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Limited Training Samples in Real-world Applications

* Deep learning suffers from a lack of training samples

* Deep learning shows remarkable success in various fields of artificial intelligence
(e.g., object classification, machine translation)

* But, use (VERY) large labeled dataset

Open Images Dataset Vo +
Extensions

* Collecting some annotations is too hard/expensive
* E.g., segmentation labels, bounding boxes, medical data

* For a new task, only few samples are available

* Transfer learning aims to transfer the knowledge @
from source to target domains & tasks

!
o

Algorithmic Intelligence Lab * source: https://storage.googleapis.com/openimages/web/index.html, [Pan et al., 2010] 4
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Transfer Learning in Artificial Intelligence

Robots learns skills and transfers that knowledge to other robots
have different kinematics

C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-Step Manipulation
h. IEEE ICRA2017.

2) Execution of four
learned tasks with the
Optimus robot.

Speech recognition: Learn from specific languages/accents transfer
to learn different languages/accents

<=
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Simulated robots learn new movements from get
transfer from previous learned task

(Top): from forward movements, learn backward
move

(Bottom): learn faster movements from slow
movements

* source: https://www.youtube.com/watch?v=_tlc_IrEH1k 5



Domains & Tasks

« DomainD ={X,P(X)}
* With a feature space X and a marginal probability distribution P(X ) for X € X
* E.g., X is natural or cartoon image spaces / P(X) is dog or cat distribution

* Task 7T ={YV,P(Y|X)}
* With a label space ) and a conditional probability distribution P(Y'|X) for Y €
* E.g., Visdigit (0, 1, ...) or animal (dog, cat, ...) spaces

Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Algorithmic Intelligence Lab 6



What is Transfer Learning?

* Definition of transfer learning [Pan et al., 2010]

* Given a source domain Dg and learning task 7g, and a target domain D7 and
learning task 71

* Transfer learning aims to improve the learning of the target predictive function f1(+)
using the knowledge in Ds and 7s where Dg # Dr or Ts # Tr

No

Ysand Vr are obs@

Yes Y(V w‘o
“Traditional” Transductive Inductive Unsupervised
Machine Learning Transfer Learning Transfer Learning Transfer Learning

Knowledge Domain Multi-task
Distillation Adaptation Learning
Semi-supervised Continual

Learning Learning



What is Transfer Learning?

* Definition of transfer learning [Pan et al., 2010]

* Given a source domain Dg and learning task 7g, and a target domain D7 and
learning task 71

* Transfer learning aims to improve the learning of the target predictive function f1(+)
using the knowledge in Ds and 7s where Dg # Dr or Ts # Tr

No

Ysand Vr are obs@

Yes Y(iy w‘o
“Traditional” Transductive Inductive Unsupervised
Machine Learning Transfer Learning Transfer Learning Transfer Learning
Knowledge Domain Multi-task We covered here

Distillation Adaptation Learning at last lecture!
Continual (self-supervised

Semi-supervised .
Learning Learning learning)



Type I: Same Tasks and Same Domain

* When tasks and domains are same, usually one can transfer knowledge for
* Making target model that are smaller (model compression)
* But, perform better than scratch learning
* Using the knowledge transferred from the source model

* Knowledge distillation

* Make a target model mimic the source model
* Make outputs (or features) similar
* Since tasks and domains are same, following a source/reference model is useful

, : = Person recognition

v\ <\ L (e.g., John, Aaron, Adam, Will, John)
, ae Person recognition

m /G N 1 (e.g., John, Aaron, Adam, Will, John)

Ds = Dr Ts =Tr
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Type ll: Same Tasks, but Different Domains (Transductive Transfer Learning)

* Labels to predict are same but input data samples are different

* Since tasks are same, by learning the features invariant to source and target
domains, a target model can perform well

* In many cases, target domain datasets do not have sufficient labels

* By learning domain invariant features, source model’s representations could be used for
target domain

 Domain adaptation

* Learn representations that confuse source and target domain inputs
* Learn target representations that are similar to source domain

7 “EEEA : = 0-9 digits classification
B o4 ) —  ° (eg,6,2,38,1,0)
: \ ‘ 0-9 digits classification

Ds # Dr Ts =Tt

Algorithmic Intelligence Lab 10



Type lll: Different Tasks (Inductive/Unsupervised Transfer Learning)

» Different tasks: different labels to predict

* When tasks are different, feature extractors and output layers are need to be
adjusted a lot for new tasks

* Multi-task learning/fine-tuning are used to learn appropriate representations for
target tasks from the source model’s representations

* Continual learning learns appropriate representations for target tasks without
losing ones for past tasks.

(8.2 Be)
(5.2 Ble

Ds = Dr

— Age (e.g., 31, 49, 34, 50, 31)

Person recognition
(e.g., John, Aaron, Adam, Will, John)

Ts # Tr

Scene classification
(e.g., elevator, gas station, castle,
cafeteria, cabin)

Object classification
(e.g., car, airplane, panda, lion, guitar)

Ts # Tr

Algorithmic Intelligence Lab 11
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Fine-tuning Approach

e Convolutional layers are viewed as a feature extractor.
* Lower convolutional layers capture low-level features. e.g. edges
* Higher convolutional layers capture more complex, high-level features. e.g. eyes

1
|

| SFClabels |

3 | REPRESENTATION |

-~ Cl1: M2: G3: L4: L5z L6:
Calista Flockhart 0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16X5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

* A source model pre-trained by a large dataset, e.g., ImageNet, is well-generalized,
so one can expect it as a good feature extractor or parameter initialization.

* To avoid overfitting, one can often freeze convolutional layers for small target datasets.
* Can transfer to different domains and tasks
* But, same architectures (at least for feature extraction part)

Algorithmic Intelligence Lab * source: [Yaniv et al., 2014] 13



Fine-tuning Approach

(a) Train large model on ImageNet (b) Using pre-trained weights (c) Fine-tuning the weights
as initial parameter of target for new task

model
ImageNet
Pre-trained o Target task Target task
model Weight model
(€.g- ResNet)  BTTNEIPEVIoN

Public spaces
nry Mw\ul hﬂry m church

3

lozhowu ﬁ

Target task dataset

ImageNet

e Assumptions for fine-tuning approaches

* Features/Parameters learned from some task are useful for another tasks
* True in many artificial intelligence tasks (e.g. lower-level features of images such as edge)

 When do they fail to work
* When dataset of source and target tasks are very different
* When target tasks have no (or very small) labeled training data

Algorithmic Intelligence Lab 14



Fine-Tuning with Increasing Target Model Capacity

* Increasing the target model capacity in various ways [Wang et al., 2017]
e Channel-wise, depth-wise, (channel+depth)-wise
* Using the pre-trained weights for all the layers except newly augmented layers/channels

* Fine-tuning with target tasks

* Main idea at a high level

* Using the pre-trained weight of source model to initialize the target model
* Increase the capacity of target model in depth/channel-wise

Target task labels
I

Target task
g g FeEETT T T -
SUN C1-C2-C3-C4-C5 4—) FC8 —> Softmax @
i I I
i,, i

Abbey

t‘ Deeper Developmental Transfer }
Source task

Goldfish

Classifier module

— t‘ Wider Developmental Transfer 'W
arget tas

Representation module

— = - == !ii! Abbey
FC8 —> Softmax t

_________________
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Novel task (] [ - ' |, Novel task o Augme.nted
image ground truth 0] Pre-trained
Classifier
(a) Classic Fine-Tuning

Novel task @ [ |_, Novel task
Novel task |_, Novel task image ground truth
image ground truth

(b) Depth Augmented Network (c) Width Augmented Network
(DA-CNN) (WA-CNN)

Novel task ] (1 Novel task Novel task Novel task
image ground truth image ground truth

(d) Jointly Depth and Width Aug- (¢) Recursively Width Aug-
mented Network (DWA-CNN) mented Network (WWA-CNN)

* source: [Wang et al., 2017] 15



Experimental Results

e Evaluated on MIT-67, 102 Flowers, CUB200-2011, Stanford-40 with ImageNet
pre-trained AlexNet

e Outperform most of task customized CNN or other multi-task learning methods

e Drawbacks:
* Did not apply on architecture like ResNet (model without fully-connected layers)

* Only augment the layers for fully-connected layers

. MIT-67 102 Flowers CUB200-2011 Stanford-40
Typ Approach Acc(%) | Approach Acc(%) | Approach Acc(%) | Approach Acc(%)
Finetuning-CNN 61.2 |Finetuning-CNN 75.3 |Finetuning-CNN 62.9 |Finetuning-CNN 57.7
ImageNet CNNs Caffe [53] 59.5 |CNN-SVM [32] 74.7 |CNN-SVM [32] 53.3 |Deep Standard [4] 58.9
— — |CNNaug-SVM [32] 86.8 |CNNaug-SVM [32]| 61.8 |— —
Caffe-DAG [53] 64.6 |LSVM [30] 87.1 |LSVM [30] 61.4 |Deep Optimized [4] 66.4
Task Customized — —  |MsML+ [30] 89.5 |DeCaf+DPD [7] 65.0 |— —
CNNs Places-CNN [59] 68.2 |MPP [55] 91.3 |MsML+ [30] 66.6 |— —
— —  |Deep Optimized [4] 91.3 |MsML+* [30] 679 |— —
Data Augmented CNNs|Combined-AlexNet [18]| 58.8 |Combined-AlexNet [18]| 83.3 |— — |Combined-AlexNet [18]| 56.4
. Joint [22] 639 |— — |Joint [22] 56.6 |— —
Mniti-Task CNNa LwF [22] 645 |— —  |LwF[22] 577 |— —
| Ours WA-CNN 66.3 |WA-CNN 92.8 |WA-CNN 69.0 |WA-CNN 67.5 |
Algorithmic Intelligence Lab 16



Experimental Results

* Normalization and scaling activations are important for the performance

improvement

e Reconcile the learning pace of the new and pre-existing units
* Normalization and scaling is more crucial in Width-augmented CNN (WA-CNN)
* Without normalization and scaling, marginally better or worse than fine-tuning method

h¥ = yh*/ [[R*]],

Scaling ’ ‘ Normalization

=3

WA-CNN DA-CNN

- Pre-trained units
- New units

Algorithmic Intelligence Lab

Method Scaling New FCy-new FCg-new  All
Fine-tuning CNN § 5363 5475 5429  55.03
wio tand) | 53.82 5647 5625  57.21
DA-CNN w/ 5351 5615 5714  58.07
wio cand) | 53.78  54.66 4972 5134
WA-CNN | wlo (copy+rand) | 53.62 5435 5370 5531
w/ 5681  56.99 57.84  58.95

Performance on SUN-397 dataset by changing the fine-tuning layers
from only new layer to all the layers
w/o (rand): new units are randomly initialized
w/o (copy+rand): initialize by copying FC,, and add random noise
w/: with normalization and scaling

17



Using Pre-Training Can Improve Model Robustness and Uncertainty

* Pre-training also improves other tasks such as robustness and uncertainty

* Considered various scenarios such as label corruption, class imbalance, out-of-
distribution detection, etc.

