Novelty and Uncertainty Estimation

AI602: Recent Advances in Deep Learning

Lecture 6

Slide made by

Kimin Lee and Jihoon Tack

KAIST EE & AI

Algorithmic Intelligence Lab

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Self-supervised Learning

- Pretext self-supervised learning
- Contrastive learning

4. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

1. Introduction

- Problem definition
- Overview
- 2. Utilizing the Classifier
 - Confidence from posterior distribution
 - Confidence from hidden features
- 3. Utilizing the Self-supervised Learning
 - Pretext self-supervised learning
 - Contrastive learning
- 4. Utilizing the Generative Models
 - Confidence from likelihood
 - Hybrid Models

- Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)
 - E.g., image classifier

- Deep neural networks (DNNs) can be generalized well when the test samples are from similar distribution (i.e., in-distribution)
 - E.g., image classifier

Training data = animal

• However, in the real world, there are many unknown and unseen samples

Unseen sample, i.e., out-ofdistribution (not animal)

Unknown sample

 $+.007 \times$

Adversarial samples [Goodfellow et al., 2015]

Novelty detection

• Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

Novelty detection

• Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

• It can be useful for many machine learning problems:

Ensemble learning [Lee et al., 2017]

[Rebuff et al., 2017]

Novelty detection

• Detect whether a test sample is from in-distribution (i.e., training distribution by classifier) or not (e.g., out-of-distribution / adversarial samples)

• It is also indispensable when deploying DNNs in real-world systems [Amodei et al., 2016]

Secure authentication system

Algorithmic Intelligence Lab

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

[Test sample]

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

[Test sample]

• Part 1. utilizing image classifiers (+ self-supervised learning)

- How to solve this problem?
 - Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

[Test sample]

• Part 1. utilizing image classifiers (+ self-supervised learning)

• Part 2. utilizing generative models

Algorithmic Intelligence Lab

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features
- 3. Utilizing the Self-supervised Learning
 - Pretext self-supervised learning
 - Contrastive learning
- 4. Utilizing the Generative Models
 - Confidence from likelihood
 - Hybrid Models

• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$X \longrightarrow P \longrightarrow Y$$
 Output space

• How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^\top f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^\top f(\mathbf{x}) + b_{c'})}$$

- Where $f(\cdot)$ is hidden features from DNNs

• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

Input space
$$\mathbf{X} \longrightarrow P \longrightarrow \mathbf{Y}$$
 Output space

• How to model our posterior distribution: Softmax classifier with DNNs

$$P(y = c | \mathbf{x}) = \frac{\exp(\mathbf{w}_c^\top f(\mathbf{x}) + b_c)}{\sum_{c'} \exp(\mathbf{w}_{c'}^\top f(\mathbf{x}) + b_{c'})}$$

- Where $f(\cdot)$ is hidden features from DNNs
- Natural choice for confidence score
 - 1. maximum value of posterior distribution

$$\max_{c} P(y=c|\mathbf{x})$$

• 2. entropy of posterior distribution

$$H = \sum_{y} -P(y|\mathbf{x}) \log P(y|\mathbf{x})$$

- Baseline detector [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- **Baseline detector** [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution
 - Assume that we have classifier trained on MNIST dataset ٠
 - Detecting out-of-distribution for this classifier

- **Baseline detector** [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution
 - TP = true positive / FN = false negative / TN = true negative / FP = false positive
 - AUROC ٠
 - Area under ROC curve
 - ROC curve = relationship between TPR and FPR
 - AUPR (Area under the Precision-Recall curve)
 - Area under PR curve •
 - PR curve = relationship between precision and recall

- **Baseline detector** [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution •
 - Image classification (computer vision) •

In-Distribution /	AUROC	AUPR In	AUPR	
Out-of-Distribution	/random	<i>r</i> andom	Out/random	
CIFAR-10/SUN	95/50	89/33	97/67	
CIFAR-10/Gaussian	97/50	98/49	95/51	
CIFAR-10/All	96/50	88/24	98/76	
CIFAR-100/SUN	91/50	83/27	96/73	
CIFAR-100/Gaussian	88/50	92/43	80/57	
CIFAR-100/All	90/50	81/21	96/79	
MNIST/Omniglot	96/50	97/52	96/48	
MNIST/notMNIST	85/50	86/50	88/50	
MNIST/CIFAR-10bw	95/50	95/50	95/50	
MNIST/Gaussian	90/50	90/50	91/50	
MNIST/Uniform	99/50	99/50	98/50	
Algorithr MNIST/All	91/50	76/20	98/80	

Baseline method is better than random detector

- **Baseline detector** [Hendrycks et al., 2017]
 - Confidence score = maximum value of predictive distribution •

[Input]

[Deep classifier]

- Evaluation: detecting out-of-distribution
 - Text categorization (NLP) ٠

Dataset	AUROC	AUPR	AUPR	
	/random	Succ/random	Err/random	
15 Newsgroups	89/50	99/93	42/7.3	
Reuters 6	89/50	100/98	35/2.5	
Reuters 40	91/50	99/92	45/7.6	

- Out-of-distribution ٠
 - 5 Newsgroups for 15 Newsgroups ٠
 - 2 Reuters for Reuters 6 ٠
 - 12 Reuters for 40 Reuters

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

Temperature scaling parameter

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

 $\mathbf{f} = (f_1, \ldots, f_K)$ is final feature vector of deep neural networks

• Relaxing the overconfidence by smoothing the posterior distribution

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign} \left(- \bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T) \right),$$

Magnitude of noise \widehat{y} is the predicted label

Figure 6: Illustration of effects of the input preprocessing.

Algorithmic Intelligence Lab

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign}\left(-\bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T)\right),$$

• Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- ODIN detector [Liang et al., 2018]
 - Calibrating the posterior distribution using post-processing
- Two techniques
 - Temperature scaling

$$P(y = \hat{y} | \mathbf{x}; T) = \frac{\exp\left(f_{\hat{y}}(\mathbf{x})/T\right)}{\sum_{y} \exp\left(f_{y}(\mathbf{x})/T\right)},$$

Input preprocessing

$$\mathbf{x}' = \mathbf{x} - \varepsilon \operatorname{sign}\left(-\bigtriangledown_{\mathbf{x}} \log P_{\theta}(y = \widehat{y} | \mathbf{x}; T)\right),$$

• Using two methods, the authors define confidence score as follows:

Confidence score =
$$\max_{y} P(y|\mathbf{x}';T)$$

- How to select hyper-parameters
 - Validation
 - 1000 images from in-distribution (positive)
 - 1000 images from out-of-distribution (negative)

• Experimental results

	Out-of-distribution	FPR	Detection	AUROC	AUPR	AUPR
	ualasti	(35 % IFK) ↓	LII0r ↓	↑	↑	t ↑
		Baseline (Hendrycks & Gimpel, 2017) / ODIN				
	TinyImageNet (crop)	34.7/4.3	19.9/4.7	95.3/99.1	96.4/99.1	93.8/99.1
Donco BC	TinyImageNet (resize)	40.8/7.5	22.9/6.3	94.1/98.5	95.1/98.6	92.4/98.5
CIEAD 10	LSUN (crop)	39.3/8.7	22.2/6.9	94.8/98.2	96.0/98.5	93.1/97.8
CIFAK-10	LSUN (resize)	33.6/3.8	19.3/4.4	95.4/99.2	96.4/99.3	94.0/99.2
	iSUN	37.2/6.3	21.1/5.7	94.8/98.8	95.9/98.9	93.1/98.8
	Uniform	23.5/0.0	14.3/2.5	96.5/99.9	97.8/100.0	93.0/99.9
	Gaussian	12.3/0.0	8.7/2.5	97.5/100.0	98.3/100.0	95.9/100.0
Derror BC	TinyImageNet (crop)	67.8/17.3	36.4/11.2	83.0/97.1	85.3/97.4	80.8/96.8
	TinyImageNet (resize)	82.2/44.3	43.6/24.6	70.4/90.7	71.4/91.4	68.6/90.1
	LSUN (crop)	69.4/17.6	37.2/11.3	83.7/96.8	86.2/97.1	80.9/96.5
CIEAD 100	LSUN (resize)	83.3/44.0	44.1/24.5	70.6/91.5	72.5/92.4	68.0/90.6
CIFAR-100	iSUN	84.8/49.5	44.7/27.2	69.9/90.1	71.9/91.1	67.0/88.9
	Uniform	88.3/0.5	46.6/2.8	83.2/99.5	88.1/99.6	73.1/99.0
	Gaussian	95.4/0.2	50.2/2.6	81.8/99.6	87.6/99.7	70.1/99.1
	TinyImageNet (crop)	38.9/23.4	21.9/14.2	92.9/94.2	92.5/92.8	91.9/94.7
	TinyImageNet (resize)	45.6/25.5	25.3/15.2	91.0/92.1	89.7/89.0	89.9/93.6
WDN 28-10	LSUN (crop)	35.0/21.8	20.0/13.4	94.5/95.9	95.1/95.8	93.1/95.5
$CIEAR_{-10}$	LSUN (resize)	35.0/17.6	20.0/11.3	93.9/95.4	93.8/93.8	92.8/96.1
CITAR-10	iSUN	40.6/21.3	22.8/13.2	92.5/93.7	91.7/91.2	91.5/94.9
	Uniform	1.6/0.0	3.3/2.5	99.2/100.0	99.3/100.0	98.9/100.0
	Gaussian	0.3/0.0	2.6/2.5	99.5/100.0	99.6/100.0	99.3/100.0
	TinyImageNet (crop)	66.6/43.9	35.8/24.4	82.0/90.8	83.3/91.4	80.2/90.0
	TinyImageNet (resize)	79.2/55.9	42.1/30.4	72.2/84.0	70.4/82.8	70.8/84.4
WRN-28-10 CIFAR-100	LSUN (crop)	74.0/39.6	39.5/22.3	80.3/92.0	83.4/92.4	77.0/91.6
	LSUN (resize)	82.2/56.5	43.6/30.8	73.9/86.0	75.7/86.2	70.1/84.9
	iSUN	82.7/57.3	43.9/31.1	72.8/85.6	74.2/85.9	69.2/84.8
	Uniform	98.2/0.1	51.6/2.5	84.1/99.1	89.9/99.4	71.0/97.5
	Gaussian	99.2/1.0	52.1/3.0	84.3/98.5	90.2/99.1	70.9/95.9

