32+0.97 28.97+0.41 68.01+0.42 90.87+0.16 94.19+0.44

GSS [1] 67.27+4.27 94.19+1.15 - - 82.22+1.14 85.24+0.59

HAL [8] 59.12+4.41 88.51+3.32 - - 89.2040.14 91.17+40.31

DER (ours) 83.81+0.33 95.43+0.33 36.73+0.64 69.50+0.26 91.66+0.11 94.14+0.31

DER++ (ours) 85.24+0.49 96.12+0.21 39.02+0.97 69.84+0.63 92.26+0.17 94.65+0.33

Algorithmic Intelligence Lab

* Despite its simplicity, DER/DER++
outperform most of CL baselines
in various scenarios.

e DER++ additionally
populates and utilizes
ground truth labels (y).

The source of its greatness is not
fully explained yet.

* There is still much room for
improvement!

103

Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

* Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.
* How to utilize episodic memory to prevent forgetting while learning new task?
* Which samples should be stored in replay memory?

e Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

* How to generate fake inputs learned from past input distribution and train current
task simultaneously?

Algorithmic Intelligence Lab 104

Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model
(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.

Algorithmic Intelligence Lab 105

Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model

(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.

* Generator is sequentially trained to generate pseudo-input from current task
inputs and generated inputs from old scholar’s generator.

Current Task

:l, New Scholar

Current | x Generator

Replay | x' ——

Generator

0ld Scholar

Algorithmic Intelligence Lab 106

Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model

(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.

* Generator is sequentially trained to generate pseudo-input from current task
inputs and generated inputs from old scholar’s generator.

* Solver is sequentially trained on both current input-target pairs and pairs of
generated input-target from old scholar’s solver.

Current Task Current Task

:l, New Scholar ,I, New Scholar

Current | x Generator Current | x

- :
Replay x' Replay :i\":

Generator enerato

NG

A\l
N

0ld Scholar 0Old Scholar

Algorithmic Intelligence Lab 107

Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* Experimental results

* Test accuracy of sequentially learned solver measured on full test data from MNIST.

* The first solver learned from real data, and subsequent solvers learned from
previous scholar networks.

| Solver; — Solvers — Solvers — Solvery — Solvers
Accuracy(%) | 98.81% 98.64% 98.58% 98.53% 98.56%

* Permuted MNIST experiment
* Generative replay(GR) trains well as much as Exact replay (ER).
* Sequential training on a solver alone suffer forgetting (None).
* Replaying gaussian noise does not help tempering performance loss (Noise).

—~1 ‘ 1.0

j‘«g P - ’,,M/_v,,—f‘—\w ER
== 0.9 e SV

g = 20.8

o ! | ©

T T 3 0.7

£ ® 0.6

M o= 0.5 M None
Fo | .

nl i r— x103
g 0-49 5 10 15 20 25

Algorithmic Intelligence L iterations 108

Replay-based Continual Learning

* Deep Generative Replay (s, et a1 2017]

the original task (thick curves)

° Learning new domains the new task (dim curves)
_ ogy Drarmarin/n ER(S)
- fpw GR(S)

' None(S

0.6 | MnisT(01d) — SVHN(New) 0.6 SVHN(OId) — MNIST(New))

0.5 x103 x103

20 5 10 15 20 25 0.5, 5 10 15 20 25
iterations iterations
(a) MNIST to SVHN (b) SVHN to MNIST

* MNIST->SVHN, SVHN->MNIST
* Generative replay learns new domains sequentially without forgetting.

Algorithmic Intelligence Lab 109

Replay-based Continual Learning

* Deep Generative Replay (s, ct a1, 2017]
* Learning new classes

ER

T e T e e —_ .
P P

x103

25

20

15

10

©

iterations

RO~ N O
ON~P O XM
[MOQAYDI—~I0N
VrNDS o r~3 0\

NS P — NN
H—a~TOx®
FO*oon>
Q=T KD o~
N Y7 Q
Dy e~y —
OO NMO A
NNARSOMNI™TY
NS TONMYT
GO N™Nw
A0 FMm—L D
AQ Y9 N0
NOIr*DO T~
Nhw-TWnN-0
DO TS0 PN
(L Re Ne R sV i
N0 T\ WM~
HN\ N oh@® N~
ANTNAOD~~N
bYerors-QT
SANSA—~—mMm
M= Q0 ~Q&~=d
SN manQw
MO~ Y~D
O0~xk~QyYyOO
—N®AS~XMYD

MNIST divided into 5 tasks with two labels in each.
* Generative replay learns new classes sequentially without forgetting.

