Generative Models II: Explicit Density Models

Al602: Recent Advances in Deep Learning
Lecture 5

Slide made by
Sangwoo Mo and Chaewon Kim
KAIST EE

1. Introduction

Implicit vs explicit density models

Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Table of Contents

1. Introduction

Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

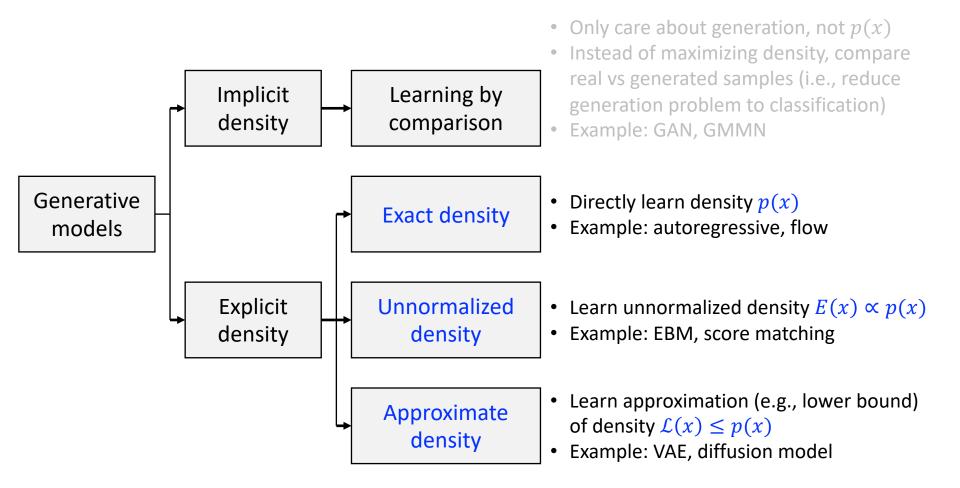
- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Implicit vs Explicit Density Models

From now on, we study generative models with explicit density estimation:



Implicit vs Explicit Density Models

From now on, we study generative models with explicit density estimation:

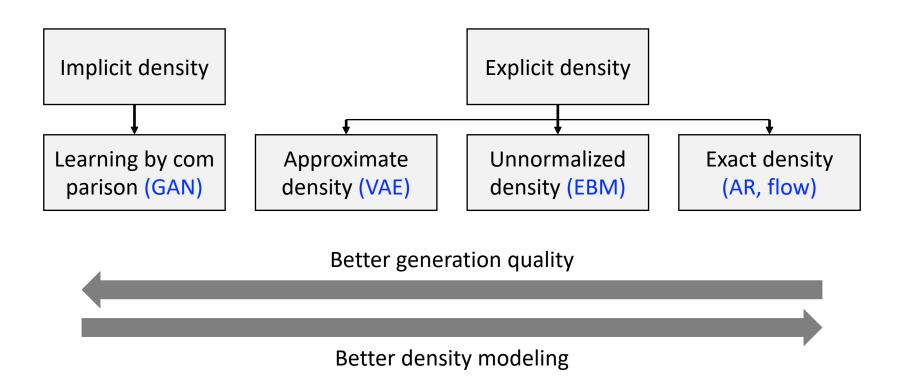


Table of Contents

1. Introduction

Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

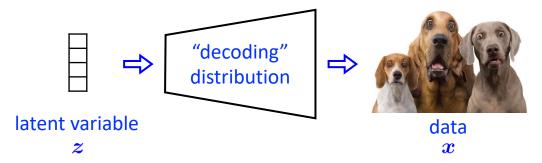
3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Consider the following generative model:



- Fixed prior on random latent variable
 - e.g., standard Normal distribution

$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \mathbb{I})$$

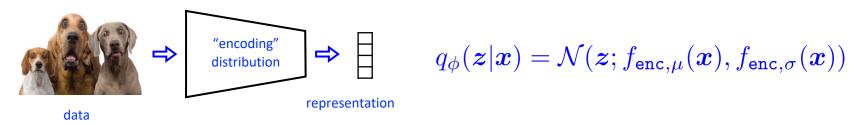
- Parameterized likelihood (decoder) for generation:
 - e.g., Normal distribution parameterized by neural network

$$p_{ heta}(oldsymbol{x}|oldsymbol{z}) = \mathcal{N}(oldsymbol{x}; f_{ ext{dec}}(oldsymbol{z}), \mathbb{I})$$

Resulting generative distribution (to optimize):

$$\log p_{\theta}(\boldsymbol{x}) = \log \int_{\boldsymbol{z}} p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} = \log \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} [p(\boldsymbol{x}|\boldsymbol{z})]$$

Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013]



• Each $\log p_{ heta}(oldsymbol{x})$ term is replaced by its lower bound:

$$\log p_{\theta}(\boldsymbol{x}) \geq \log p_{\theta}(\boldsymbol{x}) - \min_{\phi} \text{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}|\boldsymbol{x}))$$

$$= \log p_{\theta}(\boldsymbol{x}) + \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x})]$$

$$= \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}) + \log p_{\theta}(\boldsymbol{z}|\boldsymbol{x}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x})]$$

$$= \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \text{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$$

• Bound becomes equality when $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) pprox p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$

The training objective becomes:

tractable between two Gaussian distributions

$$\max_{\theta} \sum_{n=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}) \ge \max_{\theta} \max_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \text{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$$

$$\approx \max_{\theta} \max_{\phi} \sum_{n=1}^{N} \sum_{k=1}^{N} \log p_{\theta}(\boldsymbol{x}^{(n)}|\boldsymbol{z}^{(n,k)}) - \text{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})||p(\boldsymbol{z}))$$

where latent variables are sampled by $m{z}^{(n,k)} \sim q_{\phi}(m{z}|m{x}^{(n)})$

However, non-trivial to train with back propagation due to sampling procedure:

$$\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)}|\boldsymbol{z}^{(n,k)}) + \nabla_{\phi} \text{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(n)})||p(\boldsymbol{z}))$$

Since $z^{(n,k)}$ is fixed after being sampled, $\nabla_{\phi} \log p(x^{(n)}|z^{(n,k)}) = 0$?

Reparameterization trick is based on the change-of-variables formula:

• Latent variable $z^{(n,k)}$ can be similarly parameterized by encoder network:

Algorithmic Intelligence Lab

Total loss of variational autoencoder:

$$\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla_{\phi} \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla_{\phi} \mathcal{L}_{2}}$$

- Recall that $f_{ t dec}, f_{ t enc,\mu}, f_{ t enc,\sigma}$ are parameterized by ϕ
- Derivative of first part:

Total loss of variational autoencoder:

$$\nabla_{\phi} \mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{N} - \underbrace{\nabla_{\phi} \log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}^{(n,k)})}_{\nabla_{\phi} \mathcal{L}_{1}} + \underbrace{\nabla_{\phi} \text{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}^{(n)}) | | p(\boldsymbol{z}))}_{\nabla_{\phi} \mathcal{L}_{2}}$$

- Recall that $f_{ t dec}, f_{ t enc,\mu}, f_{ t enc,\sigma}$ are parameterized by ϕ
- Derivative of second part:

$$\bigtriangledown_{\phi} \mathcal{L}_{1} = \bigtriangledown_{\phi} \mathrm{KL}(\mathcal{N}(\boldsymbol{z}; f_{\mathrm{enc},\mu}(\boldsymbol{x}^{(n)}), f_{\mathrm{enc},\sigma}(\boldsymbol{x}^{(n)})) || \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{1}))$$

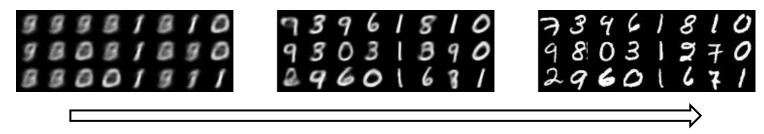
$$= \sum_{K} \nabla_{\phi} \mathrm{KL}(\mathcal{N}(z_{k}; f_{\mathrm{enc},\mu,k}(\boldsymbol{x}^{(n)}), f_{\mathrm{enc},\sigma,k}(\boldsymbol{x}^{(n)})) || \mathcal{N}(z_{k}; 0, 1))$$

$$= \sum_{k=1}^{K} \nabla_{\phi} \mathrm{KL}(\mathcal{N}(z_{k}; f_{\mathrm{enc},\mu,k}(\boldsymbol{x}^{(n)}), f_{\mathrm{enc},\sigma,k}(\boldsymbol{x}^{(n)})) || \mathcal{N}(z_{k}; 0, 1))$$

$$\downarrow \mathsf{L} \text{ divergence between normal distributions}$$

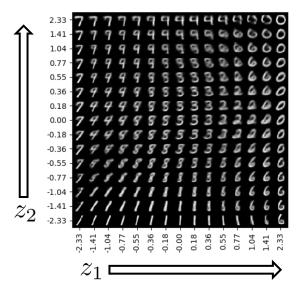
$$= \sum_{k=1}^{K} \nabla_{\phi} - \log f_{\mathrm{enc},\sigma,k}(\boldsymbol{x}^{(n)}) + \frac{1}{2} f_{\mathrm{enc},\sigma,k}(\boldsymbol{x}^{(n)})^{2} + \frac{1}{2} f_{\mathrm{enc},\sigma,k}(\boldsymbol{x}^{(n)})^{2}$$