1. Introduction

- Problem definition
- Overview

2. Utilizing the Classifier

- Confidence from posterior distribution
- Confidence from hidden features

3. Utilizing the Self-supervised Learning

- Pretext self-supervised learning
- Contrastive learning
- 4. Utilizing the Generative Models
 - Confidence from likelihood
 - Hybrid Models

Motivation

Hidden features from DNNs contain meaningful features from training data

• They can be useful for detecting abnormal samples!

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

• LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$\operatorname{LID}_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln \left(F((1+\epsilon) \cdot r) / F(r) \right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}, \tag{2}$$

whenever the limit exists.

• Where F is analogous to the volume in equation (1)

- Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
 - Expansion dimension
 - Rate of growth in the number of data encountered as the distance from the re ference sample increases (V is volume)

$$\frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^m \Rightarrow m = \frac{\ln(V_2/V_1)}{\ln(r_2/r_1)}.$$
(1)

LID = expansion dimension in the statistical setting

Definition 1 (Local Intrinsic Dimensionality).

Given a data sample $x \in X$, let R > 0 be a random variable denoting the distance from x to other data samples. If the cumulative distribution function F(r) of R is positive and continuously differentiable at distance r > 0, the LID of x at distance r is given by:

$$\operatorname{LID}_{F}(r) \triangleq \lim_{\epsilon \to 0} \frac{\ln\left(F((1+\epsilon) \cdot r)/F(r)\right)}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)},$$
(2)

whenever the limit exists.

- Where F is analogous to the volume in equation (1)
- Estimation of LID [Amsaleg et al., 2015]

$$\widehat{\text{LID}}(\mathbf{x}) = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{d_i(\mathbf{x})}{d_k(\mathbf{x})}\right)^{-1}$$

distance between sample and its k-th nearest neighbor

Algorithmic Intelligence Lab

Motivation of LID

• Abnormal sample might be scattered compared to normal samples

• This implies that LID can be useful for detecting abnormal samples!

Motivation of LID

• Abnormal sample might be scattered compared to normal samples

- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]

 $+.007 \times$

• Misclassified examples that are only slightly different from original examples

"panda" 57.7% confidence

"nematode" 8.2% confidence

=

"gibbon" 99.3 % confidence

Motivation of LID

• Abnormal sample might be scattered compared to normal samples

- This implies that LID can be useful for detecting abnormal samples!
- Evaluation: detecting adversarial samples [Szegedy, et al., 2013]

"gibbon"

"panda"

Algorithmic Intelligence Lab

"panda'

Empirical justification

- Adversarial samples (generated by OPT attack [Carlini et al., 2017]) can be distinguis hed using LID
- LIDs from low-level layers are also useful in detection

Main results on detecting adversarial attacks

- Tested method
 - Bayesian uncertainty (BU) and Density estimator (DE) [Feinman et al., 2017]

Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression classifier) among LID, KD, BU, and KD+BU. The AUC score is computed for each attack strategy on each dataset, and the best results are highlighted in **bold**.

Dataset	Feature	FGM	BIM-a	BIM-b	JSMA	Opt
MNIST	KD	78.12	98.14	98.61	68.77	95.15
	BU	32.37	91.55	25.46	88.74	71.30
	KD+BU	82.43	99.20	98.81	90.12	95.35
	LID	96.89	99.60	99.83	92.24	99.24
CIFAR-10	KD	64.92	68.38	98.70	85.77	91.35
	BU	70.53	81.60	97.32	87.36	91.39
	KD+BU	70.40	81.33	98.90	88.91	93.77
	LID	82.38	82.51	99.78	95.87	98.94
SVHN	KD	70.39	77.18	99.57	86.46	87.41
	BU	86.78	84.07	86.93	91.33	87.13
	KD+BU	86.86	83.63	99.52	93.19	90.66
	LID	97.61	87.55	99.72	95.07	97.60

• LID outperforms all baseline methods

• Mahalanobis distance-based confidence score [Lee et al., 2018b]
- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

$$\mathbf{X} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} f(\mathbf{x})$$

$$P(f(\mathbf{x})|y=c)$$

$$= \mathcal{N}(f(\mathbf{x})|\mu_c, \mathbf{\Sigma})$$

Motivation: connection between Softmax and generative classifier (LDA)

$$P_{\theta}(y=c|\mathbf{x}) = \frac{\exp(\mathbf{w}_{c}\mathbf{x}+b_{c})}{\sum_{c'}\exp(\mathbf{w}_{c'}\mathbf{x}+b_{c'})}$$
$$\boldsymbol{w}_{c} = \boldsymbol{\Sigma}^{-1}\mu_{c} \quad b_{c} = -0.5\mu_{c}^{T}\boldsymbol{\Sigma}^{-1}\mu_{c} + \log\pi_{c}$$
$$\boldsymbol{\sim} = \begin{bmatrix} P_{\theta}(y=c|\mathbf{x}) = \frac{P_{\theta}(\mathbf{x}|y=c)P_{\theta}(y=c)}{\sum_{c'}P_{\theta}(\mathbf{x}|y=c')P_{\theta}(y=c')}\\ P_{\theta}(\mathbf{x}|y=c) = \mathcal{N}(\mathbf{x}|\mu_{c},\boldsymbol{\Sigma}), \quad P_{\theta}(y=c) = \frac{\pi_{c}}{\sum_{c'}\pi_{c'}} \end{bmatrix}$$

Algorithmic Intelligence Lab

- Mahalanobis distance-based confidence score [Lee et al., 2018b]
 - Given pre-trained Softmax classifier with DNNs

$$P_{\theta}\left(y=c|\mathbf{x}\right) = \frac{\exp\left(\mathbf{w}_{c}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c}\right)}{\sum_{c'}\exp\left(\mathbf{w}_{c'}^{T}f_{\phi}\left(\mathbf{x}\right) + b_{c'}\right)},$$

• Inducing a generative classifier on hidden feature space

$$\mathbf{X} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \Rightarrow \mathbf{O} \\ \mathbf{F}(\mathbf{x}) = \mathbf{P}\left(f(\mathbf{x}) | y = c\right) \\ \mathbf{penultimate} = \mathcal{N}\left(f(\mathbf{x}) | \mu_{c}, \mathbf{\Sigma}\right) \\ \mathbf{F}\left(f(\mathbf{x}) | \mu_{c}, \mathbf{\Sigma}\right) \\ \mathbf$$

- The parameters of generative classifier = sample means and covariance
 - Given training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

$$\widehat{\mu}_{c} = \frac{1}{N_{c}} \sum_{i:y_{i}=c} f(\mathbf{x}_{i}), \ \widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{c} \sum_{i:y_{i}=c} \left(f(\mathbf{x}_{i}) - \widehat{\mu}_{c}\right) \left(f(\mathbf{x}_{i}) - \widehat{\mu}_{c}\right)^{\top},$$

Algorithmic Intelligence Lab

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

• Measuring the log of the probability densities of the test sample

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \, \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{c} \right)$$

- Measuring the log of the probability densities of the test sample
- Intuition

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\bigtriangledown_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

• Motivated by ODIN [Liang et al., 2018]

$$M(\mathbf{x}) = \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_{c})^{\top} \widehat{\mathbf{\Sigma}}^{-1} (f(\mathbf{x}) - \widehat{\mu}_{c})$$