110

Table of Contents

4. Continual Learning

* Expansion-based approaches

Algorithmic Intelligence Lab 111

Expansion-based Continual Learning

* Regularization-based approaches prevent forgetting by regularizing the change
of a specific set of weights (e.g. EWC).

* Making the current weights closer to the previous ones may not always ensure that
the predictions on the past tasks also remain unchanged.

\"",
Lé‘ ‘b‘

Without fixing model architecture

Algorithmic Intelligence Lab 112

Expansion-based Continual Learning

* Regularization-based approaches prevent forgetting by regularizing the change
of a specific set of weights (e.g. EWC).

* Making the current weights closer to the previous ones may not always ensure that
the predictions on the past tasks also remain unchanged.

* Expansion-based Continual Learning

* Expand the model architecture to accommodate new data instead of fixing it
beforehand.

* Prevent pre-existing components from being overwritten by the new information.

t-1

.

50000

vw. <'v—/

(ﬁi%‘x‘ijﬁn

A S
~ é\.“(l

\"",
Lé‘ ‘b‘

Without fixing model architecture Expanding model architecture

Algorithmic Intelligence Lab 113

Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.

)

N

L

A

Cm)
I

Task 1 input

Algorithmic Intelligence Lab 114

Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen

Task 2 input

Algorithmic Intelligence Lab 115

Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen
h:gl) h:(32) hg‘g) hgk) _ f(Wi(k)h(k)1 i ZU(k J)h(J))
1 - ""'1 1<k
}—==" I
hgl) hgz)
* ’,—’
1 - o=
1 P - -
Le==—" -
hgl) h§2)

Task 3 input

Algorithmic Intelligence Lab 116

Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen

B

e For example, if hgl) has enough
information(=transferrable) to

perform task 3 at layer 3, h§3) can

ignore inputs other than hgl).

Task 3 input

Algorithmic Intelligence Lab 117

Expansion-based Continual Learning

* Experiments
* Setup

(a) Pong variants (b) Labyrinth games (c) Atari games

* Evaluate across three different RL domains
* Pong variants: synthetic version of Pong including flipped, noisy, scaled and recolored
transforms.
* Labyrinth games: a set of 3D maze games
» Atari games: random sequences of Atari games

* New column is linearly added when new task(domain) is given.

Algorithmic Intelligence Lab 118

Expansion-based Continual Learning

* Experiments

e Baselines
B B .
T = - ?
- - . \
input input input input input

(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net

2 columns

e Baseline 2: a quite standard in supervised learning with finetuning only output layer of

pretrained networks.
* Baseline 3: support full finetuning of pretrained network

* Baseline 4: Does progressive NN take advantage of positive transfer from previously

learned columns?

* Metrics

* Transfer score: the relative performance of an architecture compared with baselinel

(high is better). Clipped in range [0,2].
* Provide mean and median transfer scores.

Algorithmic Intelligence Lab

o
~

input

3 columns

source task

target task

random

119

Expansion-based Continual Learning

[] Source tasks

Target task
* Results &
= S
a) 2 g “2 g'
4 = > ‘1’ ° S S x c 6 < N =
S’U;—%“.-.w%-}—;g x28%y & 2537 MR
o 8% >0o0% o cC g S5 < o0%=-wv0o. s % 2 N
amIIz>=N XS g ESTRS RN 2 z=s
" T oo ooc By L LR =
Baseline 2 Pong Baseline 2 Baseline 2| Avoid 1
Noisy Track 1
H-flip Baseline 3 Maze Y
Baseline 3 Pong I 2 2 Baseline 3| Avoid 1
Noisy Baseline 4 I Track 1
H-flip 1 Prog. 2 col Maze Y
Baseline 4 Random l 1 Baseline 4 Random
Prog. 2 col Pong 0 Prog. 3 col riverraid+pong| I Prog. 2 co| Avoid 1
Noisy rlverra|d+s§aque§t 0 Track 1
] pong+riverraid
H-flip pong+seaquest| Maze Y
Prog. 3 col| Noisy + H-flip seaquest+riverraid
seaquest+pong
Prog. 4 col |seaquest+riverraid+pong
Pong Soup Atari Labyrinth

* Baseline2 (Single column, only output layer is finetuned) fails to learn the target
task (negative transfer).