 Based on the proposed scheme, variational autoencoder successfully generates images:



Training on MNIST

Interpolation of latent variables induce transitions in generated images:



Improving VAEs

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - Careful optimization: various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

Improving VAEs

- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - Careful optimization: various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

Observe that ELBO can also be proved by the Jensen's inequality:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] \geq \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$

- Based on convexity, interchange order of logarithm and summation
- Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

$$\log p(\boldsymbol{x}) = \log \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$

$$\geq \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(K)} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{x}, \boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})} \right]$$

also called importance weights

• Becomes original ELBO when K=1 and becomes exact bound when $K=\infty$

$$\mathbb{E}_{\boldsymbol{z}^{(1)},\cdots,\boldsymbol{z}^{(K)}\sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\bigg[\frac{1}{K}\sum_{k=1}^{K}\frac{p(\boldsymbol{x},\boldsymbol{z}^{(k)})}{q_{\phi}(\boldsymbol{z}^{(k)}|\boldsymbol{x})}\bigg]\approx p(\boldsymbol{x})$$

Semi-amortized VAE (SA-VAE)

- Inference gap of VAE can be decomposed to approximation gap (model error) and amortization gap (single neural network amortizes all posteriors)
- Semi-amortized VAE: In addition to the global inference network, update the posterior of each local instance for a few steps [Kim et al., 2018]
 - Resembles MAML (see future lecture)

- 1. Sample $\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})$
- 2. Set $\lambda_0 = \text{enc}(\mathbf{x}; \phi)$ \rightarrow shared to all samples
- 3. For $k=0,\ldots,K-1$, set $\lambda_{k+1}=\lambda_k+\alpha\nabla_\lambda\operatorname{ELBO}(\lambda_k,\theta,\mathbf{x})$ \rightarrow specific to each sample x
- Semi-amortized VAE can further reduce ELBO, applied on top of any VAEs

MODEL	ORACLE GEN	Learned Gen
VAE SVI SA-VAE	$ \leq 21.77 \\ \leq 22.33 \\ \leq 20.13 $	$ \leq 27.06 \\ \leq 25.82 \\ \leq 25.21 $
TRUE NLL (EST)	19.63	_

^{*} SVI: Instance-specific posterior only, without amortization

Improving VAEs

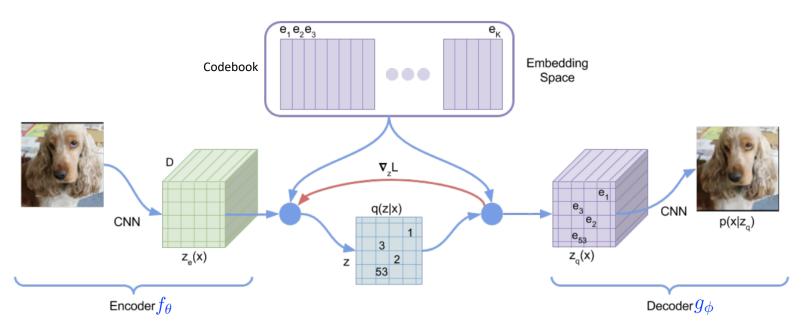
- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - Careful optimization: various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

Mitigating Posterior Collapse for Continuous Latent-space VAEs

- Posterior collapse [Bowman et al., 2016]:
 - When paired with powerful decoder, VAEs often ignore the posterior $q_{\phi}(z|x)$ and generates generic samples (i.e., reconstruction loss does not decrease well)
- To mitigate posterior collapse, prior works attempt
 - 1. Weaken the KL regularization term [Bowman et al., 2016, Razavi et al., 2019a]
 - Recall: KL regularization term minimizes $\mathrm{KL}(p_{\phi}(z|x),p(z))$
 - Anneal the weight during training, or constraint $\geq \delta$
 - 2. Match aggregated posterior instead of individuals [Tolstikhin et al., 2018]
 - Instead of matching $p_{\phi}(z|x) \approx p(z)$ for all x, match the aggregated posterior $\mathbb{E}_{x \sim p(x)} p_{\phi}(z|x) \approx p(z)$ (each $p_{\phi}(z|x)$ is now a deterministic, single point)
 - Need implicit distribution matching techniques (e.g., GAN)
 - 3. Improve optimization procedure [He et al., 2019]
 - Strengthen the encoder: update encoder until converge, and decoder once

Vector-quantized VAE (VQ-VAE)

- VQ-VAE [Oord et al., 2017]
 - Each data is embedded into combination of 'discrete' latent vectors: $\{e_1, \cdots, e_K\}$
 - i.e.) each encoder output is quantized to the nearest vector among K codebook vectors



- Restriction of latent space achieves high generation quality including:
 - Images, videos, audios, etc.

Vector-quantized VAE (VQ-VAE)

- VQ-VAE [Oord et al., 2017]
 - The objective of VQ-VAE composed of three terms:
 - Reconstruction loss (1)
 - VQ loss (2):
 - Optimization of codebook vectors
 - Commitment loss (3):
 - Regularization to get encoder outputs and codebook close

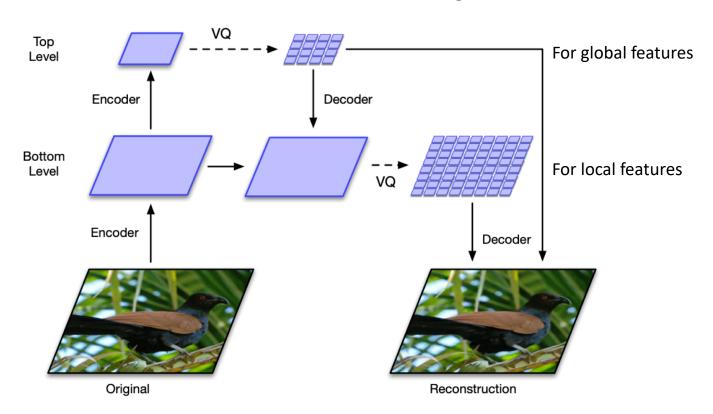
$$\mathcal{L} = ||g_{\phi}(e) - x||_{2}^{2} + ||\operatorname{sg}(f_{\theta}(x)) - e||_{2}^{2} + \beta||f_{\theta}(x) - \operatorname{sg}(e)||_{2}^{2}$$
(1)
(2)
(3)

- VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:
 - DALL-E (text-image generative model) image is encoded via VQ-VAE
 - Many audio self-supervised learning method

Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

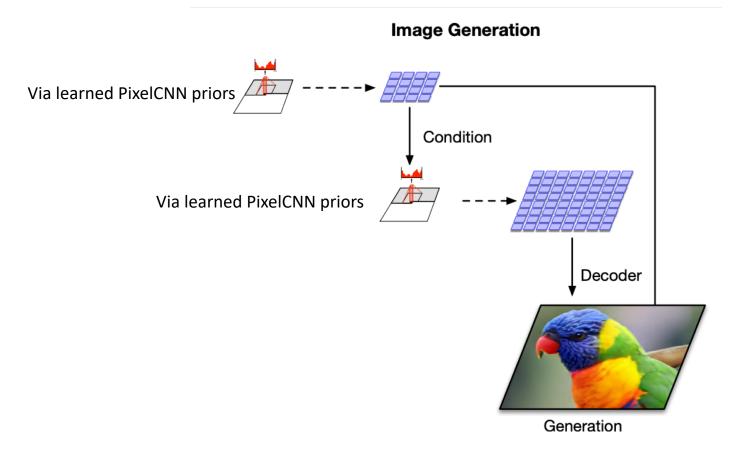
- VQ-VAE-2 [Razavi et al., 2019b]
 - Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
 - For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training



Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

- VQ-VAE-2 [Razavi et al., 2019b]
 - After VQ-VAE-2 training, train two pixelCNN priors for new image generation
 - They autoregressively fill out each quantized latent vector space



Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)

Improving VAEs

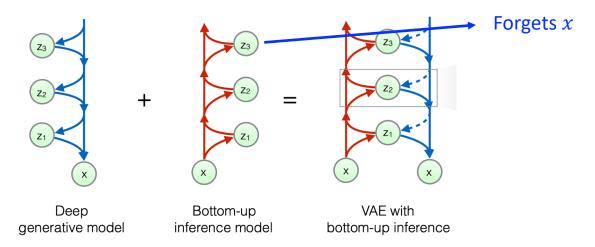
- Although VAE has many advantages (e.g., fast sampling, full mode covering, latent embedding), there are issues that lead to poor generation quality
- Tighter objective bound
 - Reduce approximation (model) error: Importance-weighted AE (IWAE)
 - Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
- Posterior collapse (latents are ignored when paired with powerful decoder)
 - Careful optimization: various techniques for continuous latent-space VAEs
 - Use discrete latent space: Vector-quantized VAE (VQ-VAE)
- Improve model expressivity
 - Use expressive prior distribution: Gaussian mixtures, normalizing flow
 - Use hierarchical architectures: Hierarchical VAE, Diffusion Models

Nouveau VAE (NVAE)