- Measuring the log of the probability densities of the test sample
- Boosting the performance
 - Input pre-processing

$$\widehat{\mathbf{x}} = \mathbf{x} + \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} M(\mathbf{x})\right) = \mathbf{x} - \varepsilon \operatorname{sign}\left(\nabla_{\mathbf{x}} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)^{\top} \widehat{\mathbf{\Sigma}}^{-1} \left(f(\mathbf{x}) - \widehat{\mu}_{\widehat{c}}\right)\right)$$

• Feature ensemble

$$\mathbf{X} \bigoplus_{f_1(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} P(f_\ell(\mathbf{x})|y=c) \\ = \mathcal{N}(f_\ell(\mathbf{x})|\mu_{c,\ell}, \Sigma_\ell) \\ = \mathcal{N}(f_1(\mathbf{x})|\mu_{c,1}, \Sigma_1) \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|y=c)} = \mathcal{N}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2) \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)} \xrightarrow{\mathbf{P}(f_1(\mathbf{x})|\mu_{c,1}, \Sigma_1)} \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)} \xrightarrow{\mathbf{P}(f_1(\mathbf{x})|\mu_{c,1}, \Sigma_1)} \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)} \xrightarrow{\mathbf{P}(f_1(\mathbf{x})|\mu_{c,1}, \Sigma_1)} \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)} \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)} \xrightarrow{\mathbf{P}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2)}$$

Utilizing the Classifier: Hidden Features

Figure 2: AUROC (%) of threshold-based detector using the confidence score in (2) computed at different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection performance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.

$$\mathbf{X} \bigoplus_{f_1(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} \bigoplus_{f_2(\mathbf{x})} P(f_\ell(\mathbf{x})|y=c) = \mathcal{N}(f_\ell(\mathbf{x})|\mu_{c,\ell}, \Sigma_\ell)$$

$$\stackrel{\bullet}{=} \mathcal{N}(f_1(\mathbf{x})|y=c) = \mathcal{N}(f_2(\mathbf{x})|y=c) = \mathcal{N}(f_2(\mathbf{x})|\mu_{c,2}, \Sigma_2) \longrightarrow Fitting Gaussian using features from intermediate layers$$

Intuition: low-level feature also can be useful for detecting abnormal samples

Algorithmic Intelligence Lab

Main algorithm

Algorithm 1 Computing the Mahalanobis distance-based confidence score.

Input: Test sample x, weights of logistic regression detector α_{ℓ} , noise ε and parameters of Gaussian distributions $\{\widehat{\mu}_{\ell,c}, \widehat{\Sigma}_{\ell} : \forall \ell, c\}$

Initialize score vectors: $\mathbf{M}(\mathbf{x}) = [M_{\ell} : \forall \ell]$ for each layer $\ell \in 1, ..., L$ do Find the closest class: $\hat{c} = \arg \min_{c} (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})$ Add small noise to test sample: $\hat{\mathbf{x}} = \mathbf{x} - \varepsilon \operatorname{sign} \left(\bigtriangledown (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\mathbf{x}) - \hat{\mu}_{\ell,c}) \right)$ Computing confidence score: $M_{\ell} = \max_{c} - (f_{\ell}(\hat{\mathbf{x}}) - \hat{\mu}_{\ell,c})^{\top} \hat{\Sigma}_{\ell}^{-1} (f_{\ell}(\hat{\mathbf{x}}) - \hat{\mu}_{\ell,c})$ end for return Confidence score for test sample $\sum_{\ell} \alpha_{\ell} M_{\ell}$

- Remark that
 - We combine the confidence scores from multiple layers using weighted ensemble

$$\sum_{\ell} \alpha^{\ell} M^{\ell}$$

• Ensemble weights are selected by utilizing the validation set

- Experimental results on detecting out-of-distribution
 - Contribution by each technique

Method	Feature ensemble	Input pre-processing	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
Baseline [13]	-	-	32.47	89.88	85.06	85.40	93.96
ODIN [21]	-	-	86.55	96.65	91.08	92.54	98.52
	-	-	54.51	93.92	89.13	91.56	95.95
Mahalanobis	-	\checkmark	92.26	98.30	93.72	96.01	99.28
(ours)	\checkmark	-	91.45	98.37	93.55	96.43	99.35
	\checkmark	\checkmark	96.42	99.14	95.75	98.26	99.60

Baseline [13]: maximum value of posterior distribution ODIN [21]: maximum value of posterior distribution after post-processing Ours: the proposed Mahalanobis distance-based score

- Experimental results on detecting out-of-distribution
 - Main results

In dist		Vali	dation on OOD sam	ples	Validat	tion on adversarial sa	amples
(model)	OOD	TNR at TPR 95%	AUROC	Detection acc.	TNR at TPR 95%	AUROC	Detection acc.
(model)		Baseline [13]	/ ODIN [21] / Maha	lanobis (ours)	Baseline [13]	/ ODIN [21] / Maha	lanobis (ours)
CIEAD 10	SVHN	40.4 / 77.0 / 91.2	89.9 / 94.6 / 98.2	83.2 / 88.1 / 93.5	40.4 / 49.3 / 79.1	89.9 / 89.8 / 94.6	83.2 / 81.7 / 88.9
(DenseNet) T	FinyImageNet	59.4 / 92.5 / 95.3	94.1 / 98.5 / 99.0	88.5 / 94.0 / 95.3	59.4 / 92.5 / 94.1	94.1 / 98.5 / 98.4	88.5 / 93.9 / 94.6
(Deliservet)	LSUN	66.9 / 96.2 / 97.5	95.5 / 99.2 / 99.3	90.2 / 95.6 / 96.5	66.9 / 96.2 / 96.9	95.5 / 99.2 / 99.1	90.2 / 95.6 / 96.1
CIEAD 100	SVHN	26.2 / 56.8 / 82.1	82.6 / 92.5 / 97.2	75.5 / 86.0 / 91.4	26.2 / 39.5 / 50.8	82.6 / 88.2 / 90.7	75.5 / 80.7 / 83.8
(DenseNet) T	FinyImageNet	17.3 / 43.1 / 86.6	71.6 / 85.5 / 97.3	65.7 / 77.3 / 92.0	17.3 / 43.1 / 86.3	71.6 / 85.3 / 97.3	65.7 / 77.2 / 91.5
(Denserver)	LSUN	16.4 / 41.5 / 91.2	70.8 / 85.8 / 97.8	65.0 / 77.5 / 93.8	16.4 / 41.5 / 89.6	70.8 / 85.7 / 97.8	65.0 / 77.4 / 93.1
OVIDI	CIFAR-10	69.1 / 69.1 / 97.9	91.8 / 91.8 / 99.1	86.5 / 86.5 / 96.5	69.1 / 53.0 / 91.1	91.8 / 82.0 / 97.4	86.5 / 76.4 / 93.7
Donso Not) T	FinyImageNet	79.7 / 84.0 / 99.9	94.8 / 95.1 / 99.9	90.2 / 90.3 / 99.0	79.7 / 74.4 / 99.7	94.8 / 90.7 / 99.7	90.2 / 85.3 / 98.6
(Denselvet)	LSUN	77.1 / 81.2 / 99.9	94.1 / 94.5 / 99.9	89.2 / 89.2 / 99.3	77.1 / 73.4 / 99.9	94.1 / 90.5 / 99.9	89.2 / 84.8 / 99.1
CIEAD 10	SVHN	32.2 / 81.9 / 97.4	89.9 / 95.8 / 99.2	85.1 / 89.1 / 96.2	32.2 / 40.4 / 87.8	89.9 / 86.5 / 97.7	85.1 / 77.8 / 92.6
(DecNet) T	FinyImageNet	44.1 / 71.9 / 97.8	91.0 / 93.9 / 99.5	84.9 / 86.3 / 96.8	44.1 / 69.5 / 97.1	91.0 / 93.8 / 99.4	84.9 / 85.9 / 96.3
(Resider)	LSUN	45.1 / 73.8 / 99.3	91.1 / 94.1 / 99.8	85.3 / 86.6 / 98.2	45.1 / 70.1 / 98.8	91.1 / 93.7 / 99.7	85.3 / 85.7 / 97.5
CIEAD 100	SVHN	19.9 / 68.1 / 92.5	79.3 / 92.1 / 98.5	73.2 / 85.1 / 93.9	19.9 / 18.3 / 80.1	79.3 / 72.0 / 96.2	73.2 / 66.7 / 90.3
(BacNat) T	FinyImageNet	20.2 / 49.3 / 90.9	77.1 / 87.6 / 98.2	70.8 / 80.0 / 93.4	20.2 / 46.5 / 88.0	77.1 / 86.8 / 96.5	70.8 / 78.9 / 91.9
(Resiver)	LSUN	18.4 / 45.3 / 91.9	75.6 / 85.0 / 98.3	69.8 / 77.8 / 93.9	18.4 / 43.2 / 85.1	75.6 / 84.4 / 95.4	69.8 / 77.0 / 91.0
OVIDI	CIFAR-10	78.3 / 78.3 / 98.6	92.9 / 92.9 / 99.3	90.1 / 90.1 / 97.0	78.3 / 78.3 / 96.0	92.9 / 92.9 / 98.3	90.1 / 90.1 / 95.6
SVHN T	FinyImageNet	79.1 / 79.1 / 99.9	93.5 / 93.5 / 99.9	90.4 / 90.4 / 99.1	79.1 / 79.1 / 99.3	93.5 / 93.5 / 99.3	90.4 / 90.4 / 98.9
(Residet)	LSUN	74.5 / 74.5 / 99.9	91.5 / 91.5 / 99.9	88.9 / 88.9 / 99.5	74.5 / 74.5 / 99.9	91.5 / 91.5 / 99.9	88.9 / 88.9 / 99.5

