Algorithmic Intelligence Lab

Advanced Deep Generative Models I:
Generative Adversarial Networks

Al602: Recent Advances in Deep Learning
Lecture 4

Slide made by

Jongheon Jeong and Jongjin Park
KAIST EE & Al

Algorithmic Intelligence Lab

Table of Contents

1. Generative Models
* Why generative model?
* Two types of generative models

2. Generative Adversarial Networks (GAN)
* Advantages and disadvantages of GAN
* Conditional GANs

3. Improved Techniques for GANs
* Loss, regularization and normalization
* GAN architectures
* Data augmentations for GANs

4. Summary

Table of Contents

1. Generative Models
* Why generative model?
* Two types of generative models

Algorithmic Intelligence Lab

Generative Model and Discriminative Model

* Given an observed variable x and a target variable y

* Discriminative modeling estimates the conditional distribution P(y|x)
* Example: ImageNet classifiers

\&’#"\‘Q

* Generative modeling estimates the joint distribution P(x,y)
e Example: Boltzmann machines, sum-product networks

Shestse

y = cat

Algorithmic Intelligence Lab * source : https://en.wikipedia.org/wiki/Cat#/media/File:Kittyply_editl.jpg 4

Why Generative Model?

* Without assuming y, generative models learn P(x) from given data
* P(x) enables us to generate new data similar to the training dataset

* We can use various sampling methods for generation based on P(x)
* Isit possible to do the same thing with discriminative models?

Algorithmic Intelligence Lab * source : https://en.wikipedia.org/wiki/File:Cat_poster_1.jpg 5

Why Generative Model?

« P(x) enables us to generate new data similar to the training dataset
* Many real-world problems can be formulated assuming generative models

e Common applications?
* Vision: super-resolution, style transfer, image inpainting, ...

e Audio: audio synthesis, speech generation, voice conversion, ...
* And many more..

: horse — zebra
Super-resolution [Ledig et. al., 2017] Style transfer [Zhu et. al., 2017] High-res image generation

[Karras et. al., 2018]

Algorithmic Intelligence Lab 6

Two Types of Generative Models

e Explicit models directly estimate the (usually “unnormalized”) data distribution
* Example 1: Multivariate Gaussian distributions
¢ P(x) o exp (—3(x —)= (x -)
» Tractable inference, low expressive power
* Example 2: Graphical models (RBM, DBM, ...)

. P(X) X exXp (Zz bzazz + Zi,j ’U)Z'j.CUZ'.CBj)
* Intractable inference, high expressive power with compact representations

* Many more examples: Variational Auto-encoder, Flow-based models, ...
e ... which we will be discussed more in the next lecture

* Generative adversarial network (GAN) is an instance of implicit models
* One does not have to access P(x) for sampling — More efficient in some cases
« P(x)is rather implicitly defined by its model
* GANs assume that P(z) ~ G(z)
* 2 ="“random noise”, and G = “a neural network”
» Sampling? A simple forward computation of G(z)

Two Types of Generative Models

e Explicit models directly estimate the (usually “unnormalized”) data distribution
* Example 1: Multivariate Gaussian distributions
+ P(x) < exp (—5(x — p)ZH(x — p))
» Tractable inference, low expressive power
* Example 2: Graphical models (RBM, DBM, ...)

. P(X) X exp (Zz b;x; + Zi,j wijmixj)
* Intractable inference, high expressive power with compact representations

* Many more examples: Variational Auto-encoder, Flow-based models, ...
e ... which we will be discussed more in the next lecture

* Generative adversarial network (GAN) is an instance of implicit models
* One does not have to access P(x) for sampling — More efficient in some cases
« P(x)is rather implicitly defined by its model
* GANs assume that P(z) ~ G(z)
* 2 ="“random noise”, and G = “a neural network”
» Sampling? A simple forward computation of G(z)

Algorithmic Intelligence Lab

Table of Contents

2. Generative Adversarial Networks (GAN)
* Advantages and disadvantages of GAN
* Conditional GANs

Algorithmic Intelligence Lab

Generative Adversarial Networks (GAN)

 Classical (usually explicit) generative methods struggle on complex data
* Sampling from high-dimensional, complex distributions can be intractable

* GANs [Goodfellow, et. al., 2014] do not explicitly model pPmodel (X)
* Two player game between discriminator network D and generator network G
* D tries to discriminate real data and samples generated by GG (“fake” samples)
* (G tries to fool D by generating more “realistic” images
* GAN utilizes neural networks to model the sampling function itself

» .
N !
i _ (e | EEN
T
Fake samples

Real samples

Real or
fake?

Algorithmic Intelligence Lab

Generative Adversarial Networks (GAN)

* Two player game between discriminator network D and generator network G
* Training objective:

i 0 By 108 Doy () + Eonp. 08(1 — Day (G, (2)]
g d ' y '

Discriminator output Discriminator output
for real data for generated fake data

* D maximizes the objective: D(z) — 1 and D(G(z)) — 0
* G minimizes the objective: D(G(z)) — 1

noise 2

Random _{ o]__»ﬂr

Real or
fake?

Fake samples

5
PO
:
| N
e —

Real samples

Algorithmic Intelligence Lab 11

Generative Adversarial Networks (GAN)

* Training objective [Goodfellow, et. al., 2014]:

Helin n%ax V(0q,0,) = [Ew’\“pdata log Dy, (z) + E.np. log(1 — Dy, (G, (Z)))]
g d

 Alternative training between D and G
* Objective for D :

055% [Exp, 108 Do, () + Bany, log(1 = Doy (G, ()]
d

* Objective for G :
n%in E.np. log(l — Dy, (Go,(2)))

* In practice, directly optimizing the G-objective can be problematic
* (cont’d) ... will be discussed in the later slides

Algorithmic Intelligence Lab

12

What Happens in the GAN Objective?

* Discriminator
* Forfixed GG, the D optimizes:

V(0a,09) = Eznpya 108 Do, (2) +Eznp. log(1 — Dy, (Go, (2)))

— /pdata(ﬂ?) log(ng(x))d:E+/pz(z) log(1 — Dg,(Go,(z))dz

z

— [Paiala) 5(Da, () + p4 (2 loB(1 ~ Do,)

* Optimal discriminator is

pdata(X)
DG* X)) =
d<) pdata(x> + Dg (X)
1
* If Pdata = Pg, optimal discriminator Dy: (x) = 5

Algorithmic Intelligence Lab

13

What Happens in the GAN Objective?

* Generator
* For fixed Dy , the G optimizes:

V(83 85) = Eampan, 108 Do () + Eonp. log(1 — Dy (G(2)))
= Eumpn, 108 Do (2) + Eqnp, log(1 — Doy (2))

pdata(x>] [pg (CE)]
= Ezrpya. [108 + Egpnp, |log
bd [pdata(x) + Pg (X) P pdata<x) + Pg (CL‘)
— —logd+ KL (pdata £ data; & 9) + KL (pg pdata; pg)

= —log4 + 2 -|JS(paata || Pg)

* Provided that the discriminator (D) is optimal
* G-objective = minimizing the Jensen-Shannon (JS) divergence
* Many previous generative models used the KL divergence (a.k.a. Max. likelihood)
* KL divergence vs JS divergence?

e JS helps to capture sharper and clearer modes in the distribution
* But JS can cause a missing mode problem (“mode collapse”)

Algorithmic Intelligence Lab 14

GAN Training Algorithm: In Practice

* Training GANs via alternating updates between D and G

* Recall: G optimizes JS divergence when D is optimal
* Q: But how can we ensure that D is indeed “optimal”?
* Simplest practice: Just update D more (e.g., for k-steps) per each G update

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z1), ... z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z*) ... z(™} from data generating distribution
Pdata(T)-

e Update the discriminator by ascending its stochastic gradient:

ng% i [logD (:z:('i)) + log (1 - D (G (z(i))))] .

end for
e Sample minibatch of m noise samples {z(1), .. ., z(™)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

T

Vo_q%;log (1 - D (G (z‘”))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithmic Intelligence Lab * source : Goodfellow, et. al., Generative adversarial nets, NIPS 2014 15

GAN Training Algorithm: In Practice

 Alternative training between D and G
* Objective for D :

n%ax [Emr\,pdata log Dy, () + K.np, log(1 — Dy, (GOg (Z)))]
d

* Objective for G :
n%in E.np, log(l — Dy, (Go,(2)))

* In practice, directly optimizing the G-objective can be problematic

* Gradient vanishing: Especially when GG(z) looks “bad” to D (e.g., early of training)
e Learning via back-propagation becomes significantly difficult

log(1-D(G(x)))

3r 4

Gradients = 0 when /

G is too worse than D

4

. . L .
0 0.2 0.4 0.6 0.8 1

Algorithmic Intelligence Lab * source : http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf 16

GAN Training Algorithm: In Practice

 Alternative training between D and G
* Objective for D :

n%ax [Emwpdata log Dy, () + K.np, log(1 — Dy, (GOg (Z)))]
d

* Objective for G :
n%in E.np, log(l — Dy, (Go,(2)))

g

* Non-saturating loss is practically more favorable in this respect
—log(Dy, (G, (2)))

* This G-objective gives much stronger gradients in this scenario

log(1-D(G(x)))
-log(D(G(x)) | |

Stronger gradients when /0
G is too worse than D

0 02 0.4 06 038 1
D(G(x))

Algorithmic Intelligence Lab * source : http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf 17

Table of Contents

2. Generative Adversarial Networks (GAN)
* Advantages and disadvantages of GAN

Algorithmic Intelligence Lab

18

Generated Samples with GAN

GAN could generate “sharper” and “clearer” images than previous approaches
* Most of the previous works suffered from “blurred”, unrealistic generations

."'