Using pre-trained weights Train from scratch

Train on ImageNet Train on CIFAR-10&100 CIFAR-10&100

ImageNet

Pre-trained Random init

Pre-trained o
model Weight model model

(G-I hitialization

Better
robustness & uncertainty

Algorithmic Intelligence Lab 18



Using Pre-Training Can Improve Model Robustness and Uncertainty

* Label corruption: when mis-labeled sample existed in train data

CIFAR-10 CIFAR-100
Normal Training | Pre-Training |[Normal Training] Pre-Training
No Correction 28.7 15.9 554 39.1
Forward Correction 25.5 15.7 52.6 42.8
GLC (5% Trusted) 14.0 7.2 46.8 33.7
GLC (10% Trusted) 11.5 6.4 38.9 28.4
e Class imbalance: when labels are imbalanced
Dataset Imbalance Ratio 0.2 04 0.6 0.8 1.0 1.5 2.0
Method Total Test Error Rate / Minority Test Error Rate (%)
o Normal Training 23.7/260 21.8/265 21.1/25.8 20.3/247 20.0/24.5 18.3/23.1 15.8/20.2
; Cost Sensitive 22.6/249 21.8/262 21.1/25.7 202/243 202/24.6 18.1/229 16.0/20.1
< Oversampling 21.0/23.1 194/23.6 19.0/23.2 18.2/222 183/224 17.3/22.2 153/19.8
% SMOTE 19.7/21.7 19.7/240 19.2/234 19.2/234 18.1/22.1 17.2/22.1 15.7/20.4
|Pre—Trainin§_,y 8.0/8.8 79795 7.6/9.2 8.0/9.7 7.4/9.1 7.41719.5 72/9.4 |
= Normal Training 69.7/72.0 66.6/70.5 63.2/69.2 58.7/65.1 572/644 50.2/59.7 47.0/57.1
— Cost Sensitive 67.6/70.6 66.5/70.4 622/68.1 60.5/66.9 57.1/64.0 50.6/59.6 46.5/56.7
Eé Oversampling 62.4/662 59.7/63.8 59.2/655 553/61.7 546/622 49.4/59.0 46.6/56.9
= SMOTE 57.4/61.0 562/603 544/60.2 52.8/59.7 513/584 485/57.9 458/56.3
© Pre-Training 37.8/41.8 36.9/413 36.2/41.7 36.4/423 349/41.5 34.0/419 33.5/42.2

* Out-of-distribution detection: detecting unseen samples in the test set

AUROC AUPR
Normal |Pre-Train| Normal |Pre-Train
CIFAR-10 91.5 94.5 63.4 73.5
CIFAR-100 69.4 83.1 29.7 52.7
Tiny ImageNet  71.8 73.9 30.8 31.0

Algorithmic Intelligence Lab * source: [Hendrycks et al., 2019] 19



Big Transfer (BiT): General Visual Representation Learning

* With a very large dataset, “general visual representation” can be learned
* Authors pre-trained a classifier with JTF-300M dataset (or ImageNet-21K)

* Shows remarkable success on various dataset
* Even with only a few label! (common failure case)
* Generalist SOTA: pre-trained independently of the final task

BiT-L Generalist SOTA
ILSVRC-2012 87.54 + 0.02 86.4 [57]
CIFAR-10 99.37 + 0.06 99.0 [19]
CIFAR-100 93.51 + 0.08 91.7 [55]
Pets 96.62 + 0.23 95.9 [19]
Flowers 99.63 + 0.03 98.8 [55]
VTAB (19 tasks) 76.29 + 1.70 70.5 [58]

B BiT-L (Ours) B Generalist SOTA B Baseline (ILSVRC-2012)

ILSVRC-2012 CIFAR-10 CIFAR-100 Pets Flowers

100 -
95 _ 80_
90-
90 - 60 -
85 - 40 - 80+
i 1

1 1
# of labels ~ w9

()]
O

Accuracy [%]

H
O

I
=]
[F=

100 -
full -
full -
1-
13
25 -
10 -
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I
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Algorithmic Intelligence Lab * source: [Kolesnikov, Beyer and Zhai et al.,2020] 20
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General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [ s T
TARGET ‘1 8 ? SI kv
1 12\

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:
* Source/target feature matching: Make features of X and X be similar

Algorithmic Intelligence Lab *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 22



Domain adversarial neural network (DANN)

* Goal: Make features of source data X and target data Xt be similar

* lIdea: Train discriminator D which classifies domain label, and adversarially train
network to fool discriminator fail to distinguish source/target feature

* To this end, gradient from domain classifier is reversely applied for the network

oL,

50, Closs L,
|f‘> E class label y
J

Y
label predictor Gy (-;6,)

domain classifier G4(-;6,)

A
4 \

-~

J soanyeaj

feature extractor G¢(-;60y)

0 a7
0,

forwardprop  backprop (and produced derivatives)

|:> Q) domain label d

Algorithmic Intelligence Lab
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Adversarial discriminative domain adaptation (ADDA)

* Goal: Make features of source data X and target data Xt be similar
* |Instead, one can alternatively update discriminator, similar to GAN scheme
* Also, one can train separate feature extractors for source/target domain

Pre-training _Adversarial Adaptation Testing

source images

source images
+ labels

=

targetimage ~.__

. ! S
domain ! Target ! class
: CNN !

target images label VoL label
Target e -
CNN
, .

* Itis less stable for train, but shows better performance than gradient reversal

class
label

Classifier

ittty |

\ [V

OO0

VZ 5

W2 0o !

\ o 4

.._I_;
—==Y--
1
1

Discriminator
Classifier

MNIST — USPS USPS — MNIST SVHN — MINIST
Method /1712E8 | OIS ) IO0ISES /| 7| > REED? MBS /1712
Source only 0.752 £ 0.016 0.571 £0.017 0.601 £0.011
Gradient reversal 0.771 £0.018 0.730 £ 0.020 0.739 [16]
Domain confusion 0.791 &+ 0.005 0.665 £ 0.033 0.681 = 0.003
CoGAN 0.912 + 0.008 0.891 + 0.008 did not converge
ADDA (Ours) 0.894 4 0.002 0.901 4 0.008 0.760 £ 0.018

Algorithmic Intelligence Lab
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Domain Separation Network (DSN)

* Motivation: Is it rational to exactly match features for source/target data?
* |dea: Consider style of each domain in addition to the shared content
« To this end, train shared content encoder E and private style encoders E, EX
» Classifier ignores styles but only use shared content as an input

Pr::tte Tig.%w_ei%’i). h—;} _______ : /Shared_Decoder: D(E.(x) + E,,(x))\
~ E Lai :rence — | = = %t |-~ £recon
Shared Encoder F5,.(X) — U @ @ . -
o _,@_,@ﬁhz.: - I B
T {H-o-@- ] ==
S : ] )
«° A@H@Hh_z: ::::::1 — 7
' G :rence Classifier G(E.(x"))
Private Source Encoder £, (x") w G ¥
| -2 -
<951
{ L
Model MNIST to | Synth Digits to | SVHN to | Synth Signs to
MNIST-M | SVHN MNIST GTSRB
| Source-only | 56.6 (52.2) | 86.7 (86.7) | 59.2(54.9) | 85.1(79.0) \
CORAL [26] 57.7 85.2 63.1 86.9
MMD (29, 17] 76.9 88.0 71.1 91.1
DANN (8] 77.4 (76.6) | 90.3 (91.0) 70.7 (73.8) | 92.9 (88.6)
DSN w/ MMD (ours) | 80.5 88.5 72.2 92.6
DSN w/ DANN (ours) | 83.2 91.2 82.7 93.1
| Target-only | 98.7 | 924 | 99.5 | 99.8 |

Algorithmic Intelligence Lab



Residual Transfer Network (RTN)

* Motivation: Is it rational to exactly match classifiers for source/target data?

* Idea: Define source classifier as a residual function of target classifier

X

Xarge fs(x) = fr(z) + Af(x)

l —— l IAf(2)|| < |fr(z)] = |fs(z)]

(i.e. AlexNet, ResNet, etc.)

e S * To ensure that f; learns structure of target domain, minimize
=2 Layer entropy for target data, which is popular method for semi-
supervised learning [Grandvalet & Bengio, 2004]

* Hence, in addition to (supervised) classification loss L and

et feature matching loss D (X, X1) (e.g., GAN loss), use
(unsupervised) entropy loss H on target dataset

Residual
Layers

=
L= Eazs [L(fS(ms)a ys)] + ’YE:ct [H(fT(xt))] + )‘D(XSa XT)

ysource ytarget

Algorithmic Intell  *Source: https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Unsupervised Domain Adaptation with Residual Transfer Networks 26
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Domain Randomization

* Motivation: Source/target feature matching can be viewed as disentangling
content and style (remove style of each domain but only keep common content)

* Idea: In simulation-to-real (sim2real) setting, we can disentangle content by
domain augmentation

e Train NN on simulations with randomly generated styles
= style sums up, and only content remains

Algorithmic Intelligence Lab
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Domain Randomization

* Results

| ,‘Vle FROM THE‘nROBOT S CAMERA

N %hﬁc

Algorithmic Intelligence Lab


https://blog.openai.com/generalizing-from-simulation/

General Approaches for Domain Adaptation

* Domain adaptation aims to learn f: X7 = Y7 only using (Xs, Ys) and Xt

MNIST SYN NUMBERS SVHN SYN SIGNS
]
- [ s T
TARGET ‘18 ?SI l. :
1 Y

MNIST-M SVHN MNIST GTSRB

* There are two general approaches:

* Target data augmentation: Generate target data (X7, Y1) using domain transfer

Algorithmic Intelligence Lab *Source: Ganin et al. “Unsupervised Domain Adaptation by Backpropagation”, ICML 2015 29



SimGAN

* ldea: Generate target data with domain transfer model G: Xg —» X7

* Given source data (x,, y;) and transfer model G, we can generate labeled target
data (x;, y{) = (G(xs),ys), and use it to train target network

e Popular application is augmenting real images from synthetic images

Synthetic

l ’ - .-
- -- il
|

Refined

| e

Unlabeled Real Images

Simulated images

Training data % of images within d
Synthetic Data 69.7
Refined Synthetic Data 72.4
Real Data 74.5
Synthetic Data 3x 71.7
Refined Synthetic Data 3x 83.3

Algorithmic Intelligence Lab *Source: Shrivastava et al. “Learning from Simulated and Unsupervised Images through Adversarial Training”, CVPR 2017 30



CyCADA

* Motivation: Bridging gap between two approaches: source/target feature
matching and target data augmentation?

 Combine ADDA (feature matching via GAN) and CycleGAN (domain transfer)

target data Reconstructed Source Image ource Prediction Source Label
augmentation K" &
(CycleGAN) i G; ¢

Semantic
Consistency

Source Image Source|Image Stylized as Target

- -
Source image (GTA5S) Adapted source image (Ours) Target image (CityScapes)
Algorithmic Intelligence Lab

source/target
@ feature matching

feat

Target Image

Pixel accuracy on target
Source-only: 54.0%
Adapted (ours): 83.6%

31
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Knowledge Distillation

* Learn a source model and distill its knowledge to a target model
* Can lead to a better model with small architecture, or faster training

e Given a teacher network on domain D, enhance the training of (usually smaller)
a student network on same domain D, using knowledge of a teacher network

* Done by matching the output of source and target models

* Design a new loss term (e.g., MISE loss, KL divergence) for making source and target
outputs similar in addition to the original loss term (e.g., cross entropy loss)

Source (teacher) model

ﬁ{ U e
e

Target (student) model
Algorithmic Intelligence Lab 33
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Knowledge Distillation: Matching Output of Source and Target Model

* [Hinton et al., 2015] propose
* Use temperature T' > 1 to make a softer probability distribution over classes

. _ exp(z;/T)
G.T = T exp(z;/T)

where z;, q; are the i-th logit and probability, respectively
* Use the soft target as additional labels to train student model

L= (1 - a)£ce(Y7q) + aT2£ce(pTaqT>

where Y, 4 and p are ground-truth labels, target model outputs, and source model
outputs, respectively. It is important to multiply soft targets by T2 because the
magnitudes of the gradients produced by them scale as 1/72. (derived in the next page)

soften

Teacher 0.61
network

Algorithmic Intelligence Lab 34
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Knowledge Distillation: Effect of Temperature Scaling

 Let C be a cross-entropy loss of softened labels.
C = »Cce(pTaqT)
* The gradient of C, with respect to each target logit z;, and source logit v; :

oC 1 1 exp(z;/T) exp(v; /T)
0z, — TG T P) =7 (zj oxp(z,/T)) T 5, g)Xpwj/T))

* |f the temperature is high compared with the magnitude of the logits,

o0C 1 1—|—Z7;/T . 1-|—Ui/T
azi ~ T N+Zj2j/T N+Zj'l)j/T

* If we assume that the logits have been zero-meaned (i.e. Zj Zj = Zj v; =0)

22. ~ e (2 — vi) =g ai. (E(Z% _ Ui)2l)

scaling

* At high temperatures, the objective is equivalent to a quadratic function.
* Distillation pays much more attention to logits that are negative than the average.

