Advanced Deep Temporal Models

Al602: Recent Advances in Deep Learning
Lecture 3

Slide made by

Jaehyung Kim
KAIST EE

- Many real-world data has a temporal structure intrinsically
 - Speech

- Many real-world data has a temporal structure intrinsically
 - Speech
 - Natural language

"Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink.

The movie was $_$." \rightarrow terrible

Language modeling

Translation

- Many real-world data has a temporal structure intrinsically
 - Speech
 - Natural language
 - Video

- Many real-world data has a temporal structure intrinsically
 - Speech
 - Natural language
 - Video
 - Stock prices, and etc...

- Many real-world data has a temporal structure intrinsically
 - Speech
 - Natural language
 - Video
 - Stock prices, and etc...
- In order to solve much complicated real-world problems,
 we need a better architecture to capture temporal dependency in the data

1. Recurrent Neural Networks

- Vanilla RNN and Gradient Vanishing
- LSTM (Long Short-Term Memory) and Its Variants
 - GRU (Gated Recurrent Unit)
 - Stacked/Grid LSTM
 - Bi-directional LSTM

2. Real-world Application: Neural Machine Translation

- Sequence-to-sequence (seq2seq) Model
- Better Long-term Dependency Modeling with Attention Mechanism in seq2seq
- Google's Neural Machine Translation (GNMT)

3. Transformers

- From recurrence (RNN) to attention-based NLP models
- Transformer (self-attention) with its great results
- Pre-training with Transformers
- Drawbacks and variants of Transformers

Table of Contents

1. Recurrent Neural Networks

- Vanilla RNN and Gradient Vanishing
- LSTM (Long Short-Term Memory) and Its Variants
 - GRU (Gated Recurrent Unit)
 - Stacked/Grid LSTM
 - Bi-directional LSTM

2. Real-world Application: Neural Machine Translation

- Sequence-to-sequence (seq2seq) Model
- Better Long-term Dependency Modeling with Attention Mechanism in seq2seq
- Google's Neural Machine Translation (GNMT)

Transformers

- From recurrence (RNN) to attention-based NLP models
- Transformer (self-attention) with its great results
- Pre-training with Transformers
- Drawbacks and variants of Transformers

Vanilla RNN

Process a sequence of vectors by applying recurrence formula at every time step :

Function parameterized by learnable W

Vanilla RNN

- Vanilla RNN (or sometimes called Elman RNN)
 - The state consists of a single "hidden" vector \mathbf{h}_t

$$egin{aligned} oldsymbol{h}_t &= f_W(oldsymbol{h}_{t-1}, oldsymbol{x}_t) \ oldsymbol{h}_t &= anh(W_holdsymbol{h}_{t-1} + W_xoldsymbol{x}_t) \ oldsymbol{y}_t &= W_yoldsymbol{h}_t \end{aligned}$$

• E.g., RNN with a sequence of length 4

- E.g., RNN with a sequence of length 4
 - Consider a gradient from the first state $h^{(1)}$

- E.g., RNN with a sequence of length 4
 - Consider a gradient from the first state $h^{(1)}$
- What happens if $\frac{\partial h^{(i+1)}}{\partial h^{(i)}}$ are too small? \Longrightarrow Vanishing gradient problem

 When these are small, the gradient signal gets smaller and smaller as it back-propagates further

- E.g., RNN with a sequence of length 4
 - Consider a gradient from the first state $h^{(1)}$
- What happens if $\frac{\partial h^{(i+1)}}{\partial h^{(i)}}$ are too small? \Longrightarrow Vanishing gradient problem
 - When these are small, the gradient signal gets smaller and smaller as it back-propagates further
 - So, model weight are updated only with respect to near effects, not long-term effects.

- E.g., RNN with a sequence of length 4
 - Consider a gradient from the first state $h^{(1)}$
- What happens if $\frac{\partial h^{(i+1)}}{\partial h^{(i)}}$ are too small? \Longrightarrow Vanishing gradient problem
 - When these are small, the gradient signal gets smaller and smaller as it back-propagates further
 - So, model weight are updated only with respect to near effects, **not** long-term effects.
- What happens if $\frac{\partial \boldsymbol{h}^{(i+1)}}{\partial \boldsymbol{h}^{(i)}}$ are too large? \Longrightarrow Exploding gradient problem

$$\theta^{\text{new}} = \theta^{\text{old}} - \alpha \nabla_{\theta} J(\theta)$$

- This can cause bad updates as the update step of parameters becomes too big
- In the worst case, this will result in divergence of your network
- In practice, with a gradient clipping, exploding gradient is relatively easy to solve

- Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
 - A special type of RNN unit, i.e., LSTM networks = RNN composed of LSTM units
 - Explicitly designed RNN to
 - Capture **long-term dependency** \Rightarrow more robust to vanishing gradient problem
- Core idea behind LSTM
 - With cell state (memory), it controls how much to remove or add information
 - Only linear interactions from the output of each "gates" (prevent vanishing gradient)

Repeating modules in Vanilla RNN contains a single layer

$$\boldsymbol{h}_t = \tanh(W_h \boldsymbol{h}_{t-1} + W_x \boldsymbol{x}_t)$$

RNN Architectures: LSTM

Repeating modules in **LSTM** Pointwise Vector Layer concatenate Copy operation Transfer tanh \mathbf{x}_t

Step 1: Decide what **information** we're going to **throw away** from the **cell state**

- A sigmoid layer called "Forget gate" f_t
- Looks at h_{t-1}, x_t and outputs a number between 0 and 1 for each cell state C_{t-1}
 - If 1: completely keep, if 0: completely remove
- E.g., language model trying to **predict the next word** based on all previous ones
 - The cell state might include the gender of the present subject so that the correct pronouns can be used
 - When we see a new subject, we want to forget the gender of the old subject

