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• Deep neural networks (DNNs) can be generalized well when the test samples 
are from similar distribution (i.e., in-distribution)
• E.g., image classifier

What is Novelty Detection?
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Algorithmic Intelligence Lab

• Deep neural networks (DNNs) can be generalized well when the test samples 
are from similar distribution (i.e., in-distribution)
• E.g., image classifier

• However, in the real world, there are many unknown and unseen samples

What is Novelty Detection?
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Unseen sample, i.e., out-of-
distribution (not animal)

Unknown sample Adversarial samples
[Goodfellow et al., 2015]



Algorithmic Intelligence Lab

• Novelty detection
• Detect whether a test sample is from in-distribution (i.e., training distribution by 

classifier) or not (e.g., out-of-distribution / adversarial samples)

What is Novelty Detection?
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Algorithmic Intelligence Lab

• Novelty detection
• Detect whether a test sample is from in-distribution (i.e., training distribution by 

classifier) or not (e.g., out-of-distribution / adversarial samples)

• It can be useful for many machine learning problems:

What is Novelty Detection?
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Ensemble learning 
[Lee et al., 2017]

Incremental learning 
[Rebuff et al., 2017]
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• Novelty detection
• Detect whether a test sample is from in-distribution (i.e., training distribution by 

classifier) or not (e.g., out-of-distribution / adversarial samples)

• It is also indispensable when deploying DNNs in real-world systems [Amodei et 
al., 2016]

What is Novelty Detection?
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• How to solve this problem?
• Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

What is Novelty Detection?
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• How to solve this problem?
• Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

What is Novelty Detection?
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• How to solve this problem?

• Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

• Part 1. utilizing image classifiers (+ self-supervised learning)

What is Novelty Detection?
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• How to solve this problem?

• Threshold-based Detector [Hendrycks et al., 2017, Liang et al., 2018]

• Part 1. utilizing image classifiers (+ self-supervised learning)

• Part 2. utilizing generative models

What is Novelty Detection?
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If score > !: In-distribution

Else: out-of-distribution
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• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

• How to model our posterior distribution: Softmax classifier with DNNs

• Where         is hidden features from DNNs

Utilizing the Classifier: Preliminaries
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• Remind that classification is finding an unknown posterior distribution, i.e., P(Y|X)

• How to model our posterior distribution: Softmax classifier with DNNs

• Where         is hidden features from DNNs

• Natural choice for confidence score
• 1. maximum value of posterior distribution

• 2. entropy of posterior distribution

Utilizing the Classifier: Preliminaries

15
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• Baseline detector [Hendrycks et al., 2017]
• Confidence score = maximum value of predictive distribution

Utilizing the Classifier: Posterior Distribution
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• Baseline detector [Hendrycks et al., 2017]
• Confidence score = maximum value of predictive distribution

• Evaluation: detecting out-of-distribution
• Assume that we have classifier trained on MNIST dataset
• Detecting out-of-distribution for this classifier

Utilizing the Classifier: Posterior Distribution
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• Baseline detector [Hendrycks et al., 2017]
• Confidence score = maximum value of predictive distribution

• Evaluation: detecting out-of-distribution
• TP = true positive / FN = false negative / TN = true negative / FP = false positive

Utilizing the Classifier: Posterior Distribution
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• AUROC 
• Area under ROC curve
• ROC curve = relationship between TPR 

and FPR

• AUPR (Area under the Precision-Recall curve)
• Area under PR curve
• PR curve = relationship between precision and recall
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• Baseline detector [Hendrycks et al., 2017]
• Confidence score = maximum value of predictive distribution

• Evaluation: detecting out-of-distribution
• Image classification (computer vision)

Utilizing the Classifier: Posterior Distribution
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• Baseline detector [Hendrycks et al., 2017]
• Confidence score = maximum value of predictive distribution

• Evaluation: detecting out-of-distribution
• Text categorization (NLP)

• Out-of-distribution

• 5 Newsgroups for 15 Newsgroups 
• 2 Reuters for Reuters 6

• 12 Reuters for 40 Reuters

Utilizing the Classifier: Posterior Distribution
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• ODIN detector [Liang et al., 2018]
• Calibrating the posterior distribution using post-processing

