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Introduction - Random walk

• A random walk is defined under a (directed) graph G = (V ,E ) where V ,E are sets
of vertices and edges, respectively.

• Start with a probability vector p(0) ∈ [0, 1]V , where px(0) is the probability of
starting at vertex x ∈ G .

• The probability vector at time t + 1 is defined by the probability vector at time t,
namely p(t+1) = p(t)P.
◦ Pij is the probability of the walk at vertex i selecting the edge to vertex j .

• The long-term average probability of being at a particular vertex is independent of
the choice of p(0) if G is strongly connected.
◦ The limiting probabilities are called stationary probabilities.

• This property allows to design an efficient sampling algorithm from a desired
probability distribution, called “Markov Chain Monte Carlo (MCMC)”.



Introduction - Markov Chain

Graph Stochastic process

vertex state
strongly connected persistent

aperiodic aperiodic
strongly connected and aperiodic ergodic

undirected graph time reversible

Table 1: Correspondence between terminology of random walks and Markov chains

• A Markov chain has a finite set of states.

• For each pair of states x and y , there is a transition probability pxy of going from x
to y where

∑
y pxy = 1 for each x .

• The terms ”random walk” and ”Markov chain” are used interchangeably.
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Stationary Distribution

Definition 1. Long-term average probability distribution

Let p(t) be the probability distribution after t steps of random walks. Then, long-term
average probability distribution is defined by:

a(t) =
1

t
(p(0) + p(1) + ...+ p(t-1)).

Theorem 1. Fundamental Theorem of Markov Chains

For a connected Markov chain, there is a unique probability vector πP = π. Moreover,
for any starting distribution, limt→∞ a(t) exists and equals to π.

Proof. See Page 80-81 of Textbook B.

• Theorem 1 will be used to prove the convergence of Markov Chain Monte Carlo
(MCMC) algorithm.
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Markov Chain Monte Carlo (MCMC)

• Let f : Rd → R and a probability distribution p(x) where x = (x1, x2, ..., xd).

• We want to calculate

E (f ) =
∑
x

f (x)p(x)

• The sample space grows exponentially on d .

• Therefore, explicit summation requires exponential time on d , which is not desirable.



Markov Chain Monte Carlo (MCMC)

• Let f : Rd → R and a probability distribution p(x) where x = (x1, x2, ..., xd).

• We want to calculate

E (f ) =
∑
x

f (x)p(x)

• Markov Chain Monte Carlo (MCMC) method approximates the summation by a
summation of a set of samples, where each sample x is selected with probability
p(x).
◦ Metropolis-Hastings algorithm

◦ Gibbs sampling

• We construct a Markov chain that has the desired distribution as its stationary
distribution.

• By Theorem 1, the average of the function f over states seen in a sufficiently long
run is a good estimate of E (f ).



Markov Chain Monte Carlo (MCMC)

• Recall the definition of long-term average probability distribution.

a(t) =
1

t
[p(0) + p(1) + ...+ p(t-1)]

• Let γ be the average value of f at the states seen in a t step walk, which is an
estimate of E (f ) =

∑
i fipi .

• The expected value of γ is calculated by:

E (γ) =
∑
i

fi (
1

t

t∑
j=1

Prob(walk is in state i at time j)) =
∑
i

fiai (t).

• Letting fmax := maxx |f (x)|, we have:

|E (f )− E (γ)| ≤ fmax

∑
i

|pi − ai (t)| = fmax ||p− a(t)||1.

• If p is the stationary distribution, E (γ) converges to E (f ) by the rate of
convergence of the Markov chain to its steady state.



Markov Chain Monte Carlo (MCMC) - Metropolis-Hasting Algorithm

Algorithm 1. Metropolis-Hasting Algorithm

Let r be the maximum degree of any vertex in a connected undirected graph G . We
define the transition matrix as follows:

pij =
1

r
min(1,

pj
pi

) if i 6= j ,

pii = 1−
∑
j 6=i

pij .

• At state i , we select neighbor j with probability 1
r .

• For the selected j , if pi ≤ pj , go to j . If pi > pj , go to j with probability pj/pi .

• Otherwise, stay at i .



Markov Chain Monte Carlo (MCMC) - Metropolis-Hasting Algorithm

• The Metropolis-Hasting Algorithm is a method to design a Markov chain whose
stationary distribution is a given target distribution p.

Lemma 1.

For a random walk on a strongly connected graph G with probabilities on the edges, if
the vector π satisfies πxpxy = πypyx for all x , y ∈ G and

∑
x πx = 1, then π is the

stationary distribution of the walk.