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Step 2: Decide what **information** we're going to **store** in the cell state and **update**

- First, a sigmoid layer called the "Input gate" i_t decides which values to update
- Next, a tanh layer creates a **new content** \tilde{C}_t to be written to the

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Step 2: Decide what **information** we're going to **store** in the cell state and **update**

- First, a sigmoid layer called the "Input gate" i_t decides which values to update
- Next, a tanh layer creates a **new content** \tilde{C}_t to be written to the
- Then, **update** the old cell state C_{t-1} into the **new cell state** C_t
 - Multiply the old state by f_t (forget gate)
 - Add $i_t * \tilde{C}_t$, new content scaled by how much to update (input gate)

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Step 3: Decide what **information** we're going to **output**

- A sigmoid layer called "Output gate" o_t
- First, go through o_t which decides what parts of the cell state to output
- Then, put the cell state C_t through tanh and multiply it by o_t for hidden state h_t

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

RNN Architectures: LSTM

Overall LSTM operations

Forget gate: $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$ Input gate: $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$

New cell content: $\tilde{C}_t = anh(W_C \cdot [h_{t-1}, x_t] + b_C)$ Previous cell state: C_{t-1}

Updated cell state: $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$ Output gate: $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$ Hidden state: $h_t = o_t * \tanh(C_t)$

RNN Architectures: GRU

- Gated Recurrent Unit (GRU) [Cho et.al, 2014]
 - Combines the forget and input gates into a single "update gate" z_t
 - Controls the ratio of information to keep between previous state and new state
 - **Reset gate** r_t controls how much information to forget when create a new content
 - **Merges** the cell state C_t and hidden state h_t
 - (+) Resulting in simpler model (less weights) than standard LSTM

Reset gate: $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$ New content: $\tilde{h_t} = \tanh(W \cdot [r_t * h_{t-1}, x_t])$

Update gate: $z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$ Hidden state: $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h_t}$

- Stacked(multi-layer) LSTM [Graves et al, 2013]
 - RNNs are already "deep" on one dimension (they unroll over many time-steps)
 - We can add depth by simply stacking LSTM layers on top of each other
 - This allows the network to compute more complex representations
 - E.g., Output of 1st layer LSTM goes into 2nd layer LSTM as an input

RNN Architectures: Grid LSTM

- **Grid LSTM** [Kalchbrenner et al., 2016]
 - Extended version of stacked LSTM
 - LSTM units have additional memory along depth dimension as well as temporal dimension

Stacked LSTM, 3 layers Stacked LSTM 6 Validation Loss layers 1.3 Grid LSTM, 3 layers 1.2 Grid LSTM. 6 layers 1.1 10000 30000 50000 70000 90000 Epoch

	BPC	Parameters	Alphabet Size	Test data
Stacked LSTM (Graves, 2013)	1.67	27M	205	last 4MB
MRNN (Sutskever et al., 2011)	1.60	4.9M	86	last 10MB
GFRNN (Chung et al., 2015)	1.58	20M	205	last 5MB
Tied 2-LSTM	1.47	16.8M	205	last 5MB

2D Grid LSTM

Performance on wikipedia dataset (lower the better)

Limitation of Left-to-Right RNNs

- What is the limitation of all previous models?
 - They learn representations only from previous time steps (left-to-right)
 - But, it's sometimes useful to learn from **future** time steps in order to
 - Better understand the context
 - · Eliminate ambiguity
- Example
 - "He said, Teddy bears are on sale"
 - "He said, Teddy Roosevelt was a great President"
 - In above two sentences, only seeing previous words is not enough to understand the sentence
- Solution
 - Also look ahead (right-to-left) | Bidirectional RNN

RNN Architectures: Bidirectional RNNs

- RNNs can be easily extended into bi-directional models
 - Only difference is that there are additional paths from future time steps
 - Any types of RNNs (Vanilla RNN, LSTM, or GRU) could be bi-directional models
 - Note: bi-directional RNNs are only applicable if one has access to entire sequence

$$h^{(t)} = [\overrightarrow{h}^{(t)}; \overleftarrow{h}^{(t)}]$$

Backward RNN

$$\overleftarrow{h}^{(t)} = \text{RNN}_{\text{BW}} \left(\overleftarrow{h}^{(t+1)}, x^{(t)} \right)$$

Forward RNN

$$\overrightarrow{h}^{(t)} = \text{RNN}_{\text{FW}}\left(\overrightarrow{h}^{(t-1)}, x^{(t)}\right)$$

Table of Contents

1. Recurrent Neural Networks

- Vanilla RNN and Gradient Vanishing
- LSTM (Long Short-Term Memory) and Its Variants
 - GRU (Gated Recurrent Unit)
 - Stacked/Grid LSTM
 - Bi-directional LSTM

2. Real-world Application: Neural Machine Translation

- Sequence-to-sequence (seq2seq) Model
- Better Long-term Dependency Modeling with Attention Mechanism in seq2seq
- Google's Neural Machine Translation (GNMT)

3. Transformers

- From recurrence (RNN) to attention-based NLP models
- Transformer (self-attention) with its great results
- Pre-training with Transformers
- Drawbacks and variants of Transformers

RNNs in Real-world Application: Neural Machine Translation

- What is machine translation (MT)?
 - Task of automatically converting source text in one language to another language
 - No single answer due to ambiguity/flexibility of human language (challenging)

- Classical machine translation methods
 - Rule-based machine translation (RBMT)
 - Statistical machine translation (SMT; use of statistical model)
 - (-) Lots of human effort to maintain, e.g., repeated effort for each language pair
- Neural Machine Translation (NMT)
 - Use of neural network models to learn a statistical model for machine translation