* Progressive NNs (with 2 or more columns) show greater transferability from source
task domains to target domain.

Algorithmic Intelligence Lab 120

Expansion-based Continual Learning

* Results
Pong Soup Atari Labyrinth

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)
Baseline 1 100 100 100 100 100 100
Baseline 2 35 7 41 21 88 85
Baseline 3 181 160 133 110 235 112
Baseline 4 134 131 96 95 185 108
Progressive 2 col 209 169 132 112 491 115
Progressive 3 col 222 183 140 111 — —
Progressive 4 col — — 141 116 — —

* Baseline 3 shows high positive transfer but progressive NN shows much higher
performance in terms of mean and median score.

* This suggests progressive NN is better to exploit transfer when source and target
domains are compatible.

* Also, since baseline3 learns target domain without preserving features of source task
domains, it might suffers catastrophic forgetting while progressive NN does not.

Algorithmic Intelligence Lab 121

Expansion-based Continual Learning

* Dynamically Expandable Networks (DEN) yyoon et a. 2018)
* Progressive NN-like approaches increase model size linearly on the number of tasks.

Expanding model architecture

Algorithmic Intelligence Lab 122

Expansion-based Continual Learning

* Dynamically Expandable Networks (DEN) yyoon et a. 2018)

* Progressive NN-like approaches increase model size linearly on the number of tasks.

* DEN selectively retrains the old network, expanding its capacity when necessary.

v

ST
()

QQQ

N O ———
PO = —

I ==
(’,i’,/ ‘v'/I\‘vj
~ ‘\\ = A‘\ ~ A

N\ [Z

\ NS oS LS

56000

N\

Expanding model architecture Dynamically Expanding model architecture

Algorithmic Intelligence Lab

123

Expansion-based Continual Learning

* Sketch of Dynamically Expandable Networks (DEN) jyoon, et a., 2018]
* Selective retraining
* Dynamic network expansion
* Network split/duplication

Selective retraining Dynamic network expansion Network split/duplication

Algorithmic Intelligence Lab 124

Expansion-based Continual Learning

* Selective Retraining
* At the initial task (t=1), train with L1-regularization (sparse network)

Layer L

7 X< wi=t

wis (OO

Input Layer

Algorithmic Intelligence Lab 125

Expansion-based Continual Learning

* Selective Retraining
e At every Incoming new task,
* Train only W/, weights (L1-reg).

Algorithmic Intelligence Lab 126

Expansion-based Continual Learning

* Selective Retraining
e At every Incoming new task,
e Train only weights (L1-reg).
* Then, the non-zero values of weights is related to t-task (parameter selection).

: A set of neurons adjacent to selected parameters
* Train subnetwork S with

t-1 t
>
t
WL
Layer L
-_— t
S [eYeYeYe)
Ay Wit

Input Layer O Ob

Algorithmic Intelligence Lab 127

Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

Layer L

Layer L-1

Input Layer

Algorithmic Intelligence Lab 128

Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 “7 22
W{V
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Wlt—l VVlN
Vvlt /l: — I/Vl/\fl
Layer L-1
Input Layer

Algorithmic Intelligence Lab 129

Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 “7 22
W{V
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Layer L

Layer L-1

Input Layer

Algorithmic Intelligence Lab 130

Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 V‘r 22
W{\f
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Layer L

Layer L-1

Input Layer

Algorithmic Intelligence Lab 131

Expansion-based Continual Learning

* Network split/duplication

* Prevent forgetting after training with dynamic expanded networks

t-1

Layer L

7 X\ Wizl

wis (OO

Input Layer

Algorithmic Intelligence Lab 132

Expansion-based Continual Learning

* Network split/duplication

* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:

pi = llwi —wi 2
t-1 t-1 t
I > I —

Layer L

Layer L-1 t_l @) Q ‘@

Wl
Input Layer <’

Hidden unit i and its incoming weight _/

Algorithmic Intelligence Lab

133

Expansion-based Continual Learning

* Network split/duplication
* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:
pi = llwi —wi ™2
* |f such semantic drift is too large, copy neuron and adjacent weights.
« The original neuron and weights are restored to the time stamp at t-1t" task trained.

t-1 t-1 t

Layer L

- [QOD0) | ([L000) [0
e (660606

Algorithmic Intelligence Lab 134

t—1
Wi

Expansion-based Continual Learning

* Network split/duplication
* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:
pi = [lw; —wi ™2
* |f such semantic drift is too large, copy neuron and adjacent weights.

