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Warm-Up

Please watch this tutorial video by Luis Serrano on Gaussian
Mixture Model.

https://www.youtube.com/watch?v=q71Niz856KE

https://www.youtube.com/watch?v=q71Niz856KE
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Density Estimation

• Represent data compactly using a density from a parametric family, e.g., Gaussian
or Beta distribution

• Parameters of those families can be found by MLE and MAPE

• However, there are many cases when simple distributions (e.g., just Gaussian) fail
to approximate data.
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Mixture Models

• More expressive family of distribution

• Idea: Let’s mix! A convex combination of K “base” distributions

p(x) =
K∑

k=1

πkpk(x), 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1

• Multi-modal distributions: Can be used to describe datasets with multiple clusters

• Our focus: Gaussian mixture models

• Want to finding the parameters using MLE, but cannot have the closed form
solution (even with the mixture of Gaussians) → some iterative methods needed
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Gaussian Mixture Model

p(x |θ) =
K∑

k=1

πk · N (x |µk ,Σk), 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1,

where the parameters θ := {µk ,Σk , πk : k = 1, . . . ,K}

• Example. p(x |θ) = 0.5N (x | − 2, 1/2) + 0.2N (x |1, 2) + 0.3N (x |4, 1)
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Parameter Learning: Maximum Likelihood

• Given a iid dataset X = {x1, . . . , xn}, the log-likelihood is:

L(θ) = log p(X|θ) =
N∑

n=1

log p(xn|θ) =
N∑

n=1

log
K∑

k=1

πkN (xn|µk ,Σk)

• θML = arg minθ(−L(θ))

• Necessary condition for θML:
dL
dθ

∣∣∣
θML

= 0

• However, the closed-form solution of θML does not exist, so we rely on an iterative
algorithm (also called EM algorithm).

• We show the algorithm first, and then discuss how we get the algorithm.
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Responsibilities

• Definition. Responsibilities. Given n-th data point xn and the parameters
(µk ,Σk , πk : k = 1, . . . ,K ),

rnk =
πkN (xn|µk ,Σk)∑
j πjN (xn|µj ,Σj)

• How much is each component k responsible, if the data xn is sampled from the
current mixture model?

• rn = (rnk : k = 1, . . . ,K ) is a probability distribution, so
∑K

k=1 rnk = 1

• Soft assignment of xn to the K mixture components
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EM Algorithm: MLE in Gaussian Mixture Models

EM for MLE in Gaussian Mixture Models
S1. Initialize µk ,Σk , πk

S2. E-step: Evaluate responsibilities rnk for every data point xn using the current µk ,Σk , πk :

rnk =
πkN (xn|µk ,Σk)∑
j πjN (xn|µj ,Σj)

, Nk =
N∑

n=1

rnk

S3. M-step: Reestimate parameters µk ,Σk , πk using the current responsibilities rnk :

µk =
1

Nk

N∑
n=1

rnkxn, Σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)T, πk =
Nk

N
,

and go to S2.

- The update equation in M-step is still mysterious, which will be covered later.
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Example: EM Algorithm
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M-Step: Towards the Zero Gradient

• Given X and rnk from E-step, the new updates of µk , Σk , πk should be made, such
that the followings are satisfied:

∂L
∂µk

= 0T ⇐⇒
N∑

n=1

∂ log p(xn|θ)

∂µk
= 0T

∂L
∂Σk

= 0⇐⇒
N∑

n=1

∂ log p(xn|θ)

∂Σk
= 0

∂L
∂πk

= 0⇐⇒
N∑

n=1

∂ log p(xn|θ)

∂πk
= 0

• Nice thing: the new updates of µk , Σk , πk are all expressed by the responsibilities
[rnk ]

• Let’s take a look at them one by one!
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M-Step: Update of µk

µnew
k =

∑N
n=1 rnkxn∑N
n=1 rnk

, k = 1, . . . ,K

• See Page 354 of Textbook A.
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M-Step: Update of Σk

Σnew
k =

1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)T, k = 1, . . . ,K

• See Page 356-357 of Textbook A.
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M-Step: Update of πk

πnewk =

∑N
n=1 rnk
N

, k = 1, . . . ,K

• See Page 358-359 of Textbook A.
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Latent-Variable Perspective

• Justify some ad hoc decisions made earlier

• Allow for a concrete interpretation of the responsibilities as posterior distributions

• Iterative algorithm for updating the model parameters can be derived in a principled
manner
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Generative Process

• Latent variable z : One-hot encoding random vector z = [z1, . . . , zK ]T consisting of
K − 1 many 0s and exactly one 1.

• An indicator rv zk = 1 represents whether k-th component is used to generate the
data sample x or not.

• p(x |zk = 1) = N (x |µk ,Σk)

• Prior for z with πk = p(zk = 1)

p(z) = π = [π1, . . . , πK ]T,
K∑

k=1

πk = 1

• Sampling procedure

1. Sample which component to use z (i) ∼ p(z)

2. Sample data according to i-th Gaussian x (i) ∼ p(x |z (i))
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Joint Distribution, Likelihood, and Posterior (1)

• Joint distribution

p(x , z) =

p(x , z1 = 1)
...

p(x , zK = 1)

 =

 p(x |z1 = 1)p(z1 = 1)
...

p(x |zK = 1)p(zK = 1)

 =

 π1N (x |µ1,Σ1)
...

πKN (x |µK ,ΣK )


• Likelihood for an arbitrary single data x : By summing out all latent variables1,

p(x |θ) =
∑
z

p(x |θ, z)p(z |θ) =
K∑

k=1

p(x |θ, zk = 1)p(zk = 1|θ) =
K∑

k=1

πkN (x |µk ,Σk)

• For all the data samples X , the log-likelihood is:

log p(X|θ) =
N∑

n=1

log p(xn|θ) =
N∑

n=1

log
K∑

k=1

πkN (xn|µk ,Σk) Compare: Page 7

1In probabilistic PCA, z was continuous, so we integrated them out.
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Joint Distribution, Likelihood, and Posterior (2)

• Posterior for the k-th zk , given an arbitrary single data x :

p(zk = 1|x) =
p(zk = 1)p(x |zk = 1)∑K
j=1 p(zj = 1)p(x |zj = 1)

=
πkN (x |µk ,Σk)∑K
j=1 πjN (x |µj ,Σj)

• Now, for all data samples X , each data xn has zn = [zn1, . . . , znK ]T, but with the
same prior π.

p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

=
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

= rnk

• Responsibilities are mathematically interpreted as posterior distributions.
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Revisiting EM Algorithm for MLE

S1. Initialize µk ,Σk , πk

S2. E-step:

rnk =
πkN (xn|µk ,Σk)∑
j πjN (xn|µj ,Σj)

S3. M-step: Update µk ,Σk , πk using rnk and
go to S2.

• E-step. Expectation over z |x ,θ(t): Given
the current θ(t) = (µk ,Σk , πk), calculates
the expected log-likelihood

Q(θ|θ(t)) = Ez|x,θ(t) [log p(x , z |θ)]

=

∫
log p(x , z |θ)p(z |x ,θ(t))dz

• M-step. Maximization of the computation
results in E-step for the new model
parameters.

• Only guarantee of just local-optimum because the original optimization is not
necessarily a convex optimization. L7(4)
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Questions?
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