Bedroom images Faces images ImageNet

* Then, what makes GAN be able to generate realistic samples”?

* GAN utilizes the function approximation power of neural networks
* Butitis also the cases for other models (e.g., Variational Auto-encoder; VAE)
* What else can be a possible explanation?

Algorithmic Intelligence Lab * source : Radford, et. al., Unsupervised representation learning with deep convolutional generative adversarial networks. 19

Difference with Previous Generative Models

* Maximum likelihood methods (= KL divergence minimization)

KL(pdata || pg) — /pdata(x) log dea(m)dx
x py(x)

° pdata<x) > pg<x)

* When pgata(z) > 0,p4(x) — 0, the integrand grows quickly to infinity

* High penalty when generator’s distribution does not cover parts of the train data
* Pdata(T) < py()

* When pgata(z) — 0,pg(z) > 0, the integrand goes to 0

* Low penalty for generating fake looking samples

* KL divergence solution tends to cover all the modes

* Inverse KL divergence K L(pg || pdata) te€nds to fit single mode

Algorithmic Intelligence Lab 20

Difference with Previous Generative Models

* Maximum likelihood methods (= KL divergence minimization)

pdata(x)
K L(paata || P Z/paaivlog—dfv
(dt || g) : dt() pg(x)

* KL divergence solution tends to cover all the modes
* Inverse KL divergence K L(pg || Pdata) tends to fit single mode

e Jensen-Shannon divergence

2 2

Ddata + Pg)

ata T
JS(pdata H pg) = KL (pdata Pdat pg) + KL (pg

* (A bit like a) combination of the two divergences
* Using JS-divergence instead of KL helps to generate realistic images [Huszar 2015]

Pdata KL(pdata || pg) JS(pdata || pg) KL(pg H pdata)
O

Algorithmic Intelligence * source : https://www.inference.vc/how-to-train-your-generative-models-why-generative-adversarial-networks-work-so-well-2/ 21

Challenges in GANs

1. Training instability
* GANs are notoriously unstable to train, with much sensitivity to hyperparameters

* GAN as a two-player non-cooperative game [Salimans, et. al., 2016]
e The Nash equilibrium of such games can be extremely hard to achieve
* Reducing the D-objective can significantly increase the G’s, and vice versa

2. Mode collapse problem
* G can “collapse” to produce the same outputs to beat D
* G may easily fool D if it is good at making a single perfect image
* JSitself does not explicitly penalize such cases as much as KL

-

. - =l i i " iy Pv]
, ol o % .f“? g lf“.‘;—

- ¢ (%
[o\ j—

-_—

Examples of the mode collapse problem in GAN

Algorithmic Intelligence Lab * source : Arjovsky, et. al., Wasserstein GAN, ICML 2017 22

Table of Contents

2. Generative Adversarial Networks (GAN)

e Conditional GANs

Algorithmic Intelligence Lab

23

Conditional GANs

By default, the standard GANs are unconditional

* One cannot control the mode of the distribution to be generated

Conditional GANs (cGANs) aim to incorporate an additional attribute y

* (+) Controllable generation (e.g., class-wise generation)

* (+) Improved quality for complex generation tasks

G D

G D

\
00009 0000

Gscriminator D(xly) \

Mirza et al. (2014) formulated a cGAN objective by:
min max [Ex’vpdata log Ded (x|y) T Eszz log(]‘ o Ded (Geg (Z‘y)))}

Recall: Training objective for unconditional GAN [Goodfellow et al., 2014]:
min max [Ezp,,,, 10g Do, () + E-np. log(1 — D, (G, (2)))]

@nerator

G(zly)

00000
00000

Algorithmic Intelligence Lab

~

- 00000 0000J:

-

/

24

Conditional GANs: Auxiliary Classifier GAN (ACGAN) [Odena et al., 2017]

* Many works have been proposed then to better encode y
* e.g., Reed et al. (2016): Concatenate y to inputs for hidden features of D

* Odena et al. (2017): Auxiliary Classifier GAN (ACGAN)
* Modified D to have an auxiliary classifier for the class of both real and fake inputs

* D should preserve the information to reconstruct the class as well as “real vs. fake”

(X,.eaz (data))

(Xrake)

G

(€ (cass)) (Z (noise))

Conditional GAN
[Mirza et al., 2014]

Algorithmic Intelligence Lab

(real) |(c=2)
A

(Xreal (data)] (X fake J

(C (class)) (Z (noise))

ACGAN
[Odena et al., 2017]

* source : Basart , Analysis of Generative Adversarial Models, 2017 25

Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* The training objective function consists of two parts:
* GAN loss: the log-likelihood of the correct source, L g
Ls = Ezrpgaa 108 Do, (2) + E.rnp, log(1 — Dy, (G, (2)))
= Epnpauia 10g P(S = reallz) + E. ., log P(S = fake|Gy, (2))

 Classification loss: the log-likelihood of the correct class, L~
Lo = Eonpaaa 108 P(C = c|x) + Eznp. cnp, log P(C = c|Go, (2, ¢)))

e D maximizes Ls + L¢c, while G maximizes —Ls + L¢
* Remark: L¢ is used not only for D, but also G
* Remark: There can be some balancing weight for both losses for better training
* i.e.,, Dand G maximize Ls + A1 Lc and —Lg + A2 L¢, respectively

Algorithmic Intelligence Lab 26

Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* ACGAN could allow diverse & higher resolution images than previous cGANs
* The first cGAN approach that could scale up to the ImageNet dataset

1. Evaluation of cGAN conditioning via Inception accuracy
* Increased discriminability on Inception — Better conditioning
* Higher-res conditional generations via ACGAN improves Inception accuracy

Fake (128x128)

e

1" Fake +(64x64) +

32 64 128 256
image resolution

Algorithmic Intelligence Lab * source : Odena et al., Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017 27

Conditional GANs: Auxiliary Classifier GAN (ACGAN)

* ACGAN could allow diverse & higher resolution images than previous cGANs
* The first cGAN approach that could scale up to the ImageNet dataset

2. Comparison of multiscale structural similarity (MS-SSIM)
* MS-SSIM ranges 0.0 ~ 1.0; Higher MS-SSIM — perceptually more similar
* ACGAN achieves similar MS-SSIM to the training set on many of ImageNet classes

hot dog promontory green apple artichoke 1.0
MS-SSIM = 0.11 MS-SSIM = 0.29 MS-SSIM = 0.41 MS-SSIM = 0.90
1] H
3 0.8} :* Class-wise MS-SSIM
g @ " /
= 2 '.o' . -
% m » \' .
> L
= 06 ’k?.'
n -
o .,
n .
= s
%_ 0.4 . Worst MS-SSIM
E st of training data
E R - . 2
0.2 ,.-“’ 70
.3 ‘.
i
) 095 67 o024 o6 08 10
diverse MS-SSIM: Lower is better : ; ; ' - :

training data MS-SSIM value

Algorithmic Intelligence Lab * source : Odena et al., Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017 28

Conditional GANs: Conditional Batch Normalization (CBN)

* Conditional BN [Dumoulin et al., 2017, DeVries et al., 2017]
* Recent practice of designing cGAN generator instead of concatenating y
* Modulate Batch Normalization (BN) layers depending on the condition

* Ildea: Predict the affine scaling parameters, 7 and 3 in BN, from y

2 =) (5A2) + By)

ReLU(.) ReLU(.)
4 4
BN (Fi., |vi, BY) BN(F;. |vi +AyE, BE +ABY) |«
EN N
Embed

Fi,c,.

t

Yy

Batch Normalization Conditional Batch Normalization

Algorithmic Intelligence Lab * source : de Vries et. al., Modulating early visual processing by language, NIPS 2017 29

Conditional GANs: Projection Discriminator

* Projection discriminator [Miyato et al., 2018]
* Recent practice of designing cGAN discriminator instead of feeding vy

* Miyato et al. (2018): projecting y into D-representation is very effective

Adversarial
loss D(z,y;0) := A(f(x,y;0))
! A : an activation function of design choice
——7—\ (" Inner * e.g., sigmoid for vanilla GAN
L % y pro?uct
) flz,y) ==y Vol(x) +(o(x))
— The discriminator is modeled by a inner-product
T (projection) of the class embedded vector y
£

Algorithmic Intelligence Lab * source : Miyato et. al., cGANS with Projection Discriminator, ICLR 2018 30