« The original neuron and weights are restored to the time stamp at t-1t" task trained.

* Then, retrain network on tth task while retaining t-1t task learned weights.
minimizey -t £ (Wt; Dt) + A HWt —wit! H;

t-1 t-1 t
1 1 1
1 > 1 1 >

Layer L

t—1
Wi

Layer L-1 [Qéc%l Wit [—CD‘ C\‘D"@ Ecg?ed
(/ 8 O (|

Input Layer

Retrain with L2-reg

Algorithmic Intelligence Lab

135

Expansion-based Continual Learning

* Timestamped Inference

* While network expansion and split procedures, DEN timestamps each newly added
unit j by setting {z}; = ¢ to record the training stage t.

* At inference time, each task will only use the parameters that were introduced up
to state t.

_—
O C

QOQ] [O

feXoXeY |

Task identifier is given as t-1 Task identifier is given as t

Algorithmic Intelligence Lab 136

Expansion-based Continual Learning

* Timestamped Inference

* While network expansion and split procedures, DEN timestamps each newly added
unit j by setting {z}; = ¢ to record the training stage t.

* At inference time, each task will only use the parameters that were introduced up
to state t.

* This is why the network split/duplication works for preventing forgetting.

|
/A AN A=
e)e)
Weights were retrained not too far
from the weights trained at t-1t" task
(split/duplication)
Task identifier is given as t-1 Task identifier is given as t

Algorithmic Intelligence Lab 137

Expansion-based Continual Learning

* Baselines

DNN-STL: Base DNN, trained for each task separately Offline learning
DNN-MTL: Base DNN, trained for all tasks at once

DNN: Base DNN, using I12-regularizations

DNN-L2: Base DNN, using I2-regularizations b/w weights of previous/current tasks
DNN-EWC: DNN trained with elastic weight consolidation for regularization
DNN-Progressive: DNN trained with progressive nets Expansion-based CL
DEN

 Datasets

MNIST-Variation: rotated / noised MNIST images. One-versus-rest binary task

* CIFAR-100: 100 classes. Binary task on each class.
* AwA (Animal with attributes): 50 classes. Binary task on each class.

Algorithmic Intelligence Lab

138

Expansion-based Continual Learning

* Average Per-task performance
* DEN outperforms all online-trained baselines

Average Per-task Performance on MNIST-Variation Average Per-task Performance on Cifar-100 Average Per-task Performance on AWA-Class
T .95,
0% DNN-STL (0.7963) os !
O DNN-MTL (0.8047)
< ©DNN (0.6785)
09 >DNN-L2 (0.7440) VN
<DNN-EWC (0.7480) 085F % Y
>DNN-Progressive (0.7817) Vb Bt s S NS . S S \
0.5 B, [ADEN (0.8131) L NN
A A .\ il altE
a AN A \
o | Oorsk CNN-STL (0.9345)
2 s o i g O CNN-MTL (0.8890)
3 I -©-CNN (0.5629)
| o 8- N) a -B>-CNN-L2 (0.7830)
0.75 © B T 065} *g::-gwc (0.8134) E DNN-STL (0.9064)
N -Progressive (0.8819) O DNN-MTL (0.7222)
o, sk @O [ADEN(09225)] 04| --<o--- DNN. (0.5240)
ol o | \‘9—“’(}” 0. ---B>-- DNN-L2 (0.5454)
- O o e Q- oall -~© - DNN-EWC (0.5604)
q 0.551] —— DNN-Progressive (0.6465)
A DEN (0.8913)
0.65 L L L - L - - L 0.5 L L y L > y 0.2
1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 9 100 5 1o 15 20 25 30 35 40 45 50
Number of tasks Number of tasks Number of tasks

* Performance retention over time (MNIST-Variation)
* DEN steadily retains learned performance at any time (prevent forgetting)