- NVAE [Vahdat et al., 2020]
 - Hierarchical VAEs use the factorized latent space $p_{\theta}(z) = \prod_{l} p_{\theta}(z_{l}|z_{< l})$
 - Here, the ELBO objective is given by

$$\mathcal{L}_{ ext{VAE}}(oldsymbol{x}) := \mathbb{E}_{q(oldsymbol{z}|oldsymbol{x})} \left[\log p(oldsymbol{x}|oldsymbol{z})
ight] - ext{KL}(q(oldsymbol{z}_1|oldsymbol{x})||p(oldsymbol{z}_1)) - \sum_{l=2}^L \mathbb{E}_{q(oldsymbol{z}_{< l}|oldsymbol{x})} \left[ext{KL}(q(oldsymbol{z}_l|oldsymbol{x}, oldsymbol{z}_{< l})||p(oldsymbol{z}_l|oldsymbol{z}_{< l}))
ight],$$

- However, prior attempts on hierarchical VAE were not so successful due to:
 - 1. Long-range correlation: upper latents often forget the data information

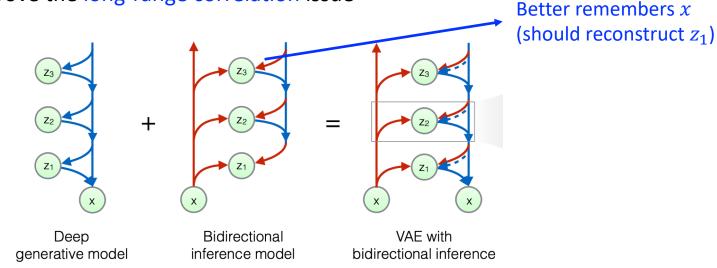


2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since they **jointly learn** the prior distribution $p_{\theta}(z)$ Both $q_{\phi}(z|x)$ and $p_{\theta}(z)$ are moving during training

Nouveau VAE (NVAE)

- NVAE [Vahdat et al., 2020]
 - Idea 1. Bidirectional encoder (originally from [Kingma et al., 2016])
 - Enforce upper latents (e.g., z_3) to predict the lower latents (e.g., z_1)

→ Improve the long-range correlation issue



- Training: posterior $q_{\phi}(z|x)$ is inferred by both encoder and decoder (aggregate them) and prior $p_{\theta}(z)$ is jointly inferred by decoder
 - Recall that the KL term is a function of $q_{\phi}(z|x)$ and $p_{\theta}(z)$
- Inference: Sample prior $p_{\theta}(z)$ from decoder and generate sample x

Nouveau VAE (NVAE)

- NVAE [Vahdat et al., 2020]
 - Idea 2. Taming the unstable KL term

Residual normal distribution

For each factorized prior distribution

$$p(z_l^i|\boldsymbol{z}_{< l}) := \mathcal{N}(\mu_i(\boldsymbol{z}_{< l}), \sigma_i(\boldsymbol{z}_{< l})),$$

define approximate posterior as (instead of directly predict μ_i , σ_i)

$$q(z_l^i|\boldsymbol{z}_{< l}, \boldsymbol{x}) := \mathcal{N}(\mu_i(\boldsymbol{z}_{< l}) + \Delta \mu_i(\boldsymbol{z}_{< l}, \boldsymbol{x}), \sigma_i(\boldsymbol{z}_{< l}) \cdot \Delta \sigma_i(\boldsymbol{z}_{< l}, \boldsymbol{x})),$$

Then, the KL term of ELBO is given by

$$\mathrm{KL}(q(z^i|\boldsymbol{x})||p(z^i)) = \frac{1}{2} \left(\frac{\Delta \mu_i^2}{\sigma_i^2} + \Delta \sigma_i^2 - \log \Delta \sigma_i^2 - 1 \right)$$

2. Spectral regularization

- Enforce Lipschitz smoothness of encoder to bound KL divergence
- Regularize the largest singular value of convolutional layers (estimated by power iteration [Yoshida & Miyato, 2017])

- NVAE [Vahdat et al., 2020]
 - Results:
 - Generate high-resolution (256x256) images

• SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method	MNIST 28×28	CIFAR-10 32×32	ImageNet 32×32	CelebA 64×64	CelebA HQ 256×256	FFHQ 256×256	
NVAE w/o flow NVAE w/ flow	78.01 78.19	2.93 2.91	3.92	2.04 2.03	0.70	0.71 0.69	
VAE Models with an Unconditional Decoder							
BIVA [36]	78.41	3.08	3.96	2.48	-	-	
IAF-VAE [4]	79.10	3.11	-	-	-	-	
DVAE++ [20]	78.49	3.38	-	-	-	-	
Conv Draw [42]	-	3.58	4.40	-	-	-	
Flow Models without any Autoregressive Components in the Generative Model							
VFlow [59]	-	2.98	-	-	-	-	
ANF [60]	-	3.05	3.92	-	0.72	-	
Flow++ [61]	-	3.08	3.86	-	-	-	
Residual flow [50]	-	3.28	4.01	-	0.99	-	
GLOW [62]	-	3.35	4.09	-	1.03	-	
Real NVP [63]	-	3.49	4.28	3.02	-	-	

Denoising Diffusion Probabilistic Models (DDPM)

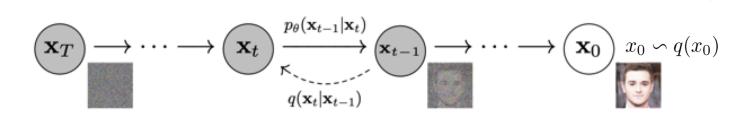
- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - Diffusion (forward) process: Markov chain that gradually add noise (of same dimension of data) to data until original the signal is destroyed

$$q(x_t|x_{t-1}) := \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

• Sampling (backward) process: Markov chain with learned Gaussian denoising transition, starting from standard Gaussian noise $p(x_T) = \mathcal{N}(x_T; 0, I)$

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Denoising/sampling (reverse)



Diffusion process (forward)

Denoising Diffusion Probabilistic Models (DDPM)

- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - Here, the forward distribution $q(x_{t-1}|x_t,x_0)$ can be expressed as a closed form (composition of Gaussians)
 - ELBO objective is given by the sum of local KL divergences (between Gaussians)
 - Remark that both $q(x_{t-1}|x_t,x_0)$ and $p_{\theta}(x_{t-1}|x_t)$ are Gaussians

$$E_q[D_{\mathrm{KL}}(q(x_T|x_0)||p(x_T)) + \sum_{t>1} D_{\mathrm{KL}}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) - \log p_{\theta}(x_0|x_1)]$$

• DDPM [Ho et al., 2020] reparametrizes the model μ_{θ} as

$$\mu_{\theta}(x_t, t) := \alpha_t x_t + \gamma_t \epsilon_{\theta}(x_t, t)$$

- Then, the training/sampling scheme resembles denoising score matching (will be discussed later in this lecture)
- Intuitively, the reverse process adds the (learned) noise ϵ_{θ} for each step (resembles stochastic Langevin dynamics)

Denoising Diffusion Probabilistic Models (DDPM)

- Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 - DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

DDPM also generates high-resolution (256x256) images

Table of Contents

1. Introduction

Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Energy-based Models (EBM)

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - Instead of directly modeling the density p(x), learn the unnormalized density (i.e., energy) E(x) such that

$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{Z_{\theta}}, \quad Z_{\theta} = \int_{x \in \mathcal{X}} \exp(-E_{\theta}(x))$$

- Here, we don't care about the **exact density** (which needs to compute the partition function Z_{θ}), but only interested in the **relative order** of densities
- **Training:** The gradient of negative log-likelihood (NLL) is decomposed to:

$$\mathbb{E}_{x \sim p_{\text{data}}(x)}[-\nabla_{\theta} \log p_{\theta}(x)] = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\nabla_{\theta} E_{\theta}(x)] + \nabla_{\theta} \log Z_{\theta}$$

$$= \mathbb{E}_{x \sim p_{\text{data}}(x)}[\nabla_{\theta} E_{\theta}(x)] - \mathbb{E}_{x' \sim p_{\theta}(x)}[\nabla_{\theta} E_{\theta}(x')]$$

$$= \underbrace{\mathbb{E}_{x \sim p_{\text{data}}(x)}[\nabla_{\theta} E_{\theta}(x)]}_{\text{data gradient}} - \underbrace{\mathbb{E}_{x' \sim p_{\theta}(x)}[\nabla_{\theta} E_{\theta}(x')]}_{\text{model gradient}}$$

- Note that this contrastive objective resembles (Wasserstein) GAN, but EBM uses an implicit MCMC generating procedure and no gradient through sampling
 - One can modify the discriminator of GAN to be an EBM [Zhao et al., 2017]

Energy-based Models (EBM)

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - Instead of directly modeling the density p(x), learn the unnormalized density (i.e., energy) E(x) such that

$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{Z_{\theta}}, \quad Z_{\theta} = \int_{x \in \mathcal{X}} \exp(-E_{\theta}(x))$$

