Homework 3: Mathematics for AI

Due date: November 9th, 11:59 pm.

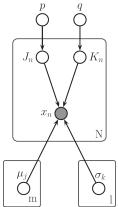
Note: Submit your solution file to TA, HyeongJoo Hwang (hjhwang@ai.kaist.ac.kr), by email. For questions, contact TA as well.

1. Consider the graphical model in Figure 1 which defines the following:

$$p(x_n \mid \theta) = \sum_{j=1}^{m} p_j \left[\sum_{k=1}^{l} q_k N\left(x_n \mid \mu_j, \sigma_k^2\right) \right],$$

where $\theta = \{p_1, ..., p_m, \mu_1, ..., \mu_m, q_1, ..., q_l, \sigma_1^2, ..., \sigma_l^2\}$ are all the parameters. Here $p_j \triangleq P(J_n = j)$ and $q_k \triangleq P(K_n = k)$ are the equivalent of mixture weights. We can think of this as a mixture of *m* non-Gaussian components, where each component distribution is a scale mixture, $p(x|j;\theta) = \sum_{k=1}^{l} q_k N(x;\mu_j,\sigma_k^2)$, combining Gaussians with different variances (scales).

Figure 1: A mixture of Gaussians with two discrete latent indicators. J_n specifies which mean to use, and K_n specifies which variance to use.



For this model, we will now derive a generalized EM algorithm where we do a partial update in the M step instead of finding the exact maximum.

- (a) Derive an expression for the responsibilities, $P(J_n = j, K_n = k | x_n, \theta)$, needed for the E step.
- (b) Write out a full expression for the expected complete log-likelihood

$$Q\left(\theta^{\text{new}}, \theta^{\text{old}}\right) = E_{\theta^{\text{old}}} \sum_{n=1}^{N} \log P\left(J_n, K_n, x_n \mid \theta^{\text{new}}\right)$$

(c) Solving the M-step would require us to jointly optimize the means $\mu_1, ..., \mu_m$ and the variances $\sigma_1^2, ..., \sigma_l^2$. It will turn out to be simpler to first solve for the μ_j 's given fixed σ_j^2 's, and subsequently solve for σ_j^2 's given the new values of μ_j 's. We will just do the first part. Derive an expression for the maximizing μ_j 's given fixed $\sigma_{1:l}^2$, i.e., solve $\frac{\partial Q}{\partial \mu^{\text{new}}} = 0$.

- 2. Derive the residual error for PCA by following the steps below:
- (a) Based on the fact that (1) $\mathbf{v}_j^T \mathbf{v}_j = 1$ and $\mathbf{v}_j^T \mathbf{v}_k = 0$ for $k \neq j$ and (2) $z_{ij} = \mathbf{x}_i^T \mathbf{v}_j$, show:

$$\left\|\mathbf{x}_{i}-\sum_{j=1}^{K}z_{ij}\mathbf{v}_{j}\right\|^{2}=\mathbf{x}_{i}^{T}\mathbf{x}_{i}-\sum_{j=1}^{K}\mathbf{v}_{j}^{T}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\mathbf{v}_{j}$$

Hint: Begin with the case K = 2.

(b) Based on the fact that $\mathbf{v}_j^T \mathbf{C} \mathbf{v}_j = \lambda_j \mathbf{v}_j^T \mathbf{v}_j = \lambda_j$, prove the following equality:

$$J_K \triangleq \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^K \lambda_j$$

(c) If K = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using K < d terms is given by

$$J_K = \sum_{j=K+1}^d \lambda_j$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{K} \lambda_j$ and $\sum_{j=K+1}^{d} \lambda_j$.