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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically

e Speech
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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically

* Speech

* Natural language
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it was the sum total of the popcorn and the drink.

The movie was _.” — terrible

~

J

Language modeling

S2lof v & w30 ol

Language model pretraining has led to significant performance gains X 0] B A 2
but the careful comparison between different approaches is &5t Hlwsh= A2 EESLIC

challenging.

0

(-

Algorithmic Intelligence Lab

C

7 EX|TH MZ CHE ™2 gl

A5y

flo

o

eon-eo model sajeon hunlyeon-eun sangdanghan seongneung hyangsang-eul gajyeo
wassjiman seolo daleun jeobgeun bangsig-eul sinjunghage bigyohaneun geos-eun

eolyeobseubnida.

139/ 5000 A L'D)

Translation

oD 72 <



Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
e Speech
* Natural language
* Video
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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
e Speech
* Natural language
* Video
* Stock prices, and etc...
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Motivation: Temporal Data in Real World

* Many real-world data has a temporal structure intrinsically
* Speech
* Natural language
* Video
* Stock prices, and etc...

* In order to solve much complicated real-world problems,
we need a better architecture to capture temporal dependency in the data

one to one many to one many to many
t : D IR AT
i IR (ESENTE

Vanilla neural network
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Vanilla RNN

* Process a sequence of vectors by applying

recurrence formula at every time step :

New state

ht:

fw
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hi_1

Lt

[ Old state

Input vector
at time step t

Function parameterized by learnable Y}/
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Vanilla RNN

* Vanilla RNN (or sometimes called EIman RNN)
* The state consists of a single “hidden” vector h,

hy = fW(hifl,a?t) @D

h: = tanh(Whhs_1 + Waa:) W
Yy, = Wyhy 1w

=5

*reference: http://cs231n.stanford.edu/2017/ 3



Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

J&) (6)

J -
Training loss

h) h(2) h(3) h4)
0 O O 0
0 W @ W, e Wi e
0 @ @ @
0 0 0 0
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state » (")

J) ()
1 Training loss
W o) A ol
: W, : Wy, : W, :
o I I It:
8J®  on? ) oh'3) oh  9J®
on  onM oh(?) 8 oh®) “ oh®

Chain rule!

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4



Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4
 Consider a gradient from the first state h(")

ah(z—’_l) ° ° .
on® are too small? —) Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

J) ()
1 Training loss

hD_ he_ he_ hl|
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R [ e
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Chain rule!
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Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4

* Consider a gradient from the first state A

ah(z—’_l) . . .
on® are too small? —) Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

* So, model weight are updated only with respect to
not long-term effects.

J2)(6) J4) ()
A A
ht) h2_ h)_ h L
0 0 O 0
0 W, @ W, |le W, @
0 1@ @ @
0 O O O

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4



Why Do We Need to Develop RNN Architectures?

* E.g., RNN with a sequence of length 4
 Consider a gradient from the first state h(")

ah(z—’_l) . . .
on® are too small? I:> Vanishing gradient problem

* When these are small, the gradient signal gets smaller and smaller
as it back-propagates further

* What happens if

* So, model weight are updated only with respect to
not long-term effects.

onU+Y)

* What happens if 0 aretoo large? ) |Exploding gradient problem

grew — eold . @V@J(Q)

* This can cause bad updates as the update step of parameters becomes too big
* |n the worst case, this will result in divergence of your network

* |n practice, with a gradient clipping, exploding gradient is relatively easy to solve

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 4



RNN Architectures: LSTM

* Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
* A special type of RNN unit, i.e., LSTM networks = RNN composed of LSTM units

* Explicitly designed RNN to
* Capture long-term dependency = more robust to vanishing gradient problem

e Coreidea behind LSTM
* With cell state (memory), it controls how much to remove or add information
* Only linear interactions from the output of each “gates” (prevent vanishing gradient)

X
Coa C,
7O\ 7\ o
& &, >
Cell state [
— Gates : Way to optionally
| )

let information through

*source: https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LSTM cell.png 5



RNN Architectures: Vanilla RNN

* Repeating modules in Vanilla RNN contains a single layer

ht — taﬂh(Whht_l + wat)
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RNN Architectures: LSTM

* Repeating modules in LSTM 4 N
o — 1L £
Layer Pointwise Vector concatenate Copy
operation Transfer
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RNN Architectures: LSTM

Step 1: Decide what information we’re going to throw away from the cell state
* Asigmoid layer called “Forget gate” f;

* Looks at h;_1,x; and outputs a number between 0 and 1 for each cell state C;_1
* If 1: completely keep, if 0: completely remove

* E.g., language model trying to predict the next word based on all previous ones

* The cell state might include the gender of the present subject so that
the correct pronouns can be used

* When we see a new subject, we want to forget the gender of the old subject

fe = oWy [hi_1,m¢] + by)

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 8



RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C; to be written to the

it = o (Wi - [he—1,2¢] + b;)

. |C’t ét = tanh(WC . [ht—17 CEt] -+ bC)

Lt

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 9



RNN Architectures: LSTM

Step 2: Decide what information we’re going to store in the cell state and update
 First, a sigmoid layer called the “Input gate” i, decides which values to update
« Next, a tanh layer creates a new content C; to be written to the

* Then, update the old cell state C;_; into the new cell state ()
« Multiply the old state by f; (forget gate)
* Add i; x 'y, new content scaled by how much to update (input gate)

Cy1 C it = o(Wi - [he—1, 2] + b;)

X +
ftT Zt’—%c} ét = tanh(W¢ - [he—1, 2¢] + bo)

Cr= fi xCi +it*ét

)
)

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 9



RNN Architectures: LSTM

Step 3: Decide what information we’re going to output
* Asigmoid layer called “Output gate” o,
* First, go through o; which decides what parts of the cell state to output
* Then, put the cell state C}; through tanh and multiply it by o for hidden state h;

ht A
Ot — U(Wo . [ht—laxt] + bo)
Ctanh>
e hy = o4 * tanh(C})
he s 7 he

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 10



RNN Architectures: LSTM

e Overall LSTM operations

Forget gate: fy = o(Wy - [he—1, %] +bf) Inputgate: iy = o(W; - [hy_1, 2¢] + ;)

