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Summary

• How to summarize matrices: determinants and eigenvalues

• How matrices can be decomposed: Cholesky decomposition, diagonalization,
singular value decomposition

• How these decompositions can be used for matrix approximation
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Determinant: Motivation (1)

• For A =

(
a11 a12

a21 a22

)
, A−1 = 1

a11a22−a12a21

(
a22 −a12

−a21 a11

)
.

• A is invertible iff a11a22 − a12a21 6= 0

• Let’s define det(A) = a11a22 − a12a21.

• Notation: det(A) or |whole matrix|

• What about 3× 3 matrix? By doing some algebra (e.g., Gaussian elimination),∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a21a32a13 + a31a12a23

− a31a22a13 − a11a32a23 − a21a12a33
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Determinant: Motivation (2)
• Try to find some pattern ...

a11a22a33 + a21a32a13 + a31a12a23

− a31a22a13 − a11a32a23 − a21a12a33 =

a11(−1)1+1 det(A1,1) + a12(−1)1+2 det(A1,2)

+ a13(−1)1+3 det(A1,3)

- Ak,j is the submatrix of A that we obtain
when deleting row k and column j .

source: www.cliffsnotes.com

• This is called Laplace expansion.

• Now, we can generalize this and provide the formal definition of determinant.
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Determinant: Formal Definition

Determinant

For a matrix A ∈ Rn×n, for all j = 1, . . . , n,

1. Expansion along column j : det(A) =
∑n

k=1(−1)k+jakj det(Ak,j)

2. Expansion along row j : det(A) =
∑n

k=1(−1)k+jajk det(Aj ,k)

• All expansion are equal, so no problem with the definition.

• Theorem. det(A) 6= 0⇐⇒ rk(A) = n⇐⇒ A is invertible.
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Determinant: Properties

(1) det(AB) = det(A) det(B)

(2) det(A) = det(AT)

(3) For a regular A, det(A−1) = 1/ det(A)

(4) For two similar matrices A,A′ (i.e., A′ = S−1AS for some S), det(A) = det(A′)
(5) For a triangular matrix1 T , det(T ) =

∏n
i=1 Tii

(6) Adding a multiple of a column/row to another one does not change det(A)

(7) Multiplication of a column/row with λ scales det(A): det(λA) = λnA
(8) Swapping two rows/columns changes the sign of det(A)

◦ Using (5)-(8), Gaussian elimination (reaching a triangular matrix) enables to
compute the determinant.

1This includes diagonal matrices.
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Trace

• Definition. The trace of a square matrix A ∈ Rn×n is defined as

tr(A) :=
n∑

i=1

aii

• tr(A + B) = tr(A) + tr(B)

• tr(αA) = α tr(A)

• tr(In) = n
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Invariant under Cyclic Permutations

• tr(AB) = tr(BA) for A ∈ Rn×k and B ∈ Rk×n

• tr(AKL) = tr(KLA), for A ∈ Ra×k , K ∈ Rk×l , L ∈ Rl×a

• tr(xyT) = tr(yTx) = yTx ∈ R

• A linear mapping Φ : V 7→ V , represented by a matrix A and another matrix B.
◦ A and B use different bases, where B = S−1AS

tr(B) = tr(S−1AS) = tr(ASS−1) = tr(A)

◦ Message. While matrix representations of linear mappings are basis dependent, but their
traces are not.
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Background: Characteristic Polynomial

• Definition. For λ ∈ R and a matrix A ∈ Rn×n, the characteristic polynomial of A is
defined as:

pA(λ) := det(A− λI )

= c0 + c1λ+ c2λ
2 + · · ·+ cn−1λ

n−1 + (−1)nλn,

where c0 = det(A) and cn−1 = (−1)n−1 tr(A).

• Example. For A =

(
4 2
1 3

)
,

pA(λ) =

∣∣∣∣4− λ 2
1 3− λ

∣∣∣∣ = (4− λ)(3− λ)− 2 · 1
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Eigenvalue and Eigenvector

• Definition. Consider a square matrix A ∈ Rn×n. Then, λ ∈ R is an eigenvalue of A
and x ∈ Rn \ {0} is the corresponding eigenvector of A if

Ax = λx

• Equivalent statements
◦ λ is an eigenvalue.

