

Lecture 10: VC-dimension (Chapter 5 of Textbook B)

Jinwoo Shin

AI503: Mathematics for AI

Consider a set S of labeled *training examples* independently drawn from a probability distribution D over the instance space $\mathcal{X} = \mathbb{R}^d$.

We aim generalization: use the training examples to produce a classification rule that will perform well over new data, i.e., new points that are also drawn from D.

Namely, for a target function $c^* : \mathcal{X} \to \mathcal{Y}$ (where \mathcal{Y} is output space), we find a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ that approximates c^* from some class \mathcal{H} by using S.

VC-dimension is a measurement of complexity for a hypothesis class \mathcal{H} .

• One can use it to measure generalization guarantees of a given hypothesis class.

- (1) Generalization
- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

(1) Generalization

- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

Through out the lecture, we consider a binary classification problem of $x \sim D$ where our hypothesis *h* are $\{-1, 1\}$ -valued indicator function:

$$h(x) = egin{cases} 1, & x \in h \ -1, & x \notin h \end{cases}$$

Let c^* , called the target concept, we denote each error of h as follows:

- training error: $err_{S}(h) = \operatorname{Prob}_{x \sim S}[h(x) \neq c^{*}(x)]$
- true error (i.e., test error): $err_D(h) = \operatorname{Prob}_{x \sim D}[h(x) \neq c^*(x)]$

Generalization: finding a hypothesis h that has a low true error, with the training set.

We call the hypothesis *h* is *overfitting* on the training data when *h* has a low training error and yet have a high true error, i.e., crucial for generalization.

To analyze the overfitting, we introduce the notion of a *hypothesis class*.

• An hypothesis class \mathcal{H} is a set of candidate formulas of h.

We argue that if the training set S is large enough compared to some property of \mathcal{H} , the overfitting is addressed: will introduce *two generalization guarantees*.

- (1) Generalization
- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

We assume hypothesis class \mathcal{H} is finite (later we will extend to infinite case).

Theorem 1. Probably approximately correct (PAC) learning Guarantee Let \mathcal{H} be an hypothesis class and let ϵ and δ be greater than zero. If a training set S of size

$$n \geq rac{1}{\epsilon} ig(\ln |\mathcal{H}| + \ln(1/\delta) ig),$$

is drawn from distribution D, then with probability greater than or equal to $1 - \delta$, every $h \in \mathcal{H}$ with true error $err_D(h) \ge \epsilon$ has training error $err_S(h) > 0$. (equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \epsilon$). **Proof.** Let h_1, h_2, \ldots be the hypotheses in \mathcal{H} with true error $err_D(h_i) \ge \epsilon$.

Consider drawing the sample S of size n and let A_i be the event that h_i consistent with S, i.e., h_i makes no mistakes on S. Then the probability of event A_i is as:

 $\operatorname{Prob}(A_i) \leq (1-\epsilon)^n.$

By using two facts (i) $\operatorname{Prob}(\bigcup_i A_i) \leq \sum_i \operatorname{Prob}(A_i)$, and (ii) $1 - \epsilon \leq e^{-\epsilon}$, we obtain the following form:

 $\operatorname{Prob}(\cup_i A_i) \leq |\mathcal{H}|e^{-\epsilon n},$

One can prove the theorem, by considering δ that satisfies $|\mathcal{H}|e^{-\epsilon n} \leq \delta$.

We assume hypothesis class \mathcal{H} is finite (later we will extend to infinite case).

Theorem 2. Uniform Convergence

Let \mathcal{H} be an hypothesis class and let ϵ and δ be greater than zero. If a training set S of size

$$n \geq \frac{1}{2\epsilon^2} (\ln |\mathcal{H}| + \ln(2/\delta)),$$

is drawn from distribution D, then with probability greater than or equal to $1 - \delta$, every $h \in \mathcal{H}$ satisfies $|err_S(h) - err_D(h)| \leq \epsilon$. (equivalently, every $h \in \mathcal{H}$ with $err_D(h) = 0$ has $err_S(h) < \epsilon$).