- For all cases, ours outperforms ODIN and baseline method
- Validation consists of 1K data from each in- and out-of-distribution pair
- Validation consists of 1K data from each in- and corresponding FGSM data
 - No information about out-of-distribution

- Experimental results on detecting adversarial attacks
 - Main results

Madal	Dataset	Saara	De	etection o	f known atta	ck	Detectio	on of unl	known attack	
Model	(model)	Score	FGSM	BIM	DeepFool	CW	FGSM (seen)	BIM	DeepFool	CW
		KD+PU [7]	84.30	98.08	77.23	74.92	84.30	75.69	76.95	72.48
	CIFAR-10	LID [22]	98.48	100.0	83.36	79.23	98.48	99.50	68.96	65.85
	DenseNet CIFAR-100	Mahalanobis (ours)	99.97	100.0	83.73	85.28	99.97	99.5 7	83.58	84.18
		KD+PU [7]	68.24	84.80	67.60	47.80	68.24	14.91	67.58	52.08
DenseNet	CIFAR-100	LID [22]	99.67	99.88	88.37	68.52	99.67	52.38	86.95	64.98
		Mahalanobis (ours)	99.89	100.0	91.47	80.31	99.89	100.0	90.24	76.38
SVHN	KD+PU [7]	89.57	98.33	90.94	90.20	89.57	92.08	91.05	90.22	
	SVHN	LID [22]	99.48	99.37	93.42	93.75	99.48	98.50	88.60	84.90
	57117	Mahalanobis (ours)	99.91	99.95	96.36	96.19	99.91	99.82	94.43	95.07
		KD+PU [7]	84.67	99.66	80.92	70.38	84.67	82.37	80.85	70.41
	CIFAR-10	LID [22]	99.77	99.88	88.94	80.74	99.77	98.65	87.48	73.12
		Mahalanobis (ours)	99.99	99.99	94.21	93.33	99.99	99.95	93.58	92.58
		KD+PU [7]	73.41	90.55	78.41	67.32	73.41	50.36	78.85	67.36
ResNet	CIFAR-100	LID [22]	99.01	99.8 0	88.88	74.96	99.01	36.46	87.06	69.83
		Mahalanobis (ours)	99.85	99.48	93.84	86.24	99.85	99.16	60.25	82.87
		KD+PU [7]	86.76	96.16	91.45	84.22	86.76	93.38	91.44	84.37
	SVHN	LID [22]	97.18	96.39	95.88	86.81	97.18	93.45	93.05	71.92
		Mahalanobis (ours)	99.24	99.40	97.17	91.06	99.24	99.10	95.60	86.09

- For all tested cases, our method outperforms LID and KD estimator
- For unseen attacks, our method is still working well
 - FGSM samples denoted by "seen" are used for validation

- Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
 - Use the Gram matrices to compute the (hidden) feature correlations
 - The detect OOD samples that have *dis-similar Gram matrix value*

- Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
 - Use the Gram matrices to compute the (hidden) feature correlations
 - The detect OOD samples that have *dis-similar Gram matrix value*
- Gram matrix: feature correlation
 - Often used for encoding the style information [Gatys et al., 2016]
 - For a given l^{th} layer activation F_l , the Gram matrix is as follows:

$$G_l^p = \left(F_l^p F_l^{p^{\top}}\right)^{\frac{1}{p}}$$

- Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
 - Use the Gram matrices to compute the (hidden) feature correlations
 - The detect OOD samples that have dis-similar Gram matrix value
- Gram matrix: feature correlation
 - Often used for encoding the style information [Gatys et al., 2016]
 - For a given l^{th} layer activation F_l , the Gram matrix is as follows:

$$G_l^p = \left(F_l^p F_l^{p^{\top}}\right)^{\frac{1}{p}}$$

• Detection score

• Detect sample that has different Gram matrix value from the training data

$$\delta_{l}(D) = \sum_{p=1}^{P} \sum_{\substack{i=1 \\ \text{ bistance function (of the training dataset)}}} \frac{\frac{1}{2}n_{l}(n_{l}+1)}{\delta(\text{Mins}[D_{c}][l][p][i], \text{Maxs}[D_{c}][l][p][i], \frac{G_{l}^{p}(D)[i]}{G_{l}^{p}(D)[i]})}$$

- Experimental results on detecting out-of-distribution
 - Main results

In-dist	00D	TNR at TPR 95%	AUROC	Detection Acc.
(model)	000	Base	line / ODIN / Mahalanobis /	Ours
	iSUN	44.6 / 73.2 / 97.8 / 99.3	91.0 / 94.0 / 99.5 / 99.8	85.0 / 86.5 / 96.7 / 98.1
	LSUN (R)	49.8 / 82.1 / 98.8 / 99.6	91.0 / 94.1 / 99.7 / 99.9	85.3 / 86.7 / 97.7 / 98.6
CIEAD 10	LSUN (C)	48.6 / 62.0 / 81.3 / 89.8	91.9 / 91.2 / 96.7 / 97.8	86.3 / 82.4 / 90.5 / 92.6
(DecNet)	TinyImgNet (R)	41.0 / 67.9 / 97.1 / 98.7	91.0 / 94.0 / 99.5 / 99.7	85.1 / 86.5 / 96.3 / 97.8
(Residet)	TinyImgNet (C)	46.4 / 68.7 / 92.0 / 96.7	91.4 / 93.1 / 98.6 / 99.2	85.4 / 85.2 / 93.9 / 96.1
	SVHN	50.5 / 70.3 / 87.8 / 97.6	89.9 / 96.7 / 99.1 / 99.5	85.1 / 91.1 / 95.8 / 96.7
	CIFAR-100	33.3 / 42.0 / 41.6 / 32.9	86.4 / 85.8 / 88.2 / 79.0	80.4 / 78.6 / 81.2 / 71.7
	iSUN	16.9 / 45.2 / 89.9 / 94.8	75.8 / 85.5 / 97.9 / 98.8	70.1 / 78.5 / 93.1 / 95.6
CIEAD 100	LSUN (R)	18.8 / 23.2 / 90.9 / 96.6	75.8 / 85.6 / 98.2 / 99.2	69.9 / 78.3 / 93.5 / 96.7
	LSUN (C)	18.7 / 44.1 / 64.8 / 64.8	75.5 / 82.7 / 92.0 / 92.1	69.2 / 75.9 / 84.0 / 84.2
(DecNet)	TinyImgNet (R)	20.4 / 36.1 / 90.9 / 94.8	77.2 / 87.6 / 98.2 / 98.9	70.8 / 80.1 / 93.3 / 95.0
(Residet)	TinyImgNet (C)	24.3 / 44.3 / 80.9 / 88.5	79.7 / 85.4 / 96.3 / 97.7	72.5 / 78.3 / 89.9 / 92.2
	SVHN	20.3 / 62.7 / 91.9 / 80.8	79.5 / 93.9 / 98.4 / 96.0	73.2 / 88.0 / 93.7 / 89.6
	CIFAR-10	19.1 / 18.7 / 20.2 / 12.2	77.1 / 77.2 / 77.5 / 67.9	71.0 / 71.2 / 72.1 / 63.4
	iSUN	62.5 / 93.2 / 95.3 / 99.0	94.7 / 98.7 / 98.9 / 99.8	89.2 / 94.3 / 95.2 / 97.9
	LSUN (R)	66.6 / 96.2 / 97.2 / 99.5	95.4 / 99.2 / 99.3 / 99.9	90.3 / 95.7 / 96.3 / 98.6
CIEAD 10	LSUN (C)	51.8 / 70.6 / 48.2 / 88.4	92.9 / 93.6 / 80.2 / 97.5	86.9 / 86.4 / 75.6 / 92.0
(DenseNet)	TinyImgNet (R)	58.9 / 92.4 / 95.0 / 98.8	94.1 / 98.5 / 98.8 / 99.7	88.5 / 93.9 / 95.0 / 97.9
(Denselvet)	TinyImgNet (C)	56.7 / 87.0 / 84.2 / 96.7	93.8 / 97.6 / 95.3 / 99.3	88.1 / 92.3 / 89.9 / 96.1
	SVHN	40.2 / 86.2 / 90.8 / 96.1	89.9 / 95.5 / 98.1 / 99.1	83.2 / 91.4 / 93.9 / 95.9
	CIFAR-100	40.3 / 53.1 / 14.5 / 26.7	89.3 / 90.2 / 58.5 / 72.0	82.9 / 82.7 / 57.2 / 67.3