Previous cell state: C,_; New cell content: Cy; = tanh(We - [he—1, 4] + bo)

v

Updated cell state: C; = f; x Cy_1 + iz % C,
Output gate: o = a(W, - [hi—1, x¢] + bo)

—> Hidden state: h; = o, * tanh(C})

/f'\
ftT ("
r

O||tanh | | O
| | |

v

Lt

Standard LSTM

Algorithmic Intelligence Lab *reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 11



RNN Architectures: GRU

» Gated Recurrent Unit (GRU) [cho et.al, 2014]
* Combines the forget and input gates into a single “update gate” z:
* Controls the ratio of information to keep between previous state and new state
* Reset gate r; controls how much information to forget when create a new content
* Merges the cell state C; and hidden state h,
* (+) Resulting in simpler model (less weights) than standard LSTM

Reset gate: 7y = o (W, - [hs—1, x¢]) New content: i; = tanh(W - [ry * hy_1, x4])

Update gate: 2, = o(W, - [ht—1,2¢])  Hiddenstate: hy = (1 — z¢) * hy_1 + 2 * h;

hy
X + >
(] hy
l o 9 tanh
\ A 4 /
Lt

Gated Recurrent Unit

*reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 12



RNN Architectures: Stacked LSTM

e Stacked(multi-layer) LSTM [Graves et al, 2013]
* RNNs are already “deep” on one dimension (they unroll over many time-steps)

* We can add depth by simply stacking LSTM layers on top of each other
* This allows the network to compute more complex representations
* E.g., Output of 15t layer LSTM goes into 2" layer LSTM as an input

2"d [ayer LSTM

15t layer LSTM

Tt
* Dashed line indicates
identity mapping

temporal
Algorithmic Intelligence Lab *source: https://arxiv.org/pdf/1507.01526.pdf 13



RNN Architectures: Grid LSTM

 Grid LSTM [Kalchbrenner et al., 2016]
e Extended version of stacked LSTM

e LSTM units have additional memory along depth dimension as well as temporal
dimension

- Stacked

LSTM, 3
1.4 layers
—— Stacked
" LSTM 6
§ 1.3 layers
S Grid LSTM,
;@' 3 layers
K 1.2 —— Grid LSTM,
6 layers
1.1
1
10000 30000 50000 70000 90000
Epoch
| BPC | Parameters | Alphabet Size | Test data
Stacked LSTM (Graves, 2013) 1.67 27TM 205 last 4AMB
MRNN (Sutskever et al., 2011) | 1.60 4.9M 86 last IOMB
GFRNN (Chung et al., 2015) 1.58 20M 205 last SMB
Tied 2-LSTM 1.47 16.8M 205 last SMB
2D Grid LSTM Performance on wikipedia dataset

(lower the better)

Algorithmic Intelligence Lab *source: https://github.com/coreylynch/grid-Istm 14



Limitation of Left-to-Right RNNs

* What is the limitation of all previous models?
* They learn representations only from previous time steps (left-to-right)
* But, it’s sometimes useful to learn from future time steps in order to

e Better understand the context
* Eliminate ambiguity

* Example
* “He said, Teddy bears are on sale”
* “He said, Teddy Roosevelt was a great President”

* |In above two sentences, only seeing previous words is not enough to understand
the sentence

e Solution
* Also look ahead (right-to-left) I:> Bidirectional RNN

Algorithmic Intelligence Lab



RNN Architectures: Bidirectional RNNs

* RNNs can be easily extended into bi-directional models

* Only difference is that there are additional paths from future time steps
e Any types of RNNs (Vanilla RNN, LSTM, or GRU) could be bi-directional models
* Note: bi-directional RNNs are only applicable if one has access to entire sequence

This representation of “terribly”
has both left and right context!

D
(@] (@ (@ (@] (@ B
o) o) 5) o) O )
Hidden states o o S o o o
N o) ) ) ) ) O
KO = [K O, | ®) o) ) ) ) ) e
o) ) ) ) ) )
o) ) ) ) ) )
~
Backward RNN ° ) ) m
5) O o) O
— —
(t) — RNN p, (1) (D) (0] ) () ()
hir =R BW( ' ) ) o ) 0
WAV
) o)
Forward RNN o o ° o
) ° e hd

7 — RNNpw (ﬁ(t—l)) C,jot))

the movie was terribly| exciting !

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 16
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2. Real-world Application: Neural Machine Translation
* Seguence-to-sequence (seq2seq) Model
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* Google’s Neural Machine Translation (GNMT)
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RNNs in Real-world Application: Neural Machine Translation

* What is machine translation (MT)?
* Task of automatically converting source text in one language to another language
* No single answer due to ambiguity/flexibility of human language (challenging)

English Spanish French Detect language ~ - Spanish English Romanian ~
=

(=
]

e Classical machine translation methods
* Rule-based machine translation (RBMT)
 Statistical machine translation (SMT; use of statistical model)
* (-) Lots of human effort to maintain, e.g., repeated effort for each language pair

* Neural Machine Translation (NMT)
e Use of neural network models to learn a statistical model for machine translation

Algorithmic Intelligence Lab
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Breakthroughs in NMT: Sequence-to-Sequence Learning

e Difficulties in Neural Machine Translation
* Intrinsic difficulties of MT (ambiguity of language)

* Variable length of input and output sequence (difficult to learn a single model)

* The core idea of sequence-to-sequence model [Sutskever et al., 2014]

* Encoder-Decoder architecture

(input = vector = output)

* Use one RNN network (Encoder) to read input sequence at a time for encoding it
into a fixed-length vector representation (context)