- Difficulties in Neural Machine Translation
 - Intrinsic difficulties of MT (ambiguity of language)
 - Variable length of input and output sequence (difficult to learn a single model)
- The core idea of sequence-to-sequence model [Sutskever et al., 2014]
 - Encoder-Decoder architecture (input → vector → output)
 - Use one RNN network (Encoder) to read input sequence at a time for encoding it into a fixed-length vector representation (context)
 - Use another RNN (Decoder) to extract the output sequence from context vector

Input sequence $\boldsymbol{x}=(x_1,x_2,x_3)$ and output sequence $\boldsymbol{y}=(y_1,y_2,y_3,y_4)$

Encoder

- Reads the input sentence $\mathbf{x} = (x_1, \dots, x_T)$ and output context vector c
- Use RNNs such that $h_t=f(x_t,h_{t-1})$ and $c=q(\{h_1,\ldots,h_T\})$, where f and q are some non-linear functions
- E.g., LSTMs as f and $q(\{h_1,\ldots,h_T\})=h_T$ (in the original seq2seq model)

Input sequence $\boldsymbol{x}=(x_1,x_2,x_3)$ and output sequence $\boldsymbol{y}=(y_1,y_2,y_3,y_4)$

Decoder

- Predict the next word $y_{t'}$ given the context vector c and the previously predicted words $\{y_1,\ldots,y_{t'-1}\}$
- Defines a probability over the translation y by **decomposing the joint probability** into the ordered conditionals where $y = (y_1, \dots, y_T)$.

$$p(\mathbf{y}) = \prod_{t=1}^{T} p(y_t | \{y_1, \dots, y_{t'-1}\}, c),$$

• The conditional probability is modeled with another RNN g as

$$p(y_t|\{y_1,\ldots,y_{t'-1}\},c) = g(y_{t-1},\underline{s_t},c),$$
hidden state of the RNN

Input sequence $\boldsymbol{x}=(x_1,x_2,x_3)$ and output sequence $\boldsymbol{y}=(y_1,y_2,y_3,y_4)$

- Example of the seq2seq model
 - For English → French task
 - With 2-layer LSTM for encoder and encoder

- Results on WMT'14 English to French dataset [Sutskever et al., 2014]
 - Measure: BLEU(Bilingual Evaluation Understudy) score
 - Widely used quantitative measure for MT task
 - On par with the state-of-the-art SMT system (without using neural network)
 - Achieved better results than the previous baselines

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
State of the art [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Seq2seq with RNNs is **simple but very powerful** in MT task

Breakthroughs in NMT: Sequence-to-Sequence Model with Attention

- Problem of original seq2seq(or encoder-decoder) model
 - Need to compress all the necessary information of a source sentence into a fixed context vector
 - All decoding steps use an identical context along with previous outputs

$$p(y_t|\{y_1,\ldots,y_{t'-1}\},c)=g(y_{t-1},s_t,\underline{c}),$$

- But, each step of decoding requires different part of the source sequence
 - E.g., Step1: "I love you" → "나는 너를 사랑해" Step2: "I love you" → "나는 너를 사랑해"
 - Hence, difficult to cope with long sentences...

Input sequence $oldsymbol{x}=(x_1,x_2,x_3)$ and output sequence $oldsymbol{y}=(y_1,y_2,y_3,y_4)$

- Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]
 - Core idea: on each step of the decoder, focus on a particular part of the source sequence using a direct connection (attention) to the encoder states
 - Dependent on the query with key, attention is a technique to compute a weighted sum of the values
 - Query: decoder's hidden state, key and value: encoder's hidden states
 - α_{ij} is a **relative importance** which means how well the inputs around position i and the output position j match.

- Extension of seq2seq model with attention mechanism [Bahdanau et al., 2015]
 - Core idea: on each step of the decoder, focus on a particular part of the source sequence using a direct connection (attention) to the encoder states
 - Dependent on the query with key, attention is a technique to compute a weighted sum of the values
 - Query: decoder's hidden state, key and value: encoder's hidden states
 - The context vector c_i is computed as **weighted sum** of h_i

- Graphical illustration of seq2seq with attention
 - E.g., Chinese to English

Results

- RNNsearch (with attention) is better than RNNenc (vanilla seq2seq)
- RNNsearch-50: model trained with sentences of length up to 50 words

Google's Neural Machine Translation (GNMT)

- Google's NMT [Wu et al., 2016]
 - Improves over previous NMT systems on accuracy and speed
 - 8-layer LSTMS for encoder/decoder with attention
 - Achieve model parallelism by assigning each LSTM layer into different GPUs
 - Add residual connections in standard LSTM
 - ... and lots of domain-specific details to apply it to production model

Google's Neural Machine Translation (GNMT)

- Google's NMT [Wu et al., 2016]
 - Improves over previous NMT systems on accuracy and speed
 - 8-layer LSTMS for encoder/decoder with attention
 - State-of-the-art results on various MT datasets and comparable with Human expert

Table 5: Single model results on WMT En→De (newstest2014)

Model	BLEU	CPU decoding time
		per sentence (s)
Word	23.12	0.2972
Character (512 nodes)	22.62	0.8011
WPM-8K	23.50	0.2079
WPM-16K	24.36	0.1931
WPM-32K	24.61	0.1882
Mixed Word/Character	24.17	0.3268
PBMT [6]	20.7	
RNNSearch [37]	16.5	
RNNSearch-LV [37]	16.9	
RNNSearch-LV [37]	16.9	
Deep-Att [45]	20.6	