- Gram matrix achieves the state-of-the-art performance in all tested scenarios without any OOD validation set
- Other baselines (e.g., ODIN, Mahalanobis) results are tuned with OOD validation

Table of Contents

- 1. Introduction
 - Problem definition
 - Overview
- 2. Utilizing the Classifier
 - Confidence from posterior distribution
 - Confidence from hidden features

3. Utilizing the Self-supervised Learning

- Pretext self-supervised learning
- Contrastive learning
- 4. Utilizing the Generative Models
 - Confidence from likelihood
 - Hybrid Models

Utilizing the Self-supervised Learning: Pretext Self-supervised Learning

- Self-supervised learning (SSL) [Doersch et al., 2015]
 - Supervised learning with automatically generated labels (*class label not required*)

SSL for uncertainty estimation [Hendrycks et al., 2019c]

$$\mathcal{L}_{\mathrm{SS}}(x;\theta) = \frac{1}{4} \left[\sum_{r \in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}} \mathcal{L}_{\mathrm{CE}}(\mathtt{one_hot}(r), p_{\mathtt{rot_head}}(r \mid R_r(x)); \theta) \right]$$

- Learns to predict the applied transformation (rotation angle)
- Detect samples that *fail to predict the applied transformation*
- Intuition
 - Hard to predict the correct self-supervision label for OOD samples

Algorithmic Intelligence Lab

- One-class OOD detection (unsupervised OOD detection)
 - Given a dataset consisting in k classes, train a model on one class and use the remaining K-1 classes as out-of-distribution
- Experimental results

		OC-SVM	DeepSVDD	Geometric	RotNet	DIM	IIC	Supervised (OE)	Ours
	Airplane	65.6	61.7	76.2	71.9	72.6	68.4	87.6	77.5
	Automobile	40.9	65.9	84.8	94.5	52.3	89.4	93.9	96.9
	Bird	65.3	50.8	77.1	78.4	60.5	49.8	78.6	87.3
	Cat	50.1	59.1	73.2	70.0	53.9	65.3	79.9	80.9
CIFAR-10	Deer	75.2	60.9	82.8	77.2	66.7	60.5	81.7	92.7
classes	Dog	51.2	65.7	84.8	86.6	51.0	59.1	85.6	90.2
CI033C3	Frog	71.8	67.7	82.0	81.6	62.7	49.3	93.3	90.9
	Horse	51.2	67.3	88.7	93.7	59.2	74.8	87.9	96.5
	Ship	67.9	75.9	89.5	90.7	52.8	81.8	92.6	95.2
	Truck	48.5	73.1	83.4	88.8	47.6	75.7	92.1	93.3
	Mean	58.8	64.8	82.3	83.3	57.9	67.4	87.3	90.1

- Supervised: one class (IN) vs remaining CIFAR-10 classes (OOD)
- Ours: predict applied rotation + translation (RotNet only predicts rotation)
- Self-supervised learning outperforms the baseline methods

- One-class OOD detection (unsupervised OOD detection)
 - Given a dataset consisting in k classes, train a model on one class and use the remaining K-1 classes as out-of-distribution
- Experimental results

Method	AUROC
Supervised (OE)	56.1
RotNet	65.3
RotNet + Translation	77.9
RotNet + Self-Attention	81.6
RotNet + Translation + Self-Attention	84.8
RotNet + Translation + Self-Attention + Resize	85.7

- Dataset: ImageNet-30 (ImageNet subclass)
- Supervised: one class (IN) vs ImageNet 22K (OOD)
- Adding more self-supervision (e.g., self-attention) consistently benefits

Contrastive learning

- Learn the representation that *encodes the similarity between data points*
- Simple contrastive learning (SimCLR) [Chen et al., 2020]
 - **pull** (i.e., maximize similarity) the same samples of *different augmentations*
 - **push** (i.e., minimize similarity) the different samples

Utilizing the Self-supervised Learning: Contrastive Learning

- Contrasting shifted instances (CSI) [Tack et al., 2020]
 - Contrasting hard (shifted) augments improve in-vs-out discriminability
 - Found contrastively learned representation is effective at OOD detection
 - CSI further improve OOD detection by
 - (+) contrasting (pushing) shifted samples in addition to the different samples
 - (+) classifying the shifting transformation

- OOD detection score for CSI
 - Detection score for **contrastively learned representation**:
 - cosine similarity to the nearest training sample
 - *norm* of the representation

 $s_{\text{con}}(x; \{x_m\}) := \max_{m} \sin(z(x_m), z(x)) \cdot \parallel z(x) \parallel .$ score: cosine similarity * norm

- OOD detection score for CSI
 - Detection score for contrastively learned representation:
 - cosine similarity to the nearest training sample
 - *norm* of the representation

 $s_{\text{con}}(x; \{x_m\}) := \max_{m} \sin(z(x_m), z(x)) \cdot \parallel z(x) \parallel .$ score: cosine similarity * norm

- Further improve the score by **utilizing the shifting transformation**:
 - (+) Ensemble the score $s_{con}(x; \{x_m\})$ over all shifting transformation
 - (+) Confidence of the shifting transformation classifier

- OOD detection score for CSI
 - Detection score for contrastively learned representation:
 - cosine similarity to the nearest training sample
 - *norm* of the representation

- Further improve the score by **utilizing the shifting transformation**:
 - (+) Ensemble the score $s_{con}(x; \{x_m\})$ over all shifting transformation
 - (+) Confidence of the shifting transformation classifier
- Also, provide a method for choosing the proper shifting transformation
 - Choose the transformation that generates the most OOD-like samples

(f) Perm

(g) Rotate

(a) Original (b) Cutout (c) Sobel (d) Noise (e) Blur

Utilizing the Self-supervised Learning: Contrastive Learning

- CSI can be also extended for training confidence-calibrated classifier:
 - Accurate prediction on label y when input x is in-distribution
 - Confidence $s_{sup}(x) \coloneqq \max_{y} p(y|x)$ of the classifier is well-calibrated

$$s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc)$$
$$s_{\sup}(\bigcirc) > s_{\sup}(\bigodot)$$

- •: in-distribution *correct* sample
- **O**: in-distribution *in-correct* sample
- 懀 : OOD sample

Utilizing the Self-supervised Learning: Contrastive Learning

- CSI can be also extended for training confidence-calibrated classifier:
 - Accurate prediction on label *y* when input *x* is in-distribution
 - Confidence $s_{sup}(x) \coloneqq \max_{y} p(y|x)$ of the classifier is well-calibrated

$$\begin{split} s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc) & \bigcirc: \text{ in-distribution } \textit{correct sample} \\ & \bigcirc: \text{ in-distribution } \textit{in-correct sample} \\ s_{\sup}(\bigcirc) > s_{\sup}(\bigstar) & \textcircled{\bullet}: \text{ OOD sample} \end{split}$$

- Adapt CSI to the supervised contrastive learning (SupCLR) [Khosla et al., 2020]
 - SupCLR contrasts samples in *class-wise*, instead of in instance-wise
 - Similar to CSI, consider the shifted instance as a different class's sample

Label: cat

Label: 90° rotated cat

- Experimental results on detecting out-of-distribution
 - Main results

Method	Network	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Mean
OC-SVM* [64]	-	65.6	40.9	65.3	50.1	75.2	51.2	71.8	51.2	67.9	48.5	58.8
DeepSVDD* [60]	LeNet	61.7	65.9	50.8	59.1	60.9	65.7	67.7	67.3	75.9	73.1	64.8
AnoGAN* [63]	DCGAN	67.1	54.7	52.9	54.5	65.1	60.3	58.5	62.5	75.8	66.5	61.8
OCGAN* [55]	OCGAN	75.7	53.1	64.0	62.0	72.3	62.0	72.3	57.5	82.0	55.4	65.7
Geom* [17]	WRN-16-8	74.7	95.7	78.1	72.4	87.8	87.8	83.4	95.5	93.3	91.3	86.0
Rot* [27]	WRN-16-4	71.9	94.5	78.4	70.0	77.2	86.6	81.6	93.7	90.7	88.8	83.3
Rot+Trans* [27]	WRN-16-4	77.5	96.9	87.3	80.9	92.7	90.2	90.9	96.5	95.2	93.3	90.1
GOAD* [2]	WRN-10-4	77.2	96.7	83.3	77.7	87.8	87.8	90.0	96.1	93.8	92.0	88.2
Rot [27]	ResNet-18	78.3±0.2	$94.3{\scriptstyle\pm0.3}$	$86.2{\pm}0.4$	$80.8{\scriptstyle\pm0.6}$	$89.4{\scriptstyle\pm0.5}$	$89.0{\pm}0.4$	$88.9{\pm}0.4$	$95.1{\scriptstyle \pm 0.2}$	$92.3{\scriptstyle\pm0.3}$	$89.7{\scriptstyle\pm0.3}$	88.4
Rot+Trans [27]	ResNet-18	80.4 ± 0.3	$96.4{\scriptstyle\pm0.2}$	$85.9{\scriptstyle\pm0.3}$	$81.1{\pm}0.5$	$91.3{\scriptstyle \pm 0.3}$	89.6 ± 0.3	$89.9{\scriptstyle\pm0.3}$	$95.9{\scriptstyle \pm 0.1}$	$95.0{\scriptstyle \pm 0.1}$	$92.6{\scriptstyle\pm0.2}$	89.8
GOAD [2]	ResNet-18	75.5±0.3	$94.1{\scriptstyle\pm0.3}$	$81.8{\scriptstyle\pm0.5}$	$72.0{\scriptstyle \pm 0.3}$	$83.7{\scriptstyle\pm0.9}$	$84.4{\scriptstyle\pm0.3}$	$82.9{\scriptstyle \pm 0.8}$	$93.9{\scriptstyle \pm 0.3}$	$92.9{\scriptstyle \pm 0.3}$	$89.5{\scriptstyle \pm 0.2}$	85.1
CSI (ours)	ResNet-18	89.9±0.1	99.1 ±0.0	93.1±0.2	86.4±0.2	93.9 ±0.1	93.2±0.2	95.1±0.1	98.7 ±0.0	97.9 ±0.0	95.5 ±0.1	94.3