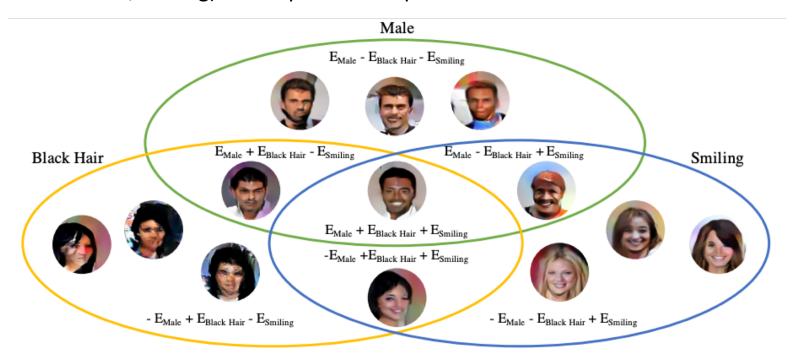
- Sampling: Run Markov chain Monte Carlo (MCMC) to draw a sample from $p_{\theta}(x)$
 - For high-dimensional data (e.g., image generation), stochastic gradient Langevin dynamics (SGLD) [Welling & Teh, 2011] is popularly used:
 - Given an initial sample x^0 , iteratively update x^{k+1} (k = 0, ..., K-1)

$$x^{k+1} \leftarrow x^k + \frac{\alpha}{2} \underbrace{\nabla_x \log p_{\theta}(x^k)}_{-\nabla_x E_{\theta}(x)} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \alpha)$$

• Due to the Gaussian noise, it does not collapse to the MAP solution but converges to $p_{\theta}(x)$ as $\alpha \to 0$ and $K \to \infty$

Advantages of EBMs

 Compositionality: One can add or subtract <u>multiple energy functions</u> (e.g., male, black hair, smiling) to sample the composite distribution



- 2. No generator network: Unlike GAN/VAEs, EBMs do not need a specialized generator architecture (one can reuse the <u>standard classifier</u> architectures)
- 3. Adaptive computation time: Since the sampling is given by iterative SGLD, the user can choose from the fast coarse samples to slow fine samples

- EBM [LeCun et al., 2006, Du & Mordatch, 2019]
 - The gradient of partition function can be reformulated as follow:

$$\nabla_{\boldsymbol{\theta}} \log Z_{\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}} \log \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$\stackrel{(i)}{=} \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \nabla_{\boldsymbol{\theta}} \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$= \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \int \nabla_{\boldsymbol{\theta}} \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$\stackrel{(ii)}{=} \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$= \int \left(\int \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x} \right)^{-1} \exp(-E_{\boldsymbol{\theta}}(\mathbf{x})) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$\stackrel{(iii)}{=} \int \frac{\exp(-E_{\boldsymbol{\theta}}(\mathbf{x}))}{Z_{\boldsymbol{\theta}}} (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$\stackrel{(iv)}{=} \int p_{\boldsymbol{\theta}}(\mathbf{x}) (-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})) d\mathbf{x}$$

$$= \mathbb{E}_{\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})} \left[-\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x}) \right],$$

Joint Energy-based Models (JEM)

- JEM [Grathwohl et al., 2020]
 - Use standard classifier architectures for joint distribution EBMs
 - Recall that the classifier $p_{\theta}(y|x)$ is expressed by the logits $f_{\theta}(x)$

$$p_{ heta}(y|x) = rac{\exp(f_{ heta}(x)[y])}{\sum_{y'} \exp(f_{ heta}(x)[y'])}$$

Here, one can re-interpret the logits to define an energy-based model

$$p_{\theta}(x,y) = rac{\exp(f_{\theta}(x)[y])}{Z_{\theta}}, \quad p_{\theta}(x) = rac{\sum_{y} \exp(f_{\theta}(x)[y])}{Z_{\theta}}$$

- Note that shifting the logits does not affect $p_{\theta}(y|x)$ but $p_{\theta}(x)$; hence, EBM gives an extra degree of freedom
- The objective of JEM is a sum of density and conditional models, where the density model is trained by contrastive objective of EBM

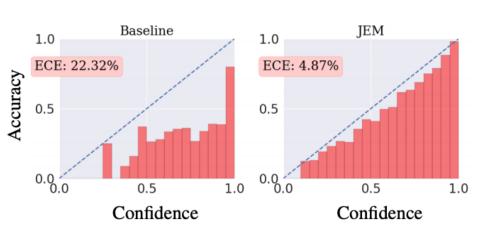
$$\log p_{\theta}(x, y) = \log p_{\theta}(x) + \log p_{\theta}(y|x)$$

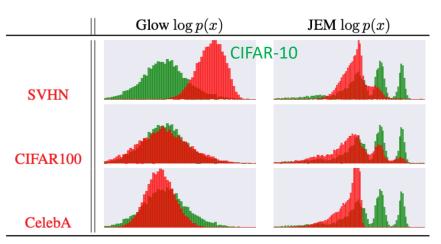
Joint Energy-based Models (JEM)

- JEM [Grathwohl et al., 2020]
 - JEM achieves a competitive performance as both classifier and generative model

Class	Model	Accuracy% ↑	IS↑	FID↓
	Residual Flow	70.3	3.6	46.4
	Glow	67.6	3.92	48.9
Hybrid	IGEBM	49.1	8.3	37 .9
-	JEM $p(\mathbf{x} y)$ factored	30.1	6.36	61.8
	JEM (Ours)	92.9	8.76	38.4
Disc.	Wide-Resnet	95.8	N/A	N/A
Gen.	SNGAN	N/A	8.59	25.5
	NCSN	N/A	8.91	25.32

- Also, JEM (generative classifier) improves uncertainty and robustness
 - (a) calibration, (b) out-of-distribution detection, (c) adversarial robustness





Score Matching

- Score matching [Hyvärinen, 2005]
 - Score = gradient of the log-likelihood $s(x) := \nabla_x \log p(x)$
 - Score matching = Match the scores of data and model distribution
 - However, we don't know the scores of data distribution
 - Instead, one can use the equivalent form (proof by integration of parts)

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}(x)}[\|s_{\theta}(x) - s_{\text{data}}(x)\|_{2}^{2}] = \mathbb{E}_{x \sim p_{\text{data}}(x)}\left[\text{tr}(\nabla_{x}s_{\theta}(x)) + \frac{1}{2}\|s_{\theta}(x)\|_{2}^{2}\right] + \text{const.}$$

- Recent works mostly consider denoising score matching [Vincent, 2011]
 - Match the score of **perturbed distribution** $q_{\sigma}(\tilde{x}) \coloneqq \int q_{\sigma}(\tilde{x}|x) \; p_{\text{data}}(x)$ where $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(x,\sigma)$
 - Then, the score matching objective is equivalent to

$$\frac{1}{2} \mathbb{E}_{\tilde{x} \sim q_{\sigma}(\tilde{x}|x)p_{\text{data}}(x)} [\|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x)\|_{2}^{2}]$$

- It is tractable since the gradient $\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) = \nabla_{\tilde{x}} \log \mathcal{N}(\tilde{x}|x,\sigma) = \nabla_{\tilde{x}} \log \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{\tilde{x}-x}{\sigma})^2)$ can be **analytically computed**
- The objective can learn the scores of data distribution if $\sigma \approx 0$

Score Matching - Appendix

- Score matching [Hyvärinen, 2005]
 - The score matching objective can be reformulated as follow:

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}(x)}[\|s_{\theta}(x) - s_{\text{data}}(x)\|_{2}^{2}] = \mathbb{E}_{x \sim p_{\text{data}}(x)}\left[\text{tr}(\nabla_{x}s_{\theta}(x)) + \frac{1}{2}\|s_{\theta}(x)\|_{2}^{2}\right] + \text{const.}$$

It is sufficient to show that

$$\begin{split} \mathbb{E}_{p_{\mathtt{data}}(x)}[-s_{\mathtt{data}}(x)s_{\theta}(x)] &= \sum_{i} \int -p_{\mathtt{data}}(x) \frac{\partial \log p_{\mathtt{data}}(x)}{dx_{i}} s_{\theta,i}(x) dx \\ &= \sum_{i} \int -\frac{\partial p_{\mathtt{data}}(x)}{dx_{i}} s_{\theta,i}(x) dx \\ &= \sum_{i} \int p_{\mathtt{data}}(x) \frac{\partial s_{\theta,i}(x)}{dx_{i}} dx + \mathrm{const.} \end{split}$$

The last equality comes from the integration of parts

$$\int p'(x)f(x)dx = p(x)f(x)\big|_{-\infty}^{\infty} - \int p(x)f'(x)dx$$

and assumption $p_{\text{data}}(x)s_{\theta}(x) \rightarrow 0$ for both side of infinity

Noise-conditional Score Network (NCSN)

- NCSN [Song et al., 2019]
 - Previous works mostly define the score as a gradient of the **energy function** $s_{\theta}(x) \coloneqq -\nabla_x E_{\theta}(x)$
 - This work: Directly model the score $x \in \mathbb{R}^d \mapsto s_{\theta}(x) \in \mathbb{R}^d$ as an output
 - Noise-conditional Score Network
 - Denoising score matching is stable for large σ but unbiased for small σ
 - Idea: Learn multiple noise levels (with a single neural network) and anneal the noise level during sampling $\sigma_1 > \cdots > \sigma_L$

```
Algorithm 1 Annealed Langevin dynamics.
```

```
Require: \{\sigma_i\}_{i=1}^L, \epsilon, T.

1: Initialize \tilde{\mathbf{x}}_0

2: for i \leftarrow 1 to L do

3: \alpha_i \leftarrow \epsilon \cdot \sigma_i^2/\sigma_L^2 \qquad \triangleright \alpha_i is the step size.

4: for t \leftarrow 1 to T do

5: Draw \mathbf{z}_t \sim \mathcal{N}(0, I)

6: \tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \ \mathbf{z}_t

7: end for

8: \tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T

9: end for return \tilde{\mathbf{x}}_T
```