Table 10:	Mean o	f side-by-side	scores on	production	$_{ m data}$

	PBMT	GNMT	Human	Relative
				Improvement
$English \rightarrow Spanish$	4.885	5.428	5.504	87%
$English \rightarrow French$	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
$Spanish \rightarrow English$	4.872	5.187	5.372	63%
$French \rightarrow English$	5.046	5.343	5.404	83%
$Chinese \to English$	3.694	4.263	4.636	60%

GNMT with different configurations

Google's Multilingual Neural Machine Translation (Multilingual GNMT)

- Google's NMT is further improved in [Johnson et al., 2016]
- Extensions to make this model to be Multilingual NMT system by adding artificial token to indicate the required target language
 - E.g., the token "<2es>" indicates that the target sentence is in Spanish
 - Can do multilingual NMT using a single model w/o increasing the parameters

Google's Multilingual Neural Machine Translation (Multilingual GNMT)

- Google's NMT is further improved in [Johnson et al., 2016]
- Extensions to make this model to be **Multilingual NMT** system by adding **artificial token** to indicate the required **target language**
 - E.g., the token "<2es>" indicates that the target sentence is in Spanish
 - Can do multilingual NMT using a single model w/o increasing the parameters

Summary

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT and by 2018 everyone has

 Remark. SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a small group of engineers in a few months

Google's Multilingual Neural Machine Translation (Multilingual GNMT)

- Google's NMT is further improved in [Johnson et al., 2016]
- Extensions to make this model to be Multilingual NMT system by adding artificial token to indicate the required target language
 - E.g., the token "<2es>" indicates that the target sentence is in Spanish
 - Can do multilingual NMT using a single model w/o increasing the parameters

Next

- Now (2021), other approaches have become dominant for many tasks
- For example, in WMT (a Machine Translation conference + competition):
 - In WMT **2016**, the summary report contains "RNN" **44** times
 - In WMT 2019: "RNN" 7 times, "Transformer" 105 times

Next, Transformer (self-attention)

Table of Contents

1. Recurrent Neural Networks

- Vanilla RNN and Gradient Vanishing
- LSTM (Long Short-Term Memory) and Its Variants
 - GRU (Gated Recurrent Unit)
 - Stacked/Grid LSTM
 - Bi-directional LSTM

2. Real-world Application: Neural Machine Translation

- Sequence-to-sequence (seq2seq) Model
- Better Long-term Dependency Modeling with Attention Mechanism in seq2seq
- Google's Neural Machine Translation (GNMT)

3. Transformers

- From recurrence (RNN) to attention-based NLP models
- Transformer (self-attention) with its great results
- Pre-training with Transformers
- Drawbacks and variants of Transformers

Issue with Recurrent Models

- Although RNNs show remarkable successes, there are fundamental issues:
 - 1. O(sequence length) steps for distant word pairs to interact means
 - Hard to learn long-distance dependencies because of gradient problems
 - 2. Forward/backward passes have **O(sequence length)** unparallelizable operations
 - Future RNN hidden states can't be computed before past states have been computed
 - This aspect inhibits training on the very large datasets

Info of **chef** has gone through **O(sequence length)** many layers

Issue with Recurrent Models

- Although RNNs show remarkable successes, there are fundamental issues:
 - 1. O(sequence length) steps for distant word pairs to interact means
 - 2. Forward/backward passes have **O(sequence length)** unparallelizable operations
- In contrast, attention has some advantages in these aspects:
 - 1. Maximum interaction distance: **O(1)**
 - Since all words interact at each layer
 - 2. Number of unparallelizable operations does not increase with respect to length

All words can attend to all words in previous layer

Issue with Recurrent Models

- Although RNNs show remarkable successes, there are fundamental issues:
 - 1. O(sequence length) steps for distant word pairs to interact means
 - 2. Forward/backward passes have **O(sequence length)** unparallelizable operations
- In contrast, attention has some advantages in these aspects:
 - 1. Maximum interaction distance: **O(1)**
 - Since all words interact at each layer
 - 2. Number of unparallelizable operations does not increase with respect to length

- **Q**. Then, can we design an architecture **only using attention** modules?
 - Remark. We saw attention from the **decoder to the encoder**; but here, we'll think about attention **within a single sentence**.

 Transformer [Vaswani et al., 2017] has an encoder-decoder structure and they are composed of multiple block with multi-head (self) attention module

- Recall: Attention operates on query, key, and value
 - Query is decoder's hidden state, key and value are encoder's hidden states in seq2seq
- In self-attention, the query, key, and value are drawn from the same source
 - 1. For each input x_i , create query, key, and value vectors q_i, k_i, v_i by multiplying **learnable** weight matrices

$$q_i = W^Q x_i, k_i = W^k x_i, v_i = W^V x_i$$

- Recall: Attention operates on query, key, and value
 - Query is decoder's hidden state, key and value are encoder's hidden states in seq2seq
- In self-attention, the query, key, and value are drawn from the same source
 - 1. For each input $\,x_i$, create query, key, and value vectors $\,q_i,k_i,v_i\,$
 - 2. Multiply (dot product) the current query vector, by all the key vectors, to get a score α_{ij} of how well they match

- Recall: Attention operates on query, key, and value
 - Query is decoder's hidden state, key and value are encoder's hidden states in seq2seq
- In self-attention, the query, key, and value are drawn from the same source
 - 1. For each input x_i , create query, key, and value vectors q_i, k_i, v_i
 - 2. Multiply (dot product) the current query vector, by all the key vectors, to get a score $lpha_{ij}$
 - 3. Multiply the value vectors by the scores, then **sum up**

- Recall: Attention operates on query, key, and value
 - Query is decoder's hidden state, key and value are encoder's hidden states in seq2seq
- In self-attention, the query, key, and value are drawn from the same source
 - 1. For each input $\,x_i$, create query, key, and value vectors $\,q_i,k_i,v_i\,$
 - 2. Multiply (dot product) the current query vector, by all the key vectors, to get a score $\,lpha_{ij}$
 - 3. Multiply the value vectors by the scores, then **sum up**
- Hence, self-attention is **effective to learn the context** within given sentence
 - It's easier than recurrent layer to be parallelized and model the long-term dependency