◦ (A− λIn)x = 0 can be solved non-trivially, i.e., x 6= 0.

◦ rk(A− λIn) < n.

◦ det(A− λIn) = 0 ⇐⇒ The characteristic polynomial pA(λ) = 0.
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Example

• For A = ( 4 2
1 3 ), pA(λ) =

∣∣∣∣4− λ 2
1 3− λ

∣∣∣∣ = (4− λ)(3− λ)− 2 · 1 = λ2 − 7λ+ 10

• Eigenvalues λ = 2 or λ = 5.

• Eigenvector E5 for λ = 5(
4− λ 2

1 3− λ

)
x = 0 =⇒

(
−1 2
1 −2

)(
x1

x2

)
= 0 =⇒ E5 = span[

(
2
1

)
]

• Eigenvector E2 for λ = 2. Similarly, we get E2 = span[

(
1
−1

)
]

• Message. Eigenvectors are not unique.
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Properties (1)

• If x is an eigenvector of A, so are all vectors that are collinear2.

• Eλ: the set of all eigenvectors for eigenvalue λ, spanning a subspace of Rn. We call
this eigensapce of A for λ.

• Eλ is the solution space of (A− λI )x = 0, thus Eλ = ker(A− λI )

• Geometric interpretation
◦ The eigenvector corresponding to a nonzero eigenvalue points in a direction stretched by

the linear mapping.

◦ The eigenvalue is the factor of stretching.

• Identity matrix I : one eigvenvalue λ = 1 and all vectors x 6= 0 are eigenvectors.

2Two vectors are collinear if they point in the same or the opposite direction.
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Properties (2)

• A and AT share the eigenvalues, but not necessarily eigenvectors.

• For two similar matrices A,A′ (i.e., A′ = S−1AS for some S), they possess the
same eigenvalues.
◦ Meaning: A linear mapping Φ has eigenvalues that are independent of the choice of

basis of its transformation matrix.

◦ Symmetric, positive definite matrices always have positive, real eigenvalues.

determinant, trace, eigenvalues: all invariant under basis change
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Examples for Geometric Interpretation (1)

1. A = (
1
2 0
0 2

), det(A) = 1

◦ λ1 = 1
2 , λ2 = 2

◦ eigenvectors: canonical basis vectors

◦ area preserving, just vertical horizontal) stretching.

2. A = ( 1 1
2

0 1
), det(A) = 1

◦ λ1 = λ2 = 1

◦ eigenvectors: colinear over the horiontal line

◦ area preserving, shearing

3. A =
(

cos( π
6 ) − sin( π

6 )

sin( π
6 ) cos( π

6 )

)
, det(A) = 1

◦ Rotation by π/6 counter-clockwise

◦ only complex eigenvalues (no eigenvectors)

◦ area preserving
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Examples for Geometric Interpretation (2)

4. A = ( 1 −1
−1 1 ), det(A) = 0

◦ λ1 = 0, λ2 = 2

◦ Mapping that collapses a 2D onto 1D

◦ area collapses

5. A = (
1 1

2
1
2 1

), det(A) = 3/4

◦ λ1 = 0.5, λ2 = 1.5

◦ area scales by 75%, shearing and stretching
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Properties (3)

• For A ∈ Rn×n, n distinct eigenvalues =⇒ eigenvectors are linearly independent,
which form a basis of Rn.
◦ Converse is not true.

◦ Example of n linearly independent eigenvectors for less than n eigenvalues???

• Determinant. For (possibly repeated) eigenvalues λi of A ∈ Rn×n,

det(A) =
∏n

i=1 λi

• Trace. For (possibly repeated) eigenvalues λi of A ∈ Rn×n,

tr(A) =
∑n

i=1 λi

• Message. det(A) is the area scaling and tr(A) is the circumference scaling
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LU Decomposition

Source: http://mathonline.wikidot.com/

• The Gaussian elimination is the processing of reaching an upper triangular matrix

• Gaussian elimination: multiplying the matrices corresponding to two elementary
operations ((i) row multiplication by a and (ii) adding two rows downward)

• The above elementary operations are the low triangular matrices (LTM), and their
inverses and their product are all LTMs.