* Use another RNN (Decoder) to

,
i h1 »  ho » hg —i—) C
i T Io T3 i

extract the output sequence from context vector

O e
| yf "‘Jf ?JTB yf <E1T\ID ~
— ST > 53 > sy >[ 55 |
\< START > %1 Yo Y3 ys

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

Algorithmic Intelligence Lab
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Breakthroughs in NMT: Sequence-to-Sequence Learning

* Encoder
* Reads the input sentence

* Use RNNs such that h; =
some non-linear functions

x = (x1,...,27) and output context vector ¢
f(x¢,hi—1) and ¢ = q({h1,...,hr}), where f and ¢ are

e E.g.,LSTMsas f and q({h1,...,hr}) = hr (in the original seq2seq model)

Input sequence x =

Algorithmic Intelligence Lab

(%1, 2, 23) and output sequence Y = (Y1, Y2,Y3,Y4)

19



Breakthroughs in NMT: Sequence-to-Sequence Learning

 Decoder

* Predict the next word ¥+ given the context vector ¢ and the previously predicted
words {y17 I 7yt’—1}

* Defines a probability over the translation y by decomposing the joint probability
into the ordered conditionals where y = (y1,.--,yr)-

p(y) = | [ pwel{ys, -y}, 0),

* The conditional probability is modeled with another RNN ¢ as

p(ye{yrs - yr—1}t,¢) = 9(yi-1, 8¢, ¢),
hidden state of the RNN

G e

i yTl yf yf yf ) ElT\ID >
hq » o » hy —>cC —i—» S1 » So » S3 » 5S4 » S5
T To T3 < START > W1 Y2 Y3 Y4

Input sequence x = (1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

Algorithmic Intelligence Lab
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Breakthroughs in NMT: Sequence-to-Sequence Learning

* Example of the seq2seq model
* For English = French task
e With 2-layer LSTM for encoder and encoder

target output words

&

A

Je suis étudiant </s> Iloss layer

A0
i
i

projection layer

hidden layer 2

(e I

[E—*-—%:F>

embedding layer

Ihidden layer 1

A

I

| am a student <s> suns etudlant
encoding decoding

Algorithmic Intelligence Lab *source: https://towardsdatascience.com/seq2seq-model-in-tensorflow-ecOc557e560f 21



Breakthroughs in NMT: Sequence-to-Sequence Learning

e Results on WMT’14 English to French dataset [sutskever et al., 2014]
* Measure : BLEU(Bilingual Evaluation Understudy) score
* Widely used quantitative measure for MT task
* On par with the state-of-the-art SMT system (without using neural network)
* Achieved better results than the previous baselines

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
State of the art [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
| Oracle Rescoring of the Baseline 1000-best lists | ~45

* Seg2seq with RNNs is simple but very powerful in MT task

Algorithmic Intelligence Lab *source: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning 22



Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

Algorithmic Intelligence Lab

* Problem of original seq2seq(or encoder-decoder) model

* Need to compress all the necessary information of a source sentence into a
fixed context vector

* All decoding steps use an identical context along with previous outputs

p<yt|{y17 ce. 7yt’—1}7 C) — g<yt—17 Stvﬁ)7
* But, each step of decoding requires different part of the source sequence
« E.g., Stepl: “l 7 — “LI&= ”
Step2: “I love you” — “ Athol”

* Hence, difficult to cope with long sentences...

Y1 Y2 Y3 Ya < END >
Fixed T T T T T
hy > ho » hs et s » S » s3 » sy » 55
T T2 T3 < START > Y1 Y2 Y3 Ya

Input sequence x = (x1, 2, x3) and output sequence ¥ = (Y1, Y2, Y3, Y1)

23



Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Extension of seq2seq m

odel with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted

sum of the values

* Query: decoder’s hidden state, key and value: encoder’s hidden states

* (4j is a relative importance which means how well the inputs around position ¢ and the
output position ) match.

exp(eij) T

Q5 — T Y €ij = Si—lhj

Attention > i1 exp(eir)

Distribution L [

(SoftMax)

Attention scores
(dot product) n)" ------ S?.’::::::-.(A?’:_‘ ________
key T
T To r3 < START > Y1 Y2 Y3

Algorithmic Intelligence Lab
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Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]

* Core idea: on each step of the decoder, focus on a particular part of the source
sequence using a direct connection (attention) to the encoder states

* Dependent on the query with key, attention is a technique to compute a weighted
sum of the values

* Query: decoder’s hidden state, key and value: encoder’s hidden states
* The context vector ¢; is computed as weighted sum of h;

weights Ya
weighted sum
H »O) > Cq
| [] T
S A 3
C;, — E Oéijhj
J=1
<“L ------- SLL ~~~~~~ (“L.--—~
value "“====555;=====a----
— I
h1 »  ho » hs3 >  S1 » S92 » S3 »  S4
A A A T T
T To r3 < START > Y1 Y2 Y3

Algorithmic Intelligence Lab 24



Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Graphical illustration of seq2seq with attention
* E.g., Chinese to English

| | | | | l |
Encoder €@ |/ €1 |/ 62 |/ €3 |/ €4 |/| €5 |—/| e
Decoder do — d; — dz — da

Algorithmic Intelligence Lab *source: https://google.github.io/seq2seq/ 26



Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

* Results
* RNNsearch (with attention) is better than RNNenc (vanilla seg2seq)
* RNNsearch-50: model trained with sentences of length up to 50 words

30 T T
25 i
O 20 |-y ; :
7 : :
— 15 $ :
= : : : SO
m 10 H|— RNNsearch-50)f................ N SR \\\ AAAAAAAAAAAA
""" RNNsearch-30||: : NN
5H — - RNNenc-50 foooooeiiiiinnnn SUTPTOTIRITN Joy ERSURNINS: froeerienaeeeneod
- RNNenc-30 : b
(] 1 l 1 J
0 10 20 30 10 50 60
Sentence length
c o
g s 2 & g
€ o £ = A @ 7}
o $ % 8 © o, g é Q E M E E A
o c 2 595 ¢so S O v 2 ° £8 o ; 2 °
FeooSuLw<g 3H EITAH \ 3 L8 4,53 v 23 S <
L 25 885cE50s88%58 V

accord

convient

sur
de
la noter

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

(a)

que
I
environnement
marin

est

le

moins

connu

de
I
environnement

<end>

(b)
Sample alignment results (attention map)
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Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed
» 8-layer LSTMS for encoder/decoder with attention
* Achieve model parallelism by assigning each LSTM layer into different GPUs