Proof. By utilizing Hoeffding bounds guarantee (Theorem 4.3 in the textbook), one can prove the uniform convergence bound (in textbook page 138).

Overfitting and Uniform Convergence: Finite Hypothesis Class

Note that two theorems require \mathcal{H} to be finite in order to be meaningful since they require a sample size of

- $n \geq \frac{1}{\epsilon} \left(\ln |\mathcal{H}| + \ln(1/\delta) \right)$ for theorem 1.
- $n \geq \frac{1}{2\epsilon^2} \left(\ln |\mathcal{H}| + \ln(2/\delta) \right)$ for theorem 2.

In the next section, we will introduce *VC-dimension* (and notion of growth functions) to extend theorems to certain infinite hypothesis classes.

- (1) Generalization
- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

VC-dimension: Definition

Definition 1. Shatter

Given a set S of examples and a hypothesis class \mathcal{H} , we say that S is **shattered** by \mathcal{H} if for every $S^+ \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in S^+ as positive (i.e., +1) and all examples in $S \setminus S^+$ as negatives (i.e., -1).

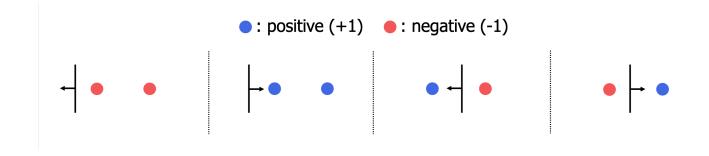
In a high level, we say a classifier h can shatter a set $S := S^+ \cup S^-$ if h can achieve zero training error (i.e., classify exactly) on S for all possible partitions.

Definition 2. VC-dimension

The **VC-dimension** of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Example. 1-D Case with a linear classifier (i.e., perceptron).

• Can we shatter a set of |S| = 2 ? where |.| denotes the cardinality. Yes

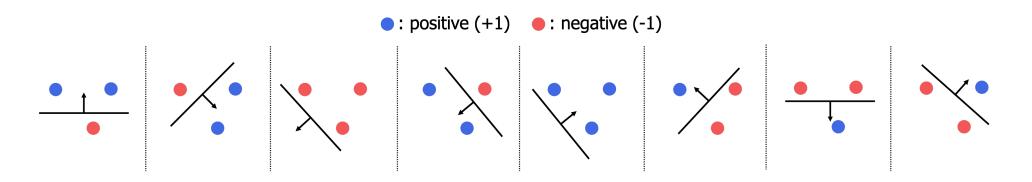


• Can we shatter a set of |S| = 3 ? No

VC-dimension: Shatter Example (2)

Example. 2-D Case with a linear classifier (i.e., perceptron).

• What is the largest set S shattered by $h \in \mathcal{H}$? 3!



More examples (will not handle in class):

- Prove that the largest set S shattered by a linear classifier in d-D is d + 1.
- Prove that the largest set S shattered by the k-nearest neighbor with k = 1 is ∞ .

Definition 3. Growth function

Given a set S of examples and a hypothesis class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the hypothesis class \mathcal{H} restricted to the set of points S. For integer n and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the **growth function** of \mathcal{H} .

Connection with VC-dimension: S is shattered by \mathcal{H} if $|\mathcal{H}[S]| = 2^{|S|}$, and then the VC-dimension of \mathcal{H} is the largest n such that $\mathcal{H}[n] = 2^n$.

In a high level, growth function can be thought as a measure of the "size" of \mathcal{H} : we will utilize it for the generalization guarantee bound.

- (1) Generalization
- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

VC-Dimension Sample Bound: Growth Function

Theorem 3. Growth function sample bound

For any class \mathcal{H} and distribution \mathcal{D} , if a training sample S is drawn from \mathcal{D} of size,

$$n \geq rac{2}{\epsilon} \big[\log_2(2\mathcal{H}[2n]) + \log_2(1/\delta) \big],$$

that with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ with $err_{\mathcal{D}}(h) \geq \epsilon$ has $err_{\mathcal{S}}(h) > 0$ (equivalently, every $h \in \mathcal{H}$ with $err_{\mathcal{S}}(h) = 0$ has $err_{\mathcal{D}}(h) < \epsilon$).