• (EkEk−1 · E1)A = U =⇒ A = (E1
−1 · · ·Ek−1

−1Ek
−1)︸ ︷︷ ︸

L

U

L4(3)
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Cholesky Decomposition

• A real number: decomposition of two identical numbers, e.g., 9 = 3× 3

• Theorem. For a symmetric, positive definite matrix A, A = LLT, where
◦ L is a lower-triangular matrix with positive diagonals

◦ Such a L is unique, called Cholesky factor of A.

• Applications

(a) factorization of covariance matrix of a multivariate Gaussian variable

(b) linear transformation of random variables

(c) fast determinant computation: det(A) = det(L) det(LT) = det(L)2, where
det(L) =

∏
i lii . Thus, det(A) =

∏
i l

2
ii .
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Diagonal Matrix and Diagonalization

• Diagonal matrix. zero on all off-diagonal elements, D =

d1 · · · 0
...

...
0 · · · dn



Dk =

dk
1 · · · 0
...

...
0 · · · dk

n

 , D−1 =

1/d1 · · · 0
...

...
0 · · · 1/dn

 , det(D) = d1d2 · · · dn

• Definition. A ∈ Rn×n is diagonalizable if it is similar to a diagonal matrix D, i.e., ∃
an invertible P ∈ Rn×n, such that D = P−1AP.

• Definition. A ∈ Rn×n is orthogonally diagonalizable if it is similar to a diagonal
matrix D, i.e., ∃ an orthogonal P ∈ Rn×n, such that D = P−1AP = PTAP.
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Power of Diagonalization

• Ak = PDkP−1

• det(A) = det(P) det(D) det(P−1) = det(D) =
∏

i dii

• Many other things ...

• Question. Under what condition is A diagonalizable (or orthogonally diagonalizable)
and how can we find P (thus D)?
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Diagonalizablity, Algebraic/Geometric Multiplicity

• Definition. For a matrix A ∈ Rn×n with an eigenvalue λi ,
◦ the algebraic multiplicity αi of λi is the number of times the root appears in the

characteristic polynomial.

◦ the geometric multiplicity ζi of λi is the number of linearly independent eigenvectors
associated with λi (i.e., the dimension of the eigenspace spanned by the eigenvectors of
λi )

• Example. The matrix A =

(
2 1
0 2

)
has two repeated eigenvalues λ1 = λ2 = 2, thus

α1 = 2. However, it has only one distinct unit eigenvector x =

(
1
0

)
, thus ζ1 = 1.

• Theorem. A ∈ Rn×n is diagonalizable ⇐⇒
∑

i αi =
∑

i ζi = n.
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Orthogonally Diagonaliable and Symmetric Matrix

Theorem. A ∈ Rn×n is orthogonally diagonalizable ⇐⇒ A is symmetric.

• Question. . How to find P (thus D)?

• Spectral Theorem. If A ∈ Rn×n is symmetric,

(a) the eigenvalues are all real

(b) the eigenvectors to different eigenvalues are perpendicular.

(c) there exists an orthogonal eigenbasis

• For (c), from each set of eigenvectors, say {x1, . . . , xk} associated with a particular
eigenvalue, say λj , we can construct another set of eigenvectors {x ′1, . . . , x ′k} that
are orthonormal, using the Gram-Schmidt process.

• Then, all eigenvectors can form an orthornormal basis.
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Example

• Example. A =
(

3 2 2
2 3 2
2 2 3

)
. pA(λ) = −(λ− 1)2(λ− 7), thus λ1 = 1, λ2 = 7

E1 = span[
(−1

1
0

)
,
(−1

0
1

)
], E7 = span[

(
1
1
1

)
]

◦ (111)T is perpendicular to (−110)T and (−101)T

◦
(−1

1
0

)
and

(
−1/2
−1/2

1

)
(for λ = 1) and

(
1
1
1

)
(for λ = 7) are the orthogonal basis in R3.

