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Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

N Implicit R Learning by
density comparison
Generative | | [T * Directly I.earn density .p(x)
models * Example: autoregressive, flow
,|  Explicit | Unnormalized |+ Learn unnormalized density E (x) « p(x)
density density * Example: EBM, score matching
. * Learn approximation (e.g., lower bound)
N AperXI.rtnate of density L(x) < p(x)
ensity * Example: VAE, diffusion model
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Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

Implicit density Explicit density
\ 4 * \ 4 ‘
Learning by com Approximate Unnormalized Exact density
parison (GAN) density (VAE) density (EBM) (AR, flow)

Better generation quality

T
ey

Better density modeling
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Variational Autoencoder (VAE)

* Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable
* e.g., standard Normal distribution

p(z) = N(2;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(Z; faec(2), 1)

* Resulting generative distribution (to optimize):

log p0(2) = log | pale|)p(z)dz = 1og Expop(a]2)]

z
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Variational Autoencoder (VAE)

* Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013]

)
N Ra¥ “encoding”
ﬂ = diStributign = E Q¢(Z|$) — N<Z; fenC,M(w)’ fenc,a(w))

representation

data

* Each log py(x)term is replaced by its lower bound:

log po (@) = log py (@) — min KL(gy(2|)]|ps(2|2))
= logpg(@) + max Bz, (ze) [log po(2|z) — log gy (2|z)]

= max B, g, (zle) log po () + log po(z|x) — log g4 (2|x)]

= maxEzrq, (=[x [l0g Po (]2)] — KL(gs(2|2)[[p(2))

 Bound becomes equality when ¢4 (2|) = po(2z|x)
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Variational Autoencoder (VAE)

* The training objective becomes:
tractable between two Gaussian distributions

N |
max »  logpo(™) > maxmax Bz, ojo) [log po(2)] — KL (g4 (2[2)[[p(2))
n=1
N N
A max max Z Z log pg ('™ |2(™*)) — KL(gy(z]2™)||p(2))
n=1k=1
(n,k)

where latent variables are sampled by =z ~ q<z>(z|w(n))

* However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =Y Y —vslogpe(x™|z"M) + 74 KL(g(z|2'™)||p(2))
n=1k=1 {L

Since z(™*) is fixed after being sampled, ¢ log p(x™|z(™*) =07?
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Variational Autoencoder (VAE)

* Reparameterization trick is based on the change-of-variables formula:

€2NN(82|,M,O') & g2 = u+oe, €0 NN(€0|O,1)

A
A 51<—050</\ Eo 1+ 1
< > => =>

| scaling shifting
o ~ N(e0[0,1) e1 ~ N(e1]0,0) ez ~ N(ez2|u,0)

* Latent variable z("-*) can be similarly parameterized by encoder network:

Z(n’k) ~ N(Z; fenc,,u(w(n))? fenc,a(w(n)))

s

20 = fone (@) + faneo (@) 0, eF) N (e]0,1)
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Variational Autoencoder (VAE)

* Total loss of variational autoencoder:

N N
Vol =) Y —vglogpy(x™|z"F)) + 74KL(gs (22| |p(2))
n=1k=1 e —~— - T —

ngﬁl V¢>£2

e Recall that faec, Jenc,u» fenc,o are parameterized by ¢

* Derivative of first part:

Voli = Vglog N (2™); faec(2™), 1)
. 4} log-normal distribution
= Vo512 — foae(2)]
| 4} reparameterization trick
= Voglle"™ = fooe(foneu (@) + fonc o (@) © €™ H)5
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Variational Autoencoder (VAE)

* Total loss of variational autoencoder:
N N

Vol =) Y —Vologpe(a™|z"") + 74KL(g4(2]2™)]Ip(2))

ngﬁl V¢>£2

e Recall that faec, Jenc,u» fenc,o are parameterized by ¢

e Derivative of second part:

VoL = VKLV (2} fone,u (™), fenc.o (™))|IN (250, 1))
4} element-wise factorization (z = [21, cee ,ZK] )

K
=" UKLV (213 fonoyik (™), fonc.on (™))IN (2430, 1))

@ KL divergence between normal distributions
K 1 1
=D Vo~ 108 fone o (@) 4 5 fenc o (@) + 5 fone (@)’
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Variational Autoencoder (VAE)

* Based on the proposed scheme, variational autoencoder successfully
generates images:

Training on MINIST

* Interpolation of latent variables induce transitions in generated images:
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Improving VAEs

Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)

Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE)

Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)
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Importance-weighted Autoencoder (IWAE)