* This is potentially advantageous because these logits (which are not the correct label)
are almost completely unconstrained by the classification loss.

Algorithmic Intelligence Lab 35



Knowledge Distillation: Experimental Results

* MNIST experiments

* Hand-written digits (28x28 grayscale images) ? ? ? (\) f
* 60000 training, 10000 test images 22222 .9

e Source model: 2 hidden layers MLP with 1200 hidden nodes 3
e Target model: 2 hidden layers MLP with 800 hidden nodes 3 533
Y ¥ ¢ Y4
Model Error rate (%) 59 585 3
Source model 0.67 L 6 6 6 G
Target model 1.46 T 77771
(without knowledge distillation) ' ¥ @ 7 ¥ &
Target model 0.74 7 9 9 9 19

(with knowledge distillation, T = 20) '

OO 3500

A

1200 nodes @m @E 800 nodes
1200 nodes O O O O m 800 nodes

Source model Target model
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Beyond Knowledge Distillation

* Smaller target models get advantages by following larger source models

» Useful when target and source datasets/tasks are same
* Performance may degrade when apply target dataset or task are changed

* Main challenges: what, when, and where to transfer
* Decide the form of transferring knowledge
* Decide when does transfer helps
* Decide which level representations (layers) to transfer

Algorithmic Intelligence Lab

37



Attention Transfer

* Visualizing attention maps in deep CNN is an open problem.

e Recently, a number of methods was proposed to improve attention maps.
* e.g. Guided backpropagation [Springenberg et al., 2015], Grad-CAM[Selvaraju et al.,
2016].

* In CNN models, the attention maps produced by intermediate features can be
transferable knowledge.

Guided Backprop Grad-CAM Guided Grad-CAM

What color is the firehydrant?

Visualization of VQA model.
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Attention Transfer

* Matching the attention of intermediate features [Zagoruyko et al. 2017]
* Make a 2D attention map from feature activations with attention mapping function F

attention

C W ST
F(Apw) = 3 [Achwl”
c=1
* p > 1, feature activation A, ., € REXHXW (C channels, spatial size H x W)
* Train the original loss with the attention map matching regularization term

L.:(0|D) = Lo (0|D) + & Q7 (0,z) QL (0,2)
+(0|D) g(0|D) + 23%31 ool ~ Teseal,

where {p = vec(F(A{f)) and Q% = vec(F(Afg)) are respectively the j-th pair
of target (student) and source (teacher) attention maps.

teacher

groupl group2 group3
attention Teacher
map
attentlon

transfer AT loss AT loss AT loss

I L )

student

Algorithmic Intelligence Lab * source: [Zagoryuko et al., 2017] 39



Attention Transfer: Experimental Results

* Attention transfer works better than original distillation methods or they can be

used together

* Hyper-parametric choices:
e Choose proper attention mapping function
* Layers to transfer the attention map

student teacher student AT | F-ActT | KD | AT+KD | teacher
NIN-thin, 0.2M NIN-wide, IM 9.38 8.93 9.05 8.55 8.33 7.28
WRN-16-1, 0.2M | WRN-16-2, 0.7M 8.77 7.93 8.51 7.41 7.51 6.31
WRN-16-1, 0.2M | WRN-40-1, 0.6M 8.77 8.25 8.62 8.39 8.01 6.58
WRN-16-2, 0.7M | WRN-40-2, 2.2M 6.31 5.85 6.24 6.08 5.71 5.23

CIFAR-10 experiments. AT: attention transfer, F-ActT: full activation transfer, KD: knowledge
distillation AT+KD: applying AT and KD at the same time. AT+KD is best in most cases (for
student networks)

Algorithmic Intelligence Lab

type model ImageNet—CUB | ImageNet—Scenes
student | ResNet-18 28.5 28.2

KD ResNet-18 27 (-1.5) 28.1 (-0.1

AT ResNet-18 27 (-1.5) 27.1 (-1.1)
teacher | KesNet-34 20.3 20

Large-scale experiments. Using ImageNet pre-trained model, fine-
tune source model with target dataset. Then, transfer to student
model learning same target task.
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Jacobian Matching

» Several Jacobian-based regularizations have been proposed recently

* Sobolev training [Czarnecki et al., 2017] demonstrated that using higher order
(typically 1st order) derivatives along with the targets can help training.

[Srinivas et al., 2018] showed that matching Jacobians is a special case of previous
distillation methods, when noise is added to the inputs.

 They added a new branch for distillation, and matched the output activations,
attention maps, and their Jacobians (for the largest value of an attention map).

Match with ground

truth labels (from £ o (1 )E ( ) n r ( )
)y 4 target dataset) — Lxd = — Y.q o PT,qr
Student oM e ’
g Bl VM DN (0,) QL (6,x)
Lo = Q7 s

| L ’ \ L= 2 | Tereal, ~ Tetwr,
Input o . .
(ta.rI:g)et Match a..ttentimj. maps EJac — Z H Ve fj (x) . Ve g_‘7 (£B>
dmser) | wdtherdueobios 0 v owput IVert @l Vg (@)ls

activations
- v 4 - e i . . .
Teacher ‘N N (N N where f, g’ are max points of j-th attention
(Pre-trained net) maps of target and source model, respectively.

vise linear function;
e currect nypuness s enncnied with derivative information.
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Jacobian Matching: Experimental Results

* Matching Jacobians improves distillation performance in small data.

Distillation performance on the CIFAR100 dataset

# of Data points per class — 1 5 10 50 100 500 (full)
Cross-Entropy (CE) training 5.69 139 20.03 37.6 4492 54.28
CE + match activations 12. 13 26.97 3392 4647 50.92 56.65
E + match pbian: 23.94 2.0 4571 1.4 44

CE + match actlvatlons + Jacobians 13 78 33.39 39.55 49.49 52.43 54.57

Match activations only 10.73 2856 33.6 4573 50.15 56.59
Match {activations + Jacobians} 13.09 33.31 38.16 47.79 50.06 51.33

* Matching Jacobians improves performance of all case of transfer learning.

* None of the methods match the oracle performance of pre-trained model.

Transfer performance from Imagenet to MIT Scenes dataset

# of Data points per class — 5 10 25 50 Full
Cross-Entropy (CE) training on untrained student network 11.64 20.30 35.19 46.38 59.33
CE on pre-trained student network (Oracle) 2593 4381 57.65 64.18 7142
CE + match activations (Li & Hoiem, 2016) 17.08 27.13 45.08 5522 6522
CE + match {activations + Jacobians} 17.88 28.25 4526 56.49 66.04
E + match {activations + attention} (Zagoruyko & Komodakis, 2017 16.53 28.35 46.01 57.80 67.24
CE + match {activations + attention + Jacobians} 18.02 29.25 47.31 58.35 67.31
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Variational Information Distillation for Knowledge Transfer

e [Ahn et al., 2019] maximize mutual information between source/target models
* Use the variational information maximization [Barber and Agakov, 2003]
* |nstead of matching a specific form of feature representations

variational information maximization

Teacher * Student
[2] @ =2 I(t;s) = H(t) — H(t|s)
Lo fo s = H(t) + Eq s[log p(t]s)]
estimation = H(t) + Eq s[log q(t]s)] + Es[Dkr(p(t]s)l[q(t]s))]
El(:lf::@:::::::::::::;]_s‘o_j > H(b) + E.. log q(t]s)]

e Use a Gaussian distribution for modeling ¢(t|s) with heteroscedastic mean 1($)
and homoscedastic variance o (s)

tC C 2
—log q(t|s) E logo. + (e 252’h’w(8)) + constant
C

c,h,w
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Variational Information Distillation for Knowledge Transfer

* Apply Variational Information Distillation (VID) to different locations
* VID-I: between intermediate layers of teacher/student networks

* VID-LP: between penultimate layers of teacher/student networks

Knowledge Distillation on CIFAR-10

Transfer learning from ImageNet to CUB200

M 5000 1000 500 100
Teacher 94.26 - - -
Student 90.72 84.67 79.63 58.84
KD 91.27 86.11 8223 64.24
FitNet 90.64 84.78 80.73 68.90
AT 91.60 87.26 8494 73.40
NST 91.16 86.55 82.61 64.53
VID-I 91.85 89.73 88.09 81.59

KD + AT 91.81 87.34 85.01 76.29
KD+ VID-I 91.7 8859 86.53 78.48

* VID can be applied between CNNs/MLPs

* VID achieves state-of-the-art performance
compared to other MLPs on CIFAR-10

Algorithmic Intelligence Lab

M ~29.95 20 10 5
Student 3722 2433 12.00 7.09
fine-tuning 76.69  71.00 59.25 44.07
LwF 55.18  42.13 26.23 14.27
FitNet 66.63  56.63 46.68 31.04
AT 5462 4144 2890 16.55
NST 55.01 41.87 2376 15.63
VID-LP 3 4.12 2 27.
VID-I 7325 67.20 56.86 46.21
LwF + FitNet 68.69  58.81 48.86 31.30
VID-LP + VID-I  69.71 63.94 52.87 41.12
Network | MLP-4096 MLP-2048 MLP-1024
Student 70.60 70.78 70.90
KD 70.42 70.53 70.79
FitNet 76.02 74.08 72.91
VID-I 85.18 83.47 78.57
Urban et al. [27] 74.32
Lin et al. [17] 78.62
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Relational Knowledge Distillation

e [Park et al., 2019] transfers the mutual relations of data examples
* Knowledge distillation (KD) only mimic the output of individual data point

e Author considers two types of relations: distance & angle

fe

Distance: L2 distance

1
Yp(ti t;) = ; [t: =151,

Input
‘ —— —— LRKD-D = Z lé(@bD(tiatj),@DD(SiaSj))a
onw /8 0 A8 D A8 fs& (zi,2;)€X?
Output MEREEFECRE BT "ET TS Angle: Cosine similarity
ol & o ;;2,\ Va(ti ty, ti) = cos Lttt = (e, e™)
fa g, o s i Ll ki Tl
" s 052 ts 5(51_‘,_‘____..-1;:;;.:0 2 where e’ = —— e"/ = .
N 6l TGl
.'.053 0%
Point to Point Structure to Structure

ERKD-A — Z l5(¢A(tiatj7tk‘)7wA(SiaSijk'))a

Conventional KD Relational KD (@i, 2 ) EX

ls: feature matching loss (Huber, L2 etc.)