• Two techniques
• Temperature scaling

• Relaxing the overconfidence by smoothing the posterior distribution

Utilizing the Classifier: Posterior Distribution
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• ODIN detector [Liang et al., 2018]
• Calibrating the posterior distribution using post-processing

• Two techniques
• Temperature scaling

• Input preprocessing

Utilizing the Classifier: Posterior Distribution
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• ODIN detector [Liang et al., 2018]
• Calibrating the posterior distribution using post-processing

• Two techniques
• Temperature scaling

• Input preprocessing

• Using two methods, the authors define confidence score as follows:

Utilizing the Classifier: Posterior Distribution
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• ODIN detector [Liang et al., 2018]
• Calibrating the posterior distribution using post-processing

• Two techniques
• Temperature scaling

• Input preprocessing

• Using two methods, the authors define confidence score as follows:

• How to select hyper-parameters
• Validation

• 1000 images from in-distribution (positive)
• 1000 images from out-of-distribution (negative)

Utilizing the Classifier: Posterior Distribution
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• Experimental results 

Utilizing the Classifier: Posterior Distribution
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• Motivation
• Hidden features from DNNs contain meaningful features from training data

• They can be useful for detecting abnormal samples!

Utilizing the Classifier: Hidden Features
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• Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
• Expansion dimension

• Rate of growth in the number of data encountered as the distance from the re
ference sample increases (! is volume)

Utilizing the Classifier: Hidden Features
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• Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
• Expansion dimension

• Rate of growth in the number of data encountered as the distance from the re
ference sample increases (! is volume)

• LID = expansion dimension in the statistical setting

• Where " is analogous to the volume in equation (1)
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• Local Intrinsic Dimensionality (LID) [Ma et al., 2018]
• Expansion dimension

• Rate of growth in the number of data encountered as the distance from the re
ference sample increases (! is volume)

• LID = expansion dimension in the statistical setting

• Where " is analogous to the volume in equation (1)
• Estimation of LID [Amsaleg et al., 2015]

Utilizing the Classifier: Hidden Features
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• Motivation of LID
• Abnormal sample might be scattered compared to normal samples

• This implies that LID can be useful for detecting abnormal samples!

Utilizing the Classifier: Hidden Features
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• Motivation of LID
• Abnormal sample might be scattered compared to normal samples

• This implies that LID can be useful for detecting abnormal samples!

• Evaluation: detecting adversarial samples [Szegedy, et al., 2013]
• Misclassified examples that are only slightly different from original examples

Utilizing the Classifier: Hidden Features
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• Motivation of LID
• Abnormal sample might be scattered compared to normal samples

• This implies that LID can be useful for detecting abnormal samples!

• Evaluation: detecting adversarial samples [Szegedy, et al., 2013]

Utilizing the Classifier: Hidden Features
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• Empirical justification

• Adversarial samples (generated by OPT attack [Carlini et al., 2017]) can be distinguis
hed using LID

• LIDs from low-level layers are also useful in detection

Utilizing the Classifier: Hidden Features
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• Main results on detecting adversarial attacks
• Tested method

• Bayesian uncertainty (BU) and Density estimator (DE) [Feinman et al., 2017]

• LID outperforms all baseline methods

Utilizing the Classifier: Hidden Features
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• Mahalanobis distance-based confidence score [Lee et al., 2018b]

Utilizing the Classifier: Hidden Features
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• Mahalanobis distance-based confidence score [Lee et al., 2018b]
• Given pre-trained Softmax classifier with DNNs
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• Mahalanobis distance-based confidence score [Lee et al., 2018b]
• Given pre-trained Softmax classifier with DNNs

• Inducing a generative classifier on hidden feature space

Utilizing the Classifier: Hidden Features
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• Mahalanobis distance-based confidence score [Lee et al., 2018b]
• Given pre-trained Softmax classifier with DNNs

• Inducing a generative classifier on hidden feature space

• Motivation: connection between Softmax and generative classifier (LDA)