* Observe that ELBO can also be proved by the Jensen’s inequality:

p(z, z) p(z, z)
logp(a:) — log EZN z|x [—] > EZN z|x llog —]
94 (z|x) q¢(z|w) q¢(z|x) q¢(z|a})

* Based on convexity, interchange order of logarithm and summation

e Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

(k)

p(z, z\"%))

log p(x) = logE ) ... 2(8) g, (2] E ]
qe (2| )Kk 1% (k)|w)

K

1 —|p(z,z0)
> ]Ez(l),... 2(E) gy (z|x) llog K Z q (z(k)|£13)
k=119

also called importance weights

* Becomes original ELBO when K = 1 and becomes exact bound when K = oo

|

(k)
p T,z
Ez(1)7...7z(K)~q¢(z|m)|: Z z(k |JJ } p(:l:)
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Semi-amortized VAE (SA-VAE)

* Inference gap of VAE can be decomposed to approximation gap (model error)
and amortization gap (single neural network amortizes all posteriors)

 Semi-amortized VAE: In addition to the

1. Sample x ~ pp(x)

global inference network, update the 2. Set Ay = enc(x; ¢)
posterior of each local instance for — shared to all samples
a few steps [Kim et al., 2018] 3. Fork=0,...,K —1, set
* Resembles MAML (see future lecture) Ak+1 = Ap T @VAELBO(A, 0,%)

— specific to each sample x

e Semi-amortized VAE can further reduce ELBO, applied on top of any VAEs

Algorithmic Intelligence Lab

MODEL ORACLE GEN LEARNED GEN
VAE < 21.77 < 27.06
SVI < 22.33 < 25.82
SA-VAE < 20.13 < 25.21
TRUE NLL (EST) 19.63 —

* SVI: Instance-specific posterior only, without amortization
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

» Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE)
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Mitigating Posterior Collapse for Continuous Latent-space VAEs

e Posterior collapse [Bowman et al., 2016]:

* When paired with powerful decoder, VAEs often ignore the posterior q4(z|x) and
generates generic samples (i.e., reconstruction loss does not decrease well)

* To mitigate posterior collapse, prior works attempt

1. Weaken the KL regularization term [Bowman et al., 2016, Razavi et al., 20193]
* Recall: KL regularization term minimizes KL(py (z]x), p(2))
* Anneal the weight during training, or constraint = 6

2. Match aggregated posterior instead of individuals [Tolstikhin et al., 2018]

* Instead of matching py(z|x) = p(z) for all x, match the aggregated posterior
Ey-pex) Pp(Z]x) = p(2) (each py(z]x) is now a deterministic, single point)

* Need implicit distribution matching techniques (e.g., GAN)

3. Improve optimization procedure [He et al., 2019]
* Strengthen the encoder: update encoder until converge, and decoder once

Algorithmic Intelligence Lab 19



Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]

* Each data is embedded into combination of ‘discrete’ latent vectors: {e1,--- ,ex}
* i.e.) each encoder output is quantized to the nearest vector among K codebook
vectors
818263 eK
Codebook Embedding
Space
VL /

Encoder fy DecoderJ ¢

e Restriction of latent space achieves high generation quality including:
* Images, videos, audios, etc.
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Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]
* The objective of VQ-VAE composed of three terms:
e Reconstruction loss (1)
* VQloss (2):
* Optimization of codebook vectors
e Commitment loss (3):
* Regularization to get encoder outputs and codebook close

£:

90(€) — w3 + lIsg(fo(x)) — el 3 + Bl fo(x) — s(e)]3

(1) 2) 3)

* VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:

* DALL-E (text-image generative model) —image is encoded via VQ-VAE
* Many audio self-supervised learning method

Algorithmic Intelligence Lab
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Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
» Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
* For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training

LE/F;I E SRS > iiii For global features

Encoder T l Decoder
Bottom
Level / /—’/ /‘\é’ﬁ%%ﬁ%ﬁ For local features

Encoder T

Original Reconstruction
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Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
e After VQ-VAE-2 training, train two pixelCNN priors for new image generation
* They autoregressively fill out each quantized latent vector space

Image Generation

sl
Via learned PixelCNN priors@ """ > iiii
l Condition
Via learned PixelCNN priors -=- égggggg?
l Decoder

Generation

* Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)

Algorithmic Intelligence Lab
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Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models

24



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Hierarchical VAEs use the factorized latent space pg(z) = [1; g (21]2<;)
* Here, the ELBO objective is given by