Algorithmic Intelligence Lab * source: [Park et al., 2019] 45



Relational Knowledge Distillation: Experimental Results

* Apply three types of relational knowledge distillation (RKD)
* RKD-D: only considers distance relationship

* RKD-A: only considers angular relationship
* RKD-DA: considers both, distance and angular relationship

(T?i;lseeg IF fl ) FitNet [27] | Attention [47] | DarkRank [7] REDD REL[l)r.s ~ RRD DA
/2 normalization 0] 0] @) @) O / X O/ X O/ X
ResNet18-16 37.71 42.74 37.68 46.84 46.34/48.09 45.59/48.60 45.76/48.14
ResNet18-32 44.62 48.60 45.37 53.53 52.68 /5572 53.43/55.15 53.58/54.88
ResNet18-64 51.55 51.92 50.81 56.30 56.92 /5827 56.77/58.44 57.01/58.68
ResNet18-128 53.92 54.52 55.03 57.17 58.31/60.31 58.41/60.92 59.69/60.67
ResNet50-512 | 6124 |

Recall@1 on CUB-200 dataset. The teacher is ResNet50-512 (model-d refers dimension)

CIFAR-100 [15] | Tiny ImageNet [40]
___ _Baseline | 7126 | 445
RKD-D 72.27 5497
RKD-DA 72.97 56.36 0 ) :
Sl s A el el 7 Salatel Sres Accuracy (%) on CIFAR-100 and Tiny ImageNet.
HKD+RKD-DA 74.66 58.15 |
FitNet [27] 70.81 55.59 Teacher: ResNet-50, student: VGG11
FitNet+RKD-DA 72.98 55.54 . Clp e
T Awention 171 [T 7268 | 5557~~~ HKD: Conventional knowledge distillation
Attention+RKD-DA 73.53 56.55
Teacher | 77.76 61.55
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Learning What and Where to Transfer

* Previous methods transfer hand-crafted and fixed source knowledge

* Hand-crafted matching formulations

* E.g., KL divergence [Hinton et al., 2015] between output layers, attention map
[Zagoruyko et al. 2017] between hidden feature maps

* Hand-crafted matching connections
* Transfer on output activations of each group of residual/convolutional blocks

* [Jang et al., 2019] automatically find what and where to transfer based on
meta-learning for maximizing transfer effect

Previous methods Learning What and Where to Transfer (L2T-ww)

A

- Meta-networks |:| I, loss : |:|
HI] /' i i

0.05

0.4

Where to Transfer What to Transfer

|:| Source Ij Target ﬁl Layer [ ]Feature map

Algorithmic Intelligence Lab * source: [Jang et al., 2019] 47



Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network f decides useful channels to transfer

Weight for channel ¢

atn (0], 0™")

Sm(m) = RCXHXW

:HWC

w

C

m,nE :

Feature maps of
mthsource layer

A

2]

M

I A

ro(T"(x)) € RCXHXWrdEﬁJJ
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ro(T5 (2))cyig — S™ (%) eig)

L2 distance at channel ¢

" (z)

- - I || Feature maps of
nthtarget layer

* source: [Jang et al., 2019] 48



Learning What and Where to Transfer

e [Jang et al., 2019] use meta-weighted feature matching for transfer

* Meta-network g decides useful pairs of source/target layers to transfer

Weight for pair (m, n)
,wam(mx, ¢) _ Z )\m,nﬁﬁ&n(mx’ wm,n
(m,n)€C Transfer loss on pair (m, n)

1 1 ¥
3,3
g¢’
--S-”-(-a22 ------ » |beee—e——————— » pem——————— » em——————— > :
i i
T I 1 Scaling E
arget 21 133 - A
Samples { wim wim
i )
L ]  eereecccscssss———— = EeeeeccccccssE————— - U H
Loss Aggregation

Ty(z)
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Learning What and Where to Transfer

Q) How to learn meta-networks f, g?

* [Jang et al., 2019] propose a bilevel scheme for training meta-parameters ¢ of

meta-networks f, g

3. Evaluation:

1. Knowledge transfer:fort =1, ..., T,

Oi11 =0, — aVo Ly (0|2, ¢) < Transfer loss

2. One-step adaption:

0T+2 = 9T-|—1 - av0£org<9T+l ’xa y)

Leta(P) = Eorg<9T+2|xay>-l Task-specific los

4. Update ¢ based on V,Lyueta(¢) using second-order gradients

* Effective for learning ¢ with a small number of steps T
* A popular bilevel scheme [Franceschi et al., 2018] requires many steps

* Joint-learning 8 and ¢ without separate meta-learning phase

Algorithmic Intelligence Lab
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Learning What and Where to Transfer

* L2T-ww outperforms previous methods on various datasets, architectures

Source task TinyImageNet ImageNet
Target task CIFAR-100  STL-10  CUB200 MIT67 Stanford40  Stanford Dogs
Scratch 67.69+022  65.18+091 42.15+075 48.91+0s53  36.93+068 58.08+0.26
LwF! 69.23+009  68.64+0s8 45.52+066 53.73+214  39.73+163 66.33+045
AT (one-to-one) 67.54+040  74.19+0220  57.74+117  59.18+157  59.29+091 69.70-+0.08
LwFO+AT (one-to-one)  68.75+000  75.06+057 58.90+132 61.42+168  60.20+1.34 72.67+026
FMP! (single) 69.40+067  75.00+034 47.60+031 55.15+093  42.93+148 66.05+076
FMB! (one-to-one) 69.97+024  76.38+118  48.93+040 54.88+124  44.50+096 67.25+0388
L2T-w (single) 70.27+009  74.35+092 51.95+0s3 60.41+037  46.25+366 69.16+070
L2T-w (one-to-one) 70.02+019 76424050 56.61+020 59.78+1900  48.19+14 69.84 1145
L2T-ww (all-to-all) 70.96+061  78.31+t021 65.05:11.19 64.85:1275  63.0810.8 78.08+0.96

* L2T-ww can aggregate multiple source knowledge (left)

* L2T-ww can transfer knowledge effectively on limited-data regime

First source

TinyImageNet (ResNet32)

Second source None TinyImageNet (ResNet20) TinyImageNet (ResNet32) CIFAR-10 (ResNet32)
Scratch 65.18+0.91 65.18+091 65.18+091 65.18+091
LwFlo] 68.64+0.58 68.56+224 68.05+2.12 69.51+063

AT 74.19+022 73.24+012 73.78+1.16 73.99+051
LwFII4 AT 75.06+0.57 74.72+046 74.77 +030 74.41+151
FMPB! (single) 75.00-+0.34 75.83+0.56 75.99+0.11 74.60+073

FMUB! (one-to-one)  76.38+1.1s 77.45+048 77.69+0.79 77.15+041
L2T-ww (all-to-all)  78.31+0.21 79.35+0.41 79.80-+052 80.52+029
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Contrastive Representation Distillation

e [Tian et al., 2020] transfers the output similarity of data points
* Maximize the similarity of same data point, and minimize between other points

(o,

:, = fT(x;) and f5(x;) ?s similz?r (-same sample)

S <> p— fT(x;) and f3(x;) is not similar (other N — 1 samples)
/" _

Te;(zher Student

e Contrastive-object maximize the mutual information between models

I(T;S) 2 10g(N) + Eyr s51c=1)[log K" (T, S)] + NEy(1 5/0=0)[log(1 — h* (T, S))]

Maximize similarity Minimize similarity

ed” (1) g°(8)/7 h(T,S) € [0, 1] is a similarity measure
h(T,S) = e (1) g5 (S)/7 L N Where T = fT(x;), S = fS(xj) is the representation
and g7, g° is a linear layer of teacher and student, respectively
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Contrastive Representation Distillation: Experimental Results

* CRD consistently outperforms previous methods on various architectures

Teacher WRN-40-2 WRN-40-2 resnet56 resnetl10 resnetl10 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20  resnet20  resnet32  resnet8x4 vgg8

Teacher 75.61 75.61 7234 7431 74.31 79.42 74.64
Student 73.26 71.98 69.06  69.06  71.14 72.50 70.36
KD* 74.92 73.54 7066  70.67  73.08 73.33 72.98
FitNet*  73.58 () 7224()) 69.21()) 68.99 () 71.06()) 73.50 (1) 71.02(])
AT 7408 (1)  72.77(L) 70.55()) 7022()) 72.31() 73.44() 71.43(])
SP 73.83 (1) 7243(1) 69.67 (1) 70.04()) 72.69(]) 72.94(l) 72.68())
cC 7356 (1) 7221(1) 69.63 (1) 69.48 () 7148 () 72.97()) 70.71())
VID 74.11 (1)  73.30()) 70.38() 70.16 () 72.61(l) 73.09()) 71.23(])
RKD 7335()) 7222(1) 69.61()) 69.25()) 71.82([) 71.90()) 71.48(])
PKT 7454 () 7345()) 70.34()) 7025()) 72.61()) 73.64() 72.88())
AB 7250 (1) 7238(l) 6947 (1) 69.53()) 7098 () 73.17(l) 70.94 ()
FT* 7325()) 71.59(1) 69.84 () 70.22()) 7237(l) 72.86() 70.58(])
FSP* 72.91 () na  69.95()) 70.11()) 71.89() 72.62()) 70.23(])
NST* 7’262(@ 7774(@ ﬁQﬁn(i\ ﬁQ§’l(l\ 7106(@ 7’2’Zﬂfl\ 71 §’Z(i\
CRD 7548 (1) 7414 (1) T116()) 7146 (1) 7348 (1) 75.51() 73.94()

CRD+KD 75.64 (1) 74.38(1) 71.63 (1) 71.56(1) 73.75() 75.46()) 7429 ()

 Visualization: difference of correlation matrices of student and teacher logits.
* CRD shows significant matching between student’s and teacher’s correlations

TG 97
T 030 §- 0.30
o 12-
[Ty 16-
. 20-
r 24 -
'

.........................
wwwwwwwwwwwwwwwwwwwwwww

(a) Student: vanilla (b) Student: AT (c) Student: KD (d) Student: ours (CRD)

Algorithmic Intelligence Lab



Table of Contents

3. Multi-task Learning
e Sharing architectures
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What is Multi-task Learning?

e Definition of multi-task learning [Zhang and Yang, 2017]
* Given m learning tasks {7;}1"1
* where all the tasks or a subset of them are related,

* Multi-task learning (MTL) aims to improve the learning of a model for 7;
using the knowledge contained in all or some of the m tasks

* |n the view of definition of transfer learning [Pan et al., 2010],
all learning tasks {7:}i~1 are considered as both source and target tasks

Domain D, Task 71

Domain D,,
Task 7,

Learn representations which
are useful for arbitrary tasks
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Cross-stitch Networks for Multi-task Learning

* Cross-stitch units [Misra et al., 2016] try to find the best shared representations
for multi-task learning

74 ¥

Al |:04AA OAB A
1] OB A BB ¥
Ip IR

. xf{, ch are activation map (at location i,j) of networks for task A, B, respectively
* « is trained by backpropagation with different learning rates
* Maintain one cross-stitch unit per channel

Input

Output
Activation Maps

CrOSS_StltCh unlt Activation Maps convl, pooll conv2, pool2 conv3 conv4d conv5, pools fc6 fe7 fc8

Q0 : g
Task A S »MAA OBA > ’?‘1;:1161 *Oi N B IR
g ‘ﬁ o Crossistitcll « ‘ (O] : «
] ’ m @ units a , a \ a
Shared g =
Task B as QBB (A B> Task B §_ | _,%
o)
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Cross-stitch Networks for Multi-task Learning