(a) One-class CIFAR-10

(b) One-class CIFAR-100 (super-class)

(c) One-class ImageNet-30

Method	Network	AUROC	Method	Network	AUROC
OC-SVM* [64]	-	63.1	Rot* [27]	ResNet-18	65.3
Geom* [17]	WRN-16-8	78.7	Rot+Trans [*] [27]	ResNet-18	77.9
Rot [27]	ResNet-18	77.7	Rot+Attn [*] [27]	ResNet-18	81.6
Rot+Trans [27]	ResNet-18	79.8	Rot+Trans+Attn [*] [27]	ResNet-18	84.8
GOAD [2]	ResNet-18	74.5	Rot+Trans+Attn+Resize* [27]	ResNet-18	85.7
CSI (ours)	ResNet-18	89.6	CSI (ours)	ResNet-18	91.6

- CSI achieves the state-of-the-art performance in all tested scenarios
- Unlabeled one-class OOD detection: outperforms prior methods in every classes

- Experimental results on detecting out-of-distribution
 - Main results

					CIFAR1	0 ightarrow		
Method	Network	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR-100	Interp.
Likelihood*	PixelCNN++	8.3	-	64.2	-	-	52.6	52.6
Likelihood*	Glow	8.3	-	66.3	-	-	58.2	58.2
Likelihood*	EBM	63.0	-	-	-	-	-	70.0
Likelihood Ratio* [55]	PixelCNN++	91.2	-	-	-	-	-	-
Input Complexity* [61]	PixelCNN++	92.9	-	58.9	-	-	53.5	-
Input Complexity* [61]	Glow	95.0	-	71.6	-	-	73.6	-
Rot [25]	ResNet-18	97.6 ± 0.2	89.2 ± 0.7	90.5 ± 0.3	77.7 ± 0.3	83.2 ± 0.1	$79.0{\scriptstyle\pm0.1}$	64.0±0.3
Rot+Trans [25]	ResNet-18	$97.8{\scriptstyle \pm 0.2}$	$92.8{\scriptstyle\pm0.9}$	$94.2{\pm}0.7$	81.6 ± 0.4	$86.7{\scriptstyle\pm0.1}$	$82.3{\scriptstyle\pm0.2}$	$68.1{\scriptstyle\pm0.8}$
GOAD [2]	ResNet-18	$96.3{\scriptstyle \pm 0.2}$	$89.3{\scriptstyle\pm1.5}$	91.8 ± 1.2	78.8 ± 0.3	83.3 ± 0.1	77.2 ± 0.3	59.4 ± 1.1
CSI (ours)	ResNet-18	$99.8{\scriptstyle\pm0.0}$	$97.5{\scriptstyle\pm0.3}$	$97.6{\scriptstyle\pm0.3}$	90.3 ±0.3	93.3 ±0.1	89.2 ±0.1	$\textbf{79.3}{\scriptstyle \pm 0.2}$
		(b)	Unlabe	led Image	Net-30			
]	ImageNet-30 -	\rightarrow		

(a) Unlabeled CIFAR-10

			ImageNet-30 \rightarrow							
Method	Network	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD	
Rot [25]	ResNet-18	76.5 ± 0.7	$77.2{\pm}0.5$	$70.0{\pm}0.5$	$87.2{\pm}0.2$	$72.7{\scriptstyle\pm1.5}$	52.6 ± 1.4	$70.9{\scriptstyle\pm0.1}$	$89.9{\scriptstyle \pm 0.5}$	
Rot+Trans [25]	ResNet-18	74.5 ± 0.5	77.8 ± 1.1	$70.0{\pm}0.8$	$86.3{\scriptstyle\pm0.3}$	71.6 ± 1.4	53.1 ± 1.7	$70.0{\pm}0.2$	$89.4{\scriptstyle \pm 0.6}$	
GOAD [2]	ResNet-18	71.5 ± 1.4	$74.3{\scriptstyle\pm1.6}$	65.5 ± 1.3	$82.8 {\pm} 1.4$	68.7 ± 0.7	51.0 ± 1.1	$67.4{\scriptstyle\pm0.8}$	$87.5{\scriptstyle \pm 0.8}$	
CSI (ours)	ResNet-18	90.5 ± 0.1	$97.1{\scriptstyle \pm 0.1}$	$85.2{\scriptstyle\pm0.2}$	$94.7{\scriptstyle\pm0.4}$	89.2 ±0.3	78.3 ± 0.3	87.1 ± 0.1	$96.9{\scriptstyle\pm0.1}$	

- **CSI** achieves the state-of-the-art performance in **all tested scenarios**
- Unlabeled multi-class OOD detection: outperforms prior methods in every OOD datasets

- Experimental results on detecting out-of-distribution
 - Main results

(a) Labeled CIFAR-10

				$CIFAR10 \rightarrow$							
Train method	Test acc.	ECE	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR100	Interp.		
Cross Entropy	$93.0{\scriptstyle \pm 0.2}$	$6.44{\scriptstyle\pm0.2}$	88.6 ± 0.9	$90.7{\scriptstyle\pm0.5}$	$88.3{\pm}0.6$	87.5 ± 0.3	87.4 ± 0.3	85.8 ± 0.3	$75.4{\scriptstyle\pm0.7}$		
SupCLR [30]	$93.8{\scriptstyle\pm0.1}$	5.56 ± 0.1	$97.3{\scriptstyle \pm 0.1}$	$92.8{\scriptstyle \pm 0.5}$	$91.4{\scriptstyle\pm1.2}$	91.6 ± 1.5	$90.5{\scriptstyle\pm0.5}$	88.6 ± 0.2	$75.7{\scriptstyle\pm0.1}$		
CSI (ours)	$94.8{\scriptstyle \pm 0.1}$	4.40 ± 0.1	$96.5{\scriptstyle\pm0.2}$	$96.3{\scriptstyle \pm 0.5}$	$96.2{\pm}0.4$	$92.1 {\pm} 0.5$	$92.4{\scriptstyle\pm0.0}$	$90.5{\scriptstyle\pm0.1}$	$78.5{\scriptstyle \pm 0.2}$		
CSI-ens (ours)	$96.1{\scriptstyle \pm 0.1}$	$\textbf{3.50}{\scriptstyle \pm 0.1}$	$97.9{\scriptstyle \pm 0.1}$	$97.7{\scriptstyle\pm0.4}$	97.6 ±0.3	93.5 ± 0.4	94.0 ± 0.1	92.2 ± 0.1	$80.1{\pm}0.3$		

(b) Labeled ImageNet-30

				ImageNet-30 \rightarrow							
Train method	Test acc.	ECE	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD	
Cross Entropy	94.3	5.08	88.0	96.7	95.0	89.7	79.8	90.5	90.6	90.1	
SupCLR [30]	96.9	3.12	86.3	95.6	94.2	92.2	81.2	89.7	90.2	92.1	
CSI (ours)	97.0	2.61	93.4	97.7	96.9	96.0	87.0	92.5	91.9	93.7	
CSI-ens (ours)	97.8	2.19	94.6	98.3	97.4	96.2	88.9	94.0	93.2	97.4	

- CSI achieves the state-of-the-art performance in all tested scenarios
- Labeled multi-class OOD detection: outperforms prior methods in every OOD datasets
- Expected calibration error (ECE) also consistently benefits

Table of Contents

- 1. Introduction
 - Problem definition
 - Overview
- 2. Utilizing the Classifier
 - Confidence from posterior distribution
 - Confidence from hidden features
- 3. Utilizing the Self-supervised Learning
 - Pretext self-supervised learning
 - Contrastive learning

4. Utilizing the Generative Models

- Confidence from likelihood
- Hybrid Models

- Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 2018] model the data distribution
 - They have achieved the state-of-the-art performances on image generation

GLOW [Kingma et al., 2018]

VQ-VAE-2 [Razavi et al., 2019]

- Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 2018] model the data distribution
 - They have achieved the state-of-the-art performances on image generation

GLOW [Kingma et al., 2018]

VQ-VAE-2 [Razavi et al., 2019]

- Questions
 - Are they really capture the data distribution?
 - Are they robust to out-of-distributions?