- One can extend score matching to **continuous version** (stochastic differential equations, SDEs) [Song et al., 2021]
 - NCSN and DDPM can be viewed as different discretization of some SDEs
 - This view provides a better approach for generation and likelihood estimation

See Appendix for details

Noise-conditional Score Network (NCSN)

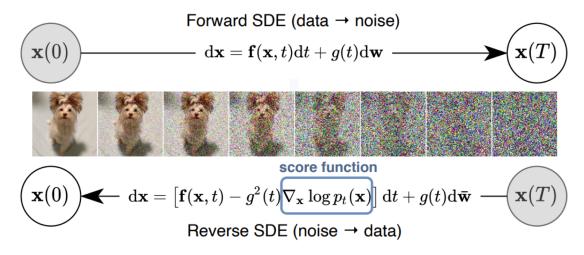
- NCSN [Song et al., 2019]
 - The continuous version of NCSN [Song et al., 2021] is SOTA for both likelihood estimation and sample generation on CIFAR-10

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Table 2. NELS and Tibs (ODE) on CITAR-10.			Table 3. CITAR-10 sample quanty.		
Model	NLL Test ↓	FID ↓	Model	FID↓	IS↑
RealNVP (Dinh et al., 2016)	3.49	_	Conditional		
iResNet (Behrmann et al., 2019)	3.45	-	BigGAN (Brock et al., 2018)	14.73	9.22
Glow (Kingma & Dhariwal, 2018)	3.35	-	StyleGAN2-ADA (Karras et al., 2020a)	2.42	10.14
MintNet (Song et al., 2019b)	3.32	-	Unconditional		
Residual Flow (Chen et al., 2019)	3.28	46.37	Unconditional		
FFJORD (Grathwohl et al., 2018)	3.40	-	StyleGAN2-ADA (Karras et al., 2020a)	2.92	9.83
Flow++ (Ho et al., 2019)	3.29	-	NCSN (Song & Ermon, 2019)	25.32	$8.87 \pm .12$
DDPM (L) (Ho et al., 2020)	$\leq 3.70^{*}$	13.51	NCSNv2 (Song & Ermon, 2020)	10.87	$8.40 \pm .07$
DDPM (L_{simple}) (Ho et al., 2020)	≤ 3.75 [*]	3.17	DDPM (Ho et al., 2020)	3.17	$9.46 \pm .11$
DDPM	3.28	3.37	DDPM++	2.78	9.64
DDPM cont. (VP)	3.21	3.69	DDPM++ cont. (VP)	2.55	9.58
DDPM cont. (v1)	3.05	3.56	DDPM++ cont. (sub-VP)	2.61	9.56
DDPM++ cont. (VP)	3.16	3.93	DDPM++ cont. (deep, VP)	2.41	9.68
` ,			DDPM++ cont. (deep, sub-VP)	2.41	9.57
DDPM++ cont. (sub-VP)	3.02	3.16	NCSN++	2.45	9.73
DDPM++ cont. (deep, VP)	3.13	3.08	NCSN++ cont. (VE)	2.38	9.83
DDPM++ cont. (deep, sub-VP)	2.99	2.92	NCSN++ cont. (deep, VE)	2.20	9.89

Score matching through SDE [Song et al., 2021]



Like DDPM, we consider some forward diffusion process (SDE):

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

• Then, the reverse diffusion process also follows some SDE:

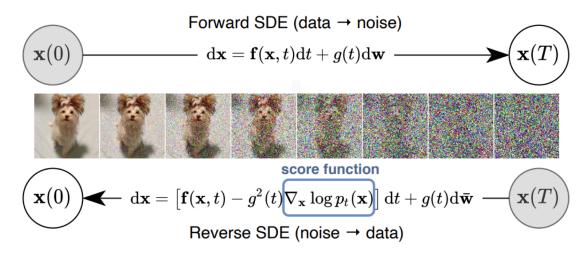
$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^{2} \nabla_{\mathbf{x}} \log p_{t}(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

One can learn the score function by score matching

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \Big\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t)|\mathbf{x}(0)} \Big[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) \right\|_2^2 \Big] \Big\}.$$

Noise-conditional Score Network (NCSN) - Appendix

Score matching through SDE [Song et al., 2021]



Like DDPM, we consider some forward diffusion process (SDE):

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}},$$

 Here, NCSN and DDPM can be viewed as different discretizations some stochastic differential equations (SDEs)

• NCSN:
$$d\mathbf{x} = \sqrt{\frac{d\left[\sigma^2(t)\right]}{dt}}d\mathbf{w}$$
 $\rightarrow \mathbf{x}_i = \mathbf{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2}\mathbf{z}_i$

• DDPM:
$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w} \rightarrow \mathbf{x}_i = \sqrt{1-\beta_i}\mathbf{x}_{i-1} + \sqrt{\beta_i}\mathbf{z}_i$$

Noise-conditional Score Network (NCSN) - Appendix

- Score matching through SDE [Song et al., 2021]
 - The reverse diffusion process can be solved by 3 ways:
 - Run a general-purpose SDE solver (a.k.a. predictor)
 - 2. Utilize the score-based model $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ (a.k.a. corrector)
 - → Combining predictor and corrector gives the **SOTA generation** performance

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)		
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$ 2: for $i = N - 1$ to 0 do	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$ 2: for $i = N - 1$ to 0 do		
3: $\mathbf{x}_{i}' \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}_{i}' + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}} \mathbf{z}$	3: $\mathbf{x}_{i}' \leftarrow (2 - \sqrt{1 - \beta_{i+1}}) \mathbf{x}_{i+1} + \beta_{i+1} \mathbf{s}_{\theta} * (0, \mathbf{I})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}_{i}' + \sqrt{\beta_{i+1}} \mathbf{z}$	$\mathbf{x}_{i+1}, i+1$ redictor	
6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\boldsymbol{\theta}} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	6: for $i - 1$ to M do	orrector	
9: return \mathbf{x}_0	9: return x ₀		

Continuous ver. of NCSN

Continuous ver. of DDPM

Noise-conditional Score Network (NCSN) - Appendix

- Score matching through SDE [Song et al., 2021]
 - The reverse diffusion process can be solved by 3 ways:
 - 1. Run a general-purpose SDE solver (a.k.a. predictor)
 - 2. Utilize the score-based model $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ (a.k.a. corrector)
 - Convert to deterministic ODE
 - Every SDE (Ito process) has a corresponding deterministic ODE

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt,$$

whose trajectories include the same evolution of densities

- Deterministic ODE defines an invertible model (a.k.a. normalizing flow)
 [Chen et al., 2018]
- Using this formulation, one can
 - a) Compute exact likelihood
 - b) Manipulate latents with encoder (model is invertible)

Table of Contents

1. Introduction

Implicit vs explicit density models

2. Variational Autoencoders (VAE)

- Variational autoencoders
- Tighter bounds for variational inference
- Techniques to mitigate posterior collapse
- Large-scale generation via hierarchical structures
- Diffusion probabilistic models

3. Energy-based Models (EBM)

- Energy-based models
- Score matching generative models

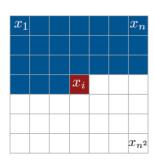
4. Autoregressive and Flow-based Models

- Autoregressive models
- Flow-based models

Autoregressive models

Autoregressive generation (e.g., pixel-by-pixel for images) :

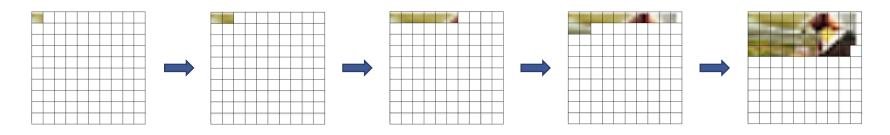
$$p(\boldsymbol{x}) = \prod_{k=1}^{K^2} p(x_k | x_1, \dots, x_{k-1})$$
$$= \prod_{k=1}^{K^2} p(x_k | \boldsymbol{x}_{< k})$$



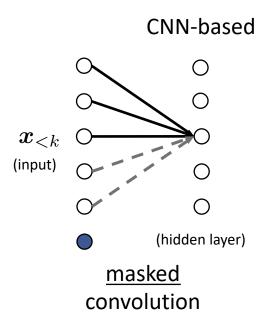
• For example, each RBG pixel is generated autoregressively:

$$p(x_k|\mathbf{x}_{\leq k}) = p(x_{k,R}, x_{k,B}, x_{k,G}|\mathbf{x}_{\leq k})$$
$$= p(x_{k,R}|\mathbf{x}_{\leq k})p(x_{k,B}|\mathbf{x}_{\leq k}, x_{k,R})p(x_{k,G}|\mathbf{x}_{\leq k}, x_{k,R}, x_{k,B})$$

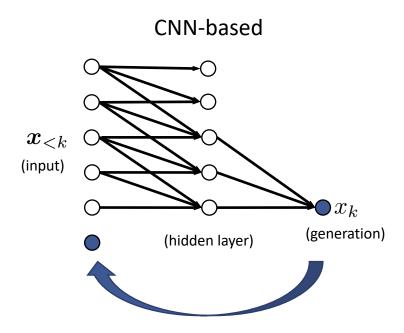
Each pixel is treated as discrete variables, sampled from softmax distributions:



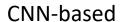
- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

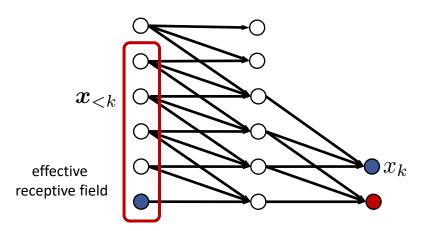


- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

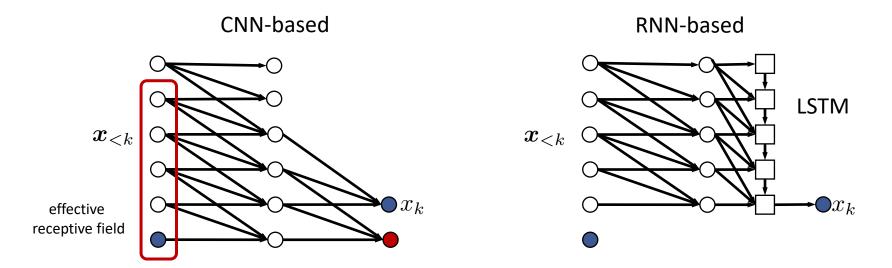


- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:

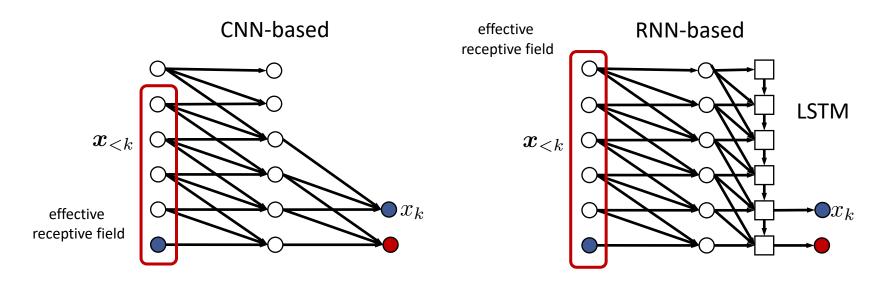




- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:



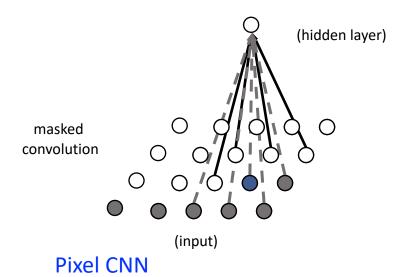
- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Simply treating $x_{< k}$ as one-dimensional (instead of two-dimensional) vector:



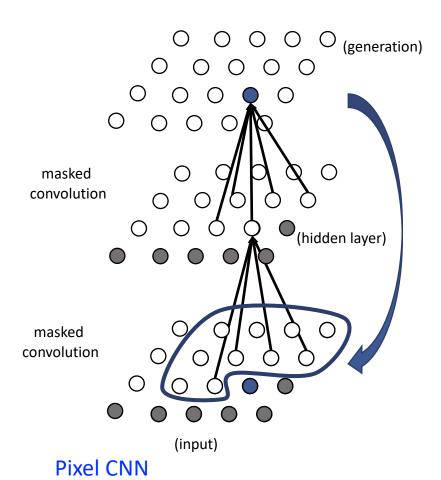
- Inference requires iterative forward procedure (slow)
- Training requires single forward pass for CNN, but multiple pass for RNN (slow)
- Effective receptive field (context of pixel generation) is unbounded for RNN, but bounded for CNN (constrained)

Next, extending to two-dimensional data

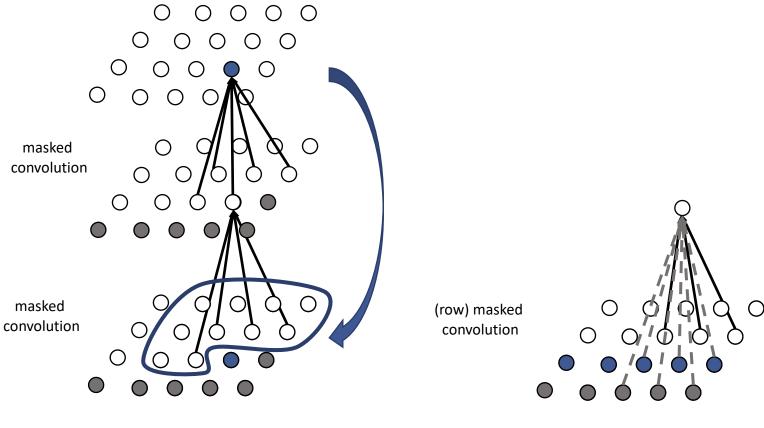
- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)



- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)

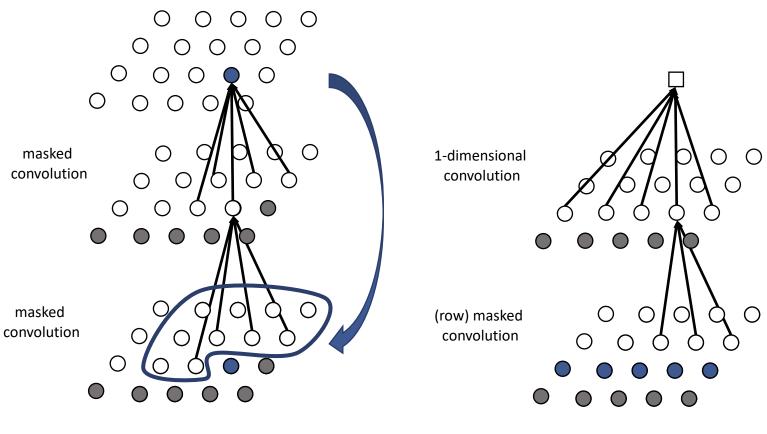


- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)



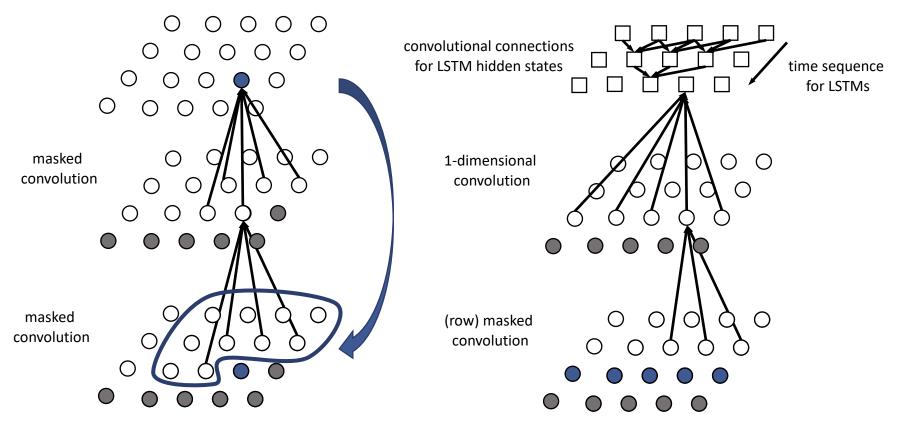
Pixel CNN Row LSTM

- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)



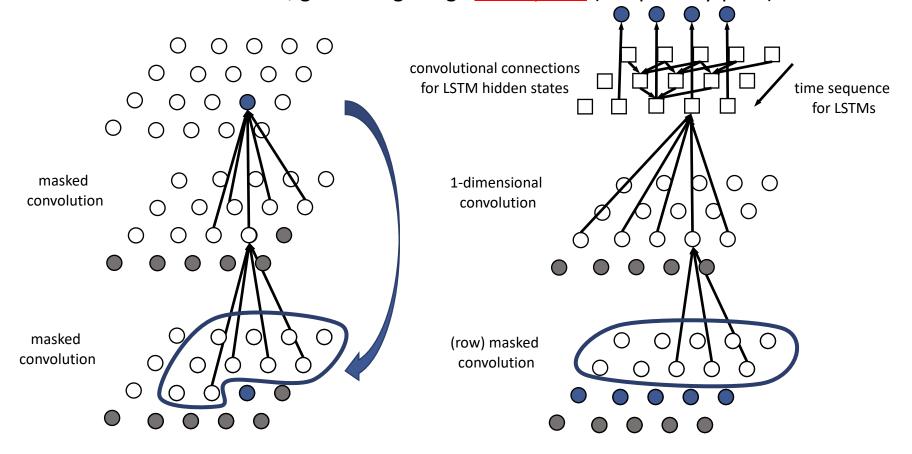
Pixel CNN Row LSTM

- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)



Pixel CNN Row LSTM

- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)