* Multi-task (Surface Normal / Segmentation) learning on NYU-v2 dataset

* Cross-stitch uses 2 convolutional networks
* Ensemble uses 4 convolutional networks (2 for each task)

* |t shows that sharing information can improve the performance

Surface Normal Segmentation
Angle Distance Within £°
(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 225 30 pixacc mlU fwlU
348 190 383 535 592 - - -
One-task - - - - 466 184 331
Ensemble 344 185 387 542 59.7 - - -
- - - - - 48.2 189 338
Split conv4 347 19.1 382 534 592 478 192 338
MTL-shared 347 189 377 535 588 459 16.6 30.1
| Cross-stitch [ours] 34.1 18.2 39.0 544 60.2 472 193 34.0|

 Drawbacks

* Parameter-inefficiency because it requires one CNN per each task

Algorithmic Intelligence Lab
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K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

* One model-patch [Mudrakarta et al., 2019] for each task
* One shared base model for all tasks
* For multi-task learning, train model-patches and shared parts simultaneously
* For transfer learning, freeze the shared parts / train new model-patch only
* Multiple networks share most weights (>95% parameters)

/" Model1 ) Patch 1 Patch 2 /" Model2 ) / Worker 0 / Parameter / Worker1
l | i rver i
FC layer BN Iayer BN Iayer FC |ayer TaSk 0 LOSS grad|ents N F:e(t ek O) grad|ents TaSk 1 LOSS
as
) | | f FC (task 0) FC (task 1
FC layer FC layer / BN (task 0) ;
ReLU ReLU FC FC
i Base t t FC (task 1 ,—f—‘
arams.
BN layer — BN layer BN (t?sk 0).|| params. | BN fask 1 P | [ BN (t?sk 1)
) t Convolution FC Convolution
- Convolution ; :
Convolution Convolution | ) Task 0: Input . Convolution | \ [Task 1: Input

* Two types of model-patch
* Scale-and-bias (S/B) patch: a normalization layer (e.g., BN)
* Depth-wise-convolution (DW) patch: depth-wise separable convolutional layers

Algorithmic Intelligence Lab * source: [Mudrakarta et al., 2019] 58
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K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning

* Despite using much fewer parameters, competitive performance is achieved

Table 4: Multi-task learning with MobilenetV2 on ImageNet and Places-365.

Task S/B patch + last layer | Last layer |Independently trained
Imagenet 70.2% 64.4% 71.8%
Places365 54.3% 51.4% 54.2%

# total parameters 3.97TM 3.93M 6.05M

One patch for each task ‘
Sharing Most weights One model for each task

n

* When transfer learning, despite fine-tuning much fewer parameters,
it achieves nontrivial performance

Fine-tuned params. | Flowers | Cars | Aircraft

| Acc. #params | Acc. #params | Acc. #params

Last hypr R4 5 20RK 55 402K 45 9 205K
S/B + last layer 90.4 244K 81 437K 70.7 241K
S/B only (random last) | 79.5 36K 33 36K 52.3 36K
All (ours) 93.3 25M 92.3 25M 87.3 25M
All (Cui et al., 2018) 96.3 25M 91.3 25M 82.6 25M
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3. Multi-task Learning

* Loss balancing
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Multi-task Learning Using Task Uncertainty

* The naive approach to combining multi objective losses is to perform a
weighted linear sum of the losses for each individual task.

'Ctotal — Zz EE’L

* [Kendall et al., 2018] proposed that homoscedastic (i.e. task-dependent)
uncertainty can be used as a weight for losses in a multi-task learning problem.

* They adapted a likelihood as below, with a noise scalar o . Note that the probability
distribution becomes uniform as o — oc.

For classification tasks  p(y|f™ (x)) = SOftmaX(#fw(x))

For regression tasks p(Y|fW(X)) = N(fW(X)a 02)

* Let's assume that the total likelihood can be factorized over the each output, given
some sufficient statistics.

p(y1s - Y [EY (%)) = p(y1 £V (%)) ... p(yx[f 7 (x))
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Multi-task Learning Using Task Uncertainty

* The log likelihood for output can be written as

For classification tasks  log p(y = c[fW (x)) = SV (x) —log " exp (%fy(x))
Las(W) = —log Softmax(y, fW (x))

For regression tasks ~ log p(y|fWV (x)) o< — 5z |ly — WV (x)||* — log o
Lrog(W) = [ly — £V (x)|?
* If there are two regression tasks,
L(W,01,02) = _logp(Y1aY2‘fW(X))

o gy — EV I+ ks llyz — £ ()2 + log o102

weighted sum

— ﬁﬁl,reg <W> + ﬁ‘CZreg (W) + 10g 0102

* If the 1st task is a regression task, and the 2nd one is a classification task,

‘C(W7O-170-2) — _]‘ng<YIaYQ - C‘fw(x))

< 5oz llyr = FW (x)[]? +log o1 —logp(y2 = c[fW (x))

D ot €XP (éf?(x))
= ﬁ ly1 -tV (x)||?— Uig log Softmax(y2, fW (x))+log o1 +log

T
2
92
>erexp | £V (x)
weighted sum

~|_1 1
Algorithmic Intelligence Lab ~[252 El,reg (W) + 0_3»62,018 (W) +logoy +logoy as 02 — L. 62




Multi-task Learning Using Task Uncertainty

* In practice, the log variance s := log o? is trained by the network .

* This term is added to weighted sum of original multi-task losses.

* In experiments, there are three tasks:
* Semantic segmentation (classification)
* Instance segmentation (regression)

* Depth regression (regression)

Ry it are fpund by grid search

Task Weights Segmentation Instance Inverse Depth

Loss Seg. Inst.  Depth IoU [%] Mean Error [px] | Mean Error [pz]
Segmentation only 1 0 0 59.4% - -
Instance only 0 1 0 - 4.61 -
Depth only 0 0 | - - 0.640
Unweighted sum of losses | 0.333 0333 0333 | 50.1% | 3.79 | 0.592
Approx. optimal weights | 0.89  0.01 0.1 | 628% | 3.61 | 0.549

2 task uncertainty weighting v 61.0% 3.42 -

2 task uncertainty weighting v v 62.7% - 0.533

2 task uncertainty weighting v - 3.54 0.539

3 task uncertainty weighting | v/ v v | 634% | 3.50 | 0.522

Algorithmic Intelligence Lab
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Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Attimet, the weighted average for multi-task learning = > . w; (t)L; ()

* The gradient for a task might be dominant when multi-task learning
* It depends on task difficulties, loss functions, and so on
* Q) What is correct balance for Wip

L EFE LE"

(GN) (GN)
Ltot = Wqe |1I1Ldeplh + w kp(Lkpt + Whormals Lnonnals Lo = u de ;thdepth +w kplLkpl + Whormals Dnormals

I T
) ome) o) 2l e

L 2
unbalanced grad ~—vy I
gradients \¥ —
balanced
grad our _
wnh our
gra 1 nt |

t
[Chen et al., 2018]

* Key Idea: If a task is not trained enough = norm of its gradient should be large

Algorithmic Intelligence Lab * source: [Chen et al., 2018] 64



Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Gradient norm
. Gg})( t) = [|[Vww;(t)L;(t)]|2 : gradient norm of task i
« Gw(t) =E; [G( )(t)] average gradient norm across all tasks

* Training rates for measuring current states of learning of tasks
* Inverse training rates I, (t) = L;(t )/L ;i(0)
« Relative inverse training rates 7;(t) = L;(t)/E;[L; ()]

* Large r;(t) = need to train more = need large gradients
* Our desired gradient norm:

G () = G (1) x [ri (1))
where « is a hyperparameter
* To balance the norms based on training rates, minimize Lgraq over w;

Lesaa(tiwi(t) = Y |G = Gw (1) x [ri(8))”

Algorithmic Intelligence Lab
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Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

* Train on NYUv2+kepoint/segmentation dataset with 3 different tasks

Model and Depth Seg. Normals Model and Depth Kpt. Normals
Weighting RMS Err. Err. Err. Weighting RMS Err. Err. Err.
Method (m) (100-IoU)  (1-|cos|) Method (m) (%) (1-|cos|)
VGG Backbone ResNet Backbone
Depth Only 1.038 - - Depth Only 0.725 - -
Seg. Only - 70.0 - Kpt Only - 7.90 -
Normals Only - - 0.169 Normals Only - - 0.155
Equal Weights 0.944 70.1 0.192 Equal Weights 0.697 7.80 0.172
GradNorm Static 0.939 67.5 0.171 (Kendall et al., 2017) 0.702 7.96 182
GradNorm o = 1.5 0.925 67.8 0.174 GradNorm Static 0.695 7.63 0.156
T GradNorm o = 1.5 0.663  7.32  0.155

* If using farther weights from GradNorm, then worse results are obtained
Weights during training
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Multi-task Learning as Multi-objective Optimization

The loss function for multi-task learning is generally the weighted summation

ming Z;rzl w L+(0)

For finding weights, expensive grid search or heuristics are required
* Heuristics: [Kendall et al., 2018], [Chen et al., 2018]

Pareto optimality (multi-objective optimization formulation)
« Asolutiong dominates @ if L£;(0) < L;(0) for all tasks ¢
« Asolution §*is called Pareto optimal if there is no § that dominates 0
* The Pareto optimal solution can be considered as a solution for multi-task learning

* Q) How to find the Pareto optimal solutions?

Multiple Gradient Descent Algorithm (MGDA)

2
. T T
MINqy ..o HZt:l Vo, Lt(Osn, 0t) ‘2 Dimiar=10,2>0

* |ts solution gives Pareto stationary (necessary for optimality) solutions or a descent
direction that improves all tasks

* |t can be efficiently solved by Frank-Wolfe algorithm (detail is omitted)
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Multi-task Learning as Multi-objective Optimization

* Issue: MGDA needs to compute Vg_, L:(0sn, 0;) for each task ¢
* Linear scaling of the training time

* Solution: Use encoder-decoder architectures
* One shared encoder for all tasks
* One separate decoder for each task
* Encoder-decoder architectures are typically used for multi-task learning

Decoder 1 64 L1

Encoder O

Representations Decoder T O L

* Then, we can state an upper bound and minimize it efficiently
2 2
T T
|5 Vo, Lo 00| < |22 |, [ 0 2L0(60,0)

< 86311

Independent to oy

Algorithmic Intelligence Lab
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Multi-task Learning as Multi-objective Optimization

* 40 binary tasks on CelebA dataset (lower is better)

* This multi-objective optimization [Sener and Koltun, 2018] outperforms uniform
scaling, heuristic weights [Kendall et al., 2018], [Chen et al., 2018]

* Grid search is not available because there are too many tasks

Uniform Scaling
Kendall et al. 2018
Single Task
GradNorm

Ours

Algorithmic Intelligence Lab
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What is Continual Learning?

* Deep neural networks (DNNs) can be trained well on a given individual task.
* E.g., image classifier

0.99

NISE

(9|l

0000
0000
0000

Xew1jJ0S

cat dog
DNNs
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What is Continual Learning?

* Deep neural networks (DNNs) can be trained well on a given individual task.

* E.g., image classifier

H -

NN

0000
0000

0000

0.99

2

Xew1jJ0S

EEEN
»
»

DNNSs

cat dog

 Catastrophic Forgetting/Inference: DNNs which trained on multiple tasks in
sequence forget previous tasks.

train
ﬁ

Data: ﬁ H

Init: 0o

Algorithmic Intelligence Lab

pata: A\ g

Init: 91

m 0.99

train test

EEm
[
»

cat dog bird
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What is Continual Learning?