• Generative models are overconfident to out-of-distribution [Nalisnick et al., 2019b]

(a) Train on FashionMNIST, Test on MNIST

(c) Train on CelebA, Test on SVHN

(b) Train on CIFAR-10, Test on SVHN

(d) Train on ImageNet, Test on CIFAR-10 / CIFAR-100 / SVHN

Figure 2: Histogram of Glow log-likelihoods for FashionMNIST vs MNIST (a), CIFAR-10 vs SVHN (b), CelebA vs SVHN (c), and ImageNet vs CIFAR-10 / CIFAR-100 / SVHN (d).
• Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]

- Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019] •
- New observation: •

(

- likelihood score is heavily affected by **population level background statistics** •
- Example 1) images with a high population of zero pixels have high likelihoods

444	· * * & · ·	1111	2255
<u>~ ~ ~</u>		1 1 1 1	2245
0000		1 1 1	8922
<u> </u>	餘 🖉 🕼 🖻		5588
(a) FashionMNIST: highest log-likelihood.	(b) FashionMNIST: low- est log-likelihood.	(c) MNIST: highest log- likelihood.	(d) MNIST: lowest log- likelihood.

Example 2) likelihood of genomic sequences are biased toward {G,C} content

genomic sequences are composed by {A,C,G,T}

- Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]
- Assumption:
 - 1) Every data can be decomposed into **semantic** and **background** component
 - 2) Each components are independent

$$p(\boldsymbol{x}) = p(\boldsymbol{x}_B)p(\boldsymbol{x}_S).$$

- Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]
- Assumption:
 - 1) Every data can be decomposed into semantic and background component
 - 2) Each components are independent

$$p(\boldsymbol{x}) = p(\boldsymbol{x}_B)p(\boldsymbol{x}_S).$$

• LLR score for removing the background information

$$\mathsf{LLR}(\boldsymbol{x}) = \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x})}{p_{\boldsymbol{\theta}_0}(\boldsymbol{x})} = \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_B) p_{\boldsymbol{\theta}}(\boldsymbol{x}_S)}{p_{\boldsymbol{\theta}_0}(\boldsymbol{x}_B) p_{\boldsymbol{\theta}_0}(\boldsymbol{x}_S)} \qquad p_{\boldsymbol{\theta}}(\boldsymbol{x}_B) \approx p_{\boldsymbol{\theta}_0}(\boldsymbol{x}_B)$$
The goal of background model

- $p_{ heta}$ is trained with in-distribution data, and $p_{ heta_0}$ is a model for capturing background
- p_{θ_0} is trained with **noise perturbation**, hence *only capture background populations*

- Experimental results on detecting out-of-distribution
 - (a) Fashion-MNIST (IN) vs MNIST (OUT), (b) genomic dataset detection (new dataset)

	AUROC↑	AUPRC ↑	FPR80↓		AUROC↑	AUPRC↑	FPR80↓
Likelihood	0.089 (0.002)	0.320 (0.000)	1.000 (0.001)	Likelihood	0.626 (0.001)	0.613 (0.001)	0.661 (0.002)
Likelihood Ratio (ours, μ)	0.973 (0.031)	0.951 (0.063)	0.005 (0.008)	Likelihood Ratio (ours, μ)	0.732 (0.015)	0.685 (0.017)	0.534 (0.031)
Likelihood Ratio (ours, μ , λ)	0.994 (0.001)	0.993 (0.002)	0.001 (0.000)	Likelihood Ratio (ours, μ , λ)	0.755 (0.005)	0.719 (0.006)	0.474 (0.011)
$p(\hat{y} \boldsymbol{x})$	0.734 (0.028)	0.702 (0.026)	0.506 (0.046)	$p(\hat{y} oldsymbol{x})$	0.634 (0.003)	0.599 (0.003)	0.669 (0.007)
Entropy of $p(y \boldsymbol{x})$	0.746 (0.027)	0.726 (0.026)	0.448 (0.049)	Entropy of $p(y \boldsymbol{x})$	0.634 (0.003)	0.599 (0.003)	0.617 (0.007)
ODIN	0.752 (0.069)	0.763 (0.062)	0.432 (0.116)	Adjusted ODIN	0.697 (0.010)	0.671 (0.012)	0.550 (0.021)
Mahalanobis distance	0.942 (0.017)	0.928 (0.021)	0.088 (0.028)	Mahalanobis distance	0.525 (0.010)	0.503 (0.007)	0.747 (0.014)
Ensemble, 5 classifiers	0.839 (0.010)	0.833 (0.009)	0.275 (0.019)	Ensemble, 5 classifiers	0.682 (0.002)	0.647 (0.002)	0.589 (0.004)
Ensemble, 10 classifiers	0.851 (0.007)	0.844 (0.006)	0.241 (0.014)	Ensemble, 10 classifiers	0.690 (0.001)	0.655 (0.002)	0.574 (0.004)
Ensemble, 20 classifiers	0.857 (0.005)	0.849 (0.004)	0.240 (0.011)	Ensemble, 20 classifiers	0.695 (0.001)	0.659 (0.001)	0.570 (0.004)
Binary classifier	0.455 (0.105)	0.505 (0.064)	0.886 (0.126)	Binary classifier	0.635 (0.016)	0.634 (0.015)	0.619 (0.025)
$p(\hat{y} \boldsymbol{x})$ with noise class	0.877 (0.050)	0.871 (0.054)	0.195 (0.101)	$p(\hat{y} \boldsymbol{x})$ with noise class	0.652 (0.004)	0.627 (0.005)	0.643 (0.008)
$p(\hat{y} \boldsymbol{x})$ with calibrations	0.904 (0.023)	0.895 (0.023)	0.139 (0.044)	$p(\hat{y} \boldsymbol{x})$ with calibration	0.669 (0.005)	0.635 (0.004)	0.627 (0.006)
WAIC, 5 models	0.221 (0.013)	0.401 (0.008)	0.911 (0.008)	WAIC, 5 models	0.628 (0.001)	0.616 (0.001)	0.657 (0.002)

(a)

(b)

Results on CIFAR-10 (IN) vs SVHN (OUT)

	AUROC↑	AUPRC↑	FPR80↓
Likelihood	0.095 (0.003)	0.320 (0.001)	1.000 (0.000)
Likelihood Ratio (ours, μ)	0.931 (0.032)	0.888 (0.049)	0.062 (0.073)
Likelihood Ratio (ours, μ , λ)	0.930 (0.042)	0.881 (0.064)	0.066 (0.123)

* μ : noise strength, λ : l_2 weight decay

- LLR significantly and consistently outperforms the naïve likelihood in all cases
- LLR even shows better result than the classifiers for some datasets (w.o. any label)

- Deep invertible generalized linear model (DIGLM) [Nalisnick et al., 2019a]
 - Hybrid model of generative and discriminative models

• Weighted objective

$$\mathcal{J}_{\lambda}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \left(\log p(y_n | \boldsymbol{x}_n; \boldsymbol{\beta}, \boldsymbol{\phi}) + \lambda \log p(\boldsymbol{x}_n; \boldsymbol{\phi}) \right)$$

• Bits-per-dimension (BPD), error and negative log likelihood (NLL)

Modal	MNIST			NotMNIST			
Model	BPD \downarrow	error \downarrow	$ $ NLL \downarrow	BPD ↑	$\mathrm{NLL}\downarrow$	Entropy \uparrow	
Discriminative ($\lambda = 0$)	81.80*	0.67%	0.082	87.74*	29.27	0.130	
Hybrid ($\lambda = 0.01/D$)	1.83	0.73%	0.035	5.84	2.36	2.300	
Hybrid ($\lambda = 1.0/D$)	1.26	2.22%	0.081	6.13	2.30	2.300	
Hybrid ($\lambda = 10.0/D$)	1.25	4.01%	0.145	6.17	2.30	2.300	
	SVHN			CIFAR-10			
Model	$BPD\downarrow$	error \downarrow	$ $ NLL \downarrow	$\mathbf{BPD}\uparrow$	$ $ NLL \downarrow	Entropy ↑	
Discriminative $() = 0$							
Discriminative ($\lambda = 0$)	15.40*	4.26%	0.225	15.20*	4.60	0.998	
Hybrid ($\lambda = 0.1/D$)	15.40* 3.35	4.26% 4.86%	0.225 0.260	15.20* 7.06	4.60 5.06	0.998 1.153	
Hybrid ($\lambda = 0.1/D$) Hybrid ($\lambda = 1.0/D$)	15.40* 3.35 2.40	4.26% 4.86% 5.23%	0.225 0.260 0.253	15.20* 7.06 6.16	4.60 5.06 4.23	0.998 1.153 1.677	
Hybrid ($\lambda = 0.1/D$) Hybrid ($\lambda = 1.0/D$) Hybrid ($\lambda = 10.0/D$)	15.40* 3.35 2.40 2.23	4.26% 4.86% 5.23% 7.27%	0.225 0.260 0.253 0.268	15.20* 7.06 6.16 7.03	4.60 5.06 4.23 2.69	0.998 1.153 1.677 2.143	
Hybrid ($\lambda = 0.1/D$) Hybrid ($\lambda = 1.0/D$) Hybrid ($\lambda = 10.0/D$)	15.40* 3.35 2.40 2.23	4.26% 4.86% 5.23% 7.27%	0.225 0.260 0.253 0.268	15.20* 7.06 6.16 7.03	4.60 5.06 4.23 2.69	0.998 1.153 1.677 2.143	