* Add residual connections in standard LSTM
* ...and lots of domain-specific details to apply it to production model

Y, —>y2—> e g

pemmmmemmemeeemeeeee e e Nt
GPUS8 GPUS8
8§Iayers
‘ GPU3
GPU2 GPU3
GPU2 GPU2
et GPU1

Algorithmic Intelligence Lab
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Google’s Neural Machine Translation (GNMT)

* Google’s NMT [Wu et al., 2016]
* Improves over previous NMT systems on accuracy and speed

» 8-layer LSTMS for encoder/decoder with attention
* State-of-the-art results on various MT datasets and comparable with Human expert

Table 5: Single model results on WMT En—De (newstest2014)
Model BLEU CPU decoding time

per sentence (s)

Table 10: Mean of side-by-side scores on production data

Word  23.12 0.2972 : :
Character (512 nodes)  22.62 0.8011 PBMT GNMT Human Relative

WPM-8K  23.50 0.2079 Improvement

> WPM-16K  24.36 0.1931 English — Spanish ~ 4.885 5.428 5.504 87%

WPM-32K  24.61 0.1882 English — French 4.932 5.295 5.496 64%

Mixed Word /Character ~ 24.17 0.3268 English — Chinese  4.035 4.594 4.987 58%

PBMT [0] 50.7 Spanish — English ~ 4.872 5.187 5.372 63%

. . French — English 5.046 5.343 5.404 83%

RNNSearch [37] 16.5 Chinese — English  3.694 4.263 4.636 60%

RNNSearch-LV [37]  16.9

[

RNNSearch-LV [37]  16.9
|

Deep-Att [45]  20.6

GNMT with different configurations

Algorithmic Intelligence Lab
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Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

yl‘—> yz-—b ree P> <L[5>

>
I ) RN
i Encoder LSTMs - -
E I I—— g e ;""I':"/'I""“':'\'\“\' ............................
0 0 1 -7 Detoder LSTMs >« _
' B I H
i GPus e D . D . D _’(:J Gpus
t (R | t
: + + + : A +
L+——» Attention
L Gru3 ' GPU3
GPU2 GPU2
H A

{GPu2 |

e ()
| o\ \
| GPUL | e B o s o D B

D GPU1
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Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

* Summary
* 2014: First seq2seq paper published
* 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svsiean  Google

beyond language

BaiNEe B8mux  Tencentiil  (O)miE%

* Remark. SMT systems, built by hundreds of engineers over many years, outperformed
by NMT systems trained by a small group of engineers in a few months
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Google’s Multilingual Neural Machine Translation (Multilingual GNMT)

* Google’s NMT is further improved in [Johnson et al., 2016]

* Extensions to make this model to be Multilingual NMT system by adding
artificial token to indicate the required target language

* E.g., the token “<2es>" indicates that the target sentence is in Spanish
* Can do multilingual NMT using a single model w/o increasing the parameters

* Next

* Now (2021), other approaches have become dominant for many tasks

* For example, in WMT (a Machine Translation conference + competition):
* In WMT 2016, the summary report contains “RNN” 44 times
* In WMT 2019: “RNN” 7 times, “Transformer” 105 times

Algorithmic Intelligence Lab

Next, Transformer (self-attention)
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Table of Contents

3. Transformers
* From recurrence (RNN) to attention-based NLP models
* Transformer (self-attention) with its great results
* Pre-training with Transformers
* Drawbacks and variants of Transformers
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Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
* Hard to learn long-distance dependencies because of gradient problems
2. Forward/backward passes have O(sequence length) unparallelizable operations

* Future RNN hidden states can’t be computed before past states have been computed
* This aspect inhibits training on the very large datasets

Rl

The chef who ... was

Info of chef has gone through O(sequence Iength) many layers

Algorithmic Intelligence Lab
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Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:

1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

attention

attention

embedding , . . . . . . .
1 hz

h;

All words can attend to all words in previous layer
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Issue with Recurrent Models

* Although RNNs show remarkable successes, there are fundamental issues:
1. O(sequence length) steps for distant word pairs to interact means
2. Forward/backward passes have O(sequence length) unparallelizable operations

* In contrast, attention has some advantages in these aspects:
1. Maximum interaction distance: O(1)
* Since all words interact at each layer
2. Number of unparallelizable operations does not increase with respect to length

4 )

Q. Then, can we design an architecture only using attention modules?
 Remark. We saw attention from the decoder to the encoder; but here,
we’ll think about attention within a single sentence.

\_ J

Algorithmic Intelligence Lab
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Transformer (Self-attention)

* Transformer [vaswani et al., 2017] has an encoder-decoder structure and they are
composed of multiple block with multi-head (self) attention module

( Softmax )

4
( Linear )
% 2
% Ty DECODER #2
& ! ) ) N :*( Add & Normalize )
. K $ '
G ( ------ _ SeIfAttentlon . ) Zt (reedforward ) ( FeedForward )
Ol eemmmemm e e
(-»( Add & Normalize } E ,"( Add & Normalize )
1 ; ) )
o E ( Feed Forward ) ( Feed Forward ) . ""':"C Encoder-Decoder Attention )
E S, 4 ‘vemmmmman L B P~
; ,-»( Add & Normalize ) ,)( Add & Normalize )
A ) i —
' Self-Attention ' Self-Attention
NS yrrry e =) '

Al
‘ ............................
POSITIONAL
ENCODING

X1 I:I:ED X2IEI:]