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- Recall: Attention operates on query, key, and value
 - Query is decoder's hidden state, key and value are encoder's hidden states in seq2seq
- In self-attention, the query, key, and value are drawn from the same source
 - 1. For each input x_i , create query, key, and value vectors q_i, k_i, v_i
 - 2. Multiply (dot product) the current query vector, by all the key vectors, to get a score $\,lpha_{ij}$
 - Multiply the value vectors by the scores, then sum up
- Hence, self-attention is effective to learn the context within given sentence
 - It's easier than recurrent layer to be parallelized and model the long-term dependency
 - It also provides an interpretability of learned representation

Multi-head attention

- Applying multiple attentions at once to look in multiple places in the sentence
 - To prevent the increase of computation, original attentions weights are divided

Same amount of computation as single-head self-attention

Multi-head attention

Applying multiple attentions at once to look in multiple places in the sentence

Encoder

- Self-attention is invariant to order of input sequence
 - To represent the order of sequence, positional encoding is added to input embeddings at the bottoms of the encoder and decoder stacks
- Fixed sine and cosine functions are used for each position pos and dimension i

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}}) \quad PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

- PE_{pos+k} can be derived as a linear function of $PE_{pos} \rightarrow$ easier to learn a relative position
- Compare to learning encoding, it's better for extrapolation (not encountered in training)

Encoder

- Self-attention is invariant to order of input sequence → positional encoding
- Residual connections (dotted) and layer normalization are used to help training

Encoder

- Self-attention is invariant to order of input sequence → positional encoding
- Residual connections (dotted) and layer normalization are used to help training
- Non-linearity is imposed by adding position-wise feed-forward networks

Decoder

- Most parts are same with encoder except encoder-decoder(cross) attention
- This cross attention is previously used in seq2seq model
 - Queries are drawn from the decoder
 - Keys and values are drawn from the encoder (like context vector)

Decoder

- Most parts are same with encoder except encoder-decoder(cross) attention
- This cross attention is previously used in seq2seq model
 - Queries are drawn from the decoder
 - Keys and values are drawn from the encoder (like context vector)

- Success of Transformer: Machine Translation (MT)
 - Initially, Transformer shows better results at a fraction of the training cost

Model	BL	EU	Training C	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$			
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$			

Nowadays, Transformer is still a standard for MT with additional techniques

	En→De			
System	news2017	news2018		
baseline	30.90	45.40		
+ langid filtering	30.78	46.43		
+ ffn 8192	31.15	46.28		
+ BT	33.62	46.66		
+ fine tuning	-	47.61		
+ ensemble	-	49.27		
+ reranking	-	50.63		
WMT'18 submission	-	46.10		
WMT'19 submission	42	2.7		

- Success of Transformer: Video action recognition [Girdhar et al., 2018]
 - Goal: localize the atomic action in space and time
 - Previous approaches just use the feature of key frame with object detection
 - But, it's hard to model the interaction between frames

Self-attention is an effective way to resolve this issue

- Success of Transformer: Video action recognition [Girdhar et al., 2018]
 - Qualitative results of learned attention

Winner of AVA challenge in 2019: > 3.5 % than previous challenge winner

Method	Modalities	Architecture	Val mAP	Test mAP
Single frame [16]	RGB, Flow	R-50, FRCNN	14.7	-
AVA baseline [16]	RGB, Flow	I3D, FRCNN, R-50	15.6	-
ARCN [42]	RGB, Flow	S3D-G, RN	17.4	-
Fudan University	-	-	-	17.16
YH Technologies [52]	RGB, Flow	P3D, FRCNN	-	19.60
Tsinghua/Megvii [23]	RGB, Flow	I3D, FRCNN, NL, TSN, C2D, P3D, C3D, FPN	-	21.08
Ours (Tx-only head)	RGB	I3D, Tx	24.4	24.30
Ours (Tx+I3D head)	RGB	I3D, Tx	24.9	24.60
Ours (Tx+I3D+96f)	RGB	I3D, Tx	25.0	24.93

- Success of Transformer: Music generation [Huang et al., 2018]
 - Goal: generate music which contains structure at multiple timescales (short to long)
 - Performance RNN (LSTM): lack of long-term structure

Music transformer; able to continue playing with consistent style

Pre-training / Fine-tuning Paradigm with Transformers

Motivation

- Many success of CNN comes from ImageNet-pretrained networks
 - Simple fine-tuning improves the performance than training from scratch
- Then, can we train a similar universal encoder for NLP tasks?
 - As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
- Language modeling, i.e., reconstruction, is simple and feasible for our goal
 - With diverse examples, model can learn the useful knowledge about the world

"Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was $_$." \rightarrow terrible

"I wat thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, $\underline{\hspace{1cm}}$ " \longrightarrow 34

"I went to the ocean to see the fish, turtles, seals, and $_$ " \longrightarrow sand

Pre-training / Fine-tuning Paradigm with Transformers

Motivation

- Many success of CNN comes from ImageNet-pretrained networks
 - Simple fine-tuning improves the performance than training from scratch
- Then, can we train a similar universal encoder for NLP tasks?
 - As labeling of NLP task is more ambiguous, unsupervised pre-training is essential
- Language modeling, i.e., reconstruction, is simple and feasible for our goal
 - With diverse examples, model can learn the useful knowledge about the world

Pre-training for two types of architectures

Architecture influences the type of pre-training, and natural use cases

Decoders

- E.g. **GPT**
- Pre-training with normal language modeling
- Better use for **generation** tasks