* Train from scratch with all data of tasks can mitigate forgetting
* However, it takes too much time to training.
* Data of the past task may be unavailable.

Algorithmic Intelligence Lab
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What is Continual Learning?

* Train from scratch with all data of tasks can mitigate forgetting
* Howeuver, it takes too much time to training.
e Data of the past task may be unavailable.

e Continual Learning

e Learn from a non-iid stream of data without catastrophically forgetting the
previously learned knowledge.

* Humans can learn incrementally throughout their lifetime.

Autonomous drive Logistics

Algorithmic Intelligence Lab
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What is Continual Learning?

* Preliminary
* Common benchmark

Split MNIST : the original MINIST is split into disjoint subset(task), where each set consists
of two digit classes (a two-way classification).

Split CIFAR-10/100: the original CIFAR-10/100 is split into disjoint subset(task), where
each set consists of two classes (a two-way classification).

Permuted MNIST: MNIST with different random permutation in pixel level, where each
task is a ten-way classification.

* Baseline model

* Fine-tune: trains a model incrementally based on the model parameters learned in the

MNIST-split Permuted MNIST
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 10
- b P (permutation 1) (permutation 2) (permutario1)
0]/ o7 714 EUEED EEEEE - EEEE
T | I | Il R | IR BEEEEA EEERE S

previous stage.

Data: [)q
Init: 4,

Data: Do
Init: 04

Data:
Init:

D3
02
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What is Continual Learning?

* Prelimin

ary

* Basic continual learning setup

* Classification tasks are given with the task description t.

E.g., for MNIST-Split dataset, is it the 1st or 2nd class with given task description?

Data:

Task 1

0] /]

first  second
class  class

Init:

0o

Task 2

Data:

Init: 04

Train

Data:
219

Init: Op_4

* Advanced continual learning setup (task-free)
* No explicit task identifier/boundary information at train/test time.

e Assume input stream is infinite and non-iid.
* The data domain may gradually shift without any clear task boundary.

* Such setups are recently proposed to assume more realistic/practical situation.

Init:

Data: m

0o

Data:

Init: 91

Algorithmic Intelligence Lab

Train

Data: n

Init: 9T—1

Test

f9T ( , t=3) = 15tor 2n%?

Test

Jor (BY) =+
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What is Continual Learning?

 How to solve this problem?
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What is Continual Learning?

* How to solve this problem?
* Part 2: Regularization-based Approach

* Elastic Weight Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017] &/

* Learning without Forgetting (LWF) i et a1, 2016]

* Part 3: Replay-based Approach

Current Task

* ER-Reservoir sampling chaudhry et al., 2019] ml New Scholar
* Gradient Episodic Memory (GEM) (1ope;-paz and Ranzato, 2017] e
* Dark Experience Replay (DER) (guzzega, 2020] ;_T

* Deep Generative Replay shin et al., 2017] chozar

* Part 4: Expansion-based Approach
* Progressive Neural Network (rusy and Rabinowitz et al., 2016]
 Dynamically Expandable Networks (DEN) yoon eta. 2018]

Algorithmic Intelligence Lab
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Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

Sub-optimal parameter of task A

Low error for task A

Algorithmic Intelligence Lab
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Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

hile learning new t v
A

Too plastic:

Low error for task A Forget knOWIEdge Low error for task B
of task A
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Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

-

hile learning new task B:..
b~

Too plastic:

Low error for task A Forget knOWIedge Low error for task B
of task A

* How to stabilize important parameters for previous tasks and plasticize other
parameters to learn new tasks?
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Regularization-based Continual Learning

e Continual Learning basically aims to overcome Plasticity-Stability dilemma.

* Balance between network stability (to preserve past knowledge) and plasticity (to
rapidly learn the current experience).

-

hile learning new task B:..
b~

Too plastic:

Low error for task A Forget knOWIedge Low error for task B
of task A

* How to stabilize important parameters for previous tasks and plasticize other
parameters to learn new tasks?

* Fisher information roughly measures the sensitivity of the model’s output

distribution to small changes in the parameters. &21(0)
1(0) = —

* Def (Fisher Information). The negative second derivative of the log likelihood function.
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Regularization-based Continual Learning

* Elastic WEIght Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017]

* Limiting the learning of parameters critical to the performance of past tasks, as
measured by the Fisher information matrix (FIM).

—
7~

EWC

Low error for task A Low error for task B

Balance Plasticity-Stability

A
L) =Ep0)+)> o Filbi 0% )
Current task loss ¢

* Penalizing output changes of model from changes in model parameter can be used
as regularizer!
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Regularization-based Continual Learning

* Elastic WEIght Consolidation (EWC) [Kirkpatrick, J.,Pascanu, R., et al., 2017]

* Limiting the learning of parameters critical to the performance of past tasks, as
measured by the Fisher information matrix (FIM).

Low error for task A Low error for task B

train A trainB train C

0 - ‘ - EWC

* Results on the permuted MNIST task 3 V 2
* EWC retains previous tasks’ performance. ) ?:ij f |
e L2 regularized scheme more tends to E m
stabilize on previous task. 058 - f |
« SGD is too plastic, o " f |
which results in forgetting previous tasks. S 1 ‘

Frac. correct o )
Training time
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Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]

* Preserve output logit (LwF-logit) of current task samples with the model trained on
previous task: regularize output

Algorithmic Intelligence Lab
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Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]

* Preserve output logit (LwF-logit) of current task samples with the model trained on
previous task: regularize output

* Use both {sample, target} and {sample, LwF-logit} pairs to train (multi head).

LEARNINGWITHOUTFORGETTING:
Start with:
Input: Target: 0s: shared parameters
0,: task specific parameters for each old task
model (a)’s Xn, Yp: training data and ground truth on the new task
¢ response for Initialize:
new task old tasks Y, + CNN(X,,, 05, 0,) // compute output of old tasks for new data
image > 0. < RANDINIT(|0,|) // randomly initialize new parameters
task Train:
new da;S-uth Define Y, = CNN(X,,, 05, 0,) // old task output
groun Define Y,, = CNN(X,,, 65, 6,) // new task output
9%, 62, 07 < argmin (Aoﬁold(Yo, Vo) + Loew (Yo, Vi) + R(Bs, b0, én))
85,00,0n

Balance Plasticity-Stability

Algorithmic Intelligence Lab
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Regularization-based Continual Learning

* Learning without Forgetting (LWF) ; et 1. 2016]
* Preserve output logit (LwF-logit) of current task samples with the model trained on

previous task: regularize output

* Use both {sample, target} and {sample, LwF-logit} pairs to train (multi head).

Input:

new task
image o

Target:

model (a)’s
response for
old tasks

new task
ground truth

LEARNINGWITHOUTFORGETTING:

Start with:
0s: shared parameters
0,: task specific parameters for each old task
Xn, Yn: training data and ground truth on the new task

Initialize:
Y, + CNN(X,, 0., 6,) // compute output of old tasks for new data
0. < RANDINIT(|0,|) // randomly initialize new parameters
Define Y, = CNN(X,, 85, 0,) // old task output
Define ¥, = CNN(X, 05, 6,) // new task output
9%, 62, 07 < argmin ()\oﬁold(Yo, Vo) + Loew (Yo, Vi) + R(Bs, b0, é,,,))

85.00,0n

Balance Plasticity-Stability

* Both EWC and LwF regularize changes in trained model’s parameters or outputs
rather than storing previous tasks’ samples to preserve learned knowledge.
* Control plasticity-stability using a hyperparameter.

Algorithmic Intelligence Lab
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

Algorithmic Intelligence Lab
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous

data is limited to the current task.
* What if we can replay some of the previously observed samples?

 Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.

* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay
* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

* How to generate fake inputs learned from past input distribution and train current
task simultaneously?
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
* Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

 How to generate fake inputs learned from past input distribution and train current
task simultaneously?

Algorithmic Intelligence Lab
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Replay-based Continual Learning

* If one can store samples representative to input distribution, the replayed
samples enable us to partially retrieve previous task.

* Possibly effective to prevent forgetting!

* Sampling strategy: How we keep a fixed buffer of size M to be used as a
representative of the previous samples?

* Reservoir sampling (c,ugnry et ar, 2019) attempts to keep memory to be
representative.

* Basic operations: samples can be stored, discarded or replaced at every update
step.

store discard replace

AN

Buffer l v

Algorithmic Intelligence Lab
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Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* In the beginning when the buffer is not full, add incoming samples.

Algorithmic Intelligence Lab
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Replay-based Continual Learning

* Reservoir sampling (ch,udhry et al, 2019]

* In the beginning when the buffer is not full, add incoming samples.

* Once the buffer is full, replace current sample with a probability
(replay buffer size)/(# examples encountered so far).

(replay buffer size)

Prepl t =
l FOPTREEmERY T (# examples encountered so far)

Algorithmic Intelligence Lab

96



Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* In the beginning when the buffer is not full, add incoming samples.

* Once the buffer is full, replace current sample with a probability
(replay buffer size)/(# examples encountered so far).

* The sample to be replaced in the replay buffer is selected with a uniform
distribution.

B (replay buffer size)
Preplacement = (# examples encountered so far)

1
replay buffer size)

1 Pcandidate =— (

* Reservoir sampled instances in replay buffer are representative of the inputs.
* |t also works in the infinite non-iid input stream settings

Algorithmic Intelligence Lab
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Replay-based Continual Learning

* Reservoir sampling [Chaudhry et al., 2019]
* How to train with Reservoir sampled buffer?

Current stream Joint train

v

Populated from buffer J

Joint train

I Uniformly populate

Buffer (episodic memory)

* Populate samples from buffer same sized with batch size and jointly train model.

* Since experience replay with Reservoir sampling is simple yet effective, it is used as
a strong baseline for replay-based continual learning studies.

Algorithmic Intelligence Lab
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

 Memory replay
* Episodic memory that stores a subset of data can alleviate forgetting.
* Which samples should be stored in replay memory?
* How to prevent forgetting while learning new task via utilizing episodic memory?

* Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

 How to generate fake inputs learned from past input distribution and train current
task simultaneously?
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Replay-based Continual Learning

¢ Gradient EpiSOdiC Memory (GEM) [Lopez-Paz and Ranzato, 2017]
* Assume the continuum of data is locally iid.

* We update parameters on observed triplet (x, t, y) where (x, y) is a pair of input-
target and t is task identifier.

* Prevent forgetting by optimizing networks on observed triplet only allowed to
decrease loss on populated samples from memory.

* We define average loss on samples from memory

(M) = —— S0 C(fo (wirk) )

My
h | | (m’wkvyz)eMk
kt" task memory

* Then, we optimize parameters in what follows

minimizegl (fo(x,t),y)
subject to £ (fg, My) < 6( g_l,Mk) for all k <t

kth task memory

* We store trained triplets in fixed size memory in FIFO(first in first out) manner.
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Replay-based Continual Learning

¢ Gradient EpiSOdiC Memory (GEM) [Lopez-Paz and Ranzato, 2017]
* Optimization rephrasing : the gradients of past and current task should be aligned.

minimizegl (fo(x,t),y)
subject to ¢ (fp, M) < E( g_l,./\/lk) forall k <t

kth task memory Rephrased

ol (fo(x,t),y) O (fo, M)
= >
(g, 9K) < e , 50 > (), for all k <t

Parameter update
on observed triplet (x, t, y).

* If satisfied, the gradient g is unlikely to increase the loss at previous tasks

* If not satisfied, at least one previous task’s loss is likely to increase after updating
parameter on direction to g.

* If above products are negative, project g to the closest gradient g satisfying
positive transfer.