Conditional GANs: Projection Discriminator

* Projection discriminator significantly outperforms “concat” and “ACGAN”

35 Method Inception Score Intra FID
—=— Projection
30 —e— Concat AC-GANs 28.5+.20 260.0
) concat 21.1+.35 141.2
3 25 projection 29.7+.61 103.1—|
.§ 20 *projection (850K iteration) 36.8+.44 92.4
Q.
:
=15 600
500
10 s £ 400
00 10 20 30 4045 8 2 200
iteration 18 S £
& & 200
Inception score: higher is better ¥ 10 R
Intra (class-wise) FID: lower is better %G 100 200 300 400 500 %G 100 200 300 400 500 600
Concat ACGANSs

FID for each class
* “Projection” is also more robust against mode-collapse than others

(@) AC-GANs (b) Projection
_z(noise) ~ z(noise)) (@) Cocat

B

b) Projection

(

(class)

S BT D T T K

Algorithmic Intelligence Lab

Table of Contents

3. Improved Techniques for GANs
* Loss, regularization and normalization

* GAN architectures
* Data augmentations for GANs

Algorithmic Intelligence Lab

32

Table of Contents

3. Improved Techniques for GANs
* Loss, regularization and normalization

Algorithmic Intelligence Lab

33

Wasserstein Distance

* Many heuristics have been proposed to alleviate training issues in GANs
* However, it was hard to explain why they actually work in general

* 1-Wasserstein distance (a.k.a. Earth Mover’s distance):
* A distance measure between two probability distributions

W(pdataapg) — inf IE:"(:z;,y)wfy HCIj — y”
vEI(paata,Pg)
* Minimal amount of “work” to transform a distribution P to)

* Work? the amount of dirt in a chunk times the distance it was moved

* Example:

s Step [0] s Step [1] s Step [2] s Step [3]
< 4 44 = 41 = 41 :
P=3,P=2P=1,P=4 % N H e ! . !
321 -1 2 H -1 21 1 -1 2 H -t
_ _ _ _ 1 A | A I (i On] NSl En] 1
1=1,0:=20:=4Q:=3 {{{iml imlmll w18 =18
P, P, Py P P, P, Ps P P, P, P P P, P, P P
5 5 5 5
Q 4 44 4 4
_ S 3- 3 34 34
W(P7 Q) =95 22 2 24 2
f1- 14 11 14
0- 0 0 0-

Q Q Q3 Q4

Algorithmic Intelligence Lab * source : https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan 34

Comparison between Wasserstein Distance and Other Distance Metrics

* Why Wasserstein? - When two distributions have no overlap
* |t still gives non-zero and smooth notion of the distance (and gradients)

* Example [Arjovsky, et. al., 2017]: Wasserstein vs JS (or KL)
* Let Z ~ UJ0,1], Ppo be the distribution of (0, Z) € R?
* g9(Z) = (0, 7) with 0, a single real parameter, and py is the distribution of gs(Z)
* Distance between two distributions are:

W (po, pe) = |0 S,
log2 if§+#0 S
JS —) —
(Po || po) {0 020 S .
o if 6 %0, T,
(Po || Po) (Po | Po) {o £ 20 K
S
* Parameter 6 can be learned on the Wasserstein distance :o
* Parameter 6 cannot be learned on JS or KL divergence %
™~ .

Algorithmic Intelligence Lab 9 35

Comparison between Wasserstein Distance and Other Distance Metrics

* This example shows that there exist distributions that

* Don’t converge under the JS, KL, or inverse KL
* For the JS, KL, and inverse KL, there are cases where the gradient is always 0
* This is especially not good from an optimization perspective

* Do converge under the Wasserstein distance

* Easy to get similar results, if Pdata and Pg are on low-dimensional manifolds in
high dimensional space

Low dimensional manifolds in high dimension space can hardly have overlaps.
(Left) two lines in a 3-d space. (Right) two surfaces in 3-d space

Algorithmic Intelligence Lab * source: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html#wasserstein-gan-wgan 36

Wasserstein Distance in GAN Objective

* Infimum over joint distribution v € II(pdata, Pg) is computationally intractable

* Using Kantorovich-Rubinstein duality [Villani, 2009]:

W(pdatas Pg) = SUP Bonpgu, [F(@)] = Eanp, [f(2)]
£l <1

* The supremum is over all the 1-Lipschitz functions f: X — R
e Let f is parameterized by w, then one could consider solving the problem

{Lruneay}é]Eprdata [f’w (33)] o EZNPz [f'w (geg (Z))]

* To enforce the Lipschitz constraint, clamp the weights to a fixed box
(e.g., W = [—0.01,0.01]¢, where ¢ is dimension of parameter w € W)

Algorithmic Intelligence Lab * source: WGAN and Kantorovich-Rubinstein duality https://vincentherrmann.github.io/blog/wasserstein/ 37

https://vincentherrmann.github.io/blog/wasserstein/

WGAN vs GAN

 Comparison of GAN and WGAN

* Discriminator (outputs probability of real or fake) becomes a continuous function
to help compute Wasserstein distance (with weight clamping)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z}), ..., z(™} from noise prior p,(2).
e Sample minibatch of m examples {x(!),... (™)} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

Z | | Lym e @) = LS o0(2O)
Vod% > log D (29) +1og (1- D (G (20)))] . Z}w:wvi’ o[fRzl:\EiD{oéfw,)gw) m 2iet Ju(g0(27))]
w < clip(w, —e¢, ¢)

1=

end for
e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:
1 - — =V 2ty fulge(2"))
Vo, — » lo (1—D(G (z(’)>>>. 96 O'm Lai=1 JwlJ0
%1 m ; 8 0 < 0 — o - RMSProp(6, gs)
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithmic Intelligence Lab 38

WGAN vs GAN

o e TS
PR il [EP |

(Left) WGAN vs. (Right) GAN with DCGAN architecture . Both produce high quality samples

(Left) WGAN vs. (Right) GAN with MLP generator.
Vanilla GAN does mode collapse, while WGAN still produces good samples

Algorithmic Intelligence Lab * source : Arjovsky, et. al., Wasserstein GAN, ICML 2017 39

Enforcing the Lipschitz Constraint of Discriminator

* WGAN uses the weight clamping to maintain Lipschitz constraint
* (-) Still naive, ad-hoc and heuristic
* (-) It often leads to significant optimization difficulties

* Two representative methods for the direct Lipschitz constraint on D

1. Gradient penalty on Wasserstein GANs (WGAN-GP) [Gulrajani, et. al., 2017]
* Use gradient penalty to maintain Lipschitz constraint

Bsmp, |(IVaD(@)], — 1)°]
where & =cx + (1 —¢)G(2)

2. Spectral normalization for generative adversarial networks [Miyato, et. al., 2018]
e Control the Lipschitz constant of D by constraining the spectral norm per layer

Wsn (W) = W/a(W)
where (W) is the spectral norm of W

 Stabilizing GAN dynamics is still an open research topic

Algorithmic Intelligence Lab

40

Large-scale Studies on Establishing GAN Practices

 Significant research efforts has been made to stabilize GANs
» Different GAN losses [Arjovsky et al., 2017; Mao et al., 2017; Berthelot et al., 2017]
* Regularization on D [Gulrajani et al., 2017; Roth et al., 2017; Kodali et al., 2017]

* Normalization [Miyato et al., 2018]

GAN DISCRIMINATOR LOSS

GENERATOR LOSS

MMGAN L™ = —E;.p, [log(D(z))] — E log(1 — D())]

E~pg

EE;;.\.\' —FE :log('l _ D(l‘))]

Tr~pg

NS GAN Ly = —Egzrpy[log(D(z))] — Eznp, [log(1 — D(#))]

L"?;SG’\N = _Ei""PQ lOg(D(l))]

WGAN L™ = —Ezmp, [D(2)] + Ezmp, [D(2)]

LA = —Espy [D(3)]

WGANGP Ly = LM 4+ ARz, [(||[VD(az + (1 — ai)||2 — 1)?]

L:\:;’C-.\N(Z-l" — _Ei‘-vpg [D[l‘).

LS GAN LM = —Earpy [(D(z) — 1)?] + Eznp, [D(2)?]

L"l(‘}SGAN = _IEi’VPg (D(I - 1))2]

DRAGAN LN = LN + AR p 4 a(0.0) [([[VD(2)]]2 — 1)?] LGN =Ezp, [log(l — D(2))]
BEGAN LE™ = B,y [llz — AE(@)[[1] — keEompy [||l& — AE@)[[1] LEO = Bz, [|[& — AE()]]1]

* Then, which method should we actually use to train our GANs?
* How to choose a proper combination of hyperparameters?
* Should one use a completely different method for different datasets?

Algorithmic Intelligence Lab

41

Large-scale Studies on Establishing GAN Practices

Significant research efforts has been made to stabilize GANs

Then, which method should we actually use to train our GANs?
* How to choose a proper combination of hyperparameters?
* Should one use a completely different method for different datasets?