LvaE(®) = Eq(s12) [log p(2]2)] — KL(q(21]2)|[p(21)) — Y Eqa_yie) [KL(g(21]2, 2<0) | Ip(2112<1))]

* However, prior attempts on hierarchical VAE were not so successful due to:
1. Long-range correlation: upper latents often forget the data information

A 1 — Forgets x
® @— o=
e + e =
Deep Bottom-up VAE with
generative model inference model bottom-up inference

2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since
they jointly learn the prior distribution pg(z)  goth g (z]x) and py (2) are

moving during training ,
5



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 1. Bidirectional encoder (originally from [Kingma et al., 2016])

* Enforce upper latents (e.g., z3) to predict the lower latents (e.g., z;)

— Improve the long-range correlation issue
Better remembers x

(should reconstruct z;)

/
o]
(@) (=)

L Ko

Deep Bidirectional VAE with
generative model inference model bidirectional inference

* Training: posterior g4 (z|x) is inferred by both encoder and decoder
(aggregate them) and prior pg(2) is jointly inferred by decoder

* Recall that the KL term is a function of g4 (z|x) and pg(2)

* Inference: Sample prior py (z) from decoder and generate sample x

26



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 2. Taming the unstable KL term

1. Residual normal distribution
* For each factorized prior distribution

p(zZIZ<z) = N(ui(2<1),0:(2<1)),
define approximate posterior as (instead of directly predict y;, o;)
q(zt|z<1, ) := N (pi(z<1)+Api(2<, @), 0(2<1)-Aoi (2, ),

* Then, the KL term of ELBO is given by

KL o)) = 5 (75

+ Ac? —log Ac? — 1)

2. Spectral regularization
* Enforce Lipschitz smoothness of encoder to bound KL divergence

* Regularize the largest singular value of convolutional layers (estimated by
power iteration [Yoshida & Miyato, 2017])

27



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Results:
* Generate high-resolution (256x256) images

* SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28x28 32x32 32x32 64 x 64 256 %256 256 %256
NVAE w/o flow 78.01 2.93 - 2.04 - 0.71
NVAE w/ flow 78.19 291 3.92 2.03 0.70 0.69
VAE Models with an Unconditional Decoder
BIVA [36] 78.41 3.08 3.96 2.48 - -
IAF-VAE [4] 79.10 3.11 - - - -
DVAE++ [20] 78.49 3.38 - - - -
Conv Draw [42] - 3.58 4.40 - - -
Flow Models without any Autoregressive Components in the Generative Model
VFlow [59] - 2.98 - - - -
ANF [60] - 3.05 3.92 - 0.72 -
Flow++ [61] - 3.08 3.86 - - -
Residual flow [50] - 3.28 4.01 - 0.99 -
GLOW [62] - 3.35 4.09

- 1.03 -
Real NVP [63] - 3.49 4.28 3.02 -




Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

* Diffusion (forward) process: Markov chain that gradually add noise (of same
dimension of data) to data until original the signal is destroyed

q(fl?t|£Ut—1) = N(xt; v 1-— Brxi—1, Btl)

* Sampling (backward) process: Markov chain with learned Gaussian denoising
transition, starting from standard Gaussian noise p(xp) = N (z7;0,1)

p9($t—1 \5’315) = N(l’t—l; Me(fﬂt, t), Ee(xt, t))

Denoising/sampling (reverse)

—
Po(Xe—1]x¢)
@—> —>@ @—> —>@$0qu0)

x! |xl l)

Diffusion process (forward)
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

* Here, the forward distribution q(x;_1|x;, xo) can be expressed as a closed form
(composition of Gaussians)

* ELBO objective is given by the sum of local KL divergences (between Gaussians)
* Remark that both q(x;_1|x;, x) and pg (x;_1|x;) are Gaussians

Eqy[Dxr(q(zr|zo)|[p(zr)) + ) | Dru(q(@i-1|zs, z0)|Ips(x:-121)) — log po(wolz1)]

* DDPM [Ho et al., 2020] reparametrizes the model pg as

po (e, t) == auxy + vi€q (¢, t)

* Then, the training/sampling scheme resembles denoising score matching
(will be discussed later in this lecture)

* Intuitively, the reverse process adds the (learned) noise €4 for each step
(resembles stochastic Langevin dynamics)

Algorithmic Intelligence Lab
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Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

B~ w Ll =SS nmnsess
IIII.IIIIII!!:::::zz

n-atukxwwvwwwuw

 DDPM also generates high-resolution (256x256) images

Algorithmic Intelligence Lab
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Table of Contents