Encoders

- E.g. **BERT**
- Pre-training with masked language modeling
- Better use for discriminative tasks (classification)

GPT: Generative Pre-Training with Transformer's Decoder

GPT [Radford et al., 2018]

$$\arg\max_{\theta} \log p(\boldsymbol{x}) = \sum_{n} p_{\theta}(x_{n}|x_{1}, \dots, x_{n-1})$$

- Pre-training by language modeling over 7000 unique books (unlabeled data)
 - Contains long spans of contiguous text, for learning long-distance dependencies
- Fine-tuning by training a classifier with target task-specific labeled data
 - Classifier is added on the final transformer block's last word's hidden state

GPT: Generative Pre-Training with Transformer's Decoder

GPT [Radford et al., 2018]

$$\arg\max_{\theta} \log p(\boldsymbol{x}) = \sum_{n} p_{\theta}(x_{n}|x_{1}, \dots, x_{n-1})$$

- Pre-training by language modeling over 7000 unique books (unlabeled data)
 - Contains long spans of contiguous text, for learning long-distance dependencies
- Fine-tuning by training a classifier with target task-specific labeled data
 - Classifier is added on the final transformer block's last word's hidden state

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x) CAFE [58] (5x)	80.2	- 79.0	89.3 89.3	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	<u>83.3</u>		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

GPT's results on various natural language inference datasets

GPT-2: Language Models are Unsupervised Multitask Learners

- **GPT-2** [Radford et al., 2019]
 - Pre-training by language modeling as same as previous GPT-1, but training with...
 - Much larger datasets; 8 million documents from web (40 GB of text)
 - Much larger model size; # of parameters: 117M (GPT-1) → 1542M (extra-large GPT-2)

GPT-2: Language Models are Unsupervised Multitask Learners

- **GPT-2** [Radford et al., 2019]
 - Pre-training by language modeling as same as previous GPT-1, but training with...
 - Much larger datasets; 8 million documents from web (40 GB of text)
 - Much larger model size; # of parameters: 117M (GPT-1) → 1542M (extra-large GPT-2)
 - GPT-2 can perform down-stream tasks in a zero-shot setting
 - Via conditional generation without any parameter or architecture modification

GPT-2: Language Models are Unsupervised Multitask Learners

- **GPT-2** [Radford et al., 2019]
 - Pre-training by language modeling as same as previous GPT-1, but training with...
 - Much larger datasets; 8 million documents from web (40 GB of text)
 - Much larger model size; # of parameters: 117M (GPT-1) → 1542M (extra-large GPT-2)
 - GPT-2 can perform down-stream tasks in a zero-shot setting
 - Via conditional generation without any parameter or architecture modification
 - Remark. Largest model still underfits.. → larger model for better performance?

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al., 2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.

GPT-3: Language Models are Few-shot Learners

- GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]
 - Very large language models seem to perform in-context learning without gradient steps (fine-tuning)
 - In-context learning; adapting to specific task from examples with some context

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Results on open-domain question answering

GPT-3: Language Models are Few-shot Learners

- GPT-3: Language Models are Few-shot Learners [Brown et al., 2020]
 - Very large language models seem to perform in-context learning without gradient steps (fine-tuning)
 - In-context learning; adapting to specific task from examples with some context
 - It enables us to do a lot of interesting applications!
 - E.g.,

Code generation

Email response

- BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
 - As encoders get bidirectional context, language modeling can't be used anymore
 - Instead, masked language modeling is used for pre-training
 - Replace some fraction of words (15%) in the input, then predict these words

- BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
 - As encoders get bidirectional context, language modeling can't be used anymore
 - Instead, masked language modeling is used for pre-training
 - Additionally, next sentence prediction (NSP) task is used for pre-training
 - Decide whether two input sentences are consecutive or not

- BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
 - Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP tasks, including classification, question answering, tagging, etc.
 - By simply fine-tuning a whole network with additional linear classifier

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

- BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
 - Even without task-specific complex architectures, BERT achieves SOTA for 11 NLP tasks, including classification, question answering, tagging, etc.
 - By simply fine-tuning a whole network with additional linear classifier

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
$BERT_{BASE}$	96.4	92.4
BERT _{LARGE}	96.6	92.8

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
BERT _{BASE}	81.6	-
$BERT_{LARGE}$	86.6	86.3
Human (expert) [†]	-	85.0
Human (5 annotations) [†]	-	88.0

Roberta: A Robustly Optimized BERT Pre-training Approach

- **RoBERTa** [Liu et al., 2019]
 - Simply modifying BERT design choices and training strategies with alternatives
 - Using dynamic masking instead of static masking in BERT
 - Removing NSP task and generate training data in single document instead
 - Much larger data for pre-training: 16GB → 160GB, and etc...
 - But, it leads a huge improvement in many downstream tasks

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13 GB	256	1 M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13 GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

- Although Transformers show remarkable success on many domains, there are some remaining issues
- Quadratic computation in self-attention as a function of sequence length
 - **Q**. Can we build models like Transformers without $O(T^2)$ all-pairs self-attention cost?
 - A. Linformer [Wang et al., 2020]
 - · Key idea: low rank approximation of attention mechanism with linear projection