Two large-scale studies empirically evaluate various existing GAN techniques
* [Lucic et al., 2018] “Are GANs Created Equal? A Large-Scale Study”
* [Kurach et al., 2019] “A Large-Scale Study on Regularization and Normalization in GANs”

TL;DR: No evidence that “non-saturating loss” < most of existing methods

I%ax [Eprdata log Ded ('CC) + EZsz 10g(1 o Ded (Geg (Z)>):|
d
Irelin E.vp. —log(Dg,(Ga,(2)))

1. ... Given that there could be sufficient hyperparameter search
2. “Spectral normalization (SN)” is the only that showed consistent gain

Algorithmic Intelligence Lab

42

A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

* Regularization/normalization
* Gradient penalty [Gulrajani et al., 2017] (GP)
* DRAGAN [Kodali et al., 2017] (DR)
* Spectral normalization [Miyato et al., 2018] (SN)
* LayerNorm [Ba et al., 2016] (LN)
* BatchNorm [loffe & Szegedy, 2015] (BN)
* L2 regularization (L2)
* Loss functions
* Non-saturating loss [Goodfellow et al., 2014] (NS)
* Least-squares loss [Mao et al., 2017] (LS)
* Wasserstein loss [Arjovsky et al., 2017] (WGAN)
* Hyperparameter choices: (a) Fixed or (b) Bayesian optimization

PARAMETER DISCRETE VALUE PARAMETER RANGE LoG
Learning rate o« {0.0002, 0.0001,0.001} Learning rate @ [107°,1072] Yes
Reg. strength A {1,10} A for Lo [1074,10%] Yes
T -1 102 .
(B1, B2.mais) {(0.5,0.900,5), (0.5,0.999, 1), Aformon-L, [107,107 Yes
(0.5,0.999, 5), (0.9,0.999,5) } B1 X Ba [0,1] x [0,1] No
Table 1. Hyperparameter ranges used in this study. The Cartesian Table 2. We use sequential Bayesian optimization (Srinivas et al.,
product of the fixed values suffices to uncover most of the recent 2010) to explore the hyperparameter settings from the specified
results from the literature. ranges. We explore 120 hyperparameter settings in 12 rounds of
optimization.

Algorithmic Intelligence Lab 43

A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

1.

Effect of different regularization and normalization

* All the models are trained with non-saturating loss (NS)
* Compared the FID distribution for top 5% models over HPs (lower is better)

55 Dataset = celebahql28

50

a5 4
T
2 40
(1
N =
+
25
O L o) & N D S
& © & Q 9 % Q
Dataset = celebahql28
[a)
= 10°
10° 10*

Algorithmic Intelligence Lab

102

180
160
140
120
100
80
60
40

Dataset = Isun-bedroom

= 1
T e
= -
=
£ 8 P F s> &

Dataset = Isun-bedroom

10* 10?
Budget

44

A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

1. Effect of different regularization and normalization
Remark 1. None of them fully address the stability issues
Remark 2. Spectral normalization (SN) is generally a better practical choice

55 Dataset = celebahq128 Dataset = Isun-bedroom

180
— s
50 160 T
T 140
45
T 120 1 L
(m)
T 40 100
&

35 80

30 60

=l=5

°c & 626) & o N > NZ

40
25
(;2’9 & 5 S > N2

Dataset = celebahql28 Dataset = Isun-bedroom

0 192
T 10

102

10° 10* 10° 10° 10* 10?
Budget Budget
Algorithmic Intelligence Lab 45

A Large-Scale Study on Regularization and Normalization in GANs [Kurach et al., 2019]

e Kurach et al. (2019): An extensive comparison over various GAN practices

2. Effect of different training loss
Remark 1. Non-saturating loss (NS) was enough to achieve good FIDs
Remark 2. SN still consistently improves FID, while GP makes some mixed conclusion

55 Dataset = celebahql28 200 Dataset = Isun-bedroom
180
50
160
45 140
120 :
2 40
100 :
60
30
40 T
——
25 20
I T XA P RV > QX
\;"’J (90 60 \9 6)0
Q
Dataset = celebahql28
Model
e NS
== NS SN
Q 192 =« NSGP5
2 == WGAN SN
x -ty = WGAN GP 5
W T -
pil R I DESFRA T g o -
~« *egEm ._m _ LS GP 5

10° 10t 10° 10° 10! 10°
Budget Budget
Algorithmic Intelligence Lab

46

Table of Contents

3. Improved Techniques for GANs

* GAN architectures

Algorithmic Intelligence Lab

47

Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

* Previous GANs could produce sharp images, but only at small resolutions
* It was still unstable on higher-resolution training despite some progress

* Karras et al. (2018): Progressive growing of G and D (Progressive-GAN)
* Training GANs to directly generate high-res image might be too difficult!
* Progressive-GAN starts from learning low-resolution images
* It adds new layers to G and D during training for up-scaling into higher-resolution

G Latent Latent Latent
v
]
i ()
L |
H i []
; i []
\] !)
g g | 1024x1024 l
. B. - B
. ‘Reals . {Reals . ‘:'Reals
D i i I 1024x1024 |
¢ E N ll l|
o (]
H [)
v [)
8x8 —

Training progresses

A\ 4

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 48

Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

* Smooth fade-in to the new layers during up-scale training
* To prevent “sudden shocks” to the pre-trained smaller-resolution layers

* Example: Upscaling transition (b) from 16 x 16 to 32 x 32 ((a) — (c))

16x16 16x16
G
.
l) | 32x32 |
[32x32 | |
R

il

toRGB toRGB toRGB toRGB
l-avra
R & i
+) +
fromRGB fromRGB fromRGB
D

[32x32 | [32x32 |

fromRGB IEI @
l-u;v a
[16x16 |
(b)

L.

(

e Simply treat the higher resolution like a residual block
* The fade-in weight a increases linearly from 0 to 1 during training

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 49

Progressive GAN: High-Resolution Image Generation [Karras et al., 2018]

/ » 3 “._;. ’.\

- | B =\ L) N
1024x1024 images generated using the CELEBA-HQ dataset
https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

=

Mao et al. (2016b) (128 x 128) Gulrajani et al. (2017) (128 x 128) Our (256 x 256) S AR TP SR

Visual quality comparison: LSUN bedroom LSUN other categories generated image (256x256)

Algorithmic Intelligence Lab * source : Karras, et. al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018 50

https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2018]

* Previous GANs often failed to capture geometric or structural patterns

e Using only convolutional layers may be computationally inefficient
* Especially for modeling long-range dependencies in images

 Self-Attention GAN (SAGAN) [Wang et al., 2018]

* The non-local model (i.e. self-attention module) of for both G and D
* To efficiently model the relationships between spatial regions

— : attention between regions

4

Algorithmic Intelligence Lab * source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019 51

Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2018]

* The self-attention module of SAGAN

f(x)
i | transpose 1 | Z
convolution Ix1conv ‘ —I- . -
feature maps (x) By x N FNS A’ 8 ,2
L X X 4 I I B~
—] @-; M“Z_!
Ly V|_| g(x) — 1 _L) '
- lxllzlmv _1 I N
BxCxN .
Bx(C'"x N ﬁj,ifOfi:l,'--,N
] —]_7 R N

e The Image features are first transformed into two feature spaces.
f(z) =Wz, g(x) = Wy
* Then calculate the attention.
5., = exp(si;)
3t T =N
27:1 eXp(Sz’j)

» [3j,: indicates the extent to which the model attends to the i th location when
synthesizing the j th region

, where s;; = f(x:)" g(x;)

Algorithmic Intelligence Lab * source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019 52

Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2018]

* The self-attention module of SAGAN

f(x)

B x N x N
transpose .
convolution Ix1cony | attention
feature maps (x) ; | N map
I II | BxC'xN qg soTtmax self-attention
[e® |] feature maps (0)
Ix1conv - |
BxCxN — | L
B X C/ X N 1x1cony 5 C N
X X
N
IxIconv _1_
BxC"x N

* Here the output of the attention layer is:
N
0 =V Z/Bj,lh(xl) , h(.ib'l) = thi, ’U(ZCZ) = WUZCZ'.
i=1
* |n addition, multiply the output of the attention layer by a scale parameter and add
back the input feature map (as similar as Residual block).