3. Energy-based Models (EBM)

* Energy-based models
* Score matching generative models
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Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,
energy) E(x) such that

po(x) = exp(—Zf‘g(a:))’ Zy = /ex exp(—FEy(z))

* Here, we don’t care about the exact density (which needs to compute the partition
function Zg), but only interested in the relative order of densities

* Training: The gradient of negative log-likelihood (NLL) is decomposed to:

Eznpaa(@) [ V0 108 po(2)] = Egrpyia(2) [ Vo Lo ()] + Vg log Zg
— EEmNPdata(m) [VoEg ()] — Em’fvpe(at) [VHEH(ml)l

-y -

WV
data gradient model gradient

* Note that this contrastive objective resembles (Wasserstein) GAN, but EBM uses an
implicit MCMC generating procedure and no gradient through sampling

* One can modify the discriminator of GAN to be an EBM [Zhao et al., 2017]
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Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,

energy) E(x) such that

CEE) g, - /  EP(Fo(®))

po(z) =

* Sampling: Run Markov chain Monte Carlo (MCMC) to draw a sample from pg (x)

* For high-dimensional data (e.g., image generation), stochastic gradient
Langevin dynamics (SGLD) [Welling & Teh, 2011] is popularly used:

* Given an initial sample x9, iteratively update x**1 (k = 0, ..., K — 1)

i+l ok 4 % V. logpe(z®) +€, €~ N(0,q)

* Due to the Gaussian noise, it does not collapse to the MAP solution but
convergestopg(x)asa - 0and K —» o

Algorithmic Intelligence Lab
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Energy-based Models (EBM)

e Advantages of EBMs
1. Compositionality: One can add or subtract multiple energy functions (e.g., male,
black hair, smiling) to sample the composite distribution

Male

EMalc - E’Black Hair = l?‘Smiling

Black Hair

Entate + Enlack air + Ew—__/

-Entuie +Elack Hair + Esmiling

e - Entate = Estack tair + Esmiting

2. No generator network: Unlike GAN/VAEs, EBMs do not need a specialized
generator architecture (one can reuse the standard classifier architectures)

3. Adaptive computation time: Since the sampling is given by iterative SGLD, the user
can choose from the fast coarse samples to slow fine samples

- EMnl: + EB]ack Hair ~ E|'Smi.ling
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Energy-based Models (EBM) - Appendix

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]
* The gradient of partition function can be reformulated as follow:

Velog Zg = Vg log/ exp(—FEg(x))dx

Algorithmic Intelligence Lab

o (/GXP(—EG(X))dX) N Vo/exp(—Eo(X))dx

_ ( / exp(—Eo(x))dX)_l / Vo exp(—Eg(x))dx

&) (/ exp(—E.g;(x))dx)_1 /exp(—Ee(x))(—VeEe(x))dx
= / (/exp(—Eo(X))dX)—1eXP(—Ea(X))(—VeEe(X))dX
(i41) / exP(—Zl‘;e(x))(_nge(x))dx

(&) / po(x)(— Vg Ep(x))dx

= Expo(x) [=VoEo(x)],
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Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* Use standard classifier architectures for joint distribution EBMs

* Recall that the classifier pg (y|x) is expressed by the logits f5 (x)

exp(fo(z)[y]
v &xp(fo(z)[y']

* Here, one can re-interpret the logits to define an energy-based model
exp(fo(z)[y] 2y exP(fo()[y]

* Note that shifting the logits does not affect pg (v|x) but pg(x); hence, EBM gives
an extra degree of freedom

pG(xa y) —

* The objective of JEM is a sum of density and conditional models, where the density
model is trained by contrastive objective of EBM

log pg(z,y) = log pg(x) + log pe(y|x)
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Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* JEM achieves a competitive performance as both classifier and generative model

Class Model Accuracy% T 1St FID]
Residual Flow 70.3 3.6 464

Glow 67.6 392 489

Hybrid IGEBM 49.1 83 379
JEM p(x|y) factored 30.1 636 61.8

JEM (Ours) 92.9 8.76 38.4

Disc. Wide-Resnet 95.8 N/A  N/A
Gen SNGAN N/A 8.59 255

’ NCSN N/A 891 25.32

* Also, JEM (generative classifier) improves uncertainty and robustness
* (a) calibration, (b) out-of-distribution detection, (c) adversarial robustness

Baseline

1.0 1.0
. ECE:22.32%
Q
g
3 05 0.5
3]
< I"

%% 0.5 1.0 %o

Confidence
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ECE: 4.87%

JEM

0.5
Confidence

1.0

I

Glow log p(x) JEM log p(x)

SVHN

CIFAR100

CelebA

.CIFAR-lO '




Score Matching

e Score matching [Hyvarinen, 2005]
* Score = gradient of the log-likelihood s(x) := V, log p(x)
e Score matching = Match the scores of data and model distribution

1 1
§Em~pdata(x)[H39($) — Saata(Z)||3] = Epnpeaa(z) [tT(Vasa(x)) + §\|39($)H§ + const.