Performance change for Task 1 Performance change for Task 4 Performance change for Task 7
0.92 - . : : - 0.86 : : : :) .
>DNN-L2
0.8 <»DNN-EWC
0.84 | 9 > DNN-Progressive
B A ADEN
-\»—?\. S A A A - DEN-No-Stamp
0.82 [. 4 0.757]
I \/ T Vi - i
g g Prpe > g —7
4 T 08F A A el ® 4
2 2 2
< < < 07°Ff
09 - 078 | 1 G B N
T>DNN-L2 {>DNN-L2 N Tr——)
£ DNN-EWC ;gs:—&wc ‘ T T
- i] L -Progressive Tl
0.895 Zggs Progressive 0.76 ADEN R
—+DEN-No-Stamp —+DEN-No-Stamp
0.89 : - ; . - . . : 0.74 : - . . . 06 - .
1 2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 7 8 9 10
Time at the task t Time at the task t Time at the task t

Algorithmic Intelligence Lab 139

Summary

Many attempts exist to better transfer the knowledge from source to
target domains.

Mainly, two branches of approaches exist.

[1] Training universal feature extractor from data rich source domain
* e.g.) Big Transfer, self-supervised learning methods

[2] Consideration of "what should be transferred” while doing
transfer

e e.g.) Jacobian matching

Fine-tuning/transferring knowledge from backbone network is
getting very common:

e e.g.) Most NLP works fine-tune BERT (or GPT), rather than training from scratch

140

Summary

. CorI1<tinuaI learning aims to prevent catastrophic forgetting while learning sequential
tasks.

* To prevent forgetting, previous works try to preserve learned knowledge by

* [1] Regulating parameter changes,
» Elastic Weight Consolidation (EWC)

* Learning without Forgetting (LwF)

Low performance
Require task identity

» [2] Storing/replaying past task-specific samples,
* Experience Replay (ER)
* Deep Generative Replay

Resource expensive
Privacy

* [3] Expanding model to separate knowledge physically.
* Progressive Neural Network(PNN) Not practical
* Dynamically Expandable Networks(DEN)

* Recent works aim to overcome practical limitations of various types of continual
learning settings.

* Online streamed data (online learning)
» Task-free (training without task identifier/boundary information)

141

References

[Pan et al., 2010] A survey on transfer learning, IEEE Transactions on knowledge and data engineering, 2010.
link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5288526

[Weiss et al., 2016] A survey of transfer learning, Journal of Big Data, 2016.
link: https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-016-0043-6

[Tan et al., 2018] A Survey on Deep Transfer Learning, arXiv preprint arXiv:1808.01974, 2018.
link: https://arxiv.org/pdf/1808.01974.pdf

[Yaniv et al., 2014] DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR, 2014.
link: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6909616

[Razavian et al., 2014] CNN features off-the-shelf: an astounding baseline for recognition, CVPR Workshops, 2014.
link: https://arxiv.org/pdf/1403.6382.pdf

[Hinton et al., 2015] Distilling the knowledge in a neural network, NIPS workshops, 2015.
link: https://arxiv.org/pdf/1503.02531.pdf

[Wang et al., 2017] Growing a brain: Fine-tuning by increasing model capacity, CVPR, 2017.
link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099806

[Ge et al., 2017] Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning, CVPR,
2017.
link: https://arxiv.org/pdf/1702.08690.pdf

[Hendrycks et al., 2019] Using Pre-training Can Improve Model Robustness and Uncertainty , ICML, 2019.
link: https://arxiv.org/pdf/1901.09960.pdf

[Kolesnikov, Beyer and Zhai et al.,2020] Big Transfer (BiT): General Visual Representation Learning, 2020
link: https://arxiv.org/pdf/1912.11370.pdf

[Andrei et al., 2016] Progressive Neural Networks, arXiv preprint arXiv:1606.04671, 2016.
link: https://arxiv.org/pdf/1606.04671.pdf
Algorithmic Intelligence Lab 142

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5288526
https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-016-0043-6
https://arxiv.org/pdf/1808.01974.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6909616
https://arxiv.org/pdf/1403.6382.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099806
https://arxiv.org/pdf/1702.08690.pdf
https://arxiv.org/pdf/1901.09960.pdf
https://arxiv.org/pdf/1912.11370.pdf
https://arxiv.org/pdf/1606.04671.pdf

References

[Kendall et al., 2018] Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, CVPR,
2018.
link: https://arxiv.org/pdf/1705.07115.pdf

[Li et al., 2016] Learning without Forgetting, ECCV, 2016.
link: https://arxiv.org/pdf/1606.09282.pdf