Yi = Y0; + X

Algorithmic Intelligence Lab * source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019 53

Self-Attention GAN: Attention-Driven Image Generation Tasks [Wang et al., 2018]

* SAGAN improves upon state-of-the-art class-conditional ImageNet generation

Model Inception Score | Intra FID | FID
AC-GAN (Odena et al., 2017) 28.5 260.0 /
SNGAN-projection (Miyato & Koyama, 2018) 36.8 924 27.62*
SAGAN 52.52 83.7 18.65

Table 2. Comparison of the proposed SAGAN with state-of-the-art GAN models (Odena et al., 2017; Miyato & Koyama, 2018) for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially released weights.

e o3

Visualization of generated samples & their attention maps

 Comparison between Self-Attention and Residual block in GANs
* Ablation on the features index where the blocks added

Model no SAGAN Residual

attention [feats | featis | featsz | featss | feats | featis | featss | feates

FID 22.96 22.98 22.14 18.28 18.65 42.13 22.40 27.33 28.82
IS 42.87 43.15 45.94 51.43 52.52 23.17 44 .49 38.50 38.96

The improvements depend not only on residual connections, but also on attentions

Algorithmic Intelligence Lab * source : Zhang, et. al., Self-Attention Generative Adversarial Networks, ICML 2019 54

BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

e BigGAN is a holistic approach of recent techniques for training GANs

* Current cGAN techniques can be successfully scaled up to generate
high-resolution, diverse samples from complex datasets such as ImageNet

Algorithmic Intelligence Lab * source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 55

BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

* A holistic approach of previous GAN techniques
1. Based on SAGAN [Zhang et al., 2019] + Spectral normalization [Miyato et al., 2018]
2. Class-conditional modeling
* G: Class-conditional BatchNorm [Dumoulin et al., 2017]
* D: Projection discriminator [Miyato et al., 2018]

* Several further techniques needed to stabilize the large-scale training
1. Shared embedding of y across multiple layers
2. Skip connection (residual) of the latent variable
3. Orthogonal regularization weight matrix

Rg(W) =B|WTW e (1-1)|3

/4 \
] , 1
' Shared embed !
| ey |
BigGAN = | SAGAN + SN = Con(:!ltlor\al BN £ Skip connection | |
' Projection D I
! Orthogonal reg. :
| |
| |
l\ Baseline Conditioning Stabilizing ,}

Scale up

Algorithmic Intelligence Lab * source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 56

BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

* Shared embedding of class information
* Instead of having a separate layer at the end for embedding [Miyato et al., 2018]
* Linearly projected to each layer’s gains and biases [Perez et al., 2018]

e Skip connections (skip-z) from z across multiple layers of G
e Allows z to directly influence the features at different resolutions

4 Class

=

[Linear]
— 4x4x16¢ch

skip connection

shared embedding

[Nondocal |

T] -

Image

The BigGAN architecture

Algorithmic Intelligence Lab

BigGAN: High-resolution, Diverse Image Generation [Brock et al., 2019]

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. | Itr x10° FID IS

256 64 81.5 SA-GAN Baseline 1000 18.65 52.52
512 64 81.5 X X X 1000 15.30 58.77(£1.18)
1024 64 81.5 X X X 1000 14.88 63.03(+1.42)
2048 64 81.5 X X X 732 12.39 76.85(1+3.83)
3048 | 96 | 1735 X X X [205(£18) | 9.54(£0.62) | 92.98(£4.27)
2043 | 96 | 1606 7 X X | 185(£11) | 9.18(£0.13) | 94.94(£1.32)
3048 | 96 | 1583 7 7 X | 152(£7) | 8.73(X0.45) | 98.76(£2.84)
2048 | 96 | 1583 7 7 7 [165(£13) | 8.51(x0.32) | 99.31(£2.10)
5048 | 64 | 713 7 7 7 [371(%7) | 10.48(X0.10) | 86.90(X0.61)

* Increasing the batch size by 8x improves the state-of-the-art IS by 46%

* Increasing the width (# channels) by 1.5x leads to a further improvement

* Truncation trick could further fine-control FID
* Trade-off between variety vs. fidelity
* Simply truncate the variance of the latent variable

=

Algorithmic Intelligence Lab

* source : Brock, et. al., Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019 58

Scale up

Stabilize

StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Interpolation on the latent space of GAN yields smooth, but non-linear changes
e Features not in both end-points appear along the interpolation path

CelebA-HQ
1024 x 1024

Latent space interpolations

Latent space interpolations with Progressive GAN

* The input latent space must follow the probability density of the training data,
and this leads to some degree of unavoidable entanglement

e Karras et al. (2019): Intermediate latent space representing a “style”
» Significantly relaxes the restriction, and allowed to be disentangled

59

StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

» StyleGAN proposes to use a non-linear mapping network f : Z — W
* Implemented using an 8-layer fully-connected neural network

Random vector
(Latent Code)

Normalize

Mapping
Network

512X1

Y

512X1

(a) Distribution of (b) Mapping from (c) Mapping from
features in training set Z to features W to features

lllustration of disentanglement

* Direct mapping from Z to meaningful features might be too complex

* Mapping from)V to the features, on the other hand, can be more simpler

Algorithmic Intelligence Lab

* source : Rani Horev's blog 60

StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Adaptive instance normalization (AdalN)
* Motivated by the instance normalization [Huang et al., 2017]

AdaIN(Xi, Y) = Ys.i

* v = (Y5, Vp) is called by a “style”
* A learned affine-transformation of w € W
* Controls high-level attributes (e.g., pose, identity of face images)

X; — p(Xi)

o(x;)

+ ¥Yb,is

* Applied after all the convolutional layer in the synthesis network 9

Latent

Code

Normalize

v

512X1

w

Synthesis
Network g

[Const 4x4x512]

|_Upsample |

AdalN

. 8x8

<
<

1 é'xq‘s |

P«

v

1024x1024

512;(1 l—

Algorithmic Intelligence Lab

w| 1x512

transformation

[Learned affine J

n channels
o]
2 X €8
i T 3
=% <

2xn

Ys,i

Normalize channel
(by its mean and variance)

NIepy

; Scale and bias

style +——

You,i

channel

AdaIN(x;,y) = Y.

X —ll(x,')

O'(Xl') +yll.i?

* source : Rani Horev's blog 61

StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

* Explicit noise inputs for stochastic variation
* Single-channel images of Gaussian noise
* Aims to control the stochastic details, e.g., freckles, hair of face images

* A noise channel n, is fed to every layer of the synthesis network g
* Broadcasted across features with learned per-feature scaling factors B

s(xij,n)=x; + B; - n

Synthesis
Network Noise
Latent
Code : | Const 4x4x512 |« Bl
Normalize LBer
B
~A—> +)< Learned per- |
channel scale
AdalN |
S
w
FA—> +)€ B [«
AdalN
8x8‘
Y
v ; —A—> 1024x1024}« B |«

Algorithmic Intelligence Lab * source : Rani Horev's blog 62

StyleGAN: A Style-Based Generator Architecture [Karras et al., 2019]

FID
 StyleGAN improves state-of-the-art in terms of FID 10 o
9 — Style-based (F)
Method CelebA-HQ FFHQ g
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25 ’
C + Add mapping and styles 5.34 4.85 6
D + Remove traditional input 5.07 4.88 5 ;
E + Add noise inputs 5.06 4.42 §Fuul |
F + MIXIHg regularization 5.17 4.40 40 5M ‘IOM I5M 20M 25M

* Better interpolation properties, and disentangles the latent factors of variation

Source B

m
o
2
E]
o
2
=]
S

&
@

2
2
Z
o
2
s
<]

O

Algorithmic Intelligence Lab 63

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): Some buggy-artifacts in StyleGAN samples
* Blob-shaped artifacts found in most of StyleGAN images (and hidden features)

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated
images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

» StyleGAN2 includes several design modifications to address this issue

Configuration FFHQ, 10241024 LSUN Car, 512384
' FID | Path length | Precision T Recall 1 FID | Path length | Precision T Recall 1

A Baseline StyleGAN [24] 4.40 2121 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 439 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514

Config A with large networks 3.98 199.2 0.716 0.422 - - - -

Algorithmic Intelligence Lab 64

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

* Blob-shaped artifacts found in most of StyleGAN images (and hidden features)
1. The anomaly starts to appear around 64X64 resolution
2. It becomes progressively stronger at higher resolutions

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated

images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

* If so, why the discriminator could not detect those artifacts? | Up:mple |
* Karras et al. (2020a): AdalN operation can be problematic | C°“3"3 '___
e AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features o]
relative to each other %S
* Hypothesis: they “sneak” some information past AdalN £l
(a) StyleGAN

Algorithmic Intelligence Lab 65

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately
* This can destroy any magnitude information in the features relative to each other

* Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

* Generator architecture revisited = No artifacts anymore!

1. Bias outside the style block

* StyleGAN applies bias & noise
“within” the style block

* Inversely proportional impact
to the current magnitude

* This design is more predictable

Mod std
Upsample
w3

- A
~ Y

2. No norm/mod for means
* |t was possible after (1) is made

* Much simplifies the design g ' @
2| by > (D€
2
: by)\f B
(b) StyleGAN kaelailed) (c) Revised ar.é'hiteclure

Algorithmic Intelligence Lab 66

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» Karras et al. (2020a): AdalN operation can be problematic
* AdalN normalizes each feature map separately

* This can destroy any magnitude information in the features relative to each other

* Hypothesis: they “sneak” some information past AdalN
* Observation: the artifacts disappear when the normalization step is removed

* Generator architecture revisited = No artifacts anymore!