However, we don’t know the scores of data distribution
Instead, one can use the equivalent form (proof by integration of parts)

& ©

* Recent works mostly consider denoising score matching [Vincent, 2011]

Match the score of perturbed distribution g, (%) = [ q,(¥|x) pgata(x)
where q,(%X|x) = N (x, o)

Then, the score matching objective is equivalent to

1 . -
5t (al)penea () [150(E) = Vz log o (&[) I3
It is tractable since the gradient V3 log g, (X|x) = Vzlog N (X|x,0) =

12n exp(— % (’%x)z) can be analytically computed

V; log

g
The objective can learn the scores of data distribution if 6 = 0

Algorithmic Intelligence Lab
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Score Matching - Appendix

e Score matching [Hyvarinen, 2005]
* The score matching objective can be reformulated as follow:

1

e |t is sufficient to show that

010g Pgata(T
Byt Sanea(@50(2)] = 3 [ —pasea() R, ()

8 ata
- Z/ B pdd;i(w)sg’i(x)dx

— Z [ Daata() 8S§;§$) dx + const.

* The last equality comes from the integration of parts

/ P (2)f (@)dz = p(e) f(z)| = f p(2)f (z)dz

and assumption pgaia(x)sg (x) — 0 for both side of infinity

Algorithmic Intelligence Lab
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S B pia(@) 1156 (2) = 5a2ta () 3] = Errnpruca(a) {tr(vxse(w)) + 5 lIso(@)ll2 | + const.
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Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* Previous works mostly define the score as a gradient of the energy function
sg(x) = =V Eg(x)
* This work: Directly model the score x € R% - s4(x) € R? as an output

e Noise-conditional Score Network Algorithm 1 Annealed Langevin dynamics.
. . . Require: {o;}L ¢ T.
* Denoising score matching is stable for 1. Im'tia]j{zef}(o .
large o but unbiased for small o 2: fori+1toLdo _ ,
. ' . 3: a; < €-0; /o1 > a; is the step size.
* |dea: Learn multiple noise levels (with 4 forf)e 1to le\? ;
a single neural network) and anneal the > Draw 2, ~ N (0, 1)
. . . 6: Xy ¢ Xy1 + —89(Xe—1,04) + /5 2
noise level during sampling oy > - >0, . 4fr 2
8 5(0 — iT
9: end for
return X

* One can extend score matching to continuous version (stochastic differential
equations, SDEs) [Song et al., 2021]

* NCSN and DDPM can be viewed as different discretization of some SDEs
* This view provides a better approach for generation and likelihood estimation
See Appendix for details
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Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* The continuous version of NCSN [Song et al., 2021] is SOTA for both likelihood
estimation and sample generation on CIFAR-10

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Model NLLTest| FID| Model FID| ISt
RealNVP (Dinh et al., 2016) 3.49 - Conditional
iResNet (Behrmann et al., 2019) 3.45 - BigGAN (Brock et al., 2018) 1473 922
Glow (Kingma & Dhariwal, 2018) 3.35 - StyleGAN2-ADA (Karras et al., 2020a) 2.42  10.14
MintNet (Song et al., 2019b) 3.32 - —
Residual Flow (Chen etal, 2019) 328 4637 _onconditional
FFJORD (Grathwohl et al., 2018) 3.40 - StyleGAN2-ADA (Karras et al., 2020a) 2.92  9.83
Flow++ (Ho et al., 2019) 3.29 - NCSN (Song & Ermon, 2019) 2532 8.87 + .12
DDPM (L) (Ho et al., 2020) <370° 1351 NCSNv2 (Song & Ermon, 2020) 10.87 8.40 + .07
DDPM (Laimpte) (Ho et al., 2020) <375 3.17  DDPM (Hoetal, 2020) 3.17 9.46 + .11
DDPM++ 278  9.64
DDFM 3.28 337 DDPM++ cont. (VP) 2.55 9.58
DDPM cont. (VP) 3.21 3.69  DDPM++ cont. (sub-VP) 261 956
DDPM cont. (SUb—VP) 3.05 3.56 DDPM++ cont. (deep, VP) 2.41 9.68
DDPM++ cont. (VP) 3.16 393 DDPM++ cont. (deep, sub-VP) 241 957
DDPM++ cont. (sub-VP) 3.02 3.16 NCSN++ 2.45 9.73
DDPM++ cont. (deep, VP) 3.13 3.08 NCSN++ cont. (VE) 2.38 9.83
DDPM-++ cont. (deep, sub-VP) 2.99 2.92 NCSN++ cont. (deep, VE) 2.20 9.89