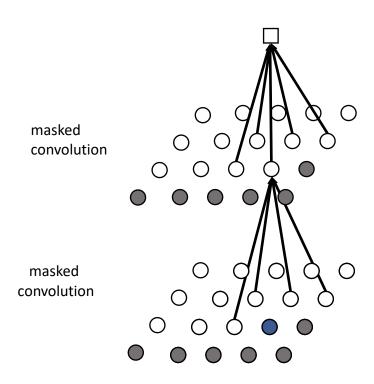


Pixel CNN

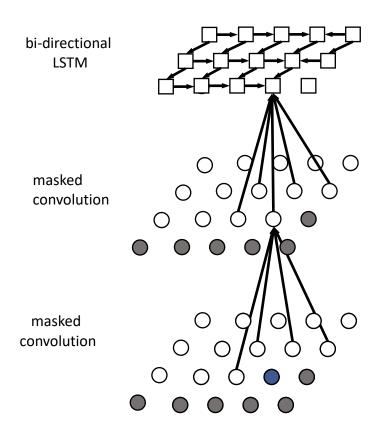
Row LSTM

Next, introducing column-wise dependencies using LSTMs

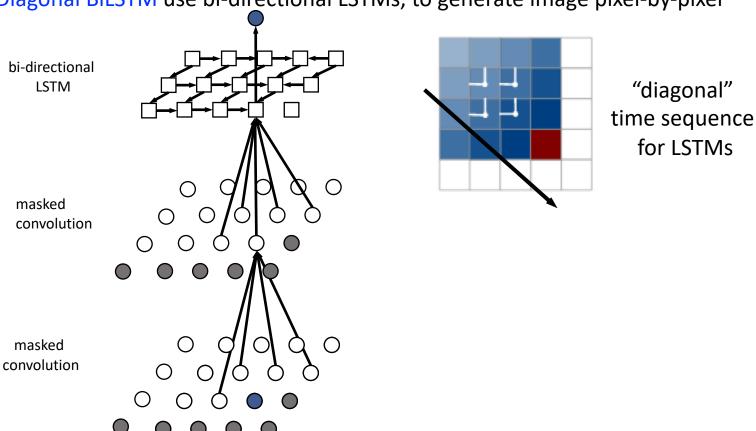
- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel



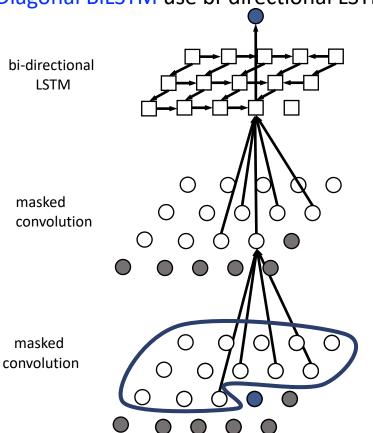
- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

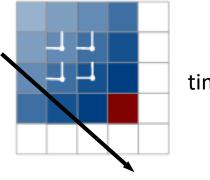


- Using CNN and RNN for modeling $p(x_k|m{x}_{< k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $x_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel



- Using CNN and RNN for modeling $p(x_k|x_{\leq k})$ [Oord et al., 2016]
 - Pixel CNN use masked convolutional layer (for $oldsymbol{x}_{>k}$)
 - Row LSTM use LSTMs, generating image <u>row-by-row</u> (not pixel-by-pixel)
 - Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel



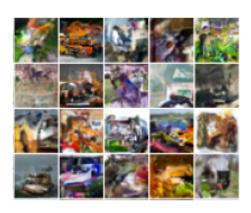


"diagonal" time sequence for LSTMs

 Receptive field now covers every pixels generated previously

Image generation results from CIFAR-10 and ImageNet:

CIFAR-10



ImageNet

Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

Only explicit models (not GAN) can compute NLL

Model	NLL Test
PixelCNN:	81.30
Row LSTM:	80.54
Diagonal BiLSTM (1 layer, $h = 32$):	80.75
Diagonal BiLSTM (7 layers, $h = 16$):	79.20

Model	NLL Test (Train)	
PixelCNN:	3.14 (3.08)	
Row LSTM:	3.07 (3.00)	
Diagonal BiLSTM:	3.00 (2.93)	

MNIST CIFAR-10

PixelCNN is easiest to train and Diagonal BiLSTM performs best

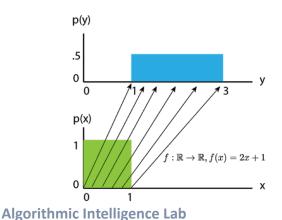
Modifying data distribution by flow (sequence) of invertible transformations:

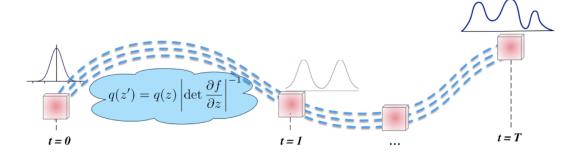
$$oldsymbol{x} = oldsymbol{z}_0 \; extstyle \; oldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(oldsymbol{z}_0) \qquad \qquad oldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior $p_T(\boldsymbol{z}_T)$
- Data distribution is explicitly modeled by change-of-variables formula:

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^{T} \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

• Log-likelihood $\log p({m x})$ can be maximized directly





65

Modifying data distribution by flow (sequence) of invertible transformations:

$$oldsymbol{x} = oldsymbol{z}_0 \; o \; oldsymbol{z}_T = f_T \circ f_{T-1} \circ \cdots f_1(oldsymbol{z}_0) \qquad \qquad oldsymbol{z}_t \in \mathbb{R}^K$$

- Final variable follows some specified prior $p_T(\boldsymbol{z}_T)$
- Data distribution is explicitly modeled by change-of-variables formula:

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^{T} \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

- Log-likelihood $\log p({m x})$ can be maximized directly
- Naïvely computing $\log |\det (\partial f_t(z_{t-1})/\partial z_{t-1})|$ requires $\mathcal{O}(K^3)$ complexity, which is not scalable for large-scale neural networks

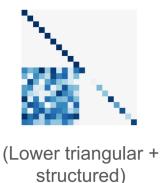
How to design flexible yet tractable form of invertible transformations?

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

Planar NF Sylvester NF

1. Det Identities 2. Coupling Blocks

NICE Real NVP Glow



3. Autoregressive

Inverse AF Neural AF Masked AF

(Lower triangular)

4. Unbiased **Estimation**

FFJORD Residual Flows

(Arbitrary)

Design Schemes for Normalizing Flows

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

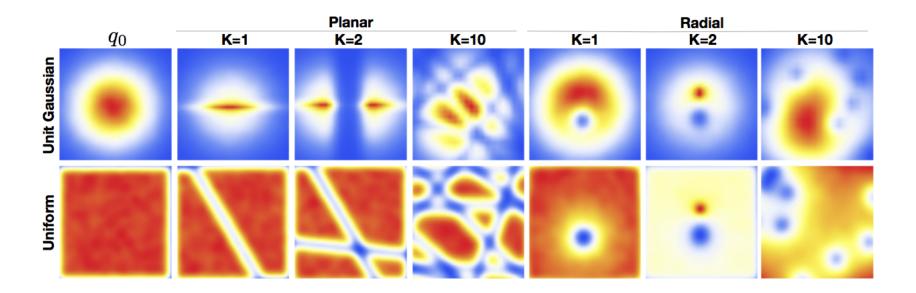
1. Det Identities

Planar NF Sylvester NF

. . .

Normalizing Flow (NF)

- Basic layers with linear log-det-Jacobian complexity [Rezende et al., 2015]
- Planar flow: $f(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$
 - Determinant of Jacobian is $\left| \det \frac{\partial f}{\partial \mathbf{z}} \right| = |1 + \mathbf{u}^{\mathsf{T}} h'(\mathbf{w}^{\mathsf{T}} \mathbf{z} + b) \mathbf{w}|$
- Radial flow: $f(\mathbf{z}) = \mathbf{z} + \beta h(\alpha, r)(\mathbf{z} \mathbf{z}_0)$ $(r = |\mathbf{z} \mathbf{z}_0|, h(\alpha, r) = 1/(\alpha + r))$
 - Determinant of Jacobian is $[1+\beta h(\alpha,r)]^{d-1}[1+\beta h(\alpha,r)+h'(\alpha,r)r]$



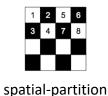
Algorithmic Intelligence Lab

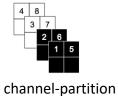
- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

Real-valued Non-volume Preserving Flow (Real NVP)

- Coupling layer $z_t = f_t(z_{t-1})$ for flow with tractable inference [Dinh et al., 2017]:
 - 1. Partition the variable into two parts:

$$z_{t-1} o [z_{t-1,1:d}, z_{t-1,d+1:K}]$$

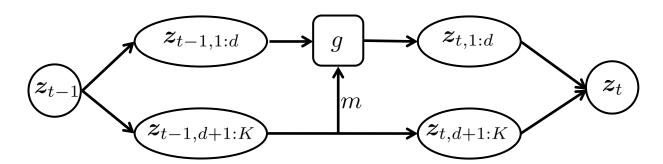




2. Coupling law defines a simple invertible transformation of the first partition given the second partition (g and m are described later)

$$z_{t,d+1:K} = g(z_{t-1,d+1:K}; m(z_{t-1,1:d}))$$

3. Second partition is left invariant ($oldsymbol{z}_{t,1:d} = oldsymbol{z}_{t-1,1:d}$)



Real-valued Non-volume Preserving Flow (Real NVP)