[Zagoruyko et al., 2017] Paying more attention to attention: Improving the performance of convolutional neural
networks via attention transfer, ICLR, 2017.
link: https://arxiv.org/pdf/1612.03928.pdf

[Springenberg et al., 2015] Striving for Simplicity: The All Convolutional Net, /CLR, 2015.
link: https://arxiv.org/pdf/1412.6806.pdf

[Selvaraju et al., 2016] Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, /ICCV, 2017.
link: https://arxiv.org/pdf/1610.02391.pdf

[Czarnecki et al., 2017] Sobolev raining for neural networks, NIPS, 2017.
link: https://arxiv.org/pdf/1706.04859.pdf

[Srinivas et al., 2018] Knowledge Transfer with Jacobian Matching, ICML, 2018.
link: https://arxiv.org/pdf/1803.00443.pdf

[Cui et al., 2018] Large scale fine-grained categorization and domain specific transfer learning, CVPR, 2018.
link: https://arxiv.org/abs/1806.06193

[Ahn et al., 2019] Variational Information Distillation for Knowledge Transfer, CVPR, 2019.
link: https://arxiv.org/abs/1904.05835

[Park et al., 2019] Relational Knowledge Distillation, CVPR, 2019.
link: https://arxiv.org/abs/1904.05068

Algorithmic Intelligence Lab 143

https://arxiv.org/pdf/1705.07115.pdf
https://arxiv.org/pdf/1606.09282.pdf
https://arxiv.org/pdf/1612.03928.pdf
https://arxiv.org/pdf/1412.6806.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1706.04859.pdf
https://arxiv.org/pdf/1803.00443.pdf
https://arxiv.org/abs/1806.06193
https://arxiv.org/abs/1904.05835
https://arxiv.org/abs/1904.05068

References

[Jang and Lee, 2019] Learning What and Where to Transfer, ICML 2019.
link: https://arxiv.org/abs/1905.05901

[Tian et al., 2020] Contrastive Representation Distillation, /CLR, 2020.
link: https://arxiv.org/abs/1910.10699

[Zhang and Yang, 2017] A Survey on Multi-Task Learning, arxiv, 2017.
link: https://arxiv.org/abs/1707.08114

[Misra et al., 2016] Cross-stitch Networks for Multi-task Learning, CVPR, 2016
link: https://arxiv.org/abs/1604.03539

[Mudrakarta et al., 2019] K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning, ICLR, 2019
link: https://arxiv.org/abs/1810.10703

[Sener and Koltun, 2018] Multi-task Learning as Multi-objective Optimization, NIPS, 2018
link: https://arxiv.org/abs/1810.04650

[Chen et al., 2018] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks, ICML,
2018
link: https://arxiv.org/abs/1711.02257

[Barber and Agakov, 2003] The IM Algorithm: A Variational Approach to Information Maximization, NIPS, 2003
link: http://papers.nips.cc/paper/2410-information-maximization-in-noisy-channels-a-variational-approach.pdf

[Andrychowicz et al., 2016] Learning to learn by gradient descent by gradient descent, NIPS, 2016
link: https://arxiv.org/abs/1606.04474

[Finn et al., 2017] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML, 2017
link: https://arxiv.org/abs/1703.03400

Algorithmic Intelligence Lab 144

https://arxiv.org/abs/1905.05901
https://arxiv.org/abs/1910.10699
https://arxiv.org/abs/1707.08114
https://arxiv.org/abs/1604.03539
https://arxiv.org/abs/1810.10703
https://arxiv.org/abs/1810.04650
https://arxiv.org/abs/1711.02257
http://papers.nips.cc/paper/2410-information-maximization-in-noisy-channels-a-variational-approach.pdf
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1703.03400

References

Domain Adaptation

[Grandvalet & Bengio, 2004] Semi-supervised Learning by Entropy Minimization. NIPS 2004.
link : https://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization

[Ganin et al., 2015] Unsupervised Domain Adaptation by Backpropagation. ICML 2015.
link : http://proceedings.mlr.press/v37/ganinl5.html

[Bousmalis et al., 2016] Domain Separation Networks. NIPS 2016.
link : https://arxiv.org/abs/1608.06019

[Long et al., 2016] Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS 2016.
link : https://arxiv.org/abs/1602.04433

[Tzeng et al., 2017] Adversarial Discriminative Domain Adaptation. CVPR 2017.
link : https://arxiv.org/abs/1702.05464