Utilizing the Classifier: Hidden Features
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• Mahalanobis distance-based confidence score [Lee et al., 2018b]
• Given pre-trained Softmax classifier with DNNs

• Inducing a generative classifier on hidden feature space

• The parameters of generative classifier = sample means and covariance
• Given training data 

Utilizing the Classifier: Hidden Features
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• Using generative classifier, we define new confidence score:

• Measuring the log of the probability densities of the test sample

Utilizing the Classifier: Hidden Features
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• Using generative classifier, we define new confidence score:

• Measuring the log of the probability densities of the test sample

• Intuition

Utilizing the Classifier: Hidden Features
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• Using generative classifier, we define new confidence score:

• Measuring the log of the probability densities of the test sample

• Boosting the performance
• Input pre-processing

• Motivated by ODIN [Liang et al., 2018]

Utilizing the Classifier: Hidden Features

43



Algorithmic Intelligence Lab

• Using generative classifier, we define new confidence score:

• Measuring the log of the probability densities of the test sample

• Boosting the performance
• Input pre-processing

• Feature ensemble

Utilizing the Classifier: Hidden Features
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• Using generative classifier, we define new confidence score:

• Measuring the log of the probability densities of the test sample
• Boosting the performance

• Input pre-processing

• Feature ensemble

• Intuition: low-level feature also can be useful for detecting abnormal samples

Utilizing the Classifier: Hidden Features
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• Main algorithm

• Remark that 
• We combine the confidence scores from multiple layers using weighted ensemble

• Ensemble weights are selected by utilizing the validation set

Utilizing the Classifier: Hidden Features

46



Algorithmic Intelligence Lab

• Experimental results on detecting out-of-distribution
• Contribution by each technique

Utilizing the Classifier: Hidden Features
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Baseline [13]: maximum value of posterior distribution
ODIN [21]: maximum value of posterior distribution after post-processing
Ours: the proposed Mahalanobis distance-based score
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• Experimental results on detecting out-of-distribution
• Main results

• For all cases, ours outperforms ODIN and baseline method
• Validation consists of 1K data from each in- and out-of-distribution pair
• Validation consists of 1K data from each in- and corresponding FGSM data

• No information about out-of-distribution

Utilizing the Classifier: Hidden Features
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• Experimental results on detecting adversarial attacks
• Main results

• For all tested cases, our method outperforms LID and KD estimator
• For unseen attacks, our method is still working well

• FGSM samples denoted by “seen” are used for validation

Utilizing the Classifier: Hidden Features

49



Algorithmic Intelligence Lab

• Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
• Use the Gram matrices to compute the (hidden) feature correlations
• The detect OOD samples that have dis-similar Gram matrix value

Utilizing the Classifier: Hidden Features
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• Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
• Use the Gram matrices to compute the (hidden) feature correlations

• The detect OOD samples that have dis-similar Gram matrix value

• Gram matrix: feature correlation
• Often used for encoding the style information [Gatys et al., 2016]
• For a given !"# layer activation $%, the Gram matrix is as follows:

Utilizing the Classifier: Hidden Features
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• Detecting OOD samples with the Gram matrix [Sastry et al., 2020]
• Use the Gram matrices to compute the (hidden) feature correlations

• The detect OOD samples that have dis-similar Gram matrix value

• Gram matrix: feature correlation
• Often used for encoding the style information [Gatys et al., 2016]
• For a given !"# layer activation $%, the Gram matrix is as follows:

• Detection score
• Detect sample that has different Gram matrix value from the training data

Utilizing the Classifier: Hidden Features
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• Experimental results on detecting out-of-distribution
• Main results

• Gram matrix achieves the state-of-the-art performance in all tested scenarios 
without any OOD validation set

• Other baselines (e.g., ODIN, Mahalanobis) results are tuned with OOD validation

Utilizing the Classifier: Hidden Features
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• Self-supervised learning (SSL) [Doersch et al., 2015]
• Supervised learning with automatically generated labels (class label not required)

Utilizing the Self-supervised Learning: Pretext Self-supervised Learning
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• SSL for uncertainty estimation [Hendrycks et al., 2019c]

• Learns to predict the applied transformation (rotation angle)
• Detect samples that fail to predict the applied transformation