Thinking Machines
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Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value

* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, ki, v;

by multiplying learnable weight matrices

g =Wz ki = Wha;, v, = WV,

Self-Attention

X+ [

Algorithmic Intelligence
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Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source

1. Foreachinput z;, create query, key, and value vectors ¢i, ki, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
of how well they match

N exp(ei;) - ql'k;
Y Zj' eXp(eij’) Yo Vd
score 20% 10% 50% 20%

[LL] LI = l__l,l

@@@@

LT T 1] [T TT] LT T T [T
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Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, ki, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up

Algorithmic Intelligence Lab

score

output; = Z QiU

7

Zq

EEE EEN
0.2 0.1

EEE (11
0.5 0.2

| ,
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Transformer (Self-attention)

* Self-attention
* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, ki, v;

2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up

* Hence, self-attention is effective to learn the context within given sentence
* It’s easier than recurrent layer to be parallelized and model the long-term dependency

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0(1) 0O(1)

Recurrent O(n - 2) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)
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Transformer (Self-attention)

e Self-attention

* Recall: Attention operates on query, key, and value
* Query is decoder’s hidden state, key and value are encoder’s hidden states in seq2seq
* In self-attention, the query, key, and value are drawn from the same source
1. Foreachinput z;, create query, key, and value vectors ¢i, ki, v;
2. Multiply (dot product) the current query vector, by all the key vectors, to get a score &
3. Multiply the value vectors by the scores, then sum up
* Hence, self-attention is effective to learn the context within given sentence

* |t’s easier than recurrent layer to be parallelized and model the long-term dependency
* |t also provides an interpretability of learned representation
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Transformer (Self-attention)

* Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence
* To prevent the increase of computation, original attentions weights are divided

Single-head attention Multi-head attention
(just the query matrix) (just two heads here) Same amount of
computation as
single-head
X _ XQ X _XQl XQ self-attention
Q = Q0=
head 0 head 1 head 2 head 3

Two
men
setting
up

Two
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Transformer (Self-attention)

e Multi-head attention
* Applying multiple attentions at once to look in multiple places in the sentence

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting = matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo®
V'Hw';(f; 4 ‘~ .- WOK V QO
Machines [ Wo Ko
- Vo
W,Q
* In all encoders other than #0, T W1 K 01

we don't need embedding. [ W,V HTLHT—‘x ]K1 A
We start directly with the output {~ | | Vi H—I—

of the encoder right below this one

W-Q
WK Q7

WV F‘v——';ﬁ K</7
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Transformer (Self-attention)

 Encoder

* Self-attention is invariant to order of input sequence

* To represent the order of sequence, positional encoding is added to input embeddings
at the bottoms of the encoder and decoder stacks

* Fixed sine and cosine functions are used for each position pos and dimension i
PE(pos 26 = 5in(pos/10000%/ 4w} PE (45 5:41) = cos(pos /100007 i)

* PE,.s+x can be derived as a linear function of PE,,; — easier to learn a relative position
* Compare to learning encoding, it’s better for extrapolation (not encountered in training)

0
2
3

‘~ ------ ) l -- L l -- J
POSITIONAL é é
ENCODING
x+ EIEEE x2 I
Thinking Machines
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Transformer (Self-attention)

* Encoder
» Self-attention is invariant to order of input sequence — positional encoding
* Residual connections (dotted) and layer normalization are used to help training

A A
w| ,» LayerNorm( - )
[« I
sl A A
O ]
L -
' ( Self-Attention )
! A Y
‘~ ------ - [ -- I - [ - gy [ -- ] [ J
POSITIONAL é é
ENCODING
x+ BT x
Thinking Machines
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Transformer (Self-attention)

 Encoder

» Self-attention is invariant to order of input sequence — positional encoding

* Residual connections (dotted) and layer normalization are used to help training
* Non-linearity is imposed by adding position-wise feed-forward networks

Add & Normalize

‘eeccccees R 4
z1 [ z;
A 4
w| ,» LayerNorm( - )
[« I
sl A A
o] _-ofm g
' ( Self-Attention )
. A 'Y
>, X R EEEN W,
POSITIONAL é é
ENCODING
x1 BT x
Thinking Machines
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Transformer (Self-attention)

* Decoder
* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

-----------------------------------------
.

: E Softmax )
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: 4 4 :
o E ( Feed Forward ) ( Feed Forward ) E C Linear )
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Transformer (Self-attention)

 Decoder

* Most parts are same with encoder except encoder-decoder(cross) attention

* This cross attention is previously used in seq2seq model
* Queries are drawn from the decoder
* Keys and values are drawn from the encoder (like context vector)

Decoding time step: 1@3 456 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT
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Transformer (Self-attention)

e Success of Transformer: Machine Translation (MT)
* Initially, Transformer shows better results at a fraction of the training cost

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 - 10%°
GNMT + RL [31] 24.6 39.92 2.3-109 1.4-10%
ConvS2S [8] 25.16 40.46 9.6-10% 1.5.10%
MoE [26] 26.03 40.56 2.0-10° 1.2.10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 26.36 41.29 7.7-101°  1.2.10%
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.0 2.3.10

* Nowadays, Transformer is still a standard for MT with additional techniques

En—De

System news2017 news2018
baseline 30.90 45.40
+ langid filtering 30.78 46.43
+ ffn 8192 31.15 46.28
+ BT 33.62 46.66
+ fine tuning - 47.61
+ ensemble - 49.27
+ reranking - 50.63
WMT’ 18 submission - 46.10
WMT’19 submission 42.7
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Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Goal: localize the atomic action in space and time

* Previous approaches just use the feature of key frame with object detection
e But, it’s hard to model the interaction between frames

Input clip

(RGB frames) /

'

o "rvgﬂf’
{ “" ‘é'jf

| 2

—

L

ot ol Weighted Sum

— 3% Softmax
4 l Attention
» t

|
representation
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Transformer (Self-attention)