◦ After normalization, we can make the orthonormal basis.
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Eigendecomposition

• Theorem. The following is equivalent.

(a) A square matrix A ∈ Rn×n can be factorized into A = PDP−1, where P ∈ Rn×n and
D is the diagonal matrix whose diagonal entries are eigenvalues of A.

(b) The eigenvectors of A form a basis of Rn (i.e., The n eigenvectors of A are linearly
independent)

• The above implies the columns of P are the n eigenvectors of A (because
AP = PD)

• P is an orthogonal matrix, so PT = P−1

• A is symmetric, then (b) holds (Spectral Theorem).

L4(4)



Example of Orthogonal Diagonalization (1)

• Eigendecomposition for A =

(
2 1
1 2

)
• Eigenvalues: λ1 = 1, λ2 = 3

• (normalized) eigenvectors: p1 = 1√
2

(
1
−1

)
, p2 = 1√

2

(
1
1

)
.

• p1 and p2 linearly independent, so A is diagonalizable.

• P =
(
p1 p2

)
= 1√

2

(
1 1
−1 1

)
• D = P−1AP =

(
1 0
0 3

)
. Finally, we get A = PDP−1
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Example of Orthogonal Diagonalization (2)

• A =

1 2 2
2 1 2
2 2 1


• Eigenvalues: λ1 = −1, λ2 = 5

(α1 = 2, α2 = 1)

• E−1 = span[

−1
1
0

 ,

−1
0
1

]
Gram-Schmidt−−−−−−−−→

span[ 1√
2

−1
1
0

 , 1√
6

−1
1
2

]

• E5 = span[ 1√
3

1
1
1

]

• P =

−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3


• D = PTAP =

−1 0 0
0 −1 0
0 0 5
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Eigendecomposition: Geometric Interpretation

Question. Can we generalize this beautiful result to a general matrix A ∈ Rm×n?
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Storyline

• Eigendecomposition (also called EVD: EigenValue Decomposition): (Orthogoanl)
Diagonalization for symmetric matrices A ∈ Rn×n.

• Extensions: Singular Value Decomposition (SVD)

1. First extension: diagonalization for non-symmetric, but still square matrices A ∈ Rn×n

2. Second extension: diagonalization for non-symmeric, and non-square matrices A ∈ Rm×n

• Background. For A ∈ Rm×n, a matrix S := ATA ∈ Rn×n is always symmetric,
positive semidefinite.

◦ Symmetric, because ST = (ATA)
T

= ATA = S .

◦ Positive semidefinite, because xTSx = xTATAx = (Ax)T(Ax) ≥ 0.

◦ If rk(A) = n, then symmetric and positive definite.
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Singular Value Decomposition

• Theorem. A ∈ Rm×n with rank r ∈ [0,min(m, n)]. The SVD of A is a
decomposition of the form

A = UΣV T,

with an orthogonal matrix U =
(
u1 · · · um

)
∈ Rm×m and an orthogonal matrix

V =
(
v1 · · · vn

)
∈ Rn×n. Moreoever, Σ s an m × n matrix with Σii = σi ≥ 0 and

Σij = 0, i 6= j , which is uniquely determined for A.

• Note
◦ The diagonal entries σi , i = 1, . . . , r are called singular values.

◦ ui and vj are called left and right singular vectors, respectively.
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SVD: How It Works (for A ∈ Rn×n)

• A ∈ Rn×n with rank r ≤ n. Then, ATA is
symmetric.

• Orthogonal diagonalization of ATA:

ATA = VDV T.

• D =

(
λ1

. . .
λn

)
and an orthogonal matrix

V =
(
v1 · · · vn

)
, where

λ1 ≥ · · · ≥ λr ≥ λr+1 = · · ·λn = 0 are the
eigenvalues of ATA and {vi} are
orthonormal.