[Shrivastava et al., 2017] Learning from Simulated and Unsupervised Images through Adversarial... CVPR 2017.
link : https://arxiv.org/abs/1612.07828

[Bousmalis et al., 2017] Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial... CVPR 2017.
link : https://arxiv.org/abs/1612.05424

[Tobin et al., 2017] Domain Randomization for Transferring Deep Neural Networks from Simulation... IROS 2017.
link : https://arxiv.org/abs/1703.06907

[Hoffman et al., 2018] CyCADA: Cycle-Consistent Adversarial Domain Adaptation. ICML 2018.
link : https://arxiv.org/abs/1711.03213

Algorithmic Intelligence Lab 145

https://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization
http://proceedings.mlr.press/v37/ganin15.html
https://arxiv.org/abs/1608.06019
https://arxiv.org/abs/1602.04433
https://arxiv.org/abs/1702.05464
https://arxiv.org/abs/1612.07828
https://arxiv.org/abs/1612.05424
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1711.03213

References

Continual Learning

[Aljundi et al., 2019] Gradient based sample selection for online continual learning. In NeurlPS 2019.
https://arxiv.org/pdf/1903.08671.pdf

[Chaudhry et al., 2019] On Tiny Episodic Memories in Continual Learning. arXiv preprint, 2019.
https://arxiv.org/pdf/1902.10486.pdf

[Lopez-Paz and Ranzato, 2017] Gradient Episodic Memory for Continual Learning. In NeurlPS, 2017.
https://arxiv.org/pdf/1706.08840.pdf

[Lee, et al., 2020] A Neural Dirichlet Process Mixture Model for Task-free Continual Learning, In ICLR, 2020.
https://arxiv.org/pdf/2001.00689.pdf

[Gido M van de Ven and Andreas S Tolias., 2018] Three scenarios for continual learning, In NeurlPS workshop, 2018.
https://arxiv.org/pdf/1904.07734.pdf

[Yoon, et a., 2018] Lifelong Learning with Dynamically Expandable Networks, In ICLR, 2018.
https://arxiv.org/pdf/1708.01547.pdf

[Rusu and Rabinowitz et al., 2016] Progressive Neural Networks, arXiv preprint, 2016
https://arxiv.org/pdf/1606.04671.pdf

[Shin et al., 2017] Continual Learning with Deep Generative Replay, In NeurlPS, 2017
https://arxiv.org/pdf/1705.08690.pdf

[McCloskey, M. and Cohen, N.J., 1989] Catastrophic interference in connectionist networks: The sequential learning
problem, Psychology of learning and motivation 24, 109-165 (1989)

Algorithmic Intelligence Lab 146

https://arxiv.org/pdf/1903.08671.pdf
https://arxiv.org/pdf/1902.10486.pdf
https://arxiv.org/pdf/1706.08840.pdf
https://arxiv.org/pdf/2001.00689.pdf
https://arxiv.org/pdf/1904.07734.pdf
https://arxiv.org/pdf/1708.01547.pdf
https://arxiv.org/pdf/1606.04671.pdf
https://arxiv.org/pdf/1705.08690.pdf

References

[Kirkpatrick, J., Pascanu, R., et al., 2017] Overcoming catastrophic forgetting in neural networks, In PNAS, 2107
https://arxiv.org/pdf/1612.00796.pdf

[Li et al., 2016] Learning without forgetting, In ECCV, 2016
https://arxiv.org/abs/1606.09282

[Aljundi and Kelchtermans et al., 2017] Task-Free Continual Learning, In CVPR, 2019
https://openaccess.thecvf.com/content CVPR 2019/papers/Aljundi Task-
Free Continual Learning CVPR 2019 paper.pdf

[Buzzega et al., 2020] Dark experience for general continual learning: a strong, simple baseline, In NeurlPS, 2020
https://papers.nips.cc/paper/2020/hash/b704ea2c39778f07c617f6b7ce480e9e-Abstract.html

Algorithmic Intelligence Lab 147

https://arxiv.org/pdf/1612.00796.pdf
https://arxiv.org/abs/1606.09282
https://openaccess.thecvf.com/content_CVPR_2019/papers/Aljundi_Task-Free_Continual_Learning_CVPR_2019_paper.pdf
https://papers.nips.cc/paper/2020/hash/b704ea2c39778f07c617f6b7ce480e9e-Abstract.html