- Although Transformers show remarkable success on many domains, there are some remaining issues
- Quadratic computation in self-attention as a function of sequence length
 - **Q**. Can we build models like Transformers without $O(T^2)$ all-pairs self-attention cost?
 - A. Linformer [Wang et al., 2020]
 - Key idea: low rank approximation of attention mechanism with linear projection
 - Performance can be **preserved** after the approximation

n	Model	SST-2	IMDB	QNLI	QQP	Average
	Liu et al. (2019), RoBERTa-base	93.1	94.1	90.9	90.9	92.25
	Linformer, 128	92.4	94.0	90.4	90.2	91.75
	Linformer, 128, shared kv	93.4	93.4	90.3	90.3	91.85
	Linformer, 128, shared kv, layer	93.2	93.8	90.1	90.2	91.83
512	Linformer, 256	93.2	94.0	90.6	90.5	92.08
	Linformer, 256, shared kv	93.3	93.6	90.6	90.6	92.03
	Linformer, 256, shared kv, layer	93.1	94.1	91.2	90.8	92.30
512	Devlin et al. (2019), BERT-base	92.7	93.5	91.8	89.6	91.90
512	Sanh et al. (2019), Distilled BERT	91.3	92.8	89.2	88.5	90.45
	Linformer, 256	93.0	93.8	90.4	90.4	91.90
1024	Linformer, 256, shared kv	93.0	93.6	90.3	90.4	91.83
	Linformer, 256, shared kv, layer	93.2	94.2	90.8	90.5	92.18

- Although Transformers show remarkable success on many domains, there are some remaining issues
- Quadratic computation in self-attention as a function of sequence length
 - **Q**. Can we build models like Transformers without $O(T^2)$ all-pairs self-attention cost?
 - A. BigBird [Zaheer et al., 2020]
 - Key idea: replace all-pairs interactions with a family of other interactions, like
 1) random attention, 2) local attention (window), 3) global attention
 - It can preserve the some property of original attention in theory
 - Due to effect as regularization, it sometimes improve the performance than original

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence of attention. (a) random attention with r=2, (b) sliding window attention with w=3 (c) global attention with g=2. (d) the combined BIGBIRD model.

Model	ŀ	HotpotQA		Natu	ıralQ	TriviaQA	
	Ans	Sup	Joint	LA	SA	Full	Verified
HGN [26]	82.2	88.5	74.2	-	-	-	-
GSAN	81.6	88.7	73.9	-	-	-	-
ReflectionNet [32]	-	-	-	77.1	64.1	-	-
RikiNet-v2 [61]	-	-	-	76.1	61.3	-	-
Fusion-in-Decoder [39]	-	-	-	-	-	84.4	90.3
SpanBERT [42]	-	-	-	-	-	79.1	86.6
MRC-GCN [87]	-	-	-	-	-	-	-
MultiHop [14]	-	-	-	-	-	-	-
Longformer [8]	81.2	88.3	73.2	-	-	77.3	85.3
BIGBIRD-ETC	81.2	89.1	73.6	77.8	57.9	84.5	92.4

Although Transformers show remarkable success on many domains, there are some remaining issues

Position representations

Q. Are simple absolute indices the best we can do to represent position?

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm model}}) \quad PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm model}})$$

- A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations
 - To consider pairwise relationships, additional weights $\ a_{ij}^v, a_{ij}^k$ are introduced (consider a relative position up to l)

Original:
$$output_i = \sum_j \alpha_{ij} v_j \qquad \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})} \qquad e_{ij} = \frac{q_i^T k_j}{\sqrt{d}}$$

Relative:
$$\begin{aligned} \text{output}_i &= \sum_j \alpha_{ij} (v_j + a^v_{ij}) \\ a^v_{ij} &= w^v_{\text{clip}(j-i,l)} \quad a^k_{ij} = w^k_{\text{clip}(j-i,l)} \quad \text{clip}(x,l) = \max(-l,\min(l,x)) \end{aligned}$$

 Although Transformers show remarkable success on many domains, there are some remaining issues

Position representations

Q. Are simple absolute indices the best we can do to represent position?

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations
 - Imposing the structural information obtained from the classical NLP literature

(a) Sequential Position Encoding

Algorithmic Intelligence Lab

50

(b) Structural Position Encoding

 Although Transformers show remarkable success on many domains, there are some remaining issues

Position representations

Q. Are simple absolute indices the best we can do to represent position?

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- A. Relative [Shaw et al., 2018] and structural [Wang et al., 2019] position representations
 - Imposing the structural information obtained from the classical NLP literature

Model Architecture		En⇒De				
Wiodel Architecture	MT03	MT04	MT05	MT06	Avg	WMT14
Hao et al. (2019c)	-	-	-	-	-	28.98
Transformer-Big	45.30	46.49	45.21	44.87	45.47	28.58
+ Structural PE	45.62	47.12↑	45.84	45.64↑	46.06	28.88
+ Relative Sequential PE	45.45	47.01	45.65	45.87↑	46.00	28.90
+ Structural PE	45.85 [↑]	47.37↑	46.20↑	46.18↑	46.40	29.19↑

 Although Transformers show remarkable success on many domains, there are some remaining issues

Bias and privacy problem in pre-trained Transformers

- Private information can be extracted from pre-trained language model [Carlini et al., 2020]
- Pre-trained language models generate biased sentences [Sheng et al., 2019]

[Carlini et al., 2020]

Prompt	Generated text
The man worked as	a car salesman at the local
	Wal-Mart
The woman worked as	a prostitute under the name of
	Hariya
The Black man	a pimp for 15 years.
worked as	
The White man	a police officer, a judge, a
worked as	prosecutor, a prosecutor, and the
	president of the United States.
The gay person was	his love of dancing, but he also did
known for	drugs
The straight person	his ability to find his own voice and
was known for	to speak clearly.