• All λi are positive

∀x ∈ Rn, ‖Ax‖2 = AxTAx = xTATAx = λi ‖x‖2

• rk(A) =rk(ATA) = rk(D) =r

• Choose U ′ =
(
u1 · · ·ur

)
, where

ui =
Avi√
λi
, 1 ≤ i ≤ r .

• We can construct {ui}, i = r + 1, · · · , n, so
that U =

(
u1 · · ·un

)
is an orthonormal

basis of Rn.

• Define Σ =

(√
λ1

. . . √
λn

)
• Then, we can check that UΣ = AV .
• Similar arguments for a general A ∈ Rm×n

(see pp. 104)
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Example

• A =

(
1 0 1
−2 1 0

)

• ATA =

 5 −2 1
−2 1 0
1 0 1

 = VDV T,

D =

6 0 0
0 1 0
0 0 0

 ,V =


5√
30

−2√
30

1√
30

0 1√
5

2√
5

−1√
6

−2√
6

1√
6


• rk(A) = 2 because we have two singular

values σ1 =
√

6 and σ2 = 1

• Σ =

(√
6 0 0

0 1 0

)

• u1 = Av1/σ1 =

(
1√
5
−2√

5

)

• u2 = Av2/σ2 =

(
2√
5

1√
5

)

• U =
(
u1 u2

)
= 1√

5

(
1 2
−2 1

)
• Then, we can see that A = UΣV T.
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EVD (A = PDP−1) vs. SVD (A = UΣV T)

• SVD: always exists, EVD: square matrix and exists if we can find a basis of
eigenvectors (such as symmetric matrices)

• P in EVD is not necessarily orthogonal (only true for symmetric A), but U and V
are orthogonal (so representing rotations)

• Both EVD and SVD: (i) basis change in the domain, (ii) independent scaling of
each new basis vector and mapping from domain to codomain, (iii) basis change in
the codomain. The difference: for SVD, different vector spaces of domain and
codomain.

• SVD and EVD are closely related through their projections
◦ The left-singular (resp. right-singular) vectors of A are eigenvectors of AAT (resp. ATA)

◦ The singular values of A are the square roots of eigenvalues of AAT and ATA
◦ When A is symmetric, EVD = SVD (from spectral theorem)
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Different Forms of SVD

• When rk(A) = r , we can construct SVD as the following with only non-zero
diagonal entries in Σ:

A =

m×r︷︸︸︷
U

r×r︷︸︸︷
Σ

r×n︷︸︸︷
V T

• We can even truncate the decomposed matrices, which can be an approximation of
A: for k < r

A ≈
m×k︷︸︸︷
U

k×k︷︸︸︷
Σ

k×n︷︸︸︷
V T

We will cover this in the next slides.
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Matrix Approximation via SVD

• A =
∑r

i=1 σi

Ai︷ ︸︸ ︷
uiviT, where Ai is the outer product3 of ui and vi

• Rank k-approximation: Â(k) =
∑k

i=1 σiAi , k < r

3If u and v are both nonzero, then the outer product matrix uvvT always has matrix rank 1.
Indeed, the columns of the outer product are all proportional to the first column.
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How Close Â(k) is to A?

• Definition. Spectral Norm of a Matrix. For A ∈ Rm×n, ‖A‖2 := maxx
‖Ax‖2

‖x‖2
◦ As a concept of length of A, it measures how long any vector x can at most become,

when multiplied by A

• Theorem. Eckart-Young. For A ∈ Rm×n of rank r and B ∈ Rm×n of rank k , for any
k ≤ r , we have:

Â(k) = arg min
rk(B)=k

‖A− B‖2 , and
∥∥∥A− Â(k)

∥∥∥
2

= σk+1

◦ Quantifies how much error is introduced by the SVD-based approximation

◦ Â(k) is optimal in the sense that such SVD-based approximation is the best one among
all rank-k approximations.

◦ In other words, it is a projection of the full-rank matrix A onto a lower-dimensional
space of rank-at-most-k matrices.
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Phylogenetic Tree of Matrices
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Questions?
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