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Problem Setup and Summary

Consider a set S of labeled training examples independently drawn from a probability
distribution D over the instance space X = RY.

We aim generalization: use the training examples to produce a classification rule that
will perform well over new data, i.e., new points that are also drawn from D.

Namely, for a target function c* : X — ) (where ) is output space), we find a
hypothesis h: X — )Y that approximates c* from some class H by using S.

VC-dimension is a measurement of complexity for a hypothesis class H.

e One can use it to measure generalization guarantees of a given hypothesis class.
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Generalization: Formalizing the problem

Through out the lecture, we consider a binary classification problem of x ~ D where
our hypothesis h are {—1,1}-valued indicator function:

hx) = {Ll i;:

Let c*, called the target concept, we denote each error of h as follows:

e training error: errs(h) = Probys[h(x) # c*(x)]

e true error (i.e., test error): errp(h) = Prob,.p[h(x) # c*(x)]

Generalization: finding a hypothesis h that has a low true error, with the training set.



Generalization: Overfitting

We call the hypothesis h is overfitting on the training data when h has a low training
error and yet have a high true error, i.e., crucial for generalization.

To analyze the overfitting, we introduce the notion of a hypothesis class.

e An hypothesis class H is a set of candidate formulas of h.

We argue that if the training set S is large enough compared to some property of H,
the overfitting is addressed: will introduce two generalization guarantees.
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Overfitting and Uniform Convergence: PAC learning Guarantee

We assume hypothesis class H is finite (later we will extend to infinite case).

Theorem 1. Probably approximately correct (PAC) learning Guarantee

Let 7 be an hypothesis class and let € and ¢ be greater than zero. If a training set S
of size

n> %(m ] + In(1/3)).

is drawn from distribution D, then with probability greater than or equal to 1 — 9,
every h € H with true error errp(h) > € has training error errs(h) > 0. (equivalently,
every h € H with errs(h) = 0 has errp(h) < ¢€).




Overfitting and Uniform Convergence: PAC-learning Guarantee

Proof. Let hy, ha,... be the hypotheses in H with true error errp(h;) > e.

Consider drawing the sample S of size n and let A; be the event that h; consistent
with S, i.e., h; makes no mistakes on S. Then the probability of event A; is as:

Prob(A;) < (1 —¢)".
By using two facts (i) Prob(U;A;) < > . Prob(A;), and (ii) 1 — e < e™¢, we obtain the
following form:

Prob(U;A;) < |H|e ",

One can prove the theorem, by considering ¢ that satisfies |[H|e™" < 4.



Overfitting and Uniform Convergence: Uniform Convergence

We assume hypothesis class # is finite (later we will extend to infinite case).

Theorem 2. Uniform Convergence

Let H be an hypothesis class and let € and d be greater than zero. If a training set S
of size

n > 2—12(In 1|+ In(2/9)),

€

is drawn from distribution D, then with probability greater than or equal to 1 — 9,

every h € H satisfies |errs(h) — errp(h)| < €. (equivalently, every h € H with
errp(h) = 0 has errs(h) < €).

Proof. By utilizing Hoeffding bounds guarantee (Theorem 4.3 in the textbook), one
can prove the uniform convergence bound (in textbook page 138).



Overfitting and Uniform Convergence: Finite Hypothesis Class

Note that two theorems require H to be finite in order to be meaningful since they
require a sample size of

°n> %(In 1| +In(1/6)) for theorem 1.
°n> 2—i2(ln [H| + In(2/68)) for theorem 2.

In the next section, we will introduce VC-dimension (and notion of growth functions)
to extend theorems to certain infinite hypothesis classes.
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VC-dimension: Definition

Definition 1. Shatter

Given a set S of examples and a hypothesis class H, we say that S is shattered by H
if for every ST C S there exists some h € H that labels all examples in ST as positive
(i.e., +1) and all examples in S\S™ as negatives (i.e., —1).

In a high level, we say a classifier h can shatter a set S := ST U S~ if h can achieve
zero training error (i.e., classify exactly) on S for all possible partitions.

