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Problem Setup and Summary

Consider a set S of labeled training examples independently drawn from a probability
distribution D over the instance space X = Rd .

We aim generalization: use the training examples to produce a classification rule that
will perform well over new data, i.e., new points that are also drawn from D.

Namely, for a target function c∗ : X → Y (where Y is output space), we find a
hypothesis h : X → Y that approximates c∗ from some class H by using S .

VC-dimension is a measurement of complexity for a hypothesis class H.

• One can use it to measure generalization guarantees of a given hypothesis class.
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Generalization: Formalizing the problem

Through out the lecture, we consider a binary classification problem of x ∼ D where
our hypothesis h are {−1, 1}-valued indicator function:

h(x) =

{
1, x ∈ h

−1, x /∈ h

Let c∗, called the target concept, we denote each error of h as follows:

• training error: errS(h) = Probx∼S [h(x) 6= c∗(x)]

• true error (i.e., test error): errD(h) = Probx∼D [h(x) 6= c∗(x)]

Generalization: finding a hypothesis h that has a low true error, with the training set.



Generalization: Overfitting

We call the hypothesis h is overfitting on the training data when h has a low training
error and yet have a high true error, i.e., crucial for generalization.

To analyze the overfitting, we introduce the notion of a hypothesis class.

• An hypothesis class H is a set of candidate formulas of h.

We argue that if the training set S is large enough compared to some property of H,
the overfitting is addressed: will introduce two generalization guarantees.
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Overfitting and Uniform Convergence: PAC learning Guarantee

We assume hypothesis class H is finite (later we will extend to infinite case).

Theorem 1. Probably approximately correct (PAC) learning Guarantee

Let H be an hypothesis class and let ε and δ be greater than zero. If a training set S
of size

n ≥ 1

ε

(
ln |H|+ ln(1/δ)

)
,

is drawn from distribution D, then with probability greater than or equal to 1− δ,
every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0. (equivalently,
every h ∈ H with errS(h) = 0 has errD(h) < ε).



Overfitting and Uniform Convergence: PAC-learning Guarantee

Proof. Let h1, h2, . . . be the hypotheses in H with true error errD(hi ) ≥ ε.

Consider drawing the sample S of size n and let Ai be the event that hi consistent
with S , i.e., hi makes no mistakes on S . Then the probability of event Ai is as:

Prob(Ai ) ≤ (1− ε)n.

By using two facts (i) Prob(∪iAi ) ≤
∑

i Prob(Ai ), and (ii) 1− ε ≤ e−ε, we obtain the
following form:

Prob(∪iAi ) ≤ |H|e−εn,

One can prove the theorem, by considering δ that satisfies |H|e−εn ≤ δ.



Overfitting and Uniform Convergence: Uniform Convergence

We assume hypothesis class H is finite (later we will extend to infinite case).

Theorem 2. Uniform Convergence

Let H be an hypothesis class and let ε and δ be greater than zero. If a training set S
of size

n ≥ 1

2ε2
(

ln |H|+ ln(2/δ)
)
,

is drawn from distribution D, then with probability greater than or equal to 1− δ,
every h ∈ H satisfies |errS(h)− errD(h)| ≤ ε. (equivalently, every h ∈ H with
errD(h) = 0 has errS(h) < ε).

Proof. By utilizing Hoeffding bounds guarantee (Theorem 4.3 in the textbook), one
can prove the uniform convergence bound (in textbook page 138).



Overfitting and Uniform Convergence: Finite Hypothesis Class

Note that two theorems require H to be finite in order to be meaningful since they
require a sample size of

• n ≥ 1
ε

(
ln |H|+ ln(1/δ)

)
for theorem 1.

• n ≥ 1
2ε2

(
ln |H|+ ln(2/δ)

)
for theorem 2.

In the next section, we will introduce VC-dimension (and notion of growth functions)
to extend theorems to certain infinite hypothesis classes.
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VC-dimension: Definition

Definition 1. Shatter

Given a set S of examples and a hypothesis class H, we say that S is shattered by H
if for every S+ ⊆ S there exists some h ∈ H that labels all examples in S+ as positive
(i.e., +1) and all examples in S\S+ as negatives (i.e., −1).

In a high level, we say a classifier h can shatter a set S := S+ ∪ S− if h can achieve
zero training error (i.e., classify exactly) on S for all possible partitions.

Definition 2. VC-dimension

The VC-dimension of H is the size of the largest set shattered by H.