3. Weight de-modulation
* A “weaker notion” of AdalN

e AdalN is originally for removing
the effect of input modulation

* StyleGAN2 instead implement these
“Mod + AdalN” by weight re-scaling

0
u"‘ijk

I Y 2
Wijk = le’jk/\/E :u"z’jk T €,
i,k

Algorithmic Intelligence Lab

Si * Wijks

9

Wy — Conv 3x3

b, >D€ (B]
| Upsample |

w3 —>| Coml' 3x3 |

by > (B]

wy—>» Conv 3x3 |

b,)i(E,

(c) Revised architecture

a

Wy

[Demod>» Conv 3x3 |

b: w B
i

Mod | [Upsample |
1 1

[Demod>»| Conv3x3 |

by ‘- B

Wy

|Demod}-)| Conv 3x3 |

>

(d) Weight demodulation
67

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

* Path length regularization
* Recall the mapping network f : Z2 — W
* Prior: a fixed step in W results in a fixed-sized change in g(w)

2
Ew y~ar(0,1) (}‘J£y|‘2 - a)

W o~ f();

g(w) /0w : The Jacobian matrix

e Jo, =0

Yy: random image

* Improved architectural design

* StyleGAN follows simple feedforward designs
* StyleGAN2 considers better architectural choices

e Skip connections for G

* Residual network design for D

FFHQ D original D input skips D residual
FID PPL FID PPL FID PPL
G original 432 265 4.18 235 3.58 269
G output skips 433 169 3.77 127 3.31 125
G residual 435 203 396 229 379 243

Algorithmic Intelligence Lab

Latent z € Z

Normalize

Mapping

RGB|H 256x256 |

RGB |- 512x512 |

{RGB [H 1024x1024 |

fRGB [>{ 1024x1024 |

[Down v
fRGBP»| 512x512 |
[Down v

RGBP{ 256x256 |

(b) Input/output skips

[Tp | [256x256 |
&
o

[T][512%512]

e —

| Up | [1024x1024 |

|Down| [[1024x1024 |

e

Down| | 512x512 |

—

[Down| [256x256 |

(c) Residual nets

68

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN [Karras et al., 2020a]

» StyleGAN2 successfully removes the buggy-artifacts of StyleGAN
* Weight de-modulation significantly improves the recall of generations
e Simply using larger StyleGAN could not be comparable with StyleGAN2

Configuration

FFHQ, 10241024

LSUN Car, 512384

FID | Path length | Precision 1 Recall 1 FID | Path length | Precision 1 Recall 1
A Baseline StyleGAN [4] 4.40 212.1 0.721 0.399 3.27 1484.5 0.701 0.435
B + Weight demodulation 4.39 175.4 0.702 0.425 3.04 862.4 0.685 0.488
C + Lazy regularization 4.38 158.0 0.719 0.427 2.83 081.6 0.688 0.493
D + Path length regularization 434 122.5 0.715 0.418 343 651.2 0.697 0.452
E + No growing, new G & D arch. 3.31 124.5 0.705 0.449 3.19 471.2 0.690 0.454
F + Large networks (StyleGAN2) 2.84 145.0 0.689 0.492 2.32 415.5 0.678 0.514
Config A with large networks 3.98 199.2 0.716 0.422 - - - -

Algorithmic Intelligence Lab

69

Table of Contents

3. Improved Techniques for GANs

* Data augmentations for GANs

Algorithmic Intelligence Lab

70

Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

Example: Rigid transformation symmetries
* Translation, dilation, rotation, mirror symmetry, ...

* Forms an affine group on pixels: [le —> [’01] + {al a2] [u1]

Translation Dilation Rotation Mirror symmetry

Algorithmic Intelligence Lab *source : https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf 71

https://github.com/joanbruna/MathsDL-spring18/blob/master/lectures/lecture2.pdf

Data augmentations for GANs

Collecting more data is perhaps the best way to generalize better

Data augmentation (DA) makes artificial data instead of collecting more
* Requires some knowledge on making “good” artificial data

Have been especially effective for discriminative modeling

DA for GANs? (or for generative modeling in general?)
* Not much explored until very recently [Zhang et al., 2019]
* Why? Current DA practices for discriminative modeling might by too strong
* How can we incorporate the distribution shifts P(x) — P(T'(x))?

Algorithmic Intelligence Lab 72

Consistency Regularization for GANs [Zhang et al., 2019]

* How can we incorporate the distribution shifts P(x) — P(T(x))?

* Naive augmentation of real images would shift the data distribution
P(x) P(T(x))

* Zhang et al. (2019): Consistency regularization for GANs (CRGAN)
* Enforcing only “consistency” can effectively incorporate 7'(x)

Image space Manifold space Semantic feature space

e & S

SN’

Algorithmic Intelligence Lab

Before
consistency

After
consistency

73

Consistency Regularization for GANs [Zhang et al., 2019]

* Enforcing consistency can effectively incorporate P(z) — P(T(x))

* Training data is not directly augmented by T, but only consider D(x) ~ D(T(x))

* D should learn representation that is invariant to T

Ler = ||D(x) = D(T(2))|,
§§::LD—+ALMH lﬁgzng.

Algorithm 1 Consistency Regularized GAN (CR-GAN). We use A = 10 by default.

Input: generator and discriminator parameters ¢, #p. consistency regularization coefficient A,
Adam hyperparameters «, (31, 32, batch size M, number of discriminator iterations per gen-
erator iteration Np

: for number of training iterations do

1,....,Npdo
i=1,....M do

Sample 2 ~ p(2), ~ Pgaa(T)

Augment x to get T'(x)

LY « ||D(x) - DT (2))|”

< Only real images are augmented

LY « D(G(z)) — D(x)
for

6p Adam(gr 31, (L) + ALer), @, By, o)

Ho +— Adam

11: [Sample a batch of latent variables {2"}, ~ p(2))))
L (&M (ZD(C(2))), a, Br, Ba) G is trained in the standard way

1
2: fort =
3: for
4:
5:
6:
7:
8: end
9:
10: end for
12:
13: end for

Algorithmic Intelligence Lab

74

Consistency Regularization for GANs [Zhang et al., 2019]

* Does CR really learn differently than simple augmentation?

- GAN 50 - GAN
=== GAN w/ Aug. === GAN W/ Aug.
=== GAN w/ Cons. Reg. 45 === GAN w/ Cons. Reg.

Test accuracy
© o o
N o

o«
[

o
i

25 —

°
o

0 1000 2000 3000 4000 20 0 1000 2000 3000 4000

Epochs Epochs

* Both CR and Aug. prevent overfitting of the discriminator
* However, CR is the one that could only meaningfully improve FIDs

* Which augmentations should we use?
* The choice of augmentation does matter in GAN training
* For CR, a simple choice of “Random shift & flip” worked best

Metric | Gaussian Noise Random shift & flip Cutout Cutout w/ random shift & flip
FID 21.91+0.32 16.04+0.17 17.10+0.29 19.46+0.26

Table 3: FID scores on CIFAR-10 for different types of image augmentation. Gaussian noise is the
worst, and random shift and flip is the best, consistent with general consensus on the best way to
perform image optimization on CIFAR-10 (Zagoruyko & Komodakis| 2016).

Algorithmic Intelligence Lab

75

Consistency Regularization for GANs [Zhang et al., 2019]

* CR surprisingly stabilizes GAN training on various existing practices

27.- SN = True | loss = Hinge 30- SN = True | loss = NS 140- SN = True | loss = WAS
26- === 28 — 120- ?
25-E ! —_— 100+
24- 26- —— 80
2 23.- 24-
w 60 - S
22- 22 w0
21- 1 —————
20- 20- — 20- —_—
=
19' 1 1 1 1 1 18' 1 1 1 1 1 0' 1 1 1 1 1
W/0 GP DR JSR Ours W/0 GP DR JSR Ours W/0 GP DR JSR Ours

* CR further improves state-of-the-art BigGAN training

Dataset SNGAN SAGAN BigGAN BigGAN* CR-BigGAN*
CIFAR-10 17.5 / 14.73 20.42 11.48
ImageNet 27.62 18.65 8.73 1.75 6.66

Comparison of FIDs (lower is better)

CR-BigGAN

Algorithmic Intelligence Lab 76

“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Recall: How can we incorporate the distribution shifts P(z) — P(T(x))?

* Then would it be just enough with CR for GANs?
* Still, CR does not perfectly prevent the shifting issue in GAN
* For certain augmentations, e.g., CutOut, CR often make “leakages”

(a) 8 x 8 cutout. (b) CR samples. (c) bCR samples.

* Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal ”D(l) - D(T(l)>”2
Lfake — ”D(G(;)) o D(T(G(;)))HQ

Algorithmic Intelligence Lab 77

“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Zhao et al. (2020): Balanced Consistency regularization (bCR)
* bCR alleviates such leakages by also giving consistency to “fake” images

Lieal < ||D(l) — D(T(

£))|?