Proof. See Page 81 of Textbook B.

Theorem 2. Convergence of Metropolis-Hasting Algorithm

In algorithm 1 (Metropolis-Hasting Algorithm), the stationary probabilities are indeed
pi ’s.

Proof. The proof follows from Lemma 1.
As pipij = 1

r min(1,
pj
pi

) = 1
r min(pi , pj) =

pj
r min(1, pipj ) = pjpji , by Lemma 1., the

theorem follows.



Markov Chain Monte Carlo (MCMC) - Metropolis-Hasting Algorithm

Figure 1: A connected undirected graph with vertices {a, b, c , d}

• Let’s follow the Metropolis-Hasting Algorithm to construct the transition matrix P
on the graph in Figure 1.



Markov Chain Monte Carlo (MCMC) - Metropolis-Hasting Algorithm

Figure 2: A connected undirected graph with vertices {a, b, c , d}

• We want to make the stationary distribution π = [ 1
2 ,

1
4 ,

1
8 ,

1
8 ].

• For the vertex a,
◦ pab = 1

r min(1, pbpa ) = 1
3min(1, 1

2 ) = 1
6

◦ pac = 1
r min(1, pcpa ) = 1

3min(1, 1
4 ) = 1

12

◦ pad = 1
r min(1, pdpa ) = 1

3min(1, 1
4 ) = 1

12

◦ paa = 1−
∑

j 6=a paj = 1− 1
6 −

1
12 −

1
12 = 2

3



Markov Chain Monte Carlo (MCMC) - Metropolis-Hasting Algorithm

Figure 3: A connected undirected graph with vertices {a, b, c , d}

• We want to make the stationary distribution π = [ 1
2 ,

1
4 ,

1
8 ,

1
8 ].

• Applying Metropolis-Hasting Algorithm for other vertices, we get:

P =


2/3 1/6 1/12 1/12
1/3 1/2 1/6 0
1/3 1/3 0 1/3
1/3 0 1/3 1/3


• It is easy to check πP = π.



Markov Chain Monte Carlo (MCMC) - Gibbs Sampling

Algorithm 2. Gibbs Sampling

Let G be an undirected graph whose vertices corresponds to the values x = (x1, ..., xd).
Also, assume that there is an edge from x to y if x and y differ in only one coordinate
(W.L.O.G. assume it the first coordinate). We define the transition matrix as follows:

pxy =
1

d
p(y1|x2, x3, ..., xd),

where d =
∑
i

∑
yi

p(yi |x1, x2, ..., xi−1, xi+1, ..., xd).

• Choose one coordinate (randomly or sequentially).

• The transition probability depends on the conditional probability of chosen
coordinate while fixing other coordinates.



Markov Chain Monte Carlo (MCMC) - Gibbs Sampling

• Gibbs sampling is a method to design a Markov chain whose stationary distribution
is a given target distribution p.

Theorem 3. Convergence of Gibbs Sampling

In algorithm 2 (Gibbs Sampling), the stationary probability is indeed p.

Proof. The proof follows again from Lemma 1.

pxy =
1

d

p(y)

p(x2, x3, ..., xd)

pyx =
1

d

p(x)

p(x2, x3, ..., xd)

Therefore, p(x)pxy = p(y)pyx .



Markov Chain Monte Carlo (MCMC) - Gibbs Sampling

Figure 4: A connected undirected graph with vertices {(i , j) : i , j ∈ {1, 2, 3}}

• Let’s follow the Gibbs sampling Algorithm to construct the transition matrix P on
the graph in Figure 1.



Markov Chain Monte Carlo (MCMC) - Gibbs Sampling

Figure 5: A connected undirected graph with vertices {(i , j) : i , j ∈ {1, 2, 3}}
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Convergence of Random Walks on Undirected Graphs

• Given an edge-weighted undirected graph G , let wxy denote the weight of the edge
between nodes x , y ∈ G .
◦ If no such edge exists, let wxy = 0.

• Let wx =
∑

y wxy , pxy = wxy/wx , and wtotal =
∑

x ′ wx ′ .

• By Lemma 1, πx := wx/wtotal are the stationary probabilities.
◦ wxpxy = wx

wxy

wx
= wxy = wyx = wy

wyx

wy
= wypyx .

◦ Therefore, (wx/wtotal)pxy = (wy/wtotal)pyx .

• We are interested in the convergence rate of Metropolis-Hasting algorithm and
Gibbs sampling on edge-weighted undirected graph.