Definition 2. VC-dimension
The VC-dimension of H is the size of the largest set shattered by H. }




VC-dimension: Shatter Example (1)

Example. 1-D Case with a linear classifier (i.e., perceptron).

e Can we shatter a set of |S| =2 7 where |.| denotes the cardinality. Yes

® : positive (+1) @ : negative (-1)

oo koo oo é ofo

e Can we shatter a set of |[S| =37 No



VC-dimension: Shatter Example (2)

Example. 2-D Case with a linear classifier (i.e., perceptron).

e What is the largest set S shattered by h € H? 3!

® : positive (+1) @ : negative (-1)
[ | [ 0/( o ® o ® X ® [ 0)/0 ® o O\Q
o S S S Xo S o ®

More examples (will not handle in class):

e Prove that the largest set S shattered by a linear classifier in d-D is d + 1.

e Prove that the largest set S shattered by the k-nearest neighbor with kK =1 is oc.



VC-Dimension: Growth Function

Definition 3. Growth function

Given a set S of examples and a hypothesis class H, let H[S] ={hNS: h e H}. That
is, H[S] is the hypothesis class H restricted to the set of points S. For integer n and
class H, let H[n] = max|s=, |H[S]|; this is called the growth function of #.

Connection with VC-dimension: S is shattered by 7 if |#[S]| = 2/°!, and then the
VC-dimension of H is the largest n such that H[n] = 2".

In a high level, growth function can be thought as a measure of the “size” of H: we
will utilize it for the generalization guarantee bound.
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VC-Dimension Sample Bound: Growth Function

Theorem 3. Growth function sample bound

For any class ‘H and distribution D, if a training sample S is drawn from D of size,

1> 2 [logy(2H[2r]) + logy(1/6)],

that with probability > 1 — 6, every h € H with errp(h) > € has errs(h) > 0
(equivalently, every h € H with errs(h) = 0 has errp(h) < €).

Theorem 4. Growth function uniform convergence

For any class ‘H and distribution D, if a training sample S is drawn from D of size,

1> 2 [logy(2H[2n]) + logy(1/6)],

that with probability > 1 — §, every h € H will have |errs(h) — errp(h)| < €.

One can extend Theorem 1, and 2 (i.e., generalization bound with finite ) with the
growth function H|[n] to obtain the above theorem (see textbook page 154, and 155).



VC-Dimension Sample Bound: Sauer’'s Lemma

Theorem 5. Sauer’'s Lemma
If VCdim(H) = d then for all n € N,

H[n] < Edg (’7)

Futhermore, for all n > d, we have
en

Ml < (5)°,

where e is Euler's number.

This indicates that if VCdim(7H) is co, we always get exponential growth function

However, if VCdim(?) = d is finite, growth function increases exponentially up to d
and polynomially for n > d.

The proof of the theorem is given in the textbook page 155-156.



VC-Dimension Sample Bound

Corollary 1. VC-dimension sample bound

For any class ‘H and distribution D , a training sample S of size
1
o(g 'VCOdim(H) log(1/€) + log(1 /5)])

is sufficient to ensure that with probability > 1 — §, every h € ‘H with errp(h) > € has
errs(h) > 0 (equivalently, every h € H with errs(h) = 0 has errp(h) < ¢).

By putting Theorem 3 and 5 together, with a little algebra we get the above corollary
(one can obtain similar corollary by combining Theorem 4 and 5).

Note that, Corollary 1 can be much better than Theorem 1, i.e., generalization
guarantee with finite hypothesis class In(|H]|).

e For any class H, VCdim(#) < log,(|H|) since H must have at least 2% concepts in
order to shatter k points.
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Other Measures of Complexity: Rademacher Complexity

For your interest; there also exists other measures of complexity for H.

One popular measurement is Rademacher complexity which is as follows:

1 n
Rs(H) :=Eo,. o,5up = Y oih(x),
her N

where g; € {—1,1} is uniformly distributed random variable.

Example. If you assign random labels to the points in S and the best classifier in 7 on
average gets error 0.45 then Rg(H) = 0.55- 0.45 = 0.1.



Other Measures of Complexity: Rademacher Complexity

One can obtain the true error bound with the Rademacher complexity:

log(2/9)
2n '

errp(h) < errs(h) + Rs(H) + 3\/
with probability > 1 — 4.

For the proof of the Rademacher complexity bound, see the following reference:

e Bartlett and Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results, JMLR 2002.



Questions?