.. 1 2
minimize; - lg — §1

subject to (g,gr) > 0 for all k < ¢
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Replay-based Continual Learning

* Dark Experience Replay (DER) (5,,5e¢5 2020]
* Encourage the network to mimic its original responses for past samples.

* Logit matching: retain the network’s logits instead of the ground truth labels.

* Similar to previous replay-based methods, DER also looks for parameters that fit
the current task well while approximating the behavior observed in the old ones.

* However, DER does not approximate past behaviors in gradient spaces.

(1 To be buffered

______

( \ TN -
Currentsample | & i —> — i 2 ': > Y — Y
— A ===~ Softmax Cross
Augment Entropy
hg
Buffered sample g;’ — — —_— ’Z“’ — Z/
MSE
Augment
Network

Li, + aEg )om [ |z — he(“z’)”é]
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Replay-based Continual Learning

* Dark Experience Replay (DER) (5,,5e¢5 2020]

Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MN.IST R-MNIST

Class-IL Task-IL Class-IL Task-IL  Domain-IL Domain-IL

JOINT 92.20+0.15 98.31+0.12 59.99+0.19 82.04+0.10 94.33+0.17 95.76+0.04

- SGD 19.62+0.05 61.02+3.33 7.92+0.26 18.31+0.68 40.70+2.33 67.66+8.53

oEWC [36] 19.49+0.12 68.29+3.92  7.58+0.10 19.20+0.31 75.79+2.25 77.35+5.77

S1[42] 19.48+0.17 68.05+5.91 6.58+0.31 36.32+0.13 65.86+1.57 71.91+5.83
T LwF[24] 19.61+0.05 63.29+2.35 8.46+0.22 15.85+0.58 - -
PNN [35] - 95.13+0.72 - 67.84+0.29 - -

ER [33] 44.79+1.86 91.19+0.94 8.49+0.16 38.17+2.00 72.37+0.87 85.01+1.90

GEM [27] 25.54+0.76  90.44+0.94 - - 66.93+1.25 80.80+1.15

A-GEM [9] 20.04+0.34 83.88+1.49 8.07+0.08 22.77+0.03 66.42+4.00 81.91+0.76
iCaRL [32] 49.02+3.20 88.99+2.13 7.53+0.79 28.19+1.47 - -

200 FDR [4] 30.91+2.74 91.01+0.68 8.70+0.19 40.36+0.68 74.77+0.83 85.22+3.35

GSS [1] 39.07+5.59 88.80+2.89 - - 63.72+0.70 79.50+0.41

HAL [8] 32.36+2.70  82.51+3.20 - - 74.15+1.65  84.02+0.98

DER (ours) 61.93+1.79 91.40+0.92 11.87+40.78 40.22+0.67 81.74+1.07 90.04+2.61

DER++ (ours) 64.88+1.17 91.92+0.60 10.96+1.17 40.87+1.16 83.58+0.59 90.43+1.87

ER [33] 57.74+0.27 93.61+0.27 9.99+0.20 48.64+0.46 80.60+0.86 88.91+1.44

GEM [27] 26.20+1.26 92.16+0.69 - - 76.88+0.52 81.15+1.98

A-GEM [9] 22.67+0.57 89.48+1.45 8.06+0.04 25.33+0.49 67.56+1.28 80.31+6.29
iCaRL [32] 47.55+3.95 88.22+2.62 9.38+1.53 31.55+3.27 - -

500 FDR [4] 28.71+3.23 93.29+0.59 10.54+0.21 49.88+0.71 83.18+0.53 89.67+1.63

GSS [1] 49.73+4.78  91.02+1.57 - - 76.00+0.87 81.58+0.58

HAL [8] 41.79+4.46 84.5412.36 - - 80.13+0.49 85.00+0.96

DER (ours) 70.51+1.67 93.40+0.39 17.75+1.14 51.78+0.88 87.29+0.46 92.24+1.12

DER++ (ours) 72.70+1.36 93.88+0.50 19.38+1.41 51.91+0.68 88.21+0.39 92.77+1.05

ER [33] 82.47+0.52 96.98+0.17 27.40+0.31 67.29+0.23 89.90+0.13 93.45+0.56

GEM [27] 25.26+3.46 95.55+0.02 - - 87.42+0.95 88.57+0.40

A-GEM [9] 21.99+2.29 90.10+2.09 7.96+0.13 26.22+0.65 73.32+1.12 80.18+5.52
iCaRL [32] 55.07+1.55 92.23+0.8¢ 14.08+1.92 40.83+3.11 - -

5120 FDR [4] 19.70+0.07 94.32+0.97 28.97+0.41 68.01+0.42 90.87+0.16 94.19+0.44

GSS [1] 67.27+4.27 94.19+1.15 - - 82.22+1.14 85.24+0.59

HAL [8] 59.12+4.41  88.51+3.32 - - 89.2040.14  91.17+40.31

DER (ours) 83.81+0.33 95.43+0.33 36.73+0.64 69.50+0.26 91.66+0.11 94.14+0.31

DER++ (ours) 85.24+0.49 96.12+0.21 39.02+0.97 69.84+0.63 92.26+0.17 94.65+0.33

Algorithmic Intelligence Lab

* Despite its simplicity, DER/DER++
outperform most of CL baselines
in various scenarios.

e DER++ additionally
populates and utilizes
ground truth labels (y).

The source of its greatness is not
fully explained yet.

* There is still much room for
improvement!
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Replay-based Continual Learning

e Continual Learning assumes a particular situation where access to previous
data is limited to the current task.

* What if we can replay some of the previously observed samples?

* Memory replay
e Episodic memory that stores a subset of data can alleviate forgetting.
* How to utilize episodic memory to prevent forgetting while learning new task?
* Which samples should be stored in replay memory?

e Generative replay

* Pseudo-rehearsal technique: Pseudo-inputs and pseudo-targets produced by a
memory network can be fed into the task network.

* How to generate fake inputs learned from past input distribution and train current
task simultaneously?
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Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model
(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.
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Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model

(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.

* Generator is sequentially trained to generate pseudo-input from current task
inputs and generated inputs from old scholar’s generator.

Current Task

:l, New Scholar

Current | x Generator

Replay | x' ——

Generator

0ld Scholar
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Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* A cooperative dual model architecture consisting of a deep generative model

(“generator”) and a task solving model (“solver”) to retains the knowledge without
revisiting actual past data.

* Generator is sequentially trained to generate pseudo-input from current task
inputs and generated inputs from old scholar’s generator.

* Solver is sequentially trained on both current input-target pairs and pairs of
generated input-target from old scholar’s solver.

Current Task Current Task

:l, New Scholar ,I, New Scholar

Current | x Generator Current | x

- :
Replay x' Replay :i\":

Generator enerato

NG

A\l
N

0ld Scholar 0Old Scholar
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Replay-based Continual Learning

* Deep Generative Replay s, et al. 2017]

* Experimental results

* Test accuracy of sequentially learned solver measured on full test data from MNIST.

* The first solver learned from real data, and subsequent solvers learned from
previous scholar networks.

| Solver; — Solvers — Solvers — Solvery —  Solvers
Accuracy(%) | 98.81% 98.64% 98.58% 98.53% 98.56%

* Permuted MNIST experiment
* Generative replay(GR) trains well as much as Exact replay (ER).
* Sequential training on a solver alone suffer forgetting (None).
* Replaying gaussian noise does not help tempering performance loss (Noise).

—~1 ‘ 1.0

j‘«g P - ’,,M/_v,,—f‘—\w ER
== 0.9 e SV

g = 20.8

o ! | ©

T T 3 0.7

£ ® 0.6

M o= 0.5 M None
Fo | .

nl i r— x103
g 0-49 5 10 15 20 25
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Replay-based Continual Learning

* Deep Generative Replay (s, et a1 2017]

the original task (thick curves)

° Learning new domains the new task (dim curves)
_ ogy Drarmarin/n ER(S)
- fpw GR(S)

' None(S

0.6 | MnisT(01d) — SVHN(New) 0.6 SVHN(OId) — MNIST(New) )

0.5 x103 x103

20 5 10 15 20 25 0.5, 5 10 15 20 25
iterations iterations
(a) MNIST to SVHN (b) SVHN to MNIST

* MNIST->SVHN, SVHN->MNIST
* Generative replay learns new domains sequentially without forgetting.
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Replay-based Continual Learning

* Deep Generative Replay (s, ct a1, 2017]
* Learning new classes

ER

T e T e e —_ .
P P

x103

25

20

15

10

©

iterations

RO~ N O
ON~P O XM
[MOQAYDI—~I0N
VrNDS o r~3 0\

NS P — NN
H—a~TOx®
FO*oon>
Q=T KD o~
N Y7 Q
Dy e~y —
OO NMO A
NNARSOMNI™TY
NS TONMYT
GO N™Nw
A0 FMm—L D
AQ Y9 N0
NOIr*DO T~
Nhw-TWnN-0
DO TS0 PN
(L Re Ne R sV i
N0 T\ WM~
HN\ N oh@® N~
ANTNAOD~~N
bYerors-QT
SANSA—~—mMm
M= Q0 ~Q&~=d
SN manQw
MO~ Y~D
O0~xk~QyYyOO
—N®AS~XMYD

MNIST divided into 5 tasks with two labels in each.
* Generative replay learns new classes sequentially without forgetting.
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Table of Contents

4. Continual Learning

* Expansion-based approaches
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Expansion-based Continual Learning

* Regularization-based approaches prevent forgetting by regularizing the change
of a specific set of weights (e.g. EWC).

* Making the current weights closer to the previous ones may not always ensure that
the predictions on the past tasks also remain unchanged.

\"",
Lé‘ ‘b‘

Without fixing model architecture
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Expansion-based Continual Learning

* Regularization-based approaches prevent forgetting by regularizing the change
of a specific set of weights (e.g. EWC).

* Making the current weights closer to the previous ones may not always ensure that
the predictions on the past tasks also remain unchanged.

* Expansion-based Continual Learning

* Expand the model architecture to accommodate new data instead of fixing it
beforehand.

* Prevent pre-existing components from being overwritten by the new information.

t-1

.

50000

vw. <'v—/

(ﬁi%‘x‘ijﬁn

A S
~ é\.“( l

\"",
Lé‘ ‘b‘

Without fixing model architecture Expanding model architecture
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Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.

)

N

L

A

Cm )
I

Task 1 input
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Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen

Task 2 input
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Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen
h:gl) h:(32) hg‘g) hgk) _ f(Wi(k)h(k)1 i ZU(k J)h(J) )
1 - ""'1 1<k
}—==" I
hgl) hgz)
* ’,—’
1 - o=
1 P - -
Le==—" -
hgl) h§2)

Task 3 input
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Expansion-based Continual Learning

* Progressive Neural Networks [Rusu and Rabinowitz et al., 2016]
e Begin with just a single column NN with an initial task.
* Allocating a new column for each new task, whose weights are initialized randomly.

Frozen

B

e For example, if hgl) has enough
information(=transferrable) to

perform task 3 at layer 3, h§3) can

ignore inputs other than hgl).

Task 3 input
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Expansion-based Continual Learning

* Experiments
* Setup

(a) Pong variants (b) Labyrinth games (c) Atari games

* Evaluate across three different RL domains
* Pong variants: synthetic version of Pong including flipped, noisy, scaled and recolored
transforms.
* Labyrinth games: a set of 3D maze games
» Atari games: random sequences of Atari games

* New column is linearly added when new task(domain) is given.
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Expansion-based Continual Learning

* Experiments

e Baselines
B B .
T = - ?
- - . \
input input input input input

(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net

2 columns

e Baseline 2: a quite standard in supervised learning with finetuning only output layer of

pretrained networks.
* Baseline 3: support full finetuning of pretrained network

* Baseline 4: Does progressive NN take advantage of positive transfer from previously

learned columns?

