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Introduction

• Clustering refers to partitioning a set of objects into subsets according to some
desired criterion.
◦ ex1) Partition a set of news articles into clusters based on the topics of the articles.

◦ ex2) Given a set of pictures of people, one might want to group them into clusters based
on who is in the image

• Often it is an important step in making sense of large amounts of data.

• Basic notation
◦ n: The number of data points.

◦ k: The number of desired clusters.

◦ A = {a1, . . . , an}: Matrix representation of n data points with rows a1, . . . , an.
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A Maximum-Likelihood Motivation

• Suppose that the data was generated according to an equal weight mixture of k spherical
well-separated Gaussian densities centered at µ1, µ2, . . . , µk , each with variance one in every
direction.

• The density of the mixture is: (data points lie in Rd and µ(x) is the center nearest to x.)

Prob(x) =
1

(2π)d/2
1

k

k∑
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e−|x−µi |2

• The sum of exponential functions is dominated by the largest. Thus

Prob(x) ≈ 1

(2π)d/2k
e−|x−µ(x)|
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A Maximum-Likelihood Motivation

• The likelihood of drawing the sample of points x1, x2, . . . , xn from the mixture

1

kn

1

(2π)nd/2

n∏
i=1

e−|x
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• Minimizing the sum of squared distances to cluster centers finds the maximum likelihood
µ1, µ2, . . . , µn, which motivates using the sum of distance squared to the cluster centers.



Structural Properties of the k-Means Objective

Lemma.

Let {a1, a2, . . . , an} be a set of points and c = 1
n

∑n
i=1 ai is the centroid of the set of points.

The sum of the squared distances of the ai to any point x equals the sum of the squared
distances to the centroid of the ai plus n times the squared distance from x to the centroid.
That is, ∑

i

|ai − x|2 =
∑
i

|ai − c|2 + n|c− x|2

Proof. ∑
i

|ai − x|2 =
∑
i

|ai − c + c− x|2

=
∑
i

|ai − c|2 + 2(c− x) ·
∑
i

(ai − c) + n|c− x|2

Since c is the centroid,
∑

i (ai − c) = 0. Thus,
∑

i |ai − x|2 =
∑

i |ai − c|2 + n|c− x|2.

Remark. The sum of squared distances of the ai to a point x is minimized when x is the
centroid, which motivates Lloyd’s algorithm.



Lloyd’s Algorithm

Lloyd’s algorithm

1. Start with k centers.

2. Cluster each point with the center nearest to it.

3. Find the centroid of each cluster and replace the set of old centers with the centroids.

4. Repeat the above two steps until the centers converge according to some criterion, such as
the k-means score no longer improving.

• This algorithm always converges to a local minimum of the objective.

• One or more of the clusters can become empty.
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k-Center Clustering

The Farthest Traversal k-clstering Algorithm

Pick any data point to be the first cluster center. At time t, for t = 2, 3, ..., k, pick the farthest
data point from any existing cluster center; make it the tth cluster center.

• k-center criterion partitions the points into k clusters so as to minimize the maximum
distance of any point to its cluster center.

• Call the maximum distance of any point to its cluster center the radius of the clustering.

• There is a k-clustering of radius r if and only if there are k spheres, each of radius r; which
together cover all the points.



k-Center Clustering

Theorem.

If there is a k-clustering of radius r
2 , then the above algorithm finds a k-clustering with

radius at most r .

Proof. Suppose for contradiction that there is some data point x that is distance
greater than r from all centers chosen. This means that each new center chosen was
distance greater than r from all previous centers, because we could always have chosen
x. This implies that we have k+1 data points, namely the centers chosen plus x, that
are pairwise more than distance r apart. Clearly, no two such points can belong to the
same cluster in any k-clustering of radius r

2 , contradicting the hypothesis.
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Spectral Clustering

• Let A be a n × d data matrix with each row a data point and suppose we want to partition
the data points into k clusters.

• Spectral clustering refers to a class of clustering algorithms which share the following
outline:

◦ Find the space V spanned by the top k (right) singular vectors of A.

◦ Project data points into V .

◦ Cluster the projected points.

• We represent a k-clustering by a n × d matrix C (same dimensions as A), where row i of C
is the center of the cluster to which data point i belongs. So, there are only k distinct rows
of C and each other row is a copy of one of these rows.



Spectral Clustering

The Algorithm
• Find the top k right singular vectors of data matrix A and project rows of A to the space

spanned by them to get Ak .

• Select a random row from Ak and form a cluster with all rows of Ak at distance less than
6kσ(C)
ε from it, where σ(C ) = ‖A− C‖2/

√
n.

• Repeat Step 2 k times.

Theorem.

If in a k-clustering C , every pair of centers is separated by at least 15kσ(C )/ε and every cluster
has at least εn points in it, then with probability at least 1− ε, Spectral Clustering finds a
clustering C ′ that differs from C on at most ε2n points.

Proof. See Page 218-219 of Textbook B.
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High-Density Clusters

Single Linkage: Algorithm begins with each point in its own clusters and then repeatedly
merges the two ”closet” clusters into one.

Remark
The distance between two clusters is defined as the minimum distance between points in each
clusters. That is,

dmin (C ,C ′) = min
x∈C ,y∈C ′

d(x , y)



High-Density Clusters

Theorem.

Suppose the desired clustering C ∗1 , · · · ,C ∗k satisfies the property that there exists some
distance σ such that

(1) Any two data points in different clusters have distance at least σ.

(2) For any cluster C ∗i and any partition of C ∗i into two non-empty sets A and C ∗i \A,
there exist points on each side of the partition of distance less than σ.

Then, single-linkage will correctly recover the clustering C ∗1 , · · · ,C ∗k .

Proof. Consider running the algorithm until all pairs of clusters C and C
′

have
dmin (C ,C ′) ≥ σ. At that point, by (2), each target cluster C ∗i will be fully contained
within some cluster of the single-linkage algorithm. On the other hand, by (1) and by
induction, each cluster C of the single-linkage algorithm will be fully contained within
some C ∗i of the target clustering, since any merger of subsets of distinct target clusters
would require dmin ≥ σ. Therefore, the single-linkage clusters are indeed the target
cluster.



High-Density Clusters

Robust Linkage: The single-linkage algorithm is fairly brittle. A few points bridging the gap
between two different clusters can cause it to do the wrong thing. As a result, there has been
significant work developing more robust versions of the algorithm.

Wishart’s Algorithm

A ball of radius r is created for each point with the point as center; The radius is gradually
increased starting from r = 0. The algorithm has a parameter t, when a ball has t or more
points, the center of point becomes active. When the two balls with active centers intersect the
two center points are connected by an edge. The parameter t prevents a thin string of points
between two clusters from causing a spurious merger.

Remark:
t = 1, Wishart’s algorithm is same as single linkage.



Questions?