Algorithmic Intelligence Lab

42



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
Forward SDE (data — noise)
Q dx = f(x,t)dt + g(t)dw —)@
'i T
f(x t)— g (¢ ﬁx log p¢ (x ] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [f(x,t) — g(t)*Vx log ps(x)]dt + g(t)dw,
* Then, the reverse diffusion process also follows some SDE:
dx = [f(x,t) — g(t)*Vxlog ps(x)]dt + g(t)dw,
* One can learn the score function by score matching

0* = arg;nin Et{)\(t)Ex(o)Ex(tnx(o)[ ||Se(x(t)7t) — Vix(t) log pot (x(¢) | X(O))Hz ] }
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Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw —)@
o - score fction
dx = [f(x,t) — g (t)Vy log p; (x ] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [£(x,t) — g(t)*Vyx log ps(x)]dt + g(t)dw,

* Here, NCSN and DDPM can be viewed as different discretizations some stochastic
differential equations (SDEs)

2
e« NCSN: dx = de. > X =X1+4/0] — 07 2%

* DDPM: dX=—%ﬁ(t)th+\/5(t) dw -  x; =4/1— Bixi—1 ++/Biz;
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Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
* The reverse diffusion process can be solved by 3 ways:

1. Run a general-purpose SDE solver (a.k.a. predictor)
2. Utilize the score-based model sg(x,t) = V, log p;(x) (a.k.a. corrector)

— Combining predictor and corrector gives the SOTA generation performance

Algorithm 2 PC sampling (VE SDE) Algorithm 3 PC sampling (VP SDE)
1: xn ~ N(0,02,4]) 1: xy ~N(0,I)
2: fori =N —1to0Odo 2: fort =N —1to0do
3 x; ‘_Nzci+1 + (‘7i2+1 - ‘712)59* (Xi+1,0i+1) 3: X; (2= V1= Bit1)Xit1 + Bir1Se* (Xit1,% + 1)
8 ERN 4: z~ N(0,I)
5: X; «— X + 4 /0’1-2_,_1 — o’z 5. % < X, + \/Bir1z Predictor
6: forj =1to M do 6: forj =1to M do Corrector
7.z~ N(0,I) 7.z~ N(0,I)
8 Xi «— X; + €;Sgx (Xi, 0:) + V/2¢€;2 8 Xi < X; + €;Sgx (Xi, 1) + V/2¢€;2
9: return xo 9: return xo
Continuous ver. of NCSN Continuous ver. of DDPM
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Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
* The reverse diffusion process can be solved by 3 ways:

1. Run a general-purpose SDE solver (a.k.a. predictor)
2. Utilize the score-based model sg(x,t) = V, log p;(x) (a.k.a. corrector)

3. Convert to deterministic ODE
* Every SDE (Ito process) has a corresponding deterministic ODE

ax = [£(x,1) — 2 9(t)*Vilogpi(x) |dt,

whose trajectories include the same evolution of densities

* Deterministic ODE defines an invertible model (a.k.a. normalizing flow)
[Chen et al., 2018]

* Using this formulation, one can
a) Compute exact likelihood
b) Manipulate latents with encoder (model is invertible)
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4. Autoregressive and Flow-based Models
* Autoregressive models
* Flow-based models
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Autoregressive models

* Autoregressive generation (e.g., pixel-by-pixel for images) :

KQ
p(x) = Hp(xkz\xh“' , Tk—1)
k=1

K2
= H p(zk|T<i)
k=1

* For example, each RBG pixel is generated autoregressively:

I'p2

p(zg|le<r) = p(Tr.r, Tk B, Th.c|T<k)

= p(@k. r|lT<i)p(Tr.B|T<k, Tk r)D(Tk G| T<ks Tk R, Tk, B)

* Each pixel is treated as discrete variables, sampled from softmax distributions:

—_i | ‘ | %
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

O
O

w<k =

/’/

(input) O~ ’/ 7 O
’

o O
Q (hidden layer)

masked
convolution
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

<k
(input)