Algorithmic Intelligence Law

• Joint energy-based model (JEM) [Grathwohl et al., 2020]

$$\log p_{\theta}(\mathbf{x}, y) = \log p_{\theta}(\mathbf{x}) + \log p_{\theta}(y|\mathbf{x}).$$

Energy-based model Cross-entropy (EBM)

$$E_{ heta}(\mathbf{x}) = -\text{LogSumExp}_y(f_{ heta}(\mathbf{x})[y]) = -\log \sum_y \exp(f_{ heta}(\mathbf{x})[y])$$

Assume the energy function as logit sum exponential of class logits

- **Recap**: jointly models the (unnormalized) likelihood and class probability
- Effective at OOD detection than both generative and discriminative models.

- Experimental results on detecting out-of-distribution
 - Main results

			CIFAR10		
$s_{ heta}(\mathbf{x})$	Model	SVHN	Interp	CIFAR100	CelebA
$\log p(\mathbf{x})$	Unconditional Glow	.05	.51	.55	.57
	Class-Conditional Glow	.07	.45	.51	.53
	IGEBM	.63	.70	.50	.70
	JEM (Ours)	.67	.65	.67	.75
$\max_y p(y \mathbf{x})$	Wide-ResNet	.93	.77	.85	.62
	Class-Conditional Glow	.64	.61	.65	.54
	IGEBM	.43	.69	.54	.69
	JEM (Ours)	.89	.75	.87	.79
$\left \left \frac{\partial \log p(\mathbf{x})}{\partial \mathbf{x}} \right \right $	Unconditional Glow	.95	.27	.46	.29
	Class-Conditional Glow	.47	.01	.52	.59
	IGEBM	.84	.65	.55	.66
	JEM (Ours)	.83	.78	.82	.79

- JEM achieves outperforms generative/discriminative/hybrid models in most cases under various score functions
- Interp. denotes the interpolation dataset of CIFAR-10 (i.e., mixup)

Summary

- In this lecture, we cover various methods for detecting abnormal samples like o ut-of-distribution and adversarial samples
 - Posterior distribution-based methods
 - Hidden feature-based methods
 - Self-supervised learning based methods
 - Generative model based methods
- There are also training methods for obtaining more calibrated scores
 - Ensemble of classifier [Balaji et al., 2017]
 - Bayesian deep models [Li et al., 2017]
 - Calibration loss with GAN [Lee et al., 2018a]
 - Calibration loss for generative models [Hendrycks' 19a]
- Such methods can be useful for many machine learning applications
 - Active learning [Gal et al., 2017]
 - Incremental learning [Rebuff et al., 2017]
 - Ensemble learning [Lee et al., 2017]
 - Network calibration [Guo et al., 2017]

References

[Hendrycks et al., 2017] A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR 2017. <u>https://arxiv.org/abs/1610.02136</u>

[Ma et al., 2018] Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. In ICLR, 2018. <u>https://openreview.net/pdf?id=B1gJ1L2aW</u>

[Feinman et al., 2017] Detecting adversarial samples from artifacts. *arXiv preprint*, 2017. <u>https://arxiv.org/abs/1703.00410</u>

[Lee, et al., 2018a] Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples, In ICLR, 2018. https://arxiv.org/abs/1711.09325

[Lee, et al., 2018b] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, In NeurIPS, 2018. <u>https://arxiv.org/abs/1807.03888</u>

[Liang, et al., 2018] Principled Detection of Out-of-Distribution Examples in Neural Networks. In ICLR, 2018. <u>https://arxiv.org/abs/1706.02690</u>

[Goodfellow et al., 2015] Explaining and harnessing adversarial examples. In ICLR, 2015. https://arxiv.org/pdf/1412.6572.pdf

[Amodei, et al., 2016] Concrete problems in ai safety. *arXiv preprint*, 2016. https://arxiv.org/abs/1606.06565

[Guo et al., 2017] On Calibration of Modern Neural Networks. In ICML, 2017. https://arxiv.org/abs/1706.04599

[Lee et al., 2017] Confident Multiple Choice Learning. In ICML, 2017. https://arxiv.org/abs/1706.03475

[Balaji et al., 2017] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, In NeurIPS, 2017. https://arxiv.org/pdf/1612.01474.pdf

[Rebuff et al., 2017] iCaRL: Incremental Classifier and Representation Learning. In CVPR, 2017. https://arxiv.org/pdf/1611.07725.pdf

[Huang et al., 2017] Densely connected convolutional networks, In CVPR, 2017. https://arxiv.org/abs/1608.06993

[Zagoruyko et al., 2016] Wide residual networks, In BMVC 2016. https://arxiv.org/pdf/1605.07146.pdf

[Amsaleg et al., 2015] Estimating local intrinsic dimensionality. In SIGKDD, 2015. http://mistis.inrialpes.fr/~girard/Fichiers/p29-amsaleg.pdf

[Szegedy et al., 2013] Intriguing properties of neural networks. *arXiv preprint*, 2013. <u>https://arxiv.org/abs/1312.6199</u>

[Li et al., 2017] Dropout Inference in Bayesian Neural Networks with Alpha-divergences, In ICML, 2017. https://arxiv.org/abs/1703.02914

[Gal et al., 2017] Deep Bayesian Active Learning with Image Data, In ICML, 2017. https://arxiv.org/abs/1703.02910

[Carlini et al., 2017] Towards evaluating the robustness of neural networks. In IEEE SP, 2017. https://arxiv.org/abs/1608.04644

[Nalisnick et al., 2019a] Hybrid Models with Deep and Invertible Features. In ICML 2019. https://arxiv.org/pdf/1902.02767

[Nalisnick et al., 2019b] Do Deep Generative Models Know What They Don't Know. In ICLR 2019. https://arxiv.org/pdf/1906.02994

[Kingma et al., 2014] Auto-Encoding Variational Bayes. In ICLR, 2014. https://arxiv.org/pdf/1807.03039

References

[Kingma et al., 2018] Glow: Generative Flow with Invertible 1×1 Convolutions. In NeurIPS, 2018. https://arxiv.org/pdf/1807.03039

[Razavi et al., 2019] Generating Diverse High-Fidelity Images with VQ-VAE-2. *arXiv preprint*, 2019. <u>https://arxiv.org/abs/1906.00446</u>

[Ren et al., 2019b] Likelihood Ratios for Out-of-Distribution Detection. In NeurIPS 2019. https://arxiv.org/abs/1906.02845

[Grathwohl et al., 2020] Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One. In ICLR 2020. <u>https://arxiv.org/abs/1912.03263</u>

[Hendrycks' 19a] Deep Anomaly Detection with Outlier Exposure In ICLR, 2019a. https://arxiv.org/pdf/1812.04606

[Hendrycks et al., 2019b] Using Pre-training Can Improve Model Robustness and Uncertainty. In ICML, 2019b. <u>https://arxiv.org/abs/1901.09960</u>

[Hendrycks et al., 2019c] Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. In NeurIPS, 2019c. <u>https://arxiv.org/abs/1901.09960</u>

[Doersch et al., 2015] Unsupervised visual representation learning by context prediction. In ICCV, 2015. https://arxiv.org/abs/1505.05192

[Gatys et al., 2016] Image Style Transfer Using Convolutional Neural Networks. In CVPR, 2016. <u>https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Gatys_Image_Style_Transfer_CVPR_2016_paper.html</u>

[Sastry et al., 2020] Detecting Out-of-Distribution Examples with Gram Matrices. In ICML, 2020. https://arxiv.org/abs/1912.12510

[Chen et al., 2020] A Simple Framework for Contrastive Learning of Visual Representations. In ICML, 2020. <u>https://arxiv.org/abs/2002.05709</u>

[Tack et al., 2020] CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances. In NeurIPS, 2020. https://arxiv.org/abs/2007.08176