Affine coupling layer was shown to be effective in practice:

$$egin{aligned} oldsymbol{z}_{t,d+1:K} &= g(oldsymbol{z}_{t-1,d+1:K}; m(oldsymbol{z}_{t-1,1:d})) \ &= oldsymbol{z}_{t-1,d+1:K} \odot \exp(m_1(oldsymbol{z}_{t-1,1:d})) + m_2(oldsymbol{z}_{t-1,1:d}) \ &= \operatorname{element-wise product} oldsymbol{j} & \operatorname{neural networks} \end{aligned}$$

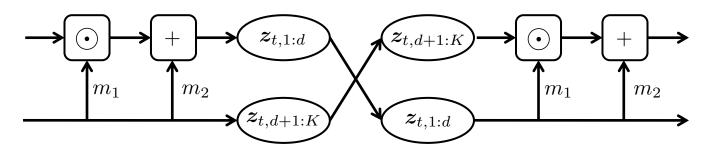
Jacobian of each transformation becomes a lower triangular matrix:

- Inference for such transformations can be done in tractable time
 - Determinant of lower triangular matrix is a product of diagonals

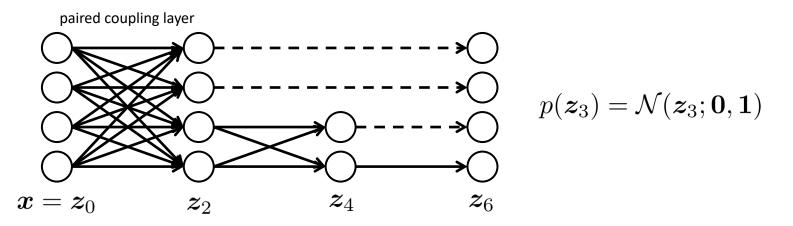
$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}_0) = \log p_T(\boldsymbol{z}_T) + \sum_{t=1}^{T} \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right|$$

Real-valued Non-volume Preserving Flow (Real NVP)

- For each coupling layer, there exists asymmetry since the first partition $z_{t-1,1:d}$ is left invariant
 - Two coupling layers are paired alternatively to overcome this issue



- Multi-scale architectures are used
 - Half variables follow Gaussian distribution at each scale



Design Schemes for Normalizing Flows

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

3. Autoregressive

Inverse AF Neural AF Masked AF

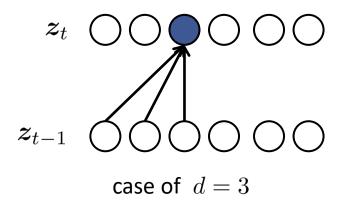
. . .

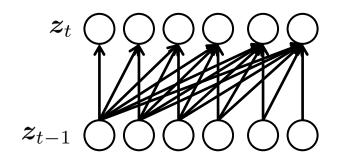
(Lower triangular)

Inverse Autoregressive Flow (IAF)

- Inverse autoregressive flow (IAF) modifies each dimension of variable in autoregressive manner [Kingma et al., 2016]:
 - Forward pass $z_0 \rightarrow z_T$ is fast, but backward pass $z_T \rightarrow z_0$ is slow
 - Used for VAE posterior: Only forward pass is required for approx. posterior

$$m{z}_{t,d} = \mu_{t,d}(m{z}_{t-1,1:d-1}) + \sigma_{t,d}(m{z}_{t-1,1:d-1})m{z}_{t-1,d}$$





updates done in parallel

• Inference for corresponding normalizing flow is efficient:

$$\log q(\boldsymbol{z}|\boldsymbol{x}) = \log q_0(\boldsymbol{z}_0|\boldsymbol{x}) + \sum_{t=1}^{T} \log \left| \det \left(\frac{\partial f_t(\boldsymbol{z}_{t-1})}{\partial \boldsymbol{z}_{t-1}} \right) \right| \longrightarrow \begin{bmatrix} \sigma_{t,1} & 0 & \cdots & 0 \\ \sigma_{t,2} & 0 & \vdots \\ \ddots & \ddots & 0 \\ \sigma_{t,K} \end{bmatrix}$$

Design Schemes for Normalizing Flows

- To reduce complexity of log-det-Jacobian, prior works consider
 - Carefully designed architectures (low rank, coupling, autoregressive)
 - Stochastic estimator of free-form Jacobian

4. Unbiased Estimation

FFJORD Residual Flows

(Arbitrary)

Continuous Normalizing Flow (CNF)

- Discrete normalizing flows need a carefully designed (less expressive) layers to achieve affordable (not cubic) complexity
 - → Continuous normalizing flow affords an arbitrary network architecture
- Consider a continuous transformation $\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$ (instead of $\mathbf{z}_1 = f(\mathbf{z}_0)$), then the sampling can be done by an **ordinary differential equation (ODE)**:

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta) dt$$

Here, the change in log-probability also follows an ODE:

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) dt$$

- Remark: We only need a trace (not a determinant) to compute likelihood
- The network $f(z(t), t, \theta)$ is learned by gradient descent (backpropagation follows another ODE) [Chen et al., 20018; Grathwohl et al., 2019]

References (VAE)

[Kingma et al., 2013] Auto-Encoding Variational Bayes, ICLR 2013

link: https://arxiv.org/abs/1802.06455

[Burda et al., 2016] Importance Weighted Autoencoders, ICLR 2016

link: https://arxiv.org/abs/1509.00519

[Kim et al., 2018] Semi-Amortized Variational Autoencoders, ICML 2018

link: https://arxiv.org/abs/1802.02550

[Bowman et al., 2016] Generating Sentences from a Continuous Space, CONLL 2016

link: https://arxiv.org/abs/1511.06349

[Razavi et al., 2019a] Preventing Posterior Collapse with delta-VAEs, ICLR 2019

link: https://arxiv.org/abs/1901.03416

[Tolstikhin et al., 2018] Wasserstein Auto-Encoders, ICLR 2018

link: https://arxiv.org/abs/1711.01558

[He et al., 2019] Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 2019

link: https://arxiv.org/abs/1901.05534

[Oord et al., 2017] Neural Discrete Representation Learning, NeurIPS 2017

link: https://arxiv.org/abs/1711.00937

[Razavi et al., 2017b] Generating Diverse High-Fidelity Images with VQ-VAE-2, NeurIPS 2019

link: https://arxiv.org/abs/1906.00446

[Vahdat et al., 2020] NVAE: A Deep Hierarchical Variational Autoencoder, NeurIPS 2020

link: https://arxiv.org/abs/2007.03898

[Sohl-Dickstein et al., 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015

link: https://arxiv.org/abs/1503.03585

[Ho et al., 2020] Denoising Diffusion Probabilistic Models, NeurIPS 2020

link: https://arxiv.org/abs/2006.11239

References (EBM, score matching)

[LeCun et al., 2006] A Tutorial on Energy-Based Learning, Technical report 2006

link: http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

[Du & Mordatch, 2019] Implicit Generation and Generalization in Energy-Based Models, NeurIPS 2019

link: https://arxiv.org/abs/1903.08689

[Welling & Teh, 2011] Bayesian Learning via Stochastic Gradient Langevin Dynamics, ICML 2011

link: https://dl.acm.org/doi/10.5555/3104482.3104568

[Zhao et al., 2017] Energy-based Generative Adversarial Network, ICLR 2017

link: https://arxiv.org/abs/1609.03126

[Grathwohl et al., 2020] Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One, ICLR 2020

link: https://arxiv.org/abs/1912.03263

[Song & Kingma, 2021] How to Train Your Energy-Based Models, arXiv 2021

link: https://arxiv.org/abs/2101.03288

[Hyvärinen, 2005] Estimation of Non-Normalized Statistical Models by Score Matching, JMLR 2005

link: https://jmlr.org/papers/v6/hyvarinen05a.html

[Vincent, 2011] A Connection Between Score Matching and Denoising Autoencoders, Neural Computation 2011

link: https://ieeexplore.ieee.org/document/6795935

[Song et al., 2019] Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS 2019

link: https://arxiv.org/abs/1907.05600

[Song et al., 2021] Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

link: https://arxiv.org/abs/2011.13456

References (AR, flow)

[Oord et al., 2016] Pixel Recurrent Neural Networks, ICML 2016

link: https://arxiv.org/abs/1601.06759

[Oord et al., 2017] WaveNet: A Generative Model for Raw Audio, arXiv 2017

link: https://arxiv.org/abs/1703.01961

[Rezende et al., 2015] Variational Inference with Normalizing Flows, ICML 2015

link: https://arxiv.org/abs/1705.08665

[Dinh et al., 2017] Density Estimation using Real NVP, ICLR 2017

link: https://arxiv.org/abs/1605.08803

[Kingma et al., 2018] Generative Flow with Invertible 1x1 Convolutions, NeurIPS 2018

link: https://arxiv.org/abs/1807.03039

[Kingma et al., 2016] Improving Inference with Inverse Autoregressive Flows, NeurIPS 2016

link: https://arxiv.org/abs/1710.10628

[Chen et al., 2018] Neural Ordinary Differential Equations, NeurIPS 2018

link: https://arxiv.org/abs/1806.07366

[Grathwohl et al., 2019] FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models, ICLR 2019

link: https://arxiv.org/abs/1810.01367

[Chen et al., 2019] Residual Flows for Invertible Generative Modeling, NeurIPS 2019

link: https://arxiv.org/abs/1906.02735