O Tk

Q@ (hidden layer) (generation)

o/
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

L <k

effective Lk
receptive field
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]

* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based RNN-based
LSTM
<k L<k
effective Lk Lk
receptive field @ ®
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based effective RNN-based
receptive field
LSTM
L <k Lk
effective Lk Lk
receptive field @ @-

* Inference requires iterative forward procedure (slow)

* Training requires single forward pass for CNN, but multiple pass for RNN (slow)

» Effective receptive field (context of pixel generation) is unbounded for RNN, but
bounded for CNN (constrained)

Next, extending to two-dimensional data
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

(hidden layer)

masked O O
convolution O Q
O O
®@ 0660

Pixel CNN
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

O O O O O(generation)

O O O O O
O O O O
O O O O
masked O @)

convolution

masked
convolution

Pixel CNN
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O OO0
O O O O O
O O O O
O O O O
masked O @)

convolution O O

If l|\
AR\
masked (row) masked O ¢ \ O
convolution convolution O OII |
® ©0/6'é o
@ 0 6 ¢
Pixel CNN Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O OO0
O O O O O
O O O O
O O O O
masked O

convolution O O

masked
convolution

Pixel CNN

Algorithmic Intelligence Lab

1-dimensional O\ O O
convolution
O O

(row) masked @) O] 0O O
convolution O O

Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
convolutional connections
O © 00O for LSTM hidden states Ijl%l%}timesequence
© OO O O O O for LSTMs

O O O O
masked O O 1-dimensional O\ O O
convolution O O convolution O O
@ © @ @
masked (row) masked O Of0O O
convolution convolution O O
@ 000 O
@ o0 0 O
Pixel CNN Row LSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
O O O O O convolutional connections
for LSTM hidden states I:I/timesequence
O O O ] for LSTMs
O O O O
masked O 1-dimensional O
convolution O O convolution O
@ © 0 0
masked (row) masked O O
convolution convolution
@ o 0
@ o0 O 0
Pixel CNN Row LSTM

Next, introducing column-wise dependencies using LSTMs
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

masked
convolution

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LSTM

masked
convolution

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LST™M “diagonal”
time sequence

for LSTMs

masked
convolution

masked
convolution

Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LST™M “diagonal”
time sequence

for LSTMs

masked
convolution

masked O O S . R.eceptlve field now covers every
convolution o O pixels generated previously
O O @ O
@ o0 0 O
Diagonal BiLSTM
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Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

* Image generation results from CIFAR-10 and ImageNet:

ﬂlﬁlﬁ .lILI“
iy R

e Eﬂiﬁﬁ
SHETEY WA

* Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

CIFAR-10 ImageNet

Only explicit models (not GAN) can compute NLL

Model NLL Test Model NLL Test (Train)
PixelCNN: 81.30 PixelCNN: 3.14 (3.08)
Row LSTM: 80.54
D ; . Row LSTM: 3.07 (3.00)
iagonal BiLSTM (1 layer, h = 32): 80.75 Di al BiLSTM: 3.00 (2.93
Diagonal BiLSTM (7 layers, h = 16): 79.20 iagonal BiLSTM: 00(2.93)
MNIST CIFAR-10

* PixelCNN is easiest to train and Diagonal BiLSTM performs best
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Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:
T=2z0 > zr=frofr_io- fi(20) z € RY

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det <8ft(zt‘1>)l

0z¢—1

0

0

* source: Jang, https://blog.evjang.com/2018/01/nf1.html,
Algorithmic Intelligence Lab g https://blog.eviang / /0/

Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf



Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:
T =2z9 =>» zr=frofr_i0o-- fi(zo0) z € RY

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det <8ft(zt‘1))|

0z¢—1

T
log p(x) = log p(z0) = logpr(zr) + Y log
t=1

* Log-likelihood log p(x) can be maximized directly
* Naively computing log |det (0f:(z:—1)/0z:—1)| requires O(K?>) complexity,

which is not scalable for large-scale neural networks

[ How to design flexible yet tractable form of invertible transformations? ]
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

1. Det Identities 2 Coupling Blocks 3. Autoregressive 4. Unbiased

. Estimation
Planar NF ' NICE Inverse AF . FFIORD
Sylvester NF . Real NVP . Neural AF . Residual Flows
- Glow . Masked AF |

C ‘| I m nn E .----..\L E
.(E (| | | | N | : : .
o =1 ; ; -
S W omidiil | | A |
OC = =d@s-ahn ! ] |
N RLEIET | - '

(Low rank) (Lower triangular + (Lower triangular) (Arbitrary)

structured)
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

1. Det Identities

Planar NF
Sylvester NF

Jacobian
ElL A E

(Low rank)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 68



Normalizing Flow (NF)

* Basic layers with linear log-det-Jacobian complexity [Rezende et al., 2015]

e Planar flow: f(z) =2z + uh(wTz+ )
* Determinant of Jacobianis |Jet %‘ — |1 + uThl(sz + b)W|

+ Radial flow: f(2) =2+ Bh(e,7)(z — 20) (r = |z — 20|, h(a,r) =1/(a + 7))
* Determinant of Jacobianis [1 4+ Bh(a, r)]d—l[l + Bh(a, ) + B (a,7)r)]

PIanar Radial -
K=10 K=2 K_10

E]BIIJ[],’][J
1\ D s

» I -
»
Algorithmic Intelligence Lab

Unit Gaussian

Uniform

‘.. | -
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

2. Coupling Blocks

NICE
Real NVP

-

(Lower triangular +
structured)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 70



Real-valued Non-volume Preserving Flow (Real NVP)

* Coupling layer z; = f;(z;_1) for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

. s | (4l
sl B | 357
Zt—1 —7 [Zt—l,l:dazt—l,d—|—1:K] i 5]
| W ]
spatial-partition channel-partition

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (9 and m are described later)

Zt.d+1: K — g(Zt—l,d+1:K; m(zt—l,lzd))

3. Second partition is left invariant ( 2¢,1:4 = Zt—1,1:d )
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Real-valued Non-volume Preserving Flow (Real NVP)

» Affine coupling layer was shown to be effective in practice:

Zt,d+1: K = g(zt—1,d+1:K; m(zt—l,lzd))

= Zt—l,d—|-11K ® eXp<m1(Zt_1’1:d)) + mZ(Zt—1,12d>

element-wise product .) — L neural networks
 Jacobian of each transformation becomes a lower triangular matrix:
" ai1 0. 0 |
Oft—1(2t-1) I 0 a2 0
= | 9gi_1(z:— : Y
9z 2511) - diag(exp(mi (20-1,1.4)) | 7 .0
- axid

* Inference for such transformations can be done in tractable time
* Determinant of lower triangular matrix is a product of diagonals

det (8ft(zt‘1))|

0zi_1

T
log p(x) = log p(z0) = log pr(2r) + Z log
t=1
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Real-valued Non-volume Preserving Flow (Real NVP)

* For each coupling layer, there exists asymmetry since the first partition 2:—1,1:d
is left invariant

* Two coupling layers are paired alternatively to overcome this issue

 Multi-scale architectures are used
e Half variables follow Gaussian distribution at each scale

paired coupling layer

Algorithmic Intelligence Lab
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

3. Autoregressive

Inverse AF
Neural AF
Masked AF

%&k

(Lower triangular)
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Inverse Autoregressive Flow (IAF)

* Inverse autoregressive flow (IAF) modifies each dimension of variable in
autoregressive manner [Kingma et al., 2016]:

* Forward pass z, — zr is fast, but backward pass z; — z, is slow
* Used for VAE posterior: Only forward pass is required for approx. posterior

Ztd = pt.d(Zt—1,1:d—1) + 0t.a(Zt—11:d—1) Zt—1.d

= OO@0O OO

000

caseof d =3 updates done in parallel

* |Inference for corresponding normalizing flow is efficient:

Ut,l 0 .. O
T .
8 Z — O-t72 O ¢
log q(z|x) = log qo(zo|x) + E log |det ( fgitt11>)'\a : O
t=1 - K
B Ot,K _
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Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

4. Unbiased
Estimation

FFJORD
Residual Flows

(Arbitrary)
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Continuous Normalizing Flow (CNF)

* Discrete normalizing flows need a carefully designed (less expressive) layers

to achieve affordable (not cubic) complexity
— Continuous normalizing flow affords an arbitrary network architecture

dz __
. Consider a continuous transformation d; — f(z(¢),1) (instead of Z1 = f(zo) ),

then the sampling can be done by an ordinary differential equation (ODE):

2(t1) = 2(to) + | f(x(t),t, 0)dt

to

* Here, the change in log-probability also follows an ODE:

t
1 af
1 t1)) =1 to)) — Tr dt
ogp(a(t)) = logp(a(to) ~ [ T (55)
 Remark: We only need a trace (not a determinant) to compute likelihood

* The network f(z(t), t, 0) is learned by gradient descent (backpropagation
follows another ODE) [Chen et al., 20018; Grathwohl et al., 2019]
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