• Intuition
• Hard to predict the correct self-supervision label for OOD samples

Utilizing the Self-supervised Learning: Pretext Self-supervised Learning
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• One-class OOD detection (unsupervised OOD detection)
• Given a dataset consisting in k classes, train a model on one class and use the 

remaining K-1 classes as out-of-distribution

• Experimental results

• Supervised: one class (IN) vs remaining CIFAR-10 classes (OOD)
• Ours: predict applied rotation + translation (RotNet only predicts rotation)
• Self-supervised learning outperforms the baseline methods

Utilizing the Self-supervised Learning: Pretext Self-supervised Learning
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• One-class OOD detection (unsupervised OOD detection)
• Given a dataset consisting in k classes, train a model on one class and use the 

remaining K-1 classes as out-of-distribution

• Experimental results

• Dataset: ImageNet-30 (ImageNet subclass)
• Supervised: one class (IN) vs ImageNet 22K (OOD)
• Adding more self-supervision (e.g., self-attention) consistently benefits

Utilizing the Self-supervised Learning: Pretext Self-supervised Learning
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• Contrastive learning
• Learn the representation that encodes the similarity between data points

• Simple contrastive learning (SimCLR) [Chen et al., 2020]
• pull (i.e., maximize similarity) the same samples of different augmentations
• push (i.e., minimize similarity) the different samples

Utilizing the Self-supervised Learning: Contrastive Learning
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• Contrasting shifted instances (CSI) [Tack et al., 2020]
• Contrasting hard (shifted) augments improve in-vs-out discriminability
• Found contrastively learned representation is effective at OOD detection
• CSI further improve OOD detection by

• (+) contrasting (pushing) shifted samples in addition to the different samples
• (+) classifying the shifting transformation

Utilizing the Self-supervised Learning: Contrastive Learning
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• OOD detection score for CSI
• Detection score for contrastively learned representation:

• cosine similarity to the nearest training sample
• norm of the representation

Utilizing the Self-supervised Learning: Contrastive Learning
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• OOD detection score for CSI
• Detection score for contrastively learned representation:

• cosine similarity to the nearest training sample
• norm of the representation

• Further improve the score by utilizing the shifting transformation:
• (+) Ensemble the score !"#$(&; {&)}) over all shifting transformation
• (+) Confidence of the shifting transformation classifier 

Utilizing the Self-supervised Learning: Contrastive Learning
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• OOD detection score for CSI
• Detection score for contrastively learned representation:

• cosine similarity to the nearest training sample
• norm of the representation

• Further improve the score by utilizing the shifting transformation:
• (+) Ensemble the score !"#$(&; {&)}) over all shifting transformation
• (+) Confidence of the shifting transformation classifier 

• Also, provide a method for choosing the proper shifting transformation
• Choose the transformation that generates the most OOD-like samples

Utilizing the Self-supervised Learning: Contrastive Learning
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• CSI can be also extended for training confidence-calibrated classifier:
• Accurate prediction on label ! when input " is in-distribution
• Confidence #$%& " ≔ max+ ,(!|") of the classifier is well-calibrated

Utilizing the Self-supervised Learning: Contrastive Learning
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• CSI can be also extended for training confidence-calibrated classifier:
• Accurate prediction on label ! when input " is in-distribution

• Confidence #$%& " ≔ max+ ,(!|") of the classifier is well-calibrated

• Adapt CSI to the supervised contrastive learning (SupCLR) [Khosla et al., 2020]
• SupCLR contrasts samples in class-wise, instead of in instance-wise
• Similar to CSI, consider the shifted instance as a different class’s sample

Utilizing the Self-supervised Learning: Contrastive Learning
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• Experimental results on detecting out-of-distribution
• Main results

• CSI achieves the state-of-the-art performance in all tested scenarios 
• Unlabeled one-class OOD detection: outperforms prior methods in every classes

Utilizing the Self-supervised Learning: Contrastive Learning
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• Experimental results on detecting out-of-distribution
• Main results