Theorem 4. Growth function uniform convergence

For any class $\mathcal H$ and distribution $\mathcal D$, if a training sample S is drawn from $\mathcal D$ of size,

$$n \geq rac{8}{\epsilon} \big[\log_2(2\mathcal{H}[2n]) + \log_2(1/\delta) \big],$$

that with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ will have $|err_s(h) - err_D(h)| \leq \epsilon$.

One can extend Theorem 1, and 2 (i.e., generalization bound with finite \mathcal{H}) with the growth function $\mathcal{H}[n]$ to obtain the above theorem (see textbook page 154, and 155).

VC-Dimension Sample Bound: Sauer's Lemma

Theorem 5. Sauer's Lemma

If $\operatorname{VCdim}(\mathcal{H}) = d$ then for all $n \in \mathbb{N}$,

$$\mathcal{H}[n] \leq \sum_{i=0}^d \binom{n}{i}.$$

Futhermore, for all $n \ge d$, we have

$$\mathcal{H}[n] \leq (rac{en}{d})^d,$$

where *e* is Euler's number.

This indicates that if $VCdim(\mathcal{H})$ is ∞ , we always get exponential growth function

However, if $VCdim(\mathcal{H}) = d$ is finite, growth function increases exponentially up to d and polynomially for n > d.

The proof of the theorem is given in the textbook page 155-156.

VC-Dimension Sample Bound

Corollary 1. VC-dimension sample bound

For any class ${\mathcal H}$ and distribution D , a training sample S of size

$$O\Big(rac{1}{\epsilon}ig[ext{VCdim}(\mathcal{H}) \log(1/\epsilon) + \log(1/\delta)ig]\Big)$$

is sufficient to ensure that with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ with $err_{\mathcal{D}}(h) \geq \epsilon$ has $err_{\mathcal{S}}(h) > 0$ (equivalently, every $h \in \mathcal{H}$ with $err_{\mathcal{S}}(h) = 0$ has $err_{\mathcal{D}}(h) < \epsilon$).

By putting Theorem 3 and 5 together, with a little algebra we get the above corollary (one can obtain similar corollary by combining Theorem 4 and 5).

Note that, Corollary 1 can be much better than Theorem 1, i.e., generalization guarantee with finite hypothesis class $ln(|\mathcal{H}|)$.

For any class *H*, VCdim(*H*) ≤ log₂(|*H*|) since *H* must have at least 2^k concepts in order to shatter k points.

- (1) Generalization
- (2) Overfitting and Uniform Convergence
- (3) VC-Dimension
- (4) VC-Dimension Sample Bound
- (5) Other Measures of Complexity

For your interest; there also exists other measures of complexity for \mathcal{H} .

One popular measurement is Rademacher complexity which is as follows:

$$\mathcal{R}_{\mathcal{S}}(\mathcal{H}) := \mathbb{E}_{\sigma_1,...,\sigma_n} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \sigma_i h(x_i),$$

where $\sigma_i \in \{-1, 1\}$ is uniformly distributed random variable.

Example. If you assign random labels to the points in S and the best classifier in \mathcal{H} on average gets error 0.45 then $\mathcal{R}_S(\mathcal{H}) = 0.55 - 0.45 = 0.1$.

KAIST A

One can obtain the true error bound with the Rademacher complexity:

$$err_D(h) \leq err_S(h) + \mathcal{R}_S(\mathcal{H}) + 3\sqrt{\frac{\log(2/\delta)}{2n}},$$

with probability $\geq 1 - \delta$.

For the proof of the Rademacher complexity bound, see the following reference:

• Bartlett and Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results, JMLR 2002.

Questions?