* Success of Transformer: Video action recognition [Girdhar et al., 2018]
* Qualitative results of learned attention

* Winner of AVA challenge in 2019: > 3.5 % than previous challenge winner

Method Modalities Architecture Val mAP Test mAP
Single frame [16] RGB, Flow R-50, FRCNN 14.7 -
AVA baseline [16] RGB, Flow 13D, FRCNN, R-50 15.6 -

ARCN [42] RGB, Flow S3D-G, RN 17.4 -

Fudan University - - - 17.16
YH Technologies [52] RGB, Flow P3D, FRCNN - 19.60
13D, FRCNN, NL, TSN,

Tsinghua/Megvii [23] RGB, Flow C2D, P3D, C3D, FPN 21.08
Ours (Tx-only head) RGB 13D, Tx 24.4 24.30
Ours (Tx+I3D head) RGB 13D, Tx 24.9 24.60
Ours (Tx+I3D+96f) RGB 13D, Tx 25.0 24.93
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Transformer (Self-attention)

e Success of Transformer: Music generation [Huang et al., 2018]

* Goal: generate music which contains structure at multiple timescales (short to long)
* Performance RNN (LSTM): lack of long-term structure

>

} l.l

Algorithmic Intelligence Lab
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https://magenta.tensorflow.org/music-transformer

Pre-training / Fine-tuning Paradigm with Transformers

* Motivation
* Many success of CNN comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch
* Then, can we train a similar universal encoder for NLP tasks?
* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
* Language modeling, i.e., reconstruction, is simple and feasible for our goal
e With diverse examples, model can learn the useful knowledge about the world

~
“Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was _.” — terrible
\_ y,

“I wat thinking about the sequence that goes
1,1,2,3 5 8 13,21, ”— 34

“I went to the ocean to see the fish, turtles, seals,
and 7 — sand

40



Pre-training / Fine-tuning Paradigm with Transformers

* Motivation

* Many success of CNN comes from ImageNet-pretrained networks
* Simple fine-tuning improves the performance than training from scratch

* Then, can we train a similar universal encoder for NLP tasks?

* As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
* Language modeling, i.e., reconstruction, is simple and feasible for our goal

e With diverse examples, model can learn the useful knowledge about the world

* Pre-training for two types of architectures
* Architecture influences the type of pre-training, and natural use cases

2=

Decoders

Encoders

E.g. GPT
Pre-training with normal language modeling
Better use for generation tasks

E.g. BERT
Pre-training with masked language modeling
Better use for discriminative tasks (classification)

41



GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al., 2018]
arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

©/6? softmax(h,, Wy)
Lin|ear W,
hi,....hpm
L1, y Lm
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GPT: Generative Pre-Training with Transformer’s Decoder

* GPT [Radford et al., 2018]
arg max logp(z) = > po(anlzr, .. wn_1)
n

* Pre-training by language modeling over 7000 unique books (unlabeled data)
* Contains long spans of contiguous text, for learning long-distance dependencies

* Fine-tuning by training a classifier with target task-specific labeled data
 Classifier is added on the final transformer block’s last word’s hidden state

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 717.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BILSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

GPT’s results on various natural language inference datasets

Algorithmic Intelligence Lab *reference: http://web.stanford.edu/class/cs224n/ 42



GPT-2: Language Models are Unsupervised Multitask Learners

e GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..
* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

GPT-2

EXTRA
LARGE
” DECODER )
OPTo (Commeo
LARGE .
G PT‘ 2 Gs C DECODER 9
GPT 2 MEDIUM cee 6 ( DECODER )
_ @( DECODER ? 5 ( DECODER )
SMALL a DECODER D) a DECODER )
12 DECODER ) Tt 3 DECODER ) 3 ( DECODER )
cee 2 DECODER ) 2 DECODER ) 2 DECODER )
1( DECODER ) C (C DECODER )) u C DECODER )) C( DECODER ))
Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600
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GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..

* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)

* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification

Output

& GTPT%
t

Input

recite the first law $

\ )
I

Proper condition
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GPT-2: Language Models are Unsupervised Multitask Learners

* GPT-2 [Radford et al., 2019]

* Pre-training by language modeling as same as previous GPT-1, but training with..
* Much larger datasets; 8 million documents from web (40 GB of text)
* Much larger model size; # of parameters: 117M (GPT-1) — 1542M (extra-large GPT-2)
* GPT-2 can perform down-stream tasks in a zero-shot setting
* Via conditional generation without any parameter or architecture modification
* Remark. Largest model still underfits.. — larger model for better performance?

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 Lead-3
80 S 30 8 1 1Open Domain QA Systems T 1
20 ~ 28 PGNet
701 [
DrQA+PGNet . S 26 g 61
- 15 {Denoising + Backtranslate o} =
o 60 o & 54 {Seq2seq + Attn 3
U DrQA 2 % 24 15eqzsseq S .
50 1 10 {fEmbed Nearest Neighbor Y22 .
PGNet . © Random-3
Denoising o
40 > 20 >
5 <
304 18 most freq Q-type answer
Seq2seq 0 16 0
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.

Algorithmic Intelligence Lab
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GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]

* Very large language models seem to
without gradient steps (fine-tuning)

* In-context learning; adapting to specific task from examples with some context

Translate English to French: task description

cheese => prompt

The three settings we explore for in-context learning Zero-shot One-shot
Zero-shot
The model predicts the answer given only a natural language Natural Language
description of the task. No gradient updates are performed. 60 Prompt

50 \

perform in-context learning

Few-shot

- 175B Params

cheese => prompt

§ 40
g \
§ * hbin 13B Params
One-shot -
In addition to the task description, the model sees a single 20
example of the task. No gradient updates are performed.
10
Translate English to French: task description 1.3B Params
sea otter => loutre de mer example
cheese => prompt Number of Examples in Context (K) G PT—Z
Few-shot Setting NaturalQS WebQS TriviaQA
acamcles f ook Norgcnt otes e parorc RAG (Fine-tuned, Open-Domain) [LPP*20] 44.5 455  68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
R, T5-11B (Fine-tuned, Closed-Book) 345 374 50.1
ses onter = doutre de ner s GPT-3 Zero-Shot 14.6 144 64.3
peppeTIAnT T menhe o GPT-3 One-Shot 23.0 25.3 68.0
i e g et GPT-3 Few-Shot 29.9 41.5 71.2

Algorithmic Intelligence Lab
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GPT-3: Language Models are Few-shot Learners

* GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]

* Very large language models seem to perform in-context learning
without gradient steps (fine-tuning)

* In-context learning; adapting to specific task from examples with some context
* It enables us to do a lot of interesting applications!

