Lecture 6: Density Estimation with Gaussian Mixture Models
(Chapter 11 of Textbook A)

Jinwoo Shin

AlI503: Mathematics for Al

This lecture slide is based upon
https://yung-web.github.io/home/courses/mathml.html
(made by Prof. Yung Yi, KAIST EE)


https://yung-web.github.io/home/courses/mathml.html

Please watch this tutorial video by Luis Serrano on Gaussian
Mixture Model.

https://www.youtube.com/watch?v=g71Niz856KE


https://www.youtube.com/watch?v=q71Niz856KE
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Density Estimation

e Represent data compactly using a density from a parametric family, e.g., Gaussian
or Beta distribution

e Parameters of those families can be found by MLE and MAPE

e However, there are many cases when simple distributions (e.g., just Gaussian) fail
to approximate data.

L11(1)



Mixture Models

e More expressive family of distribution

e |ldea: Let's mix! A convex combination of K “base” distributions

e Multi-modal distributions: Can be used to describe datasets with multiple clusters

e Qur focus: Gaussian mixture models

 Want to finding the parameters using MLE, but cannot have the closed form
solution (even with the mixture of Gaussians) — some iterative methods needed
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Gaussian Mixture Model

K K

p(x|0):Z7Tk'N(X|IJ’k72k)7 O§7Tk§1, Zﬂ'k: ;

k=1 k=1

where the parameters 0 := {py, Xy, k=1,..., K}

e Example. p(x]0) = 0.5N (x| —2,1/2) + 0.2 (x|1,2) + 0.3\ (x|4,1)
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Parameter Learning: Maximum Likelihood

Given a iid dataset X = {xi,...,x,}, the Iog—likelihood is:

L(6) = log p(X|6) = Zlogpxnlf9 ZlogZWkanluk,Ek)

n=1

O = arg ming(—L(0))
dl

Necessary condition for Oy : — =0

However, the closed-form solution of @) does not exist, so we rely on an iterative
algorithm (also called EM algorithm).

We show the algorithm first, and then discuss how we get the algorithm.
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Responsibilities

Definition. Responsibilities. Given n-th data point x,, and the parameters
(uk,zk,ﬂ'k k= ].,...,K),

- TN (Xn| ok, 2k)
T N (Xl )

How much is each component k responsible, if the data x, is sampled from the
current mixture model?

rn=(rk: k=1,...,K) is a probability distribution, so Zle r = 1

Soft assignment of x, to the K mixture components
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EM Algorithm: MLE in Gaussian Mixture Models

EM for MLE in Gaussian Mixture Models
S1. Initialize poy, X5, Tk

S2. E-step: Evaluate responsibilities rp,, for every data point x, using the current puj, 2, m:

N

n| Mk, 2
7TkN(X \uk k) 7 N, = Z .
Zj TN (Xn| 1, X))

Fnk =

n=1
S3. M-step: Reestimate parameters puy, Xy, T, using the current responsibilities ry:

N N

: S (e — ) (%o — )T =
— Fn xn; — i\ Xn — Xn — 9 — a7
N, - k N, 2 k 1295 975 N
and go to S2.

- The update equation in M-step is still mysterious, which will be covered later.
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Example: EM Algorithm
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(e) EM after 10 iterations.
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(d) EM after one iteration.
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(f) EM after 62 iterations.



M-Step: Towards the Zero Gradient

e Given X and r,, from E-step, the new updates of uy, 2, 7, should be made, such
that the followings are satisfied:

N

oL T 0 log p(xs|0) T
— =0' = =0
Ok ; Opk

N
oL Olog p(x,|0)
oy = 0 = ; ST 0

N
oL Olog p(x,|0)
. = 0 = ,,2::1 - =0

e Nice thing: the new updates of py, 2, ™k are all expressed by the responsibilities
[ri]

o Let's take a look at them one by one!
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M-Step: Update of

e See Page 354 of Textbook A.
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M-Step: Update of X

e See Page 356-357 of Textbook A.
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M-Step: Update of 7

e See Page 358-359 of Textbook A.
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Latent-Variable Perspective

e Justify some ad hoc decisions made earlier
e Allow for a concrete interpretation of the responsibilities as posterior distributions

* |terative algorithm for updating the model parameters can be derived in a principled
manner
™

(=)
K
(=)

n=1,...,N
g vy
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Generative Process

Latent variable z: One-hot encoding random vector z = [zy, ..., zx]' consisting of
K — 1 many Os and exactly one 1.

An indicator rv z, = 1 represents whether k-th component is used to generate the
data sample x or not.

p(x|z = 1) = N(x|pk, Z)
Prior for z with 7, = p(zx = 1)

K
p(z)=m=[m,....,mk]", Y m=1
k=1

Sampling procedure
1. Sample which component to use z{/) ~ p(z)

2. Sample data according to i-th Gaussian x() ~ p(x|z())
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Joint Distribution, Likelihood, and Posterior (1)

e Joint distribution
p(x, 21 = 1) p(x|z1 = 1)p(z1 = 1)

p(x, 2k = 1) p(x|zx = 1)pl(zic = 1)

p(x|0) = Zp x|0,z)p(z|0) = Zp x|0,zx = 1)p(zx = 1|0) =
k=1

e For all the data samples X, the Iog—likelihood IS:

log p(X]0) = Zlogp Xn|0) = ZlogZﬂkN Xn| ok, Xk)
n=1

In probabilistic PCA, z was continuous, so we integrated them out.
L11(3)

ﬂ-lN(X’l'l'la 21)

WKN(X‘“’Ka 23K)

o Likelihood for an arbitrary single data x: By summing out all latent variables?,

K
Z 7-‘-k'/\/‘(xll-l/kv Ek)

k=1

Compare: Page 7




Joint Distribution, Likelihood, and Posterior (2)

o Posterior for the k-th zx, given an arbitrary single data x:

p(z = 1|x) = p(ze = 1)p(x|ze =1)  mN(x|px, B)
- — K — K
Zj:l p(zi =1)p(x|z; = 1) Zj:l miN (x|pj, 3j)

e Now, for all data samples X', each data x, has z, = [z,1, . .. ,z,,K]T, but with the

same prior 7r.

Zok = 1)p(xplzoe = 1 TN (Xn |, 2
Dz = 1[x) — fz( k=1pXnlz =1) L (Xnlp, X6)
Zj:l p(znj = 1)p(xn|zpj = 1) Zj:l miN (xn|pj, 35)

* Responsibilities are mathematically interpreted as posterior distributions.
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Revisiting EM Algorithm for MLE

S1. Initialize poy, Xy, Tk e E-step. Expectation over z|x,8(): Given
(t) —
S2. E-step: the current 6 .(u.k, 3, mk), calculates
the expected log-likelihood

o TN (Xn| ks k)
" Zj TN (Xa| 1), 35)

S3. M-step: Update i, X, Tk using rpx and
go to S2.

Q(9|9(t)) — IEz|x,0(1-“) [|Og p(xa Z|0)]

— [ tog plx.2/6)p(z1x.60)cz

e M-step. Vaximization of the computation
results in E-step for the new model
parameters.

e Only guarantee of just local-optimum because the original optimization is not
necessarily a convex optimization.

L7(4)
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Questions?
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