[Sheng et al., 2019]

Summary

- For temporal data, one need a specific architecture which can capture temporal dependency within data
- RNN architectures have developed in a way that
 - Can better model long-term dependency
 - Robust to vanishing gradient problems
- Seq2seq model with attention makes breakthroughs in machine translation
 - It leads to the model only composed with attention → **Transformer**
- Transformer significantly improves the performance of machine translation
 - Also, the performance on other temporal domains such as video, music..
 - With **pre-training** using large model and data, one can get
 - 1) standard initialization point for many NLP task (BERT) and
 - 2) strong language generator (GPT)
 - But, there are **still rooms to be improved** for Transformer

Algorithmic Intelligence Lab

[Hochreiter and Schmidhuber, 1997] "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

link: http://www.bioinf.jku.at/publications/older/2604.pdf

[Graves et al., 2005] "Framewise phoneme classification with bidirectional LSTM and other neural network architectures." *Neural Networks* 18.5-6 (2005): 602-610.

Link: ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf

[Graves et al, 2013] "Speech recognition with deep recurrent neural networks." *Acoustics, speech and signal processing (icassp), 2013 ieee international conference on.* IEEE, 2013.

Link: https://www.cs.toronto.edu/~graves/icassp_2013.pdf

[Cho et al., 2014] "Learning phrase representations using RNN encoder-decoder for statistical machine translation." *arXiv preprint arXiv:1406.1078* (2014).

Link: https://arxiv.org/pdf/1406.1078v3.pdf

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks." NIPS 2014.

link: http://papers.nips.cc/paper/5346-sequence-to-sequence-learnin

[Sutskever et al., 2014] "Sequence to sequence learning with neural networks." NIPS 2014.

[Bahdanau et al., 2015] ""Neural machine translation by jointly learning to align and translate.", ICLR 2015 Link: https://arxiv.org/pdf/1409.0473.pdf

[Jozefowicz et al., 2015] "An empirical exploration of recurrent network architectures." ICML 2015.

Link: http://proceedings.mlr.press/v37/jozefowicz15.pdf

[Bahdanau et al., 2015] Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." *ICLR 2015*

link: https://arxiv.org/pdf/1409.0473.pdf

[Kalchbrenner et al., 2016] "Grid long short-term memory." ICLR 2016

Link: https://arxiv.org/pdf/1507.01526.pdf

[Gehring et al., 2016] "A convolutional encoder model for neural machine translation." *arXiv preprint arXiv:1611.02344* (2016).

Link: https://arxiv.org/pdf/1611.02344.pdf

[Wu et al., 2016] "Google's neural machine translation system: Bridging the gap between human and machine translation." arXiv preprint arXiv:1609.08144 (2016).

link: https://arxiv.org/pdf/1609.08144.pdf

[Johnson et al., 2016] "Google's multilingual neural machine translation system: enabling zero-shot translation." *arXiv preprint arXiv:1611.04558* (2016).

Link: https://arxiv.org/pdf/1611.04558.pdf

[Gehring et al., 2017] "Convolutional sequence to sequence learning." arXiv preprint arXiv:1705.03122 (2017).

Link: https://arxiv.org/pdf/1705.03122.pdf

[Narang et al., 2017] "Exploring sparsity in recurrent neural networks.", ICLR 2017

Link: https://arxiv.org/pdf/1704.05119.pdf

[Fei-Fei and Karpathy, 2017] "CS231n: Convolutional Neural Networks for Visual Recognition", 2017. (Stanford University)

link: http://cs231n.stanford.edu/2017/

[Salehinejad et al., 2017] "Recent Advances in Recurrent Neural Networks." arXiv preprint arXiv:1801.01078 (2017).

Link: https://arxiv.org/pdf/1801.01078.pdf

[Zaheer et al., 2020] "Big Bird: Transformers for Longer Sequences." NeurIPS 2020

Link: https://arxiv.org/pdf/2007.14062.pdf

[Wang et al., 2020] "Linformer: Self-Attention with Linear Complexity." arXiv preprint arXiv:2006.04768

Link: https://arxiv.org/pdf/2006.04768.pdf

[Choromanski et al., 2020] "Rethinking Attention with Performers." ICLR 2021

link: https://arxiv.org/pdf/2009.14794.pdf

[Sheng et al., 2019] "The Woman Worked as a Babysitter: On Biases in Language Generation." EMNLP 2019

Link: https://arxiv.org/pdf/1909.01326.pdf

[Carlini et al., 2020] "Extracting Training Data from Large Language Models." arXiv preprint arXiv:2012.07805

Link: https://arxiv.org/pdf/2012.07805.pdf

[Vaswani et al., 2017] "Attention Is All You Need." NeurIPS 2017

Link: https://arxiv.org/pdf/1706.03762.pdf

[Radford et al., 2018] "Improving Language Understanding by Generative Pre-training." OpenAI

Link: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

[Radford et al., 2019] "Language Models are Unsupervised Multitask Learners." OpenAl

Link: https://cdn.openai.com/better-language-models/language-models are unsupervised multitask learners.pdf

[Brown et al., 2020] "Language Models are Few-Shot Learners." NeurIPS 2020

Link: https://arxiv.org/abs/2005.14165

[Devlin et al., 2018] "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." EMNLP 2019

Link: https://arxiv.org/abs/1810.04805

[Liu et al., 2019] "RoBERTa: A Robustly Optimized BERT Pretraining Approach." arXiv preprint arXiv:1907.11692

Link: https://arxiv.org/pdf/1907.11692.pdf

[Shaw et al., 2018] "Self-attention with Relative Position Representations." NAACL 2018

Link: https://arxiv.org/abs/1803.02155

[Wang et al., 2019] "Self-attention with Structural Position Representations." EMNLP 2019

Link: https://arxiv.org/pdf/1909.00383.pdf

[Huang et al., 2018] "Music Transformer." arXiv:1809.04281

Link: https://arxiv.org/abs/1809.04281

[Girdhar et al., 2018] "Video Action Transformer Network." CVPR 2019

Link: https://arxiv.org/pdf/1812.02707.pdf