* E.g,

D 1270015000 x |+ = om
> 0O 127.00.1 % @ (Notsyncing §

Describe a layout.

GPT-3 Quick Response by OthersideAl

Just describe any layout you want, and it'll try to render below!
Quickly write an email in your style by simply stating the points you would like to get across 4
Request beta access at othersideai.com &

[ a button that looks like a watermelon . ] Generate

Received Emalil Matt

Thanks for chatting last week. Hearing your vision for Otherside got both
Jim and | really excited. We really like where you're going with this. After
R et ' . . : talking with my partners yesterday, we're looking at making an

< = 3 bo! 3 bo :
A bu?ton style { (backgroundcolor ‘pmk o rdex 2px solid green’, rderRadius investment of $100K into Otherside on a SAFE. Would this be sufficient
50%°', padding: 20, width: 100, height: 100})>Watermelon</button> 1o join your round? If so, we'll send over our proposed terms

On another note, as we discussed, let me know about your estimated
market size

Please let me know. Looking forward to an amazing journey together!

Thanks

Watermelon Response Points | * thanks

*no

* our minimum ig$150K investment
* would $150K bé possible

|

Generate Email

92K views 016 /118 <)

Code generation Email response
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore

* |nstead, masked language modeling is used for pre-training
* Replace some fraction of words (15%) in the input, then predict these words

Use the output of the
masked word’s position
to predict the masked word

Randomly mask

15% of tokens
[CLS]

Input

[CLS)

Algorithmic Intelligence Lab

0.1%  Aardvark

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax ]

BERT

[MASK]
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* As encoders get bidirectional context, language modeling can’t be used anymore
* |nstead, masked language modeling is used for pre-training

* Additionally, next sentence prediction (NSP) task is used for pre-training
* Decide whether two input sentences are consecutive or not

Predict likelihood
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[ FFNN + Softmax ]
LN ]
BERT
Tokenized Y
Input [CLS] [MASK]
Input [CLS) [MASK] [MASK]

Sentence A Sentence B
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP
tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

Class

Label f;abs:‘ Start/End Span
—— 00—
00 G- @ L)) - CE)- G- )
BERT BERT BERT
[Seafl & | (&[Gl & |- [&] Eew| & f| & | - € Lol & ) [ ][ B (& ] (o]
—o—Cr o0 o 0 {3 o0
A6 OE0 G e e (rmr) - AR =M 6
Y_|_l ]_T_I | l |_'_l I_l_l
Sentence 1 Sentence 2 Single Sentence Question Paragraph
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks: (c) Question Answering Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColA SQuUAD v1.1
RTE, SWAG
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
* Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP

tasks, including classification, question answering, tagging, etc.

e By simply fine-tuning a whole network with additional linear classifier

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE |Average
392k 363k 108k 67k 85k 57k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648 799 904 360 733 849 568| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 80.0 823 56.0| 75.2
BERTgASE 84.6/83.4 712 90.1 935 521 858 889 664 79.6
BERT ARGE 86.7/85.9 72.1 91.1 949 605 865 893 70.1| 81.9
System Dev Test
System Dev F1 Test Fl ESIM+GloVe 51.9 52.7
ELMo+BiLSTM+CRF 95.7 922 ESIM+ELMo 59.1 59.2
CVT+Multi (Clark et al., 2018) - 92.6 BERTgASE 81.6 -
BERTB ASE 964 924 B ERTLARGE 86’6 86’3
BERT ARGE 96.6 92.8 Human (expert)f - 850
Human (5 annotations)! -  88.0
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RoBERTa: A Robustly Optimized BERT Pre-training Approach

* RoBERTa [Liu et al., 2019]

* Simply modifying BERT design choices and training strategies with alternatives
* Using dynamic masking instead of static masking in BERT
* Removing NSP task and generate training data in single document instead
* Much larger data for pre-training: 16GB — 160GB, and etc...

* But, it leads a huge improvement in many downstream tasks

SQuAD

(v1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT  srce

with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are

some remaining issues

* Quadratic computation in self-attention as a function of sequence length

Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. Linformer [wang et al., 2020]

* Key idea: low rank approximation of attention mechanism with linear projection

head; = Attention(QWiQ, KWE vw})

QWS (KW/)”
Vi

-

P

= softmax [ VvwY

U

head; = Attention(QW | E; KWK | E,ywY)

(2

Qip. K\T
= softmax QW (E KW - E;VWY,
vk ——
~ g 7/ kxd
P:nxk
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Linear
Concat
Scaled Dot-Product
Attention .
1 1
1 I
Projection Projection
Linear Linear Linear
\Y% K Q
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Quadratic computation in self-attention as a function of sequence length
Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. Linformer [wang et al., 2020]
* Key idea: low rank approximation of attention mechanism with linear projection

* Performance can be preserved after the approximation

n Model SST-2 IMDB QNLI QQP Average
Liu et al. (2019), RoBERTa-base 93.1 94.1 90.9 90.9 92.25
Linformer, 128 92.4 94.0 90.4 90.2 91.75
Linformer, 128, shared kv 93.4 93.4 90.3 90.3 91.85
Linformer, 128, shared kv, layer 93.2 93.8 90.1 90.2 91.83

512 Linformer, 256 93.2 94.0 90.6 90.5 92.08
Linformer, 256, shared kv 93.3 93.6 90.6 90.6 92.03
Linformer, 256, shared kv, layer 93.1 94.1 91.2 90.8 92.30

Devlin et al. (2019), BERT-base 92.7 93.5 91.8 89.6 91.90

>12 Sanh et al. (2019), Distilled BERT  91.3 92.8 89.2 885 90.45
Linformer, 256 93.0 93.8 904 904 91.90
1024  Linformer, 256, shared kv 93.0 93.6 903 904 91.83

Linformer, 256, shared kv, layer 93.2 94.2 90.8 90.5 92.18
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are

some remaining issues

* Quadratic computation in self-attention as a function of sequence length
Q. Can we build models like Transformers without O(7?) all-pairs self-attention cost?