Lke < |D(G(2)) — D(T(G(2)))]]?

rg rFo aa

{D(T(x) - + DX} {D(TX) - - DK} {D(G() -~ DTGE)}

D / D

T ‘FT(G(z»
G

G
|

T(X) X z TX) X
F - F -
(1) CR-GAN (2) bCR-GAN

Algorithmic Intelligence Lab

Algorithm 1 Balanced Consistency Regularization (bCR)

Input: parameters of generator # and discriminator 6 p,
consistency regularization coefficient for real images Ajeq
and fake images Apke, number of discriminator iterations
per generator iteration Np, augmentation transform 7
(for images, e.g. shift, flip, cutout, etc).
for number of training iterations do

fort =1to Np do
Sample batch z ~ p(z), & ~ preal()
Augment both real 7'(«r) and fake 7'(G(z)) images
Lp + D(G(z)) — D(x)
Lrea < || D(w) — D(T'(x))||*
Like + | D(G(2)) — D(T(G(2)))]?
HD — Adalnoptilnizer(LD +)‘l’ealLreul + /\lekeLfake)
end for
Sample batch = ~ p(z)
La + —D(G(z))
O < AdamOptimizer(L)
end for

G is still trained in
the standard way

78

“Improved” Consistency Regularization for GANs [Zhao et al., 2020a]

* Zhao et al. (2020): Balanced Consistency regularization (bCR)

* Despite its simplicity, bCR could achieve state-of-the-art BigGAN training

FID
N
[N

18

16
W/0 GP

Algorithmic Intelligence Lab

DR

JSR
methods

CR

= W/0

= GP

DR

=)SR

CR

bCR (ours)

bCR (ours)

Models CIFAR-10 ImageNet
SNGAN 17.50 27.62
BigGAN 14.73 8.73
CR-BigGAN 11.48 6.66
ICR-BigGAN (ours) 9.21 5.38

79

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

Limitation of CR: Fundamentally hard to incorporate stronger augmentations

Manifold space

Example: Color jittering
* The “redness” is not helpful to improve FID with CR

* Forcing CR for such a stronger augmentation N f

might be too restrictive for D representation ‘oo .
N

NP

How can we incorporate stronger augmentations for GANs?

FIp . translation redness
= I Augment: R+F

E [Consistency
Fr R T e ——
o ~N
L
: |~
o
]

) . v

Original Image Translation Redness
o> ot 02 0% 0? 905 0% 0% 0>
A_aug A _aug

Algorithmic Intelligence Lab * source: [ZhaoZ et al., 2020b] Image Augmentations for GAN Training, 2020. 80

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Is CR really necessary for GANs to incorporate data augmentations?

* How can we incorporate stronger augmentations for GANs?

* Two concurrent works propose a “even simpler” scheme for GANs
* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”
* [Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”

update

Latents Reals Latents a x—’:-]-:(;c)‘:—’ D(T(x)) Latents Reals Latents
o] ma Mol | a i
s > 1(GE)—> D(T(G(z))) : —
Aug Aug - W | Aug | | Aug | | Aug |

] i i . 7 1 7
LD | | D B uPeye lIl)||lDl|

! ——l —l .
=@ | ()T e ¢ e | e, —+D(T(G(z)) (/&) @) /&)
&) (ff))((l.,»))(fi) f)) P s TGl € {) | G {) G ¢)
G loss) C D loss . T = (i) (G loss) (D loss)
Balanced CR (bCR) DiffAug ADA

Algorithmic Intelligence Lab 81

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Is CR really necessary for GANs to incorporate data augmentations?

How can we incorporate stronger augmentations for GANs?

Two concurrent works propose a “even simpler” scheme for GANs

* [Zhao et al., 2020b] “Differentiable Augmentation for Data-Efficient GAN Training”

[Karras et al., 2020b] “Training Generative Adversarial Networks with Limited Data”

Idea: Simply augment every input before D, even when G is trained

* No CR needed anymore, and accept stronger augmentations without leakages

Latents Reals Latents
G | G |
Aug Aug
LD | | D B

[=1 T :
C@ (FD) G- @ -
(G loss) (

D loss

Balanced CR (bCR)

Algorithmic Intelligence Lab

Latents

x_,:—j"_(;c}':_’ -p D(T(x)) Latents Reals
Lm0 D > s f}
i 1(G(z)i—> D(T(G(2)))

—> 4 3 - &
|Allg||Aug||Aug|
update | D | | D |

) 1) |
_________ — D(T(G(z)) (—f& —f®) f(=)
z—> —T(G(z))—> (fi D le) Cfl)
fmmmmee = (i) (G loss) (D loss)

DiffAug ADA

82

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Two concurrent works propose a “even simpler” scheme for GANs

* Idea: Simply augment every input before D, even when G is trained

* Then, how could this approach have not been explored so far?
* This requires a differentiable implementation of T'(+) for training G
* Example: Non-saturating loss should minimize E,[— log (D(T(G(z)))]

* Nevertheless, most of the previous implementations of T were non-differentiable
e ...as they were rather considered as pre-processing steps

* |n this respect, the “differentiability” of T is becoming increasingly important

E ______ update '
Latents Reals Latents . X —bi_]:(_ x_)j:» D(T(x)) Latents }])Keals Latents
[G | [G | N R e D |— s |

: 4 —hT(G(z)).—b D(T(G L I]
Aug Aug e (G | Aug | | Aug | | Aug |

, , . 1 ! 7
|D|| D |= update |?||1D1|
x —f®))((x— 1 —=x)) ((x— 1 --------- — D(T(G(z)) (-fix —f)) ~f(=
(f()) (fc D D(f() (>) . TG) @) I
(G loss) C Dloss) E _______ (i) (G loss) (D loss)

Balanced CR (bCR) DiffAug ADA

Algorithmic Intelligence Lab 83

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

* Which augmentation should we use?
* Key point: There should be no leakage of augmentations

* Example: Random 90° rotations as T
* Assume X: generated distribution and y: target distribution
* Q: ADA matches 7x = T y: then, does it always imply Xx = y?
* A: No, imagine when x goes like “E” below — augmentation leakage

Aug. generated T x Aug. real Ty

Algorithmic Intelligence Lab 84

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?
* Key point: There should be no leakage of augmentations

Example: Random 90° rotations as 7

The prob. of
executing T

Idea: The leakage of any 7 can be controlled by settingp € [0, 1]

FID

50_

20_.

10

p=075 08 085 090 095 100 p=0.75 0.80 0.85 0.90 0.95 1.00 p=075 08 085 090 095 100
(a) Isotropic image scaling (b) Random 90° rotations (c) Color transformations

Algorithmic Intelligence Lab 85

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

Which augmentation should we use?

* Key point: There should be no leakage of augmentations
The prob. of

Idea: The leakage of any 7 can be controlled by setting p € [0, 1] executing 7

ADA also proposes a heuristic to adaptively set p in training by observing 7;,

D(x)

ro— E[Dtrain] — IEjf[Dvalidation] 61
v T]
IE:[Dtlrain] - E[D generated] :
0_
* 1, = 0: No overfitting / r,, = 1: Complete overfitting N
* p of the augmentation is initially setto 0 4

* Increase/decrease p when 1, is low/high, resp. 1 e Generated — Validation -~ Best FID

t=0M 2M 4M M &M 1M 1I2ZM 14M

Algorithmic Intelligence Lab 86

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

» ADA successfully incorporate wider augmentations than bCR

p=0 p=01 p=02 p=03 p=05 p=0.8

* ADA works significantly better than bCR when # sample is small

FID o Besdine FID o Badine Dataset | Baseline ADA +bCR
—— ADA (Ours) —— ADA (Ours) 1k | 100.16 21.29 22.61

50 1 —— BbCR 100 —— bCR o 5k | 49.68 1096 10.58
—— ADA+bCR —— ADA+bCR =| 10k | 3074 813 17.53

E 30k 12.31 546 4.57

50 1 70k 528 430 391

140k 371 3381 3.62
1k | 186.91 43.25 38.82
5k | 96.44 1695 16.80

10k | 50.66 13.13 1290
30k | 1590 1050 9.68

100k 856 926 873

200k 798 922 9.03

20 A

201

LSUN CAT

104

Ik 2k Sk 10k 20k S0k 140k 1k 2k Sk 10k 20k SOk 200k

(a) FFHQ (256 x 256) (b) LSUN CAT (256 x 256) (c) Median FID

Algorithmic Intelligence Lab 87

Beyond the Consistency Regularization [Zhao et al., 2020b; Karras et al., 2020b]

* Adaptive Discriminator Augmentation (ADA) [Karras et al., 2020b]