VC-dimension: Shatter Example (1)

Example. 1-D Case with a linear classifier (i.e., perceptron).

• Can we shatter a set of |S | = 2 ? where |.| denotes the cardinality. Yes

• Can we shatter a set of |S | = 3 ? No



VC-dimension: Shatter Example (2)

Example. 2-D Case with a linear classifier (i.e., perceptron).

• What is the largest set S shattered by h ∈ H? 3!

More examples (will not handle in class):

• Prove that the largest set S shattered by a linear classifier in d-D is d + 1.

• Prove that the largest set S shattered by the k-nearest neighbor with k = 1 is ∞.



VC-Dimension: Growth Function

Definition 3. Growth function

Given a set S of examples and a hypothesis class H, let H[S ] = {h ∩ S : h ∈ H}. That
is, H[S ] is the hypothesis class H restricted to the set of points S . For integer n and
class H, let H[n] = max|S |=n |H[S ]|; this is called the growth function of H.

Connection with VC-dimension: S is shattered by H if |H[S ]| = 2|S |, and then the
VC-dimension of H is the largest n such that H[n] = 2n.

In a high level, growth function can be thought as a measure of the “size” of H: we
will utilize it for the generalization guarantee bound.
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VC-Dimension Sample Bound: Growth Function

Theorem 3. Growth function sample bound

For any class H and distribution D, if a training sample S is drawn from D of size,

n ≥ 2

ε

[
log2(2H[2n]) + log2(1/δ)

]
,

that with probability ≥ 1− δ, every h ∈ H with errD(h) ≥ ε has errS(h) > 0
(equivalently, every h ∈ H with errS(h) = 0 has errD(h) < ε).

Theorem 4. Growth function uniform convergence

For any class H and distribution D, if a training sample S is drawn from D of size,

n ≥ 8

ε

[
log2(2H[2n]) + log2(1/δ)

]
,

that with probability ≥ 1− δ, every h ∈ H will have |errs(h)− errD(h)| ≤ ε.

One can extend Theorem 1, and 2 (i.e., generalization bound with finite H) with the
growth function H[n] to obtain the above theorem (see textbook page 154, and 155).



VC-Dimension Sample Bound: Sauer’s Lemma

Theorem 5. Sauer’s Lemma

If VCdim(H) = d then for all n ∈ N,

H[n] ≤
d∑

i=0

(
n

i

)
.

Futhermore, for all n ≥ d , we have

H[n] ≤ (
en

d
)d ,

where e is Euler’s number.

This indicates that if VCdim(H) is ∞, we always get exponential growth function

However, if VCdim(H) = d is finite, growth function increases exponentially up to d
and polynomially for n > d .

The proof of the theorem is given in the textbook page 155-156.



VC-Dimension Sample Bound

Corollary 1. VC-dimension sample bound

For any class H and distribution D , a training sample S of size

O
(1

ε

[
VCdim(H) log(1/ε) + log(1/δ)

])
is sufficient to ensure that with probability ≥ 1− δ, every h ∈ H with errD(h) ≥ ε has
errS(h) > 0 (equivalently, every h ∈ H with errS(h) = 0 has errD(h) < ε).

By putting Theorem 3 and 5 together, with a little algebra we get the above corollary
(one can obtain similar corollary by combining Theorem 4 and 5).

Note that, Corollary 1 can be much better than Theorem 1, i.e., generalization
guarantee with finite hypothesis class ln(|H|).

• For any class H, VCdim(H) ≤ log2(|H|) since H must have at least 2k concepts in
order to shatter k points.
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Other Measures of Complexity: Rademacher Complexity

For your interest; there also exists other measures of complexity for H.

One popular measurement is Rademacher complexity which is as follows:

RS(H) := Eσ1,...,σn sup
h∈H

1

n

n∑
i=1

σih(xi ),

where σi ∈ {−1, 1} is uniformly distributed random variable.

Example. If you assign random labels to the points in S and the best classifier in H on
average gets error 0.45 then RS(H) = 0.55 - 0.45 = 0.1.



Other Measures of Complexity: Rademacher Complexity

One can obtain the true error bound with the Rademacher complexity:

errD(h) ≤ errS(h) +RS(H) + 3

√
log(2/δ)

2n
,

with probability ≥ 1− δ.

For the proof of the Rademacher complexity bound, see the following reference:

• Bartlett and Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results, JMLR 2002.



Questions?