• CSI achieves the state-of-the-art performance in all tested scenarios 
• Unlabeled multi-class OOD detection: outperforms prior methods in every OOD 

datasets

Utilizing the Self-supervised Learning: Contrastive Learning
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• Experimental results on detecting out-of-distribution
• Main results

• CSI achieves the state-of-the-art performance in all tested scenarios 
• Labeled multi-class OOD detection: outperforms prior methods in every OOD 

datasets
• Expected calibration error (ECE) also consistently benefits

Utilizing the Self-supervised Learning: Contrastive Learning
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• Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 
2018] model the data distribution
• They have achieved the state-of-the-art performances on image generation

Utilizing the Generative Models: Likelihood

70
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• Generative models such as VAE [Kingma et al., 2014] and GLOW [Kingma et al., 
2018] model the data distribution
• They have achieved the state-of-the-art performances on image generation

• Questions
• Are they really capture the data distribution? 
• Are they robust to out-of-distributions?

Utilizing the Generative Models: Likelihood
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GLOW [Kingma et al., 2018] VQ-VAE-2 [Razavi et al., 2019]
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• Generative models are overconfident to out-of-distribution [Nalisnick et al., 2019b]

Utilizing the Generative Models: Likelihood
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• Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]

Utilizing the Generative Models: Likelihood
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• Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]

• New observation: 
• likelihood score is heavily affected by population level background statistics

• Example 1) images with a high population of zero pixels have high likelihoods

• Example 2) likelihood of genomic sequences are biased toward {G,C} content

Utilizing the Generative Models: Likelihood
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genomic sequences are 
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• Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]
• Assumption: 

• 1) Every data can be decomposed into semantic and background component 
• 2) Each components are independent

Utilizing the Generative Models: Likelihood
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• Likelihood ratios (LLR) as a detection score for generative model [Ren et al., 2019]
• Assumption: 

• 1) Every data can be decomposed into semantic and background component 
• 2) Each components are independent

• LLR score for removing the background information

• !" is trained with in-distribution data, and !"# is a model for capturing background
• !"# is trained with noise perturbation, hence only capture background populations

Utilizing the Generative Models: Likelihood

76
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• Experimental results on detecting out-of-distribution

• (a) Fashion-MNIST (IN) vs MNIST (OUT), (b) genomic dataset detection (new dataset)

• Results on CIFAR-10 (IN) vs SVHN (OUT)

• LLR significantly and consistently outperforms the naïve likelihood in all cases

• LLR even shows better result than the classifiers for some datasets (w.o. any label) 

Utilizing the Generative Models: Likelihood
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• Deep invertible generalized linear model (DIGLM) [Nalisnick et al., 2019a]
• Hybrid model of generative and discriminative models

• Weighted objective

Utilizing the Generative Models: Hybrid Model

78
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• Bits-per-dimension (BPD), error and negative log likelihood (NLL)

Utilizing the Generative Models: Hybrid Model
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• Joint energy-based model (JEM) [Grathwohl et al., 2020]

• Recap: jointly models the (unnormalized) likelihood and class probability
• Effective at OOD detection than both generative and discriminative models.

Utilizing the Generative Models: Hybrid Model
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Cross-entropy
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• Experimental results on detecting out-of-distribution
• Main results

• JEM achieves outperforms generative/discriminative/hybrid models in most cases 
under various score functions 

• Interp. denotes the interpolation dataset of CIFAR-10 (i.e., mixup) 

Utilizing the Generative Models: Hybrid Model
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• In this lecture, we cover various methods for detecting abnormal samples like o
ut-of-distribution and adversarial samples
• Posterior distribution-based methods
• Hidden feature-based methods
• Self-supervised learning based methods
• Generative model based methods

• There are also training methods for obtaining more calibrated scores
• Ensemble of classifier [Balaji et al., 2017]
• Bayesian deep models [Li et al., 2017]
• Calibration loss with GAN [Lee et al., 2018a]
• Calibration loss for generative models [Hendrycks’ 19a]

• Such methods can be useful for many machine learning applications
• Active learning [Gal et al., 2017]
• Incremental learning [Rebuff et al., 2017]
• Ensemble learning [Lee et al., 2017]
• Network calibration [Guo et al., 2017]

Summary
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