Algorithmic Intelligence Lab

Generative Models Il: Explicit Density Models

Al602: Recent Advances in Deep Learning
Lecture 5

Slide made by

Sangwoo Mo and Chaewon Kim
KAIST EE

Algorithmic Intelligence Lab



Table of Contents

1. Introduction
* Implicit vs explicit density models

2. Variational Autoencoders (VAE)
e Variational autoencoders
e Tighter bounds for variational inference
* Techniques to mitigate posterior collapse

* Large-scale generation via hierarchical structures
* Diffusion probabilistic models

3. Energy-based Models (EBM)
* Energy-based models
* Score matching generative models

4. Autoregressive and Flow-based Models
* Autoregressive models
* Flow-based models



Table of Contents

1. Introduction
* Implicit vs explicit density models

2. Variational Autoencoders (VAE)
* Variational autoencoders
e Tighter bounds for variational inference
e Techniques to mitigate posterior collapse

e Large-scale generation via hierarchical structures
e Diffusion probabilistic models

3. Energy-based Models (EBM)
* Energy-based models
e Score matching generative models

4. Autoregressive and Flow-based Models
e Autoregressive models
* Flow-based models

Algorithmic Intelligence Lab



Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

N Implicit R Learning by
density comparison
Generative | | [T * Directly I.earn density .p(x)
models * Example: autoregressive, flow
,|  Explicit | Unnormalized |+ Learn unnormalized density E (x) « p(x)
density density * Example: EBM, score matching
. * Learn approximation (e.g., lower bound)
N AperXI.rtnate of density L(x) < p(x)
ensity * Example: VAE, diffusion model

Algorithmic Intelligence Lab



Implicit vs Explicit Density Models

* From now on, we study generative models with explicit density estimation:

Implicit density Explicit density
\ 4 * \ 4 ‘
Learning by com Approximate Unnormalized Exact density
parison (GAN) density (VAE) density (EBM) (AR, flow)

Better generation quality

T
ey

Better density modeling

Algorithmic Intelligence Lab



Table of Contents

2. Variational Autoencoders (VAE)

Variational autoencoders

Tighter bounds for variational inference
Technigques to mitigate posterior collapse
Large-scale generation via hierarchical structures
Diffusion probabilistic models

Algorithmic Intelligence Lab



Variational Autoencoder (VAE)

* Consider the following generative model:

EES

latent variable
z

* Fixed prior on random latent variable
* e.g., standard Normal distribution

p(z) = N(2;0,1)

“decoding”
distribution

* Parameterized likelihood (decoder) for generation:
* e.g., Normal distribution parameterized by neural network

po(®|2) = N(Z; faec(2), 1)

* Resulting generative distribution (to optimize):

log p0(2) = log | pale|)p(z)dz = 1og Expop(a]2)]

z

Algorithmic Intelligence Lab



Variational Autoencoder (VAE)

* Variational autoencoder (VAE) introduce an auxiliary distribution (encoder)
[Kingma et al., 2013]

)
N Ra¥ “encoding”
ﬂ = diStributign = E Q¢(Z|$) — N<Z; fenC,M(w)’ fenc,a(w))

representation

data

* Each log py(x)term is replaced by its lower bound:

log po (@) = log py (@) — min KL(gy(2|)]|ps(2|2))
= logpg(@) + max Bz, (ze) [log po(2|z) — log gy (2|z)]

= max B, g, (zle) log po () + log po(z|x) — log g4 (2|x)]

= maxEzrq, (=[x [l0g Po (]2)] — KL(gs(2|2)[[p(2))

 Bound becomes equality when ¢4 (2|) = po(2z|x)

Algorithmic Intelligence Lab



Variational Autoencoder (VAE)

* The training objective becomes:
tractable between two Gaussian distributions

N |
max »  logpo(™) > maxmax Bz, ojo) [log po(2)] — KL (g4 (2[2)[[p(2))
n=1
N N
A max max Z Z log pg ('™ |2(™*)) — KL(gy(z]2™)||p(2))
n=1k=1
(n,k)

where latent variables are sampled by =z ~ q<z>(z|w(n))

* However, non-trivial to train with back propagation due to sampling procedure:
N N

Vol =Y Y —vslogpe(x™|z"M) + 74 KL(g(z|2'™)||p(2))
n=1k=1 {L

Since z(™*) is fixed after being sampled, ¢ log p(x™|z(™*) =07?

Algorithmic Intelligence Lab



Variational Autoencoder (VAE)

* Reparameterization trick is based on the change-of-variables formula:

€2NN(82|,M,O') & g2 = u+oe, €0 NN(€0|O,1)

A
A 51<—050</\ Eo 1+ 1
< > => =>

| scaling shifting
o ~ N(e0[0,1) e1 ~ N(e1]0,0) ez ~ N(ez2|u,0)

* Latent variable z("-*) can be similarly parameterized by encoder network:

Z(n’k) ~ N(Z; fenc,,u(w(n))? fenc,a(w(n)))

s

20 = fone (@) + faneo (@) 0, eF) N (e]0,1)

Algorithmic Intelligence Lab 10



Variational Autoencoder (VAE)

* Total loss of variational autoencoder:

N N
Vol =) Y —vglogpy(x™|z"F)) + 74KL(gs (22| |p(2))
n=1k=1 e —~— - T —

ngﬁl V¢>£2

e Recall that faec, Jenc,u» fenc,o are parameterized by ¢

* Derivative of first part:

Voli = Vglog N (2™); faec(2™), 1)
. 4} log-normal distribution
= Vo512 — foae(2)]
| 4} reparameterization trick
= Voglle"™ = fooe(foneu (@) + fonc o (@) © €™ H)5

Algorithmic Intelligence Lab

11



Variational Autoencoder (VAE)

* Total loss of variational autoencoder:
N N

Vol =) Y —Vologpe(a™|z"") + 74KL(g4(2]2™)]Ip(2))

ngﬁl V¢>£2

e Recall that faec, Jenc,u» fenc,o are parameterized by ¢

e Derivative of second part:

VoL = VKLV (2} fone,u (™), fenc.o (™))|IN (250, 1))
4} element-wise factorization (z = [21, cee ,ZK] )