Convergence of Random Walks on Undirected Graphs

Figure 6: A connected graph. All edges have the same weight.

• In Figure 6, the random walk is unlikely to cross the narrow passage between the
two halves.

• We will show that the time to converge is quantitatively related to the tightest
constriction.



Convergence of Random Walks on Undirected Graphs

Definition 1. ε-mixing time

The ε-mixing time of a Markov chain is the minimum integer t such that for any
starting distribution p(0), the 1-norm difference between the t-step running average
probability distribution and the stationary distribution is at most ε.

Definition 2. Normalized conductance

For a subset S of vertices, let π(S) denote
∑

x∈S πx . The normalized conductance
Φ(S) of S is defined as:

Φ(S) =

∑
(x ,y)∈(S,S̄) πxpxy

min(π(S), π(S̄))



Convergence of Random Walks on Undirected Graphs

Definition 2. Normalized conductance

For a subset S of vertices, let π(S) denote
∑

x∈S πx . The normalized conductance
Φ(S) of S is defined as:

Φ(S) =

∑
(x ,y)∈(S,S̄) πxpxy

min(π(S), π(S̄))

• If π(S) ≤ π(S̄), we have Φ(S) =
∑

x∈S
πx
π(S)

∑
y∈S̄ pxy .

◦
∑

x∈S
πx

π(S) is the probability of being in x if we were in the stationary distribution

restricted to S .

◦
∑

y∈S̄ pxy is the probability of stepping from x to S̄ in a single step.

• Then, Φ(S) is the probability of moving from S to S̄ in one step if we were in the
stationary distribution restricted to S .



Convergence of Random Walks on Undirected Graphs

Definition 3. Normalized conductance of the Markov chain

We define the normalized conductance of the Markov chain as follows:

Φ = min
S∈V ,S 6=∅

Φ(S)

Theorem 4. ε-mixing time of a random walk

The ε-mixing time of a random walk on an undirected graph is

O(
ln(1/πmin)

Φ2ε3
)

where πmin is the minimum stationary probability of any state.

Proof. See Page 90-92 of Textbook B.



Convergence of Random Walks on Undirected Graphs

Theorem 4. ε-mixing time of a random walk

The ε-mixing time of a random walk on an undirected graph is

O(
ln(1/πmin)

Φ2ε3
)

where πmin is the minimum stationary probability of any state.

• By theorem 4, one can show the convergence rate of the random walk of

◦ 1-dimensional lattice with self-loops at both ends: O( n2logn
ε3 )

where n denotes the number of vertices.

◦ d-dimensional lattice with self-loops at each boundary point : O( d3n2logn
ε3 )

where n denotes the number of vertices in each dimension.

◦ a connected undirected graph : O( n4logn
ε3 )

where n denotes the number of vertices.

• The convergence rate is polynomially bounded by n and d .



Convergence of Random Walks on Undirected Graphs

Theorem 4. ε-mixing time of a random walk

The ε-mixing time of a random walk on an undirected graph is

O(
ln(1/πmin)

Φ2ε3
)

where πmin is the minimum stationary probability of any state.

• Proof sketch of 1-dimensional lattice with self-loops.
With self-loops, pxy = 1

2 for all edges (x,y). Also, stationary distribution is 1
n for all

vertices.
The set S with n

2 vertices yields the minimum Φ(S) with Φ = 1
n .

Therefore, by Theorem 4, the ε-mixing time is O(n
2logn
ε3 ).
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Random Walks on Undirected Graphs with Unit Edge Weights

• For undirected graphs with unit edge weights, some concrete analysis for a random
walk can be done.

◦ Hitting time (hxy ): expected time of a random walk starting at vertex x to reach vertex
y .

◦ Commute time (commute(x , y)): expected time of a random walk starting at x reaching
y and then returning to x . i.e., commute(x , y) = hxy + hyx .

◦ Cover time (cover(G )): expected time of any vertex to reach other vertices at least once.

• The proofs of this section is somewhat technical. You can find the proofs in section
4.6 of Textbook B.



Random Walks on Undirected Graphs with Unit Edge Weights

Theorem 5.

If vertices x and y are connected by an edge, then hxy + hyx ≤ 2m where m is the
number of edges in the graph.

Theorem 6.

For vertices x and y in an n vertex graph, commute(x , y) is less than or equal to n3.

Theorem 7.

Let G be a connected graph with n vertices and m edges. Cover(G ) is bounded above
by 4m(n − 1).



Questions?