* Metrics

* Transfer score: the relative performance of an architecture compared with baselinel

(high is better). Clipped in range [0,2].
* Provide mean and median transfer scores.

Algorithmic Intelligence Lab

o
~

input

3 columns

source task

target task

random
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Expansion-based Continual Learning

[ ] Source tasks

Target task
* Results &
= S
a ) 2 g “2 g'
4 = > ‘1’ ° S S x c 6 < N =
S’U;—%“.-.w%-}—;g x28%y & 2537 MR
o 8% >0o0% o cC g S5 < o0%=-wv0o. s % 2 N
amIIz>=N XS g ESTRS RN 2 z=s
" T oo ooc By L LR =
Baseline 2 Pong Baseline 2 Baseline 2| Avoid 1
Noisy Track 1
H-flip Baseline 3 Maze Y
Baseline 3 Pong I 2 2 Baseline 3| Avoid 1
Noisy Baseline 4 I Track 1
H-flip 1 Prog. 2 col Maze Y
Baseline 4 Random l 1 Baseline 4 Random
Prog. 2 col Pong 0 Prog. 3 col riverraid+pong| I Prog. 2 co| Avoid 1
Noisy rlverra|d+s§aque§t 0 Track 1
] pong+riverraid
H-flip pong+seaquest| Maze Y
Prog. 3 col| Noisy + H-flip seaquest+riverraid
seaquest+pong
Prog. 4 col |seaquest+riverraid+pong
Pong Soup Atari Labyrinth

* Baseline2 (Single column, only output layer is finetuned) fails to learn the target
task (negative transfer).

* Progressive NNs (with 2 or more columns) show greater transferability from source
task domains to target domain.
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Expansion-based Continual Learning

* Results
Pong Soup Atari Labyrinth

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)
Baseline 1 100 100 100 100 100 100
Baseline 2 35 7 41 21 88 85
Baseline 3 181 160 133 110 235 112
Baseline 4 134 131 96 95 185 108
Progressive 2 col 209 169 132 112 491 115
Progressive 3 col 222 183 140 111 — —
Progressive 4 col — — 141 116 — —

* Baseline 3 shows high positive transfer but progressive NN shows much higher
performance in terms of mean and median score.

* This suggests progressive NN is better to exploit transfer when source and target
domains are compatible.

* Also, since baseline3 learns target domain without preserving features of source task
domains, it might suffers catastrophic forgetting while progressive NN does not.
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Expansion-based Continual Learning

* Dynamically Expandable Networks (DEN) yyoon et a. 2018)
* Progressive NN-like approaches increase model size linearly on the number of tasks.

Expanding model architecture
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Expansion-based Continual Learning

* Dynamically Expandable Networks (DEN) yyoon et a. 2018)

* Progressive NN-like approaches increase model size linearly on the number of tasks.

* DEN selectively retrains the old network, expanding its capacity when necessary.

v
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Expanding model architecture Dynamically Expanding model architecture
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Expansion-based Continual Learning

* Sketch of Dynamically Expandable Networks (DEN) jyoon, et a., 2018]
* Selective retraining
* Dynamic network expansion
* Network split/duplication

Selective retraining Dynamic network expansion Network split/duplication
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Expansion-based Continual Learning

* Selective Retraining
* At the initial task (t=1), train with L1-regularization (sparse network)

Layer L

7 X< wi=t

wis (OO

Input Layer
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Expansion-based Continual Learning

* Selective Retraining
e At every Incoming new task,
* Train only W/, weights (L1-reg).
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Expansion-based Continual Learning

* Selective Retraining
e At every Incoming new task,
e Train only weights (L1-reg).
* Then, the non-zero values of weights is related to t-task (parameter selection).

: A set of neurons adjacent to selected parameters
* Train subnetwork S with

t-1 t
>
t
WL
Layer L
-_— t
S [eYeYeYe)
Ay Wit

Input Layer O Ob
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Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

Layer L

Layer L-1

Input Layer
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Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 “7 22
W{V
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Wlt—l VVlN
Vvlt /l: — I/Vl/\fl
Layer L-1 . . . .
Input Layer
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Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 “7 22
W{V
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Layer L

Layer L-1

Input Layer
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Expansion-based Continual Learning

* Dynamic network expansion
* Does selective retrained model perform well on task t?
e If (£; > 1), expand network.

e Using group sparse regularization to dynamically decide how many neurons to add
at which layer

“7 ‘;‘ 7t 1 V‘r 22
W{\f
Group defined on the incoming
weights for each neuron (e.g.,
activation map for CNN filter).

Layer L

Layer L-1

Input Layer
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Expansion-based Continual Learning

* Network split/duplication

* Prevent forgetting after training with dynamic expanded networks

t-1

Layer L

7 X\ Wizl

wis (OO

Input Layer
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Expansion-based Continual Learning

* Network split/duplication

* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:

pi = llwi —wi 2
t-1 t-1 t
I > I —

Layer L

Layer L-1 t_l @) Q ‘@

Wl
Input Layer <’

Hidden unit i and its incoming weight _/

Algorithmic Intelligence Lab
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Expansion-based Continual Learning

* Network split/duplication
* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:
pi = llwi —wi ™2
* |f such semantic drift is too large, copy neuron and adjacent weights.
« The original neuron and weights are restored to the time stamp at t-1t" task trained.

t-1 t-1 t

Layer L

- [QOD0) | ([L000) [0
e (660606
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Expansion-based Continual Learning

* Network split/duplication
* Prevent forgetting after training with dynamic expanded networks
* Measure the amount of semantic drift for each hidden unit i:
pi = [lw; —wi ™2
* |f such semantic drift is too large, copy neuron and adjacent weights.

« The original neuron and weights are restored to the time stamp at t-1t" task trained.

* Then, retrain network on tth task while retaining t-1t task learned weights.
minimizey -t £ (Wt; Dt) + A HWt —wit! H;

t-1 t-1 t
1 1 1
1 > 1 1 >

Layer L

t—1
Wi

Layer L-1 [Qéc%l Wit [—CD‘ C\‘D"@ Ecg?ed
( / 8 O ( |

Input Layer

Retrain with L2-reg
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Expansion-based Continual Learning

* Timestamped Inference

* While network expansion and split procedures, DEN timestamps each newly added
unit j by setting {z}; = ¢ to record the training stage t.

* At inference time, each task will only use the parameters that were introduced up
to state t.

_—
O C

QOQ] [ O

feXoXeY |

Task identifier is given as t-1 Task identifier is given as t
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Expansion-based Continual Learning

* Timestamped Inference

* While network expansion and split procedures, DEN timestamps each newly added
unit j by setting {z}; = ¢ to record the training stage t.

* At inference time, each task will only use the parameters that were introduced up
to state t.

* This is why the network split/duplication works for preventing forgetting.

|
/A AN A=
e)e)
Weights were retrained not too far
from the weights trained at t-1t" task
(split/duplication)
Task identifier is given as t-1 Task identifier is given as t
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Expansion-based Continual Learning

* Baselines

DNN-STL: Base DNN, trained for each task separately Offline learning
DNN-MTL: Base DNN, trained for all tasks at once

DNN: Base DNN, using I12-regularizations

DNN-L2: Base DNN, using I2-regularizations b/w weights of previous/current tasks
DNN-EWC: DNN trained with elastic weight consolidation for regularization
DNN-Progressive: DNN trained with progressive nets Expansion-based CL
DEN

 Datasets

MNIST-Variation: rotated / noised MNIST images. One-versus-rest binary task

* CIFAR-100: 100 classes. Binary task on each class.
* AwA (Animal with attributes): 50 classes. Binary task on each class.

Algorithmic Intelligence Lab
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Expansion-based Continual Learning

* Average Per-task performance
* DEN outperforms all online-trained baselines

Average Per-task Performance on MNIST-Variation Average Per-task Performance on Cifar-100 Average Per-task Performance on AWA-Class
T .95,
0% DNN-STL (0.7963) os !
O DNN-MTL (0.8047)
< ©DNN (0.6785)
09 >DNN-L2 (0.7440) VN
<DNN-EWC (0.7480) 085F % Y
>DNN-Progressive (0.7817) Vb Bt s S NS . S S \
0.5 B, [ADEN (0.8131) L NN
A A .\ il altE
a AN A \
o | Oorsk CNN-STL (0.9345)
2 s o i g O CNN-MTL (0.8890)
3 I -©-CNN (0.5629)
| o 8- N ) a -B>-CNN-L2 (0.7830)
0.75 © B T 065} *g::-gwc (0.8134) E DNN-STL (0.9064)
N -Progressive (0.8819) O DNN-MTL (0.7222)
o, sk @O [ADEN(09225) ] 04| --<o--- DNN. (0.5240)
ol o | \‘9—“’(}” 0. ---B>-- DNN-L2 (0.5454)
- O o e Q- oall -~© - DNN-EWC (0.5604)
q 0.551 ] —— DNN-Progressive (0.6465)
A DEN (0.8913)
0.65 L L L - L - - L 0.5 L L y L > y 0.2
1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 9 100 5 1o 15 20 25 30 35 40 45 50
Number of tasks Number of tasks Number of tasks

* Performance retention over time (MNIST-Variation)
* DEN steadily retains learned performance at any time (prevent forgetting)

Performance change for Task 1 Performance change for Task 4 Performance change for Task 7
0.92 - . : : - 0.86 : : : : ) .
>DNN-L2
0.8 <»DNN-EWC
0.84 | 9 > DNN-Progressive
B A ADEN
-\»—?\. S A A A - DEN-No-Stamp
0.82 [ . 4 0.757]
I \/ T Vi - i
g g Prpe > g —7
4 T 08F A A el ® 4
2 2 2
< < < 07°Ff
09 - 078 | 1 G B N
T>DNN-L2 {>DNN-L2 N Tr—— )
£ DNN-EWC ;gs:—&wc ‘ T T
- i ] L -Progressive Tl
0.895 Zggs Progressive 0.76 ADEN R
—+DEN-No-Stamp —+DEN-No-Stamp
0.89 : - ; . - . . : 0.74 : - . . . 06 - .
1 2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 7 8 9 10
Time at the task t Time at the task t Time at the task t
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Summary

Many attempts exist to better transfer the knowledge from source to
target domains.

Mainly, two branches of approaches exist.

[1] Training universal feature extractor from data rich source domain
* e.g.) Big Transfer, self-supervised learning methods

[2] Consideration of "what should be transferred” while doing
transfer

e e.g.) Jacobian matching

Fine-tuning/transferring knowledge from backbone network is
getting very common:

e e.g.) Most NLP works fine-tune BERT (or GPT), rather than training from scratch
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Summary

. CorI1<tinuaI learning aims to prevent catastrophic forgetting while learning sequential
tasks.

* To prevent forgetting, previous works try to preserve learned knowledge by

* [1] Regulating parameter changes,
» Elastic Weight Consolidation (EWC)

* Learning without Forgetting (LwF)

Low performance
Require task identity

» [2] Storing/replaying past task-specific samples,
* Experience Replay (ER)
* Deep Generative Replay

Resource expensive
Privacy

* [3] Expanding model to separate knowledge physically.
* Progressive Neural Network(PNN) Not practical
* Dynamically Expandable Networks(DEN)

* Recent works aim to overcome practical limitations of various types of continual
learning settings.

* Online streamed data (online learning)
» Task-free (training without task identifier/boundary information)
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