* ADA significantly improves GAN training especially on limited-sized datasets

D Method Scratch Transfer | + Freeze-D Method Unconditional Conditional
ataset etho FID le1%3 191133]E([BB FID | ISt FID | ISt
METFACEs Baseline | 5726 3566 3.16 2.05 ProGAN 15.52 8.56+006 | - -
ADA 1822 241 0.81 1.33 AutoGAN 12.42 8.55:010 | - -
Baseline | 97.72 89.76 18.07 6.94 BigGAN - - 14.73 9.22
BRECAHAD -
ADA. 1571 288 3.36 1.91 + Tuning _ _ 8.47 9.07+0.13
AFHQ Car Daseline | 5.13 1.54 1.09 1.00 MultiHinge - - 6.40 9.58+0.09
ADA 355 0.66 0.44 0.35
- FQ-GAN - - 5.59+012 8.48
Baseline | 19.37 9.62 4.63 2.80
AFHQDoG 740 116 1.40 112 Baseline 8.32+009 9.21+009 | 6.96+041 9.53+0.06
Baseline 348 077 0.31 0.12 + ADA (Ours) 5.33:035 10.02:0.07 | 3.49:0.17 10.24:0.07
AFHQWILD 305 045 0.15 0.14 + Tuning (Ours) | 2.92:005 9.83:004 | 2.42:004 10.14:0.09
(a) Small datasets (b) CIFAR-10
METFACES (new dataset) BRECAHAD AFHQ CAT, DoG, WILD (5122) CIFAR-10

Algorithmic Intelligence Lab

1336 img, 10242, transfer learning from FFHQ

1944 img, 5122

5153 img

4739 img

4738 img

50k, 10

cls, 322

88

Table of Contents

4. Summary

Algorithmic Intelligence Lab

89

Summary

* GAN has been one of the prominent topic in deep learning since 2014

Cumulative number of named GAN papers by month

* Thousands of papers about GAN:
* Theoretical aspects of GANs
* Stabilizing GAN training dynamics

S e ks
3EaaRENIBELaREq8aRatEEED

Total number of papers

* Applications of GAN to various Al tasks :
e ...and many more

75
60
45
30
15

0
2014 2015 2016

* GANs are especially good at generating “high-precision” samples
* Achieving “high-recall”, however, is still challenging
* Lots of improvement in loss, regularization, and architecture have been made
* Some large-scale studies have revealed sober views on them, nevertheless

* Recent approaches in GANs are actively revisiting various DA techniques
* Consistency regularization [Zhang et al., 2019; Zhao et al., 2020a]
* Differentiable augmentations [Zhao et al., 2020b; Karras et al., 2020b]

Algorithmic Intelligence Lab * source : https://github.com/hindupuravinash/the-gan-zoo 90

https://github.com/hindupuravinash/the-gan-zoo

References

[Goodfellow, et. al., 2014] Generative adversarial nets, NIPS 2014
link: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[Theis, et. al., 2016] A note on the evaluation of generative models, ICLR 2016
link: http://bethgelab.org/media/publications/1511.01844v1.pdf

[Radford, et. al., 2015] Unsupervised representation learning with deep convolutional generative adversarial
networks.
link: https://arxiv.org/pdf/1511.06434.pdf

[Ledig, et. al., 2017] Photo-realistic single image super-resolution using a generative adversarial networks, CVPR 2017
link: http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-
Realistic_Single Image CVPR_2017_ paper.pdf

[Zhu, et. al., 2017] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017
link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237506

[Karras, et. al., 2018] Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018
link: https://arxiv.org/abs/1710.10196

[Salimans, et. al., 2016] Improved techniques for training GANS, NIPS 2016
link: https://arxiv.org/abs/1606.03498

[Huszar 2015] How (not) to train your generative model: scheduled sampling, likelihood, adversary?
link: https://arxiv.org/pdf/1511.05101.pdf

[Mirza et al., 2014] Conditional Generative Adversarial Nets
link: https://arxiv.org/pdf/1411.1784.pdf

Algorithmic Intelligence Lab 91

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://bethgelab.org/media/publications/1511.01844v1.pdf
https://arxiv.org/pdf/1511.06434.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237506
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1606.03498
https://arxiv.org/pdf/1511.05101.pdf
https://arxiv.org/pdf/1411.1784.pdf

References

[Odena, et. al., 2017] Conditional Image Synthesis with Auxiliary Classifier GANs, ICML 2017
link: https://arxiv.org/pdf/1610.09585.pdf

[Basart et. al., 2017] Analysis of Generative Adversarial Models
link: https://newtraell.cs.uchicago.edu/files/ms_paper/xksteven.pdf

[Dumoulin, et. al., 2017] A Learned Representation for Artistic Style, ICLR 2017
link: https://arxiv.org/pdf/1610.07629.pdf

[DeVries, et. al., 2017] Modulating early visual processing by language, NIPS 2017
link: https://arxiv.org/pdf/1707.00683.pdf

[Miyato, et. al., 2018] cGANs with Projection Discriminator, ICLR 2018
link: https://arxiv.org/pdf/1802.05637.pdf

[Arjovsky, et. al., 2017] Wasserstein GAN, ICML 2017
link: https://arxiv.org/pdf/1701.07875.pdf

[Arjovsdky and Bottou, 2017] Towards principled methods for training generative adversarial networks, ICLR 2017
link: https://arxiv.org/pdf/1701.04862.pdf

[Villani, 2009] Optimal transport: old and new, Grundlehren der mathematischen wissenschaften 2009
link: http://cedricvillani.org/wp-content/uploads/2012/08/preprint-1.pdf

[Reed, et. al., 2016] Generative adversarial text to image synthesis, ICML 2016
link: https://arxiv.org/pdf/1605.05396.pdf

[Wang, et. al., 2004] Image quality assessment: from error visibility to structural similarity, IEEE transactions on
image processing 2004
link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1284395

Algorithmic Intelligence Lab 92

https://arxiv.org/pdf/1610.09585.pdf
https://newtraell.cs.uchicago.edu/files/ms_paper/xksteven.pdf
https://arxiv.org/pdf/1610.07629.pdf
https://arxiv.org/pdf/1707.00683.pdf
https://arxiv.org/pdf/1802.05637.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.04862.pdf
http://cedricvillani.org/wp-content/uploads/2012/08/preprint-1.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1284395

References

[Radford, et. al., 2015] Unsupervised representation learning with deep convolutional generative adversarial
networks, 2015
link: https://arxiv.org/pdf/1511.06434.pdf

[Gulrajani, et. al., 2017] Improved training of Wasserstein GANs, NIPS 2017
link: https://arxiv.org/pdf/1704.00028.pdf

[Miyato, et. al., 2018] Spectral normalization for generative adversarial networks, ICLR 2018

link: https://arxiv.org/pdf/1802.05957.pdf

[Zhang, et. al., 2019] Self-Attention Generative Adversarial Networks, ICML 2019
link: https://arxiv.org/pdf/1805.08318.pdf

[Wang, et. al., 2018] Non-local neural networks, CVPR 2018
link: https://arxiv.org/pdf/1711.07971.pdf

[Brock, et. al., 2019] Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019
link: https://arxiv.org/pdf/1809.11096.pdf

[Perez, et. al., 2019] FiLM: Visual Reasoning with a General Conditioning Layer, AAAI 2018
link: https://arxiv.org/pdf/1709.07871.pdf

[Karras, et. al., 2019] Large Scale GAN Training for High Fidelity Natural Image Synthesis, CVPR 2019
link: https://arxiv.org/pdf/1809.11096.pdf

[Huang, et. al., 2017] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, ICCV 2017
link: https://arxiv.org/pdf/1703.06868.pdf

Algorithmic Intelligence Lab 93

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1802.05957.pdf
https://arxiv.org/pdf/1805.08318.pdf
https://arxiv.org/pdf/1711.07971.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1709.07871.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1703.06868.pdf

References

[Lucic et al., 2018] Are GANs Created Equal? A Large-Scale Study, NIPS 2018
link: https://arxiv.org/abs/1711.10337

[Kurach et al., 2019] A Large-Scale Study on Regularization and Normalization in GANs, ICML 2019
link: http://proceedings.mlr.press/v97/kurach19a.html

[Kodali et al., 2017] On Convergence and Stability of GANs, 2018
link: https://arxiv.org/abs/1705.07215v5

[Ba et al., 2016] Layer Normalizatiton, 2016
link: https://arxiv.org/abs/1607.06450

[loffe & Szegedy, 2015] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, ICML 2015
link: https://arxiv.org/abs/1502.03167

[Mao et al., 2017] Least Squares Generative Adversarial Networks, 2016
link: https://arxiv.org/abs/1611.04076

[Zhang et al., 2019] Consistency Regularization for Generative Adversarial Networks, ICLR 2020
link: https://arxiv.org/abs/1910.12027

[Karras et al., 2020a] Analyzing and Improving the Image Quality of StyleGAN, CVPR 2020
link: https://arxiv.org/abs/1912.04958

[Karras et al., 2020b] Training Generative Adversarial Networks with Limited Data, NeurlIPS 2020
link: https://arxiv.org/abs/2006.06676

[Zhao et al., 2020a] Improved Consistency Regularization for GANs, 2020
link: https://arxiv.org/abs/2002.04724

[Zhao et al., 2020b] Differentiable Augmentation for Data-Efficient GAN Training, NeurlPS 2020
link: https://arxiv.org/abs/2006.10738

Algorithmic Intelligence Lab 94

https://arxiv.org/abs/1711.10337
http://proceedings.mlr.press/v97/kurach19a.html
https://arxiv.org/abs/1705.07215v5
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1910.12027
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2002.04724
https://arxiv.org/abs/2006.10738