A. BigBird [Zaheer et al., 2020]

l

"

- \
\

L EG

0
.

O
DE

O
O

(a) Random attention

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with r = 2, (b) sliding window attention with w = 3 (c) global

(b) Window attention

CEE

[T

(c) Global Attention

attention with g = 2. (d) the combined BIGBIRD model.

Algorithmic Intelligence Lab

LT

(d) BIGBIRD

It can preserve the some property of original attention in theory

Key idea: replace all-pairs interactions with a family of other interactions, like
1) random attention, 2) local attention (window), 3) global attention

Due to effect as regularization, it sometimes improve the performance than original

Model HotpotQA NaturalQ TriviaQA
Ans Sup Joint LA SA Full  Verified

HGN [26] 82.2 885 742

GSAN 81.6 887 739 - -

ReflectionNet [32] - - - 77.1  64.1

RikiNet-v2 [61] 76.1 613 - -

Fusion-in-Decoder [39] - - 84.4 90.3

SpanBERT [42] 79.1 86.6

MRC-GCN [87] - -

MultiHop [14] - - - - -

Longformer [8] 812 883 732 - - 773 853

BIGBIRD-ETC 812 891 736 718 579 84.5 924
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Position representations
Q. Are simple absolute indices the best we can do to represent position?

PE (pos 2iy = 8in(pos /100007 dmoer)  PE(p05 9;11) = cos(pos /100003 dmose)

A. Relative [Shaw et al., 2018] and structural [wang et al., 2019] position representations

* To consider pairwise relationships, additional weights afj, afj are introduced
( consider a relative positionupto /)

exp(eij) q;T]CJ
Original: output, = » «a;;v; = 0 —
g 1 ; 1377 1] Zj’ eXp(eij/) 1] \/E
output, = Y~ aij(v; + afj) eij = 4 (k + aiy)

Relative: J \/E

a;}j = wglip(j—i,l) a?j = wflip(j—i,n clip(z,!) = max(—I, min(l, z))
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Position representations
Q. Are simple absolute indices the best we can do to represent position?

PE(pos,Qi) = Sin(p08/100002i/dmodel) PE(pos,2i+1) = COS(pOS/].OOOOZi/dmOdel)

A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations

* Imposing the structural information obtained from the classical NLP literature

held
Bush/W’Sharon
Bush held a talk with Sharon a/ with/
Absolute Position ’ 0 [ 1 ‘ 2 ’ 3 ‘ 4 5 } ‘ 1 ’ 0 2 ‘ 1 \ 2 ’ 1 ]
Relative Position ] -3 \ -2 ‘ -1 \ 0 | +1 +2 ‘ ‘ -2 ] -1 -1 | 0 ‘ +3 ’ +2 ‘
(a) Sequential Position Encoding (b) Structural Position Encoding
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are

some remaining issues

* Position representations

Q. Are simple absolute indices the best we can do to represent position?

PE(pos,2i) = sin(pos /100002i/dmode1)

PE(pos,2i+1) = cos(pos/ 1000()2i/dmode1)

A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations

* Imposing the structural information obtained from the classical NLP literature

) Zh=-En En=-De

Model Architecture MT03 MTO04 MTO05 MT06 Avg | WMTIi4
Hao et al. (2019c¢) - - - - - 28.98
Transformer-Big 4530 4649 4521 4487 4547 | 28.58
+ Structural PE 45.62 47.127 4584  45.64T  46.06 28.88
+ Relative Sequential PE || 45.45 47.01 45.65 4587%" 46.00 | 28.90

+ Structural PE 45857 47377 4620 46.18" 46.40 | 29.19"
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Drawback and Variants of Transformers

e Although Transformers show remarkable success on many domains, there are
some remaining issues

* Bias and privacy problem in pre-trained Transformers
* Private information can be extracted from pre-trained language model [carlini et al., 2020]

* Pre-trained language models generate biased sentences [sheng et al., 2019]

Prefix
East Stroudsburg Stroudsburg... ]

GPT-2

[ Memorized text 1

Corporation Seabank Centre
Marine Parade Southport

Peter
.com

75 40
+ 75

+

Fax:
|\

oo

~N

Prompt Generated text
The man worked as a car salesman at the local
Wal-Mart
The woman worked as|  a prostitute under the name of
Hariya

The Black man a pimp for 15 years.
worked as

The White man a police officer, a judge, a
worked as prosecutor, a prosecutor, and the

president of the United States.

The gay person was
known for

his love of dancing, but he also did
drugs

[Carlini et al., 2020]

The straight person
was known for

his ability to find his own voice and
to speak clearly.

[Sheng et al., 2019]




Summary

For temporal data, one need a specific architecture which can capture temporal
dependency within data

RNN architectures have developed in a way that
e Can better model long-term dependency
* Robust to vanishing gradient problems

Seg2seq model with attention makes breakthroughs in machine translation
* |t leads to the model only composed with attention — Transformer

Transformer significantly improves the performance of machine translation
* Also, the performance on other temporal domains such as video, music..

* With pre-training using large model and data, one can get
1) standard initialization point for many NLP task (BERT) and
2) strong language generator (GPT)

e But, there are still rooms to be improved for Transformer
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