K
=" UKLV (213 fonoyik (™), fonc.on (™))IN (2430, 1))

@ KL divergence between normal distributions
K 1 1
=D Vo~ 108 fone o (@) 4 5 fenc o (@) + 5 fone (@)’

Algorithmic Intelligence Lab

12



Variational Autoencoder (VAE)

* Based on the proposed scheme, variational autoencoder successfully
generates images:

Training on MINIST

* Interpolation of latent variables induce transitions in generated images:

O00Q0QQUQVQOTVVYVY
2009090V s 99—
CO09 9T NINI 9 —
THSSAdn QA e e —
S AWM 99w —
e e L L R R R e
@O 0 0 D D) D) by By e e . —

(S

2 O NN N by By by ey - —
T o eemninn b tg g ey —~—
C oo oo oo s by by By S S~~~
Croooerb b NN
CoroorrrPPhLLY NSNS~
eI RH B NN
e TR RRH BNNS
PSSO NANNNNNNNNNNS

13



Improving VAEs

Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)

Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE)

Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models

14



Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Tighter objective bound
* Reduce approximation (model) error: Importance-weighted AE (IWAE)
* Reduce amortization (sample-wise) error: Semi-amortized VAE (SA-VAE)

15



Importance-weighted Autoencoder (IWAE)

* Observe that ELBO can also be proved by the Jensen’s inequality:

p(z, z) p(z, z)
logp(a:) — log EZN z|x [—] > EZN z|x llog —]
94 (z|x) q¢(z|w) q¢(z|x) q¢(z|a})

* Based on convexity, interchange order of logarithm and summation

e Importance weighted AE (IWAE) relax the inequality [Burda et al., 2018]:

(k)

p(z, z\"%))

log p(x) = logE ) ... 2(8) g, (2] E ]
qe (2| )Kk 1% (k)|w)

K

1 —|p(z,z0)
> ]Ez(l),... 2(E) gy (z|x) llog K Z q (z(k)|£13)
k=119

also called importance weights

* Becomes original ELBO when K = 1 and becomes exact bound when K = oo

|

(k)
p T,z
Ez(1)7...7z(K)~q¢(z|m)|: Z z(k |JJ } p(:l:)

Algorithmic Intelligence Lab 16



Semi-amortized VAE (SA-VAE)

* Inference gap of VAE can be decomposed to approximation gap (model error)
and amortization gap (single neural network amortizes all posteriors)

 Semi-amortized VAE: In addition to the

1. Sample x ~ pp(x)

global inference network, update the 2. Set Ay = enc(x; ¢)
posterior of each local instance for — shared to all samples
a few steps [Kim et al., 2018] 3. Fork=0,...,K —1, set
* Resembles MAML (see future lecture) Ak+1 = Ap T @VAELBO(A, 0,%)

— specific to each sample x

e Semi-amortized VAE can further reduce ELBO, applied on top of any VAEs

Algorithmic Intelligence Lab

MODEL ORACLE GEN LEARNED GEN
VAE < 21.77 < 27.06
SVI < 22.33 < 25.82
SA-VAE < 20.13 < 25.21
TRUE NLL (EST) 19.63 —

* SVI: Instance-specific posterior only, without amortization

17



Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

» Posterior collapse (latents are ignored when paired with powerful decoder)
* Careful optimization: various techniques for continuous latent-space VAEs
* Use discrete latent space: Vector-quantized VAE (VQ-VAE)

18



Mitigating Posterior Collapse for Continuous Latent-space VAEs

e Posterior collapse [Bowman et al., 2016]:

* When paired with powerful decoder, VAEs often ignore the posterior q4(z|x) and
generates generic samples (i.e., reconstruction loss does not decrease well)

* To mitigate posterior collapse, prior works attempt

1. Weaken the KL regularization term [Bowman et al., 2016, Razavi et al., 20193]
* Recall: KL regularization term minimizes KL(py (z]x), p(2))
* Anneal the weight during training, or constraint = 6

2. Match aggregated posterior instead of individuals [Tolstikhin et al., 2018]

* Instead of matching py(z|x) = p(z) for all x, match the aggregated posterior
Ey-pex) Pp(Z]x) = p(2) (each py(z]x) is now a deterministic, single point)

* Need implicit distribution matching techniques (e.g., GAN)

3. Improve optimization procedure [He et al., 2019]
* Strengthen the encoder: update encoder until converge, and decoder once

Algorithmic Intelligence Lab 19



Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]

* Each data is embedded into combination of ‘discrete’ latent vectors: {e1,--- ,ex}
* i.e.) each encoder output is quantized to the nearest vector among K codebook
vectors
818263 eK
Codebook Embedding
Space
VL /

Encoder fy DecoderJ ¢

e Restriction of latent space achieves high generation quality including:
* Images, videos, audios, etc.

Algorithmic Intelligence Lab



Vector-quantized VAE (VQ-VAE)

 VQ-VAE [Oord et al., 2017]
* The objective of VQ-VAE composed of three terms:
e Reconstruction loss (1)
* VQloss (2):
* Optimization of codebook vectors
e Commitment loss (3):
* Regularization to get encoder outputs and codebook close

£:

90(€) — w3 + lIsg(fo(x)) — el 3 + Bl fo(x) — s(e)]3

(1) 2) 3)

* VQ-VAE like methods (i.e. discrete prior) recently shows remarkable success on:

* DALL-E (text-image generative model) —image is encoded via VQ-VAE
* Many audio self-supervised learning method

Algorithmic Intelligence Lab

21



Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
» Different from VQ-VAE, vector quantization occurs twice (top, bottom level)
* For both consideration of local/global features for high-fidelity image

VQ-VAE Encoder and Decoder Training

LE/F;I E SRS > iiii For global features

Encoder T l Decoder
Bottom
Level / /—’/ /‘\é’ﬁ%%ﬁ%ﬁ For local features

Encoder T

Original Reconstruction

Algorithmic Intelligence Lab 22



Vector-quantized VAE + Hierarchical Architecture (VQ-VAE-2)

* VQ-VAE-2 [Razavi et al., 2019b]
e After VQ-VAE-2 training, train two pixelCNN priors for new image generation
* They autoregressively fill out each quantized latent vector space

Image Generation

sl
Via learned PixelCNN priors@ """ > iiii
l Condition
Via learned PixelCNN priors -=- égggggg?
l Decoder

Generation

* Generated images are comparable to state-of-the-art GAN model (e.g. BigGAN)

Algorithmic Intelligence Lab

23



Improving VAEs

* Although VAE has many advantages (e.g., fast sampling, full mode covering,
latent embedding), there are issues that lead to poor generation quality

* Improve model expressivity
* Use expressive prior distribution: Gaussian mixtures, normalizing flow
* Use hierarchical architectures: Hierarchical VAE, Diffusion Models

24



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Hierarchical VAEs use the factorized latent space pg(z) = [1; g (21]2<;)
* Here, the ELBO objective is given by

LvaE(®) = Eq(s12) [log p(2]2)] — KL(q(21]2)|[p(21)) — Y Eqa_yie) [KL(g(21]2, 2<0) | Ip(2112<1))]

* However, prior attempts on hierarchical VAE were not so successful due to:
1. Long-range correlation: upper latents often forget the data information

A 1 — Forgets x
® @— o=
e + e =
Deep Bottom-up VAE with
generative model inference model bottom-up inference

2. Unstable (unbounded) KL term: even more severe for hierarchical VAEs since
they jointly learn the prior distribution pg(z)  goth g (z]x) and py (2) are

moving during training ,
5



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 1. Bidirectional encoder (originally from [Kingma et al., 2016])

* Enforce upper latents (e.g., z3) to predict the lower latents (e.g., z;)

— Improve the long-range correlation issue
Better remembers x

(should reconstruct z;)

/
o]
(@) (=)

L Ko

Deep Bidirectional VAE with
generative model inference model bidirectional inference

* Training: posterior g4 (z|x) is inferred by both encoder and decoder
(aggregate them) and prior pg(2) is jointly inferred by decoder

* Recall that the KL term is a function of g4 (z|x) and pg(2)

* Inference: Sample prior py (z) from decoder and generate sample x

26



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* |dea 2. Taming the unstable KL term

1. Residual normal distribution
* For each factorized prior distribution

p(zZIZ<z) = N(ui(2<1),0:(2<1)),
define approximate posterior as (instead of directly predict y;, o;)
q(zt|z<1, ) := N (pi(z<1)+Api(2<, @), 0(2<1)-Aoi (2, ),

* Then, the KL term of ELBO is given by

KL o)) = 5 (75

+ Ac? —log Ac? — 1)

2. Spectral regularization
* Enforce Lipschitz smoothness of encoder to bound KL divergence

* Regularize the largest singular value of convolutional layers (estimated by
power iteration [Yoshida & Miyato, 2017])

27



Nouveau VAE (NVAE)

 NVAE [Vahdat et al., 2020]
* Results:
* Generate high-resolution (256x256) images

* SOTA test negative log-likelihood (NLL) on non-autoregressive models

Method MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28x28 32x32 32x32 64 x 64 256 %256 256 %256
NVAE w/o flow 78.01 2.93 - 2.04 - 0.71
NVAE w/ flow 78.19 291 3.92 2.03 0.70 0.69
VAE Models with an Unconditional Decoder
BIVA [36] 78.41 3.08 3.96 2.48 - -
IAF-VAE [4] 79.10 3.11 - - - -
DVAE++ [20] 78.49 3.38 - - - -
Conv Draw [42] - 3.58 4.40 - - -
Flow Models without any Autoregressive Components in the Generative Model
VFlow [59] - 2.98 - - - -
ANF [60] - 3.05 3.92 - 0.72 -
Flow++ [61] - 3.08 3.86 - - -
Residual flow [50] - 3.28 4.01 - 0.99 -
GLOW [62] - 3.35 4.09

- 1.03 -
Real NVP [63] - 3.49 4.28 3.02 -




Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

* Diffusion (forward) process: Markov chain that gradually add noise (of same
dimension of data) to data until original the signal is destroyed

q(fl?t|£Ut—1) = N(xt; v 1-— Brxi—1, Btl)

* Sampling (backward) process: Markov chain with learned Gaussian denoising
transition, starting from standard Gaussian noise p(xp) = N (z7;0,1)

p9($t—1 \5’315) = N(l’t—l; Me(fﬂt, t), Ee(xt, t))

Denoising/sampling (reverse)

—
Po(Xe—1]x¢)
@—> —>@ @—> —>@$0qu0)

x! |xl l)

Diffusion process (forward)

Algorithmic Intelligence Lab 29



Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]

* Here, the forward distribution q(x;_1|x;, xo) can be expressed as a closed form
(composition of Gaussians)

* ELBO objective is given by the sum of local KL divergences (between Gaussians)
* Remark that both q(x;_1|x;, x) and pg (x;_1|x;) are Gaussians

Eqy[Dxr(q(zr|zo)|[p(zr)) + ) | Dru(q(@i-1|zs, z0)|Ips(x:-121)) — log po(wolz1)]

* DDPM [Ho et al., 2020] reparametrizes the model pg as

po (e, t) == auxy + vi€q (¢, t)

* Then, the training/sampling scheme resembles denoising score matching
(will be discussed later in this lecture)

* Intuitively, the reverse process adds the (learned) noise €4 for each step
(resembles stochastic Langevin dynamics)

Algorithmic Intelligence Lab

30



Denoising Diffusion Probabilistic Models (DDPM)

 Diffusion probabilistic models [Sohl-Dickstein et al., 2015]
 DDPM achieved the SOTA FID score (3.17) on CIFAR-10 generation

B~ w Ll =SS nmnsess
IIII.IIIIII!!:::::zz

n-atukxwwvwwwuw

 DDPM also generates high-resolution (256x256) images

Algorithmic Intelligence Lab

31



Table of Contents

3. Energy-based Models (EBM)

* Energy-based models
* Score matching generative models

Algorithmic Intelligence Lab

32



Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,
energy) E(x) such that

po(x) = exp(—Zf‘g(a:))’ Zy = /ex exp(—FEy(z))

* Here, we don’t care about the exact density (which needs to compute the partition
function Zg), but only interested in the relative order of densities

* Training: The gradient of negative log-likelihood (NLL) is decomposed to:

Eznpaa(@) [ V0 108 po(2)] = Egrpyia(2) [ Vo Lo ()] + Vg log Zg
— EEmNPdata(m) [VoEg ()] — Em’fvpe(at) [VHEH(ml)l

-y -

WV
data gradient model gradient

* Note that this contrastive objective resembles (Wasserstein) GAN, but EBM uses an
implicit MCMC generating procedure and no gradient through sampling

* One can modify the discriminator of GAN to be an EBM [Zhao et al., 2017]

Algorithmic Intelligence Lab



Energy-based Models (EBM)

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]

* Instead of directly modeling the density p(x), learn the unnormalized density (i.e.,

energy) E(x) such that

CEE) g, - /  EP(Fo(®))

po(z) =

* Sampling: Run Markov chain Monte Carlo (MCMC) to draw a sample from pg (x)

* For high-dimensional data (e.g., image generation), stochastic gradient
Langevin dynamics (SGLD) [Welling & Teh, 2011] is popularly used:

* Given an initial sample x9, iteratively update x**1 (k = 0, ..., K — 1)

i+l ok 4 % V. logpe(z®) +€, €~ N(0,q)

* Due to the Gaussian noise, it does not collapse to the MAP solution but
convergestopg(x)asa - 0and K —» o

Algorithmic Intelligence Lab

34



Energy-based Models (EBM)

e Advantages of EBMs
1. Compositionality: One can add or subtract multiple energy functions (e.g., male,
black hair, smiling) to sample the composite distribution

Male

EMalc - E’Black Hair = l?‘Smiling

Black Hair

Entate + Enlack air + Ew—__/

-Entuie +Elack Hair + Esmiling

e - Entate = Estack tair + Esmiting

2. No generator network: Unlike GAN/VAEs, EBMs do not need a specialized
generator architecture (one can reuse the standard classifier architectures)

3. Adaptive computation time: Since the sampling is given by iterative SGLD, the user
can choose from the fast coarse samples to slow fine samples

- EMnl: + EB]ack Hair ~ E|'Smi.ling

Algorithmic Intelligence Lab



Energy-based Models (EBM) - Appendix

e EBM [LeCun et al., 2006, Du & Mordatch, 2019]
* The gradient of partition function can be reformulated as follow:

Velog Zg = Vg log/ exp(—FEg(x))dx

Algorithmic Intelligence Lab

o (/GXP(—EG(X))dX) N Vo/exp(—Eo(X))dx

_ ( / exp(—Eo(x))dX)_l / Vo exp(—Eg(x))dx

&) (/ exp(—E.g;(x))dx)_1 /exp(—Ee(x))(—VeEe(x))dx
= / (/exp(—Eo(X))dX)—1eXP(—Ea(X))(—VeEe(X))dX
(i41) / exP(—Zl‘;e(x))(_nge(x))dx

(&) / po(x)(— Vg Ep(x))dx

= Expo(x) [=VoEo(x)],

36



Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* Use standard classifier architectures for joint distribution EBMs

* Recall that the classifier pg (y|x) is expressed by the logits f5 (x)

exp(fo(z)[y]
v &xp(fo(z)[y']

* Here, one can re-interpret the logits to define an energy-based model
exp(fo(z)[y] 2y exP(fo()[y]

* Note that shifting the logits does not affect pg (v|x) but pg(x); hence, EBM gives
an extra degree of freedom

pG(xa y) —

* The objective of JEM is a sum of density and conditional models, where the density
model is trained by contrastive objective of EBM

log pg(z,y) = log pg(x) + log pe(y|x)

Algorithmic Intelligence Lab



Joint Energy-based Models (JEM)

e JEM [Grathwohl et al., 2020]
* JEM achieves a competitive performance as both classifier and generative model

Class Model Accuracy% T 1St FID]
Residual Flow 70.3 3.6 464

Glow 67.6 392 489

Hybrid IGEBM 49.1 83 379
JEM p(x|y) factored 30.1 636 61.8

JEM (Ours) 92.9 8.76 38.4

Disc. Wide-Resnet 95.8 N/A  N/A
Gen SNGAN N/A 8.59 255

’ NCSN N/A 891 25.32

* Also, JEM (generative classifier) improves uncertainty and robustness
* (a) calibration, (b) out-of-distribution detection, (c) adversarial robustness

Baseline

1.0 1.0
. ECE:22.32%
Q
g
3 05 0.5
3]
< I"

%% 0.5 1.0 %o

Confidence

Algorithmic Intelligence Lab

ECE: 4.87%

JEM

0.5
Confidence

1.0

I

Glow log p(x) JEM log p(x)

SVHN

CIFAR100

CelebA

.CIFAR-lO '




Score Matching

e Score matching [Hyvarinen, 2005]
* Score = gradient of the log-likelihood s(x) := V, log p(x)
e Score matching = Match the scores of data and model distribution

1 1
§Em~pdata(x)[H39($) — Saata(Z)||3] = Epnpeaa(z) [tT(Vasa(x)) + §\|39($)H§ + const.

However, we don’t know the scores of data distribution
Instead, one can use the equivalent form (proof by integration of parts)

& ©

* Recent works mostly consider denoising score matching [Vincent, 2011]

Match the score of perturbed distribution g, (%) = [ q,(¥|x) pgata(x)
where q,(%X|x) = N (x, o)

Then, the score matching objective is equivalent to

1 . -
5t (al)penea () [150(E) = Vz log o (&[) I3
It is tractable since the gradient V3 log g, (X|x) = Vzlog N (X|x,0) =

12n exp(— % (’%x)z) can be analytically computed

V; log

g
The objective can learn the scores of data distribution if 6 = 0

Algorithmic Intelligence Lab

39



Score Matching - Appendix

e Score matching [Hyvarinen, 2005]
* The score matching objective can be reformulated as follow:

1

e |t is sufficient to show that

010g Pgata(T
Byt Sanea(@50(2)] = 3 [ —pasea() R, ()

8 ata
- Z/ B pdd;i(w)sg’i(x)dx

— Z [ Daata() 8S§;§$) dx + const.

* The last equality comes from the integration of parts

/ P (2)f (@)dz = p(e) f(z)| = f p(2)f (z)dz

and assumption pgaia(x)sg (x) — 0 for both side of infinity

Algorithmic Intelligence Lab

1
S B pia(@) 1156 (2) = 5a2ta () 3] = Errnpruca(a) {tr(vxse(w)) + 5 lIso(@)ll2 | + const.

40



Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* Previous works mostly define the score as a gradient of the energy function
sg(x) = =V Eg(x)
* This work: Directly model the score x € R% - s4(x) € R? as an output

e Noise-conditional Score Network Algorithm 1 Annealed Langevin dynamics.
. . . Require: {o;}L ¢ T.
* Denoising score matching is stable for 1. Im'tia]j{zef}(o .
large o but unbiased for small o 2: fori+1toLdo _ ,
. ' . 3: a; < €-0; /o1 > a; is the step size.
* |dea: Learn multiple noise levels (with 4 forf)e 1to le\? ;
a single neural network) and anneal the > Draw 2, ~ N (0, 1)
. . . 6: Xy ¢ Xy1 + —89(Xe—1,04) + /5 2
noise level during sampling oy > - >0, . 4fr 2
8 5(0 — iT
9: end for
return X

* One can extend score matching to continuous version (stochastic differential
equations, SDEs) [Song et al., 2021]

* NCSN and DDPM can be viewed as different discretization of some SDEs
* This view provides a better approach for generation and likelihood estimation
See Appendix for details

Algorithmic Intelligence Lab 41



Noise-conditional Score Network (NCSN)

* NCSN [Song et al., 2019]

* The continuous version of NCSN [Song et al., 2021] is SOTA for both likelihood
estimation and sample generation on CIFAR-10

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Model NLLTest| FID| Model FID| ISt
RealNVP (Dinh et al., 2016) 3.49 - Conditional
iResNet (Behrmann et al., 2019) 3.45 - BigGAN (Brock et al., 2018) 1473 922
Glow (Kingma & Dhariwal, 2018) 3.35 - StyleGAN2-ADA (Karras et al., 2020a) 2.42  10.14
MintNet (Song et al., 2019b) 3.32 - —
Residual Flow (Chen etal, 2019) 328 4637 _onconditional
FFJORD (Grathwohl et al., 2018) 3.40 - StyleGAN2-ADA (Karras et al., 2020a) 2.92  9.83
Flow++ (Ho et al., 2019) 3.29 - NCSN (Song & Ermon, 2019) 2532 8.87 + .12
DDPM (L) (Ho et al., 2020) <370° 1351 NCSNv2 (Song & Ermon, 2020) 10.87 8.40 + .07
DDPM (Laimpte) (Ho et al., 2020) <375 3.17  DDPM (Hoetal, 2020) 3.17 9.46 + .11
DDPM++ 278  9.64
DDFM 3.28 337 DDPM++ cont. (VP) 2.55 9.58
DDPM cont. (VP) 3.21 3.69  DDPM++ cont. (sub-VP) 261 956
DDPM cont. (SUb—VP) 3.05 3.56 DDPM++ cont. (deep, VP) 2.41 9.68
DDPM++ cont. (VP) 3.16 393 DDPM++ cont. (deep, sub-VP) 241 957
DDPM++ cont. (sub-VP) 3.02 3.16 NCSN++ 2.45 9.73
DDPM++ cont. (deep, VP) 3.13 3.08 NCSN++ cont. (VE) 2.38 9.83
DDPM-++ cont. (deep, sub-VP) 2.99 2.92 NCSN++ cont. (deep, VE) 2.20 9.89

Algorithmic Intelligence Lab

42



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
Forward SDE (data — noise)
Q dx = f(x,t)dt + g(t)dw —)@
'i T
f(x t)— g (¢ ﬁx log p¢ (x ] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [f(x,t) — g(t)*Vx log ps(x)]dt + g(t)dw,
* Then, the reverse diffusion process also follows some SDE:
dx = [f(x,t) — g(t)*Vxlog ps(x)]dt + g(t)dw,
* One can learn the score function by score matching

0* = arg;nin Et{)\(t)Ex(o)Ex(tnx(o)[ ||Se(x(t)7t) — Vix(t) log pot (x(¢) | X(O))Hz ] }

Algorithmic Intelligence Lab 43



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw —)@
o - score fction
dx = [f(x,t) — g (t)Vy log p; (x ] dt + g(t)dw @

Reverse SDE (noise — data)

* Like DDPM, we consider some forward diffusion process (SDE):
dx = [£(x,t) — g(t)*Vyx log ps(x)]dt + g(t)dw,

* Here, NCSN and DDPM can be viewed as different discretizations some stochastic
differential equations (SDEs)

2
e« NCSN: dx = de. > X =X1+4/0] — 07 2%

* DDPM: dX=—%ﬁ(t)th+\/5(t) dw -  x; =4/1— Bixi—1 ++/Biz;

Algorithmic Intelligence Lab 44



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
* The reverse diffusion process can be solved by 3 ways:

1. Run a general-purpose SDE solver (a.k.a. predictor)
2. Utilize the score-based model sg(x,t) = V, log p;(x) (a.k.a. corrector)

— Combining predictor and corrector gives the SOTA generation performance

Algorithm 2 PC sampling (VE SDE) Algorithm 3 PC sampling (VP SDE)
1: xn ~ N(0,02,4]) 1: xy ~N(0,I)
2: fori =N —1to0Odo 2: fort =N —1to0do
3 x; ‘_Nzci+1 + (‘7i2+1 - ‘712)59* (Xi+1,0i+1) 3: X; (2= V1= Bit1)Xit1 + Bir1Se* (Xit1,% + 1)
8 ERN 4: z~ N(0,I)
5: X; «— X + 4 /0’1-2_,_1 — o’z 5. % < X, + \/Bir1z Predictor
6: forj =1to M do 6: forj =1to M do Corrector
7.z~ N(0,I) 7.z~ N(0,I)
8 Xi «— X; + €;Sgx (Xi, 0:) + V/2¢€;2 8 Xi < X; + €;Sgx (Xi, 1) + V/2¢€;2
9: return xo 9: return xo
Continuous ver. of NCSN Continuous ver. of DDPM

Algorithmic Intelligence Lab 45



Noise-conditional Score Network (NCSN) - Appendix

e Score matching through SDE [Song et al., 2021]
* The reverse diffusion process can be solved by 3 ways:

1. Run a general-purpose SDE solver (a.k.a. predictor)
2. Utilize the score-based model sg(x,t) = V, log p;(x) (a.k.a. corrector)

3. Convert to deterministic ODE
* Every SDE (Ito process) has a corresponding deterministic ODE

ax = [£(x,1) — 2 9(t)*Vilogpi(x) |dt,

whose trajectories include the same evolution of densities

* Deterministic ODE defines an invertible model (a.k.a. normalizing flow)
[Chen et al., 2018]

* Using this formulation, one can
a) Compute exact likelihood
b) Manipulate latents with encoder (model is invertible)

Algorithmic Intelligence Lab 46



Table of Contents

4. Autoregressive and Flow-based Models
* Autoregressive models
* Flow-based models

Algorithmic Intelligence Lab

47



Autoregressive models

* Autoregressive generation (e.g., pixel-by-pixel for images) :

KQ
p(x) = Hp(xkz\xh“' , Tk—1)
k=1

K2
= H p(zk|T<i)
k=1

* For example, each RBG pixel is generated autoregressively:

I'p2

p(zg|le<r) = p(Tr.r, Tk B, Th.c|T<k)

= p(@k. r|lT<i)p(Tr.B|T<k, Tk r)D(Tk G| T<ks Tk R, Tk, B)

* Each pixel is treated as discrete variables, sampled from softmax distributions:

—_i | ‘ | %

Algorithmic Intelligence Lab



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

O
O

w<k =

/’/

(input) O~ ’/ 7 O
’

o O
Q (hidden layer)

masked
convolution

Algorithmic Intelligence Lab

49



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

<k
(input)

O Tk

Q@ (hidden layer) (generation)

o/

Algorithmic Intelligence Lab

50



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based

L <k

effective Lk
receptive field

Algorithmic Intelligence Lab



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]

* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based RNN-based
LSTM
<k L<k
effective Lk Lk
receptive field @ ®

Algorithmic Intelligence Lab

52



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Simply treating © - as one-dimensional (instead of two-dimensional) vector:

CNN-based effective RNN-based
receptive field
LSTM
L <k Lk
effective Lk Lk
receptive field @ @-

* Inference requires iterative forward procedure (slow)

* Training requires single forward pass for CNN, but multiple pass for RNN (slow)

» Effective receptive field (context of pixel generation) is unbounded for RNN, but
bounded for CNN (constrained)

Next, extending to two-dimensional data

Algorithmic Intelligence Lab 53




Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

(hidden layer)

masked O O
convolution O Q
O O
®@ 0660

Pixel CNN

Algorithmic Intelligence Lab



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

O O O O O(generation)

O O O O O
O O O O
O O O O
masked O @)

convolution

masked
convolution

Pixel CNN

Algorithmic Intelligence Lab

55



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O OO0
O O O O O
O O O O
O O O O
masked O @)

convolution O O

If l|\
AR\
masked (row) masked O ¢ \ O
convolution convolution O OII |
® ©0/6'é o
@ 0 6 ¢
Pixel CNN Row LSTM

Algorithmic Intelligence Lab 56



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for @)

* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O OO0
O O O O O
O O O O
O O O O
masked O

convolution O O

masked
convolution

Pixel CNN

Algorithmic Intelligence Lab

1-dimensional O\ O O
convolution
O O

(row) masked @) O] 0O O
convolution O O

Row LSTM

57



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
convolutional connections
O © 00O for LSTM hidden states Ijl%l%}timesequence
© OO O O O O for LSTMs

O O O O
masked O O 1-dimensional O\ O O
convolution O O convolution O O
@ © @ @
masked (row) masked O Of0O O
convolution convolution O O
@ 000 O
@ o0 0 O
Pixel CNN Row LSTM

Algorithmic Intelligence Lab



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)

O O O O O
O O O O O convolutional connections
for LSTM hidden states I:I/timesequence
O O O ] for LSTMs
O O O O
masked O 1-dimensional O
convolution O O convolution O
@ © 0 0
masked (row) masked O O
convolution convolution
@ o 0
@ o0 O 0
Pixel CNN Row LSTM

Next, introducing column-wise dependencies using LSTMs

Algorithmic Intelligence Lab

59



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

masked
convolution

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

60



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LSTM

masked
convolution

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

61



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LST™M “diagonal”
time sequence

for LSTMs

masked
convolution

masked
convolution

Diagonal BiLSTM

Algorithmic Intelligence Lab

62



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

 Using CNN and RNN for modeling p(zx|T<x) [Oord et al., 2016]
* Pixel CNN use masked convolutional layer (for T ~x)
* Row LSTM use LSTMs, generating image row-by-row (not pixel-by-pixel)
* Diagonal BiLSTM use bi-directional LSTMs, to generate image pixel-by-pixel

bi-directional
LST™M “diagonal”
time sequence

for LSTMs

masked
convolution

masked O O S . R.eceptlve field now covers every
convolution o O pixels generated previously
O O @ O
@ o0 0 O
Diagonal BiLSTM

Algorithmic Intelligence Lab

63



Pixel Convolutional/Recurrent Neural Network (PixelCNN/PixelRNN)

* Image generation results from CIFAR-10 and ImageNet:

ﬂlﬁlﬁ .lILI“
iy R

e Eﬂiﬁﬁ
SHETEY WA

* Evaluation of negative log-likelihood (NLL) on MNIST and CIFAR-10 dataset:

CIFAR-10 ImageNet

Only explicit models (not GAN) can compute NLL

Model NLL Test Model NLL Test (Train)
PixelCNN: 81.30 PixelCNN: 3.14 (3.08)
Row LSTM: 80.54
D ; . Row LSTM: 3.07 (3.00)
iagonal BiLSTM (1 layer, h = 32): 80.75 Di al BiLSTM: 3.00 (2.93
Diagonal BiLSTM (7 layers, h = 16): 79.20 iagonal BiLSTM: 00(2.93)
MNIST CIFAR-10

* PixelCNN is easiest to train and Diagonal BiLSTM performs best

Algorithmic Intelligence Lab 64



Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:
T=2z0 > zr=frofr_io- fi(20) z € RY

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det <8ft(zt‘1>)l

0z¢—1

0

0

* source: Jang, https://blog.evjang.com/2018/01/nf1.html,
Algorithmic Intelligence Lab g https://blog.eviang / /0/

Mohamed et al., https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf



Flow-based Models

* Modifying data distribution by flow (sequence) of invertible transformations:
T =2z9 =>» zr=frofr_i0o-- fi(zo0) z € RY

* Final variable follows some specified prior pr(zr)

e Data distribution is explicitly modeled by change-of-variables formula:

det <8ft(zt‘1))|

0z¢—1

T
log p(x) = log p(z0) = logpr(zr) + Y log
t=1

* Log-likelihood log p(x) can be maximized directly
* Naively computing log |det (0f:(z:—1)/0z:—1)| requires O(K?>) complexity,

which is not scalable for large-scale neural networks

[ How to design flexible yet tractable form of invertible transformations? ]

Algorithmic Intelligence Lab 66



Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

1. Det Identities 2 Coupling Blocks 3. Autoregressive 4. Unbiased

. Estimation
Planar NF ' NICE Inverse AF . FFIORD
Sylvester NF . Real NVP . Neural AF . Residual Flows
- Glow . Masked AF |

C ‘| I m nn E .----..\L E
.(E (| | | | N | : : .
o =1 ; ; -
S W omidiil | | A |
OC = =d@s-ahn ! ] |
N RLEIET | - '

(Low rank) (Lower triangular + (Lower triangular) (Arbitrary)

structured)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 67



Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

1. Det Identities

Planar NF
Sylvester NF

Jacobian
ElL A E

(Low rank)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 68



Normalizing Flow (NF)

* Basic layers with linear log-det-Jacobian complexity [Rezende et al., 2015]

e Planar flow: f(z) =2z + uh(wTz+ )
* Determinant of Jacobianis |Jet %‘ — |1 + uThl(sz + b)W|

+ Radial flow: f(2) =2+ Bh(e,7)(z — 20) (r = |z — 20|, h(a,r) =1/(a + 7))
* Determinant of Jacobianis [1 4+ Bh(a, r)]d—l[l + Bh(a, ) + B (a,7)r)]

PIanar Radial -
K=10 K=2 K_10

E]BIIJ[],’][J
1\ D s

» I -
»
Algorithmic Intelligence Lab

Unit Gaussian

Uniform

‘.. | -

69



Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

2. Coupling Blocks

NICE
Real NVP

-

(Lower triangular +
structured)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 70



Real-valued Non-volume Preserving Flow (Real NVP)

* Coupling layer z; = f;(z;_1) for flow with tractable inference [Dinh et al., 2017]:
1. Partition the variable into two parts:

. s | (4l
sl B | 357
Zt—1 —7 [Zt—l,l:dazt—l,d—|—1:K] i 5]
| W ]
spatial-partition channel-partition

2. Coupling law defines a simple invertible transformation of the first partition
given the second partition (9 and m are described later)

Zt.d+1: K — g(Zt—l,d+1:K; m(zt—l,lzd))

3. Second partition is left invariant ( 2¢,1:4 = Zt—1,1:d )

Algorithmic Intelligence Lab 71



Real-valued Non-volume Preserving Flow (Real NVP)

» Affine coupling layer was shown to be effective in practice:

Zt,d+1: K = g(zt—1,d+1:K; m(zt—l,lzd))

= Zt—l,d—|-11K ® eXp<m1(Zt_1’1:d)) + mZ(Zt—1,12d>

element-wise product .) — L neural networks
 Jacobian of each transformation becomes a lower triangular matrix:
" ai1 0. 0 |
Oft—1(2t-1) I 0 a2 0
= | 9gi_1(z:— : Y
9z 2511) - diag(exp(mi (20-1,1.4)) | 7 .0
- axid

* Inference for such transformations can be done in tractable time
* Determinant of lower triangular matrix is a product of diagonals

det (8ft(zt‘1))|

0zi_1

T
log p(x) = log p(z0) = log pr(2r) + Z log
t=1

Algorithmic Intelligence Lab



Real-valued Non-volume Preserving Flow (Real NVP)

* For each coupling layer, there exists asymmetry since the first partition 2:—1,1:d
is left invariant

* Two coupling layers are paired alternatively to overcome this issue

 Multi-scale architectures are used
e Half variables follow Gaussian distribution at each scale

paired coupling layer

Algorithmic Intelligence Lab

73



Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

3. Autoregressive

Inverse AF
Neural AF
Masked AF

%&k

(Lower triangular)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 74



Inverse Autoregressive Flow (IAF)

* Inverse autoregressive flow (IAF) modifies each dimension of variable in
autoregressive manner [Kingma et al., 2016]:

* Forward pass z, — zr is fast, but backward pass z; — z, is slow
* Used for VAE posterior: Only forward pass is required for approx. posterior

Ztd = pt.d(Zt—1,1:d—1) + 0t.a(Zt—11:d—1) Zt—1.d

= OO@0O OO

000

caseof d =3 updates done in parallel

* |Inference for corresponding normalizing flow is efficient:

Ut,l 0 .. O
T .
8 Z — O-t72 O ¢
log q(z|x) = log qo(zo|x) + E log |det ( fgitt11>)'\a : O
t=1 - K
B Ot,K _

Algorithmic Intelligence Lab 75



Design Schemes for Normalizing Flows

* To reduce complexity of log-det-Jacobian, prior works consider
* Carefully designed architectures (low rank, coupling, autoregressive)
e Stochastic estimator of free-form Jacobian

4. Unbiased
Estimation

FFJORD
Residual Flows

(Arbitrary)

Algorithmic Intelligence Lab * source: Chen, https://www.cs.toronto.edu/~duvenaud/talks/residual_flows_slides.pdf 76



Continuous Normalizing Flow (CNF)

* Discrete normalizing flows need a carefully designed (less expressive) layers

to achieve affordable (not cubic) complexity
— Continuous normalizing flow affords an arbitrary network architecture

dz __
. Consider a continuous transformation d; — f(z(¢),1) (instead of Z1 = f(zo) ),

then the sampling can be done by an ordinary differential equation (ODE):

2(t1) = 2(to) + | f(x(t),t, 0)dt

to

* Here, the change in log-probability also follows an ODE:

t
1 af
1 t1)) =1 to)) — Tr dt
ogp(a(t)) = logp(a(to) ~ [ T (55)
 Remark: We only need a trace (not a determinant) to compute likelihood

* The network f(z(t), t, 0) is learned by gradient descent (backpropagation
follows another ODE) [Chen et al., 20018; Grathwohl et al., 2019]

Algorithmic Intelligence Lab 77



References (VAE)

[Kingma et al., 2013] Auto-Encoding Variational Bayes, ICLR 2013
link: https://arxiv.org/abs/1802.06455

[Burda et al., 2016] Importance Weighted Autoencoders, ICLR 2016
link: https://arxiv.org/abs/1509.00519

[Kim et al., 2018] Semi-Amortized Variational Autoencoders, ICML 2018
link: https://arxiv.org/abs/1802.02550

[Bowman et al., 2016] Generating Sentences from a Continuous Space, CONLL 2016
link: https://arxiv.org/abs/1511.06349

[Razavi et al., 2019a] Preventing Posterior Collapse with delta-VAEs, ICLR 2019
link: https://arxiv.org/abs/1901.03416

[Tolstikhin et al., 2018] Wasserstein Auto-Encoders, ICLR 2018
link: https://arxiv.org/abs/1711.01558

[He et al., 2019] Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 2019
link: https://arxiv.org/abs/1901.05534

[Oord et al., 2017] Neural Discrete Representation Learning, NeurlPS 2017
link: https://arxiv.org/abs/1711.00937

[Razavi et al., 2017b] Generating Diverse High-Fidelity Images with VQ-VAE-2, NeurlPS 2019
link: https://arxiv.org/abs/1906.00446

[Vahdat et al., 2020] NVAE: A Deep Hierarchical Variational Autoencoder, NeurIPS 2020
link: https://arxiv.org/abs/2007.03898

[Sohl-Dickstein et al., 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
link: https://arxiv.org/abs/1503.03585

[Ho et al., 2020] Denoising Diffusion Probabilistic Models, NeurlPS 2020
link: https://arxiv.org/abs/2006.11239

Algorithmic Intelligence Lab

78


https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1802.02550
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1901.03416
https://arxiv.org/abs/1711.01558
https://arxiv.org/abs/1901.05534
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239

References (EBM, score matching)

[LeCun et al., 2006] A Tutorial on Energy-Based Learning, Technical report 2006
link: http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

[Du & Mordatch, 2019] Implicit Generation and Generalization in Energy-Based Models, NeurlPS 2019
link: https://arxiv.org/abs/1903.08689

[Welling & Teh, 2011] Bayesian Learning via Stochastic Gradient Langevin Dynamics, ICML 2011
link: https://dl.acm.org/doi/10.5555/3104482.3104568

[Zhao et al., 2017] Energy-based Generative Adversarial Network, ICLR 2017
link: https://arxiv.org/abs/1609.03126

[Grathwohl et al., 2020] Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One, ICLR 2020
link: https://arxiv.org/abs/1912.03263

[Song & Kingma, 2021] How to Train Your Energy-Based Models, arXiv 2021
link: https://arxiv.org/abs/2101.03288

[Hyvarinen, 2005] Estimation of Non-Normalized Statistical Models by Score Matching, JMLR 2005
link: https://imlr.org/papers/v6/hyvarinen05a.html

[Vincent, 2011] A Connection Between Score Matching and Denoising Autoencoders, Neural Computation 2011
link: https://ieeexplore.ieee.org/document/6795935

[Song et al., 2019] Generative Modeling by Estimating Gradients of the Data Distribution, NeurlPS 2019
link: https://arxiv.org/abs/1907.05600

[Song et al., 2021] Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021
link: https://arxiv.org/abs/2011.13456

Algorithmic Intelligence Lab 79


http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
https://arxiv.org/abs/1903.08689
https://dl.acm.org/doi/10.5555/3104482.3104568
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1912.03263
https://arxiv.org/abs/2101.03288
https://jmlr.org/papers/v6/hyvarinen05a.html
https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456

References (AR, flow)

[Oord et al., 2016] Pixel Recurrent Neural Networks, ICML 2016
link: https://arxiv.org/abs/1601.06759

[Oord et al., 2017] WaveNet: A Generative Model for Raw Audio, arXiv 2017
link: https://arxiv.org/abs/1703.01961

[Rezende et al., 2015] Variational Inference with Normalizing Flows, ICML 2015
link: https://arxiv.org/abs/1705.08665

[Dinh et al., 2017] Density Estimation using Real NVP, ICLR 2017
link: https://arxiv.org/abs/1605.08803

[Kingma et al., 2018] Generative Flow with Invertible 1x1 Convolutions, NeurlPS 2018
link: https://arxiv.org/abs/1807.03039

[Kingma et al., 2016] Improving Inference with Inverse Autoregressive Flows, NeurlPS 2016
link: https://arxiv.org/abs/1710.10628

[Chen et al., 2018] Neural Ordinary Differential Equations, NeurlPS 2018
link: https://arxiv.org/abs/1806.07366

[Grathwohl et al., 2019] FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models, ICLR 2019
link: https://arxiv.org/abs/1810.01367

[Chen et al., 2019] Residual Flows for Invertible Generative Modeling, NeurlPS 2019
link: https://arxiv.org/abs/1906.02735

Algorithmic Intelligence Lab

80


https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1703.01961
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1710.10